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Abstract

We show here that every non-adaptive property testing algorithm making a constant
number of queries, over a fixed alphabet, can be converted to a sample-based (as per [Gol-
dreich and Ron, 2015]) testing algorithm whose average number of queries is a fixed, smaller
than 1, power of n. Since the query distribution of the sample-based algorithm is not de-
pendent at all on the property, or the original algorithm, this has many implications in
scenarios where there are many properties that need to be tested for concurrently, such as
testing (relatively large) unions of properties, or converting a Merlin-Arthur Proximity proof
(as per [Gur and Rothblum, 2013]) to a proper testing algorithm.

The proof method involves preparing the original testing algorithm for a combinatorial
analysis, which in turn involves a new result about the existence of combinatorial structures
(essentially generalized sunflowers) that allow the sample-based tester to replace the original
constant query complexity tester.

1 Introduction

A test for a property L ⊆ Ξn (where Ξ is a fixed finite alphabet), with proximity parameter ε,
is an algorithm that queries an input w ∈ Ξn in a limited number of places, and distinguishes
with high probability between the case where w ∈ L and the case where no w′ ∈ L is ε-close to
w in the normalized Hamming distance. A non-adaptive test is a test that decides its queries
in advance of receiving the corresponding input values, which basically means that its queries
are governed by a single distribution µ over the power set of [n].

Given a family of properties F ⊆ {L : L ⊆ Ξn}, we say that there is a canonical testing
scheme for F if there are non-adaptive tests (with the same parameter ε) for all members L ∈ F ,
which additionally all share the same query probability distribution µ.

This concept has been defined and used before. The most well-known example is that of
[10], where the family of all properties of dense graphs (as per the model defined in [7]) with
n vertices that are testable (non-adaptively or not) with up to q queries, is shown to have a
canonical testing scheme, where the common query distribution consists of uniformly picking a
set of 2q vertices and querying all

(
2q
2

)
vertex pairs.

Note that being in the dense graph model in essence restricts the admissible properties.

Under this model, an input w ∈ {0, 1}(
n
2) is interpreted as the adjacency matrix of a graph

with n vertices, and a property L is admissible if it is invariant under all input transformations

∗Faculty of Computer Science, Israel Institute of Technology (Technion), Haifa, Israel. eldar@cs.technion.ac.il
†Birkbeck, University of London, London, UK. oded@dcs.bbk.ac.uk
‡Faculty of Computer Science, Israel Institute of Technology, Haifa, Israel. yaduvasudev@gmail.com

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 89 (2015)



corresponding to re-labeling the graph vertices (i.e., the transformations corresponding to graph
isomorphisms).

There are other examples. For example, given a finite field F , for properties of functions over
a linear space over F that are known to be invariant under linear transformations, a canonical
testing scheme would consist of querying the function over an entire small dimensional subspace
picked uniformly at random [2].

A natural question is what would be a candidate for an “ultimate” canonical scheme, where
there are no structural impositions on the property at all. One would expect here a query
distribution that is completely symmetric with respect to any permutation of the index set [n].
Indeed, such a scheme is defined as sample-based testing in [9]. The sampled-based distribution
µp corresponds to choosing every index i ∈ [n] to be queried independently with probability p.
Usually p will be n−α for some 1 > α > 0. It is a folly to expect a sample-based testing scheme
with significantly fewer queries, even for properties with a constant bound on the number of
queries for a test, as evidenced already in [7, Proposition 6.9].

In [9] a connection between proximity-oblivious testers (POT) as defined in [8] and the
sample-based querying scheme was suggested. Proximity oblivious testers are non-adaptive
testing algorithms whose querying distribution is the same for any proximity parameter ε, where
instead the distinguishing probability between inputs in L and inputs ε-far from L changes with
ε. The work [9] showed that for such testers that additionally have the property that all indexes
get queried with about the same probability (but not necessarily in an independent manner),
there exists a conversion to sample based testers with p = O(n−1/q), where the coefficient
depends on the distinguishing probability, and the parameter measuring the above-mentioned
“probability sameness” of the original test.

In [6] it is shown that all 1-sided proximity-oblivious testers over the alphabet {0, 1} are
convertible to the canonical sample-based scheme, where p = n−α with α depending (somewhat
badly) on q, ε and the distinguishing probability δ. In [9] there is an example of a testable
property that has no sublinear query complexity sample-based test at all, but it works only
over an alphabet whose size is exponential in n, and so does not contradict the result of [6].

Here we take the investigation much further, and prove the following.

Theorem 1.1 (informal statement of our main result). Every property of words in Ξn, that
has a non-adaptive ε-test with q queries and detection probability δ (either 1-sided or 2-sided),
admits a test using the sample-based canonical querying scheme, where the distribution µp has
p = O(n−α), with α depending on q, δ, and for 2-sided testing also on |Ξ| and ε, and the hidden
coefficient depending on q, δ, ε and |Ξ|.

We prove this separately for 1-sided tests and 2-sided tests. For 2-sided tests we go further
and prove the result for partial tests, that are only guaranteed to accept inputs in some sub-
property L′ with high probability, a generalization whose relevance is explained below.

For both 1-sided testing and 2-sided (possibly partial) testing we obtain a very improved
bound on α as compared to the 1-sided testing result of [6]. Additionally, the dependency of
the coefficient on |Ξ| is logarithmic, while for the 2-sided test the additional dependency of α
on |Ξ| is of type log log log(|Ξ|). This shows that, for non-adaptive tests, the exponential size of
the alphabet in the counter-example in [9] is essential. We believe that the “correct” α should
be just −1/q, at least for converting 1-sided tests, but cannot prove it yet.

By the standard conversion of adaptive tests to non-adaptive tests, Theorem 1.1 also holds
for adaptive tests. However, in both the 1-sided and the 2-sided cases, the α parameter is a
function of |Ξ| to the power of a polynomial function in q.
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1.1 Implications for multitests

There are several motivations for finding canonical testing schemes. One of them is for proving
lower bounds, which may be easier when the querying distribution is “simple” and known.
Here we would like to highlight another one, which also played an implicit role in the original
motivation of [6].

Given a sequence of properties L1, . . . , Lr, a multitest for them is an algorithm that makes
queries to a word w ∈ Ξn, and provides a sequence of answers. With probability at least 1− δ,
the answers should be correct for all the properties, that is, for every k such that w ∈ Lk
the corresponding answer should be “yes”, and for every l such that w is ε-far from Lk the
corresponding answer should be “no”.

If we know nothing else about the properties apart from that they are all testable using q
queries each, then the scalability of a test to a multitest would be quasilinear: We first take a
test for every Li, and amplify its success probability to 1 − δ/r (which multiplies the number
of queries by O(log r)). Then we just run these r tests one after the other, and use the union
bound for the total success probability, all in all using O(q · r log r) queries. This is not always
good enough, as in some applications r can depend on n, and may even be greater than n (say
through a polynomial dependency).

However, the situation changes dramatically if we know all properties to share a canonical
testing scheme with q′ queries (where q′ could depend on n). In this case, we can re-use the
same queries for all r (amplified) tests, and the union bound will still work. This brings us to
using only O(q′ · log r) queries in all. This scalability can have many implications.

In [6], multitests are implicitly used for testing unions of properties. This in turn allows to
convert in certain cases tests requiring proofs as per the MAP scenario (defined in [11] and
also developed in [6]) to tests that still have a sublinear query complexity but do not require
such proofs. In this setting we deploy the generalization of our result to partial testing, as a
MAP scenario converts to a union of partial testing problems.

Another scenario aided by a multitest is if one wants to store the results for w belonging
(approximately) to a rather large set of possible properties. If the properties share a canonical
testing scheme, and the corresponding property tests also admit a not too large computation
time overhead, then it may be worthwhile to store instead the common set of queries performed
by the multitest, because this query set increases rather slowly with r.

Finally, a canonical testing scheme also allows for some measure of privacy: Suppose that
one wants to test a particular property of w ∈ Ξn, but wants to hide from the “input holder”
the identity of the particular property to be tested. By using the canonical testing scheme, no
one but the party performing the test can discern which of the properties having the canonical
scheme is being tested for.

1.2 Methods used

The crucial analysis used for converting a test with q queries to a sample-based test is of a
combinatorial nature. We take the support of the query distribution of a non-adaptive test, and
analyze it as a family of query sets, essentially a q-uniform hypergraph whose vertex set is the
domain of possible queries.

For 1-sided testing algorithms, since they reduce to checking whether the set of queries is
a witness refuting the possibility of the input belonging to the property, the support of the
distribution provides most of the information we need. We can assume (through a simple
processing of the original test) that the number of possible query sets is linear in the domain
size n. Finding large “matchings” (families of disjoint sets) of refuting witnesses would be ideal
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for sample based testing, but since we make no assumptions on our family of sets outside its
size, these do not always exist.

The next option that could be explored is finding large sunflowers as defined in [4]. This is
the approach taken by [6], and it can be generalized to the setting here. However, the obtained
α value for the n−α sampling test would depend very badly on the other parameters, because
sunflowers require processing in several stages.

Here we present a generalization of sunflowers, which we call pompoms. The main difference
is that the “core” common to the participating sets is not their intersection as in sunflowers, and
in fact could be much larger – the only requirement is that the participating sets are disjoint
outside the core. The support of the query distribution is shown to admit pompoms larger than
the sunflowers it would admit, and moreover ones that all share the same core, so we can rule
out the possible inputs in just one processing round.

For 2-sided testing we use pompoms to explicitly estimate what some portions of the original
test would say for a particular input. Because of the estimation requirements, we need an
additional requirement of the 2-sided test – it has to be combinatorial, in the sense that its
query distribution is uniform over the family of possible query sets. Much work is needed to
fully convert a general 2-sided test to a combinatorial one that can be analyzed as a hypergraph,
and this introduces some extra dependency on the alphabet size. To aid with the analysis of
the 2-sided tests, a formalism of probabilistic formulas is introduced. The combinatorialization
shown here has potential for future uses, as it generalizes to promise problems outside property
testing – it is sufficient for the property to have at least one “yes” instance and one “robust no”
instance.

The pompom families used both in the 1-sided and the 2-sided sample-based testing conver-
sion result both stem from a general structural result about the query distributions, that finds
a constellation in the underlying support. A constellation is a “big enough” set of queries that
is guaranteed to have no “heavy vertices” outside a small set (which would become the core
of our pompoms). A constellation readily allows for the extraction of pompoms under various
settings.

2 Preliminaries

2.1 Large deviation bounds

The following is useful for the analysis of sample based testing.

Lemma 2.1 (multiplicative Chernoff bounds). Let X1, . . . , Xm be independent Boolean random
variables such that Pr[Xi = 1] = p. Let X =

∑m
i=1Xi. For any γ ∈ (0, 1],

Pr [X > (1 + γ)pm] < exp
(
−γ2pm/3

)
Pr [X < (1− γ)pm] < exp

(
−γ2pm/2

)
Lemma 2.2 (Hoeffding bounds [12]). Let Y1, . . . , Ym be independent random variables such that
0 ≤ Yi ≤ 1, for i = 1, . . . ,m and let η = E [

∑m
i=1 Yi/m]. Then,

Pr

[∣∣∣∣∑m
i=1 Yi
m

− η
∣∣∣∣ ≥ t] ≤ 2 exp(−2mt2)

Lemma 2.3 (without replacement [12]). Let X1, . . . , Xm be random variables picked uniformly
without repetition from the sequence C = (γ1, . . . , γm) where 0 ≤ γi ≤ 1 (this means that
i1, . . . , im are picked uniformly without repetition from [m], and then every Xj is set to γij ; it
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may be that some γi are equal to others). Let Y1, . . . , Ym be independent random variables picked
with repetition from C (i.e. every kj is uniformly and independently chosen from [m] and then
Yj is set to γkj ). Then the conclusion of Lemma 2.2 for Y1, . . . , Ym holds also for X1, . . . , Xm,
that is,

Pr

[∣∣∣∣∑m
i=1Xi

m
− η
∣∣∣∣ ≥ t] ≤ 2 exp(−2mt2)

where η = 1
m

∑m
i=1 γi.

Lemma 2.4 (large deviation bound). Denote by µp the distribution over subsets of [m], where
every i ∈ [m] is picked into the subset with probability exactly p, independently from all other
j 6= i. Suppose that γ1, . . . , γm are all values in [0, 1], and let U ⊆ [m] be chosen according to µp,
where p ≥ 10c/η2m and c > 1. Then, with probability at least 1− e−c, the value (

∑
i∈U γi)/|U |

(where we arbitrarily set it to 1
2 if U = ∅) is in the range (

∑m
i=1 γi)/m± η.

Proof. If U is picked according to µp, then E[|U |] = pm. By the multiplicative Chernoff bound
of Lemma 2.1 we have the following bound on the probability of the size of U being small:

Pr
[
|U | ≤ pm

2

]
≤ exp(−pm/8) ≤ e−c/2.

We continue our analysis conditioned on the event that the size of U is at least pm/2. For ev-
ery k ≥ pm/2, let us analyze separately the deviation of the value

(∑
i∈U γi

)
/|U | conditioned on

|U | = k. Lemma 2.3 holds for this case, stating that the probability of
∣∣∣ 1k∑k

i=1Xi − 1
m

∑m
i=1 γi

∣∣∣
being greater than η is bounded by e−c/2. Hence, for U picked according to µp, the probability
of
∑

i∈U γi/|U | being outside the range
∑

i∈m γi/m± η is at most e−c, by the union bound on

the event of |U | < pm/2, and the event of
∣∣∣ 1k∑k

i=1Xi − 1
m

∑m
i=1 γi

∣∣∣ > η while |U | ≥ pm/2.

2.2 Words and distributions

Notation for words Let Ξ be an alphabet, and let w ∈ Ξn, i ∈ [n] and Q ⊆ [n]. We use wi
to denote the i’th letter of w and wQ to denote the word v ∈ Ξ|Q| such that, for every j ∈ [|Q|],
vj = wQ(j), where Q(j) is the j’th smallest member of Q. Let C ⊆ [n] and σ be a word in Ξ|C|.
We denote by wσ,C the word that we get by taking w and replacing its sub-word wC with σ.

Definition 2.5 (word distances). Two words w, v ∈ Ξn are said to be ε-far if there is no A
of size at most εn for which w[n]\A = v[n]\A (in other words, we use the normalized Hamming
distance). Otherwise these words are said to be ε-close. Given a property L ⊆ Ξn, a word w is
said to be ε-close to L if there exists an ε-close word v which is in L, and otherwise w is said
to be ε-far from L.

Notation for distributions We deal with distributions µ over subsets of [n]. For A ⊆ [n]
we denote by µ(A) the probability of A being drawn by µ. For a non-empty event, that is a
family of sets ∅ 6= A ⊆ 2[n], we abuse notation somewhat and denote µ(A) =

∑
A∈A µ(A). We

denote by Supp(µ) the family of positive probability outcomes {A ⊆ [n] : µ(A) > 0}, and for
two distributions µ and µ′ denote by dist(µ, µ′) the variation distance 1

2

∑
A⊆[n] |µ(A)−µ′(A)| =

maxA⊆2[n] |µ(A)− µ′(A)|.

2.3 Property Testing

We start this subsection by defining tests. We define partial tests (of which tests are a special
case), because we would like our main result to also have applications in the realm of MAPs
as defined in [11].
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Definition 2.6 (partial (ε, δ, q)-test). Given two properties L′ ⊆ L ⊆ Ξn, a partial (ε, δ, q)-test
for (L′, L) is a randomized algorithm A that, given query access to the input w, uses q queries
and satisfies the following:

1. If w ∈ L′, then Pr [A(w) = 1] ≥ 1− δ.

2. If w is ε-far from L, then Pr [A(w) = 0] ≥ 1− δ.

The test is 1-sided if, when w ∈ L′, the output is always 1, and otherwise it is 2-sided. If the
choice of every query is independent of the answers to the previous queries, then the test is
non-adaptive, and otherwise it is adaptive.

In the case where L′ = L, we call it an (ε, δ, q)-test for L.

We remark that, in the case of a non-adaptive test, we may assume that the set of queries is
selected before any query is made. So, a non-adaptive test can be viewed as consisting of three
steps: (i) a set of queries Q is randomly selected according to a distribution over 2[n]; (ii) the
sub-word wQ is queried; (iii) the output is computed according to (Q,wQ).

We note that a 1-sided test can reject only if (Q,wQ) constitutes a proof that w is not in
the property. This occurs if and only if Q is a witness against w as defined next.

Definition 2.7 (witness against a word). A set Q ⊆ [n] is a witness against a word w ∈ Ξn

(with regards to a property L), if every u ∈ Ξn such that uQ = wQ is not in L.

Without loss of generality, we assume that a test always rejects when it encounters a witness
against the word. In the case of a 1-sided tester it is actually the case that the test rejects only
if it encountered a witness. We next formally define the concept of the distribution of a non-
adaptive test.

Definition 2.8 (distribution of a non-adaptive (ε, δ)-test). The distribution of a non-adaptive
(ε, δ)-test A, denoted by µA, is a distribution over 2[n], such that, for every Q ⊆ [n], the value
of µA(Q) is the probability that A will select Q to be its set of queries. We omit the subscript
when it is clear from context.

Our conversion results rely on the combinatorial aspects of distributions of tests. In fact,
for non-adaptive 1-sided tests, without loss of generality this distribution is the sole defining
object, because the test can be assumed to reject if and only if its query set produced a witness
against the input word. In particular, we show a reduction to the case where the cardinality
of the support of the distribution has a bound linear in n. We use the following definition to
capture this case and afterwards we give the reduction.

Definition 2.9 (non-adaptive (ε, δ, q, k)-test). A non-adaptive (ε, δ, q)-test (or partial test) is
an (ε, δ, q, k)-test, if | Supp(µ)| ≤ k.

We observe that the support of the distribution of an (ε, δ, q)-test contains only sets of
cardinality q. We use the term (ε, δ)-test (omitting q) when we do not make any assumption on
the cardinality of the sets in the distribution. The following lemma transforms a 1-sided test to
one with parameters more suitable for analysis and conversion to sample-based testing.

Lemma 2.10. A non-adaptive 1-sided (ε/2, δ, q)-test can be converted to a non-adaptive 1-sided
(ε/2, 1/2(q′ + 1), q′, 4(q′ + 1)2 log(|Ξ|)n)-test where q′ = O(q log(q)/(1− δ)).

Proof. First, by traditional amplification, repeating the original test 20 log(q)/(1 − δ) times
and rejecting if any run had rejected, we convert it to an (ε/2, 1/1000q′′, q′′)-test where q′′ =
O(q log(q)/(1 − δ)). Then we consider the outcome of running the test 10 log(|Ξ|)q′′n times
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independently. By Lemma 2.1, for any fixed ε/2-far input w ∈ Ξn, the probability that it is
accepted by more than a 1/10q′′ fraction of the runs is bounded by e−992·log(|Ξ|)n/3000 < 1

2 |Ξ|
−n.

This means that with probability at least 1
2 , such a sequence of runs will satisfy the above for

all ε/2-far inputs at once. We fix such a sequence of runs, and make it the new test. That is, the
new µ′ consists of selecting one of the fixed runs uniformly at random, and using its query set.
This brings us to an (ε/2, 1/10q′′, q′′, 10 log(|Ξ|)q′′n)-test. We artificially increase the number of
queries to q′ = 3q′′ to obtain our required test.

The following two lemmas are essential for the analysis of 1-sided tests. When reading them,
one should keep in mind that, when they are applied, the δ parameter in their statement is small
since the tests analyzed are those implied by Lemma 2.10.

Lemma 2.11. Let J ⊆ Supp(µ), where µ is the distribution of a 1-sided (ε/2, δ)-test for a
non-empty property L for which ε-far words exist. If |

⋃
Q∈J Q| < εn/2, then µ(J ) < δ.

Proof. Let T =
⋃
Q∈J Q, let u ∈ Ξn be a word in L and w ∈ Ξn be ε-far from L, and let

v = wuT ,T ∈ Ξn be such that vT = uT and v[n]\T = w[n]\T . Assume that |
⋃
Q∈J Q| < εn/2.

Then, by the triangle inequality, v is ε/2-far from L.
Considering a 1-sided test of v with distribution µ, we first note that no member of J is a

witness against v. Thus, µ(J ) is at most 1 minus the probability of µ obtaining a witness. As
v is ε/2-far from L, the probability of obtaining a witness by µ is at least 1− δ, implying that
µ(J ) < δ.

Lemma 2.12. For µ which is the distribution of a 1-sided (ε/2, δ)-test for a non-empty property
L for which ε-far words exist, let w ∈ Ξn be 5ε/6-far from L and J ⊆ Supp(µ). If µ(J ) ≥ 2δ,
then the set S of all Q ∈ J which are witnesses against w satisfies |

⋃
Q∈S Q| ≥ εn/2.

Proof. Let S ⊆ J be the subset of witnesses against w as in the formulation of the lemma.
Since w is 5ε/6-far from L, the distribution µ provides a witness against w with probability at
least 1− δ, and therefore µ(S) ≥ δ. Consequently, by Lemma 2.11, |

⋃
Q∈J Q| ≥ εn/2.

Definition 2.13 (p-sampling (ε, δ)-test). A p-sampling test for a property L is an (ε, δ)-test
such that every i ∈ [n] is selected as a query, independently, with probability p; in other words,
it is a sample-based test with probability p as defined in [9]. A p-sampling test is 1-sided if
every word in the property is accepted with probability 1 and otherwise it is 2-sided. We use the
notation µp to denote the distribution of the p-sampling test.

3 A conversion of a 1-sided test to a 1-sided sampling test

We show here that if a property is testable with a 1-sided error, then it has a p-sampling 1-sided
(ε, δ)-test with p corresponding to some negative power of n. Specifically, we prove the following
theorem, which as we explain immediately afterwards implies our claimed result.

Theorem 3.1. For every n > (24q(q + 1)2(log(|Ξ|))2/ε)q, if a property over Ξn has a 1-sided
(ε/2, 1/2(q + 1), q, 4(q + 1)2 log(|Ξ|)n)-test, then it also has a p-sampling 1-sided (ε, 1/2)-test
such that p = O(log(|Ξ|)q3n−1/q2/ε).

The preceding theorem is effective for all properties with 1-sided (ε/2, δ, q)-tests, since, by
Lemma 2.10, an (ε/2, δ, q)-test can be converted to a (ε/2, 1/2(q′+1), q′, 4(q′+1)2 log(|Ξ|)n)-test,
where q′ is bounded by a polynomial in q and 1/(1− δ).

We next sketch a proof that the statement of Theorem 3.1 holds for every test that satisfies
the additional constraint that it has a distribution µ such that Supp(µ) consists of pairwise
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disjoint sets. The main result of this section can be interpreted as a reduction to this simplistic
case.

Suppose that µ is a distribution over disjoint query sets of a 1-sided (ε/2, 1/2(q+ 1), q, 4(q+
1)2 log(|Ξ|)n)-test for L. Let w be ε-far from a property L, and B be the family of all the sets
in Supp(µ) that are witnesses against w. Now note that if |B| is sufficiently large, then using
the fact that these sets are pairwise disjoint it is easy to show that, with probability at least
1/2, the set of queries used by a p-sampling test contains at least one of these sets. This in
turn implies that a p-sampling test rejects w with probability at least 1/2. We next explain
why |B| is indeed sufficiently large. Let B be the union of all the sets in B. By definition, the
test rejects w with probability at least 1/2, and therefore µ(B) ≥ 1/2. Thus, by Lemma 2.11,
|B| ≥ εn/2 and hence |B| ≥ εn/(2q).

When the sets in Supp(µ) are not pairwise disjoint the preceding idea does not work, for
example in the case where the size of the intersection of all the sets in Supp(µ) is a set {i} of size
1. Here, with probability (1 − p), a set of queries selected at random according to µp will not
contain {i}, and hence will not contain any set from Supp(µ) that could be a witness against
w. Thus, we have no indication that a p-sampling test rejects w with the required probability.
We now explain how to circumvent this barrier in two steps: in the first step we assume that
C, the intersection of sets in Supp(µ), is significantly smaller then εn/2, and that we are given
wC in advance; in the second step we show what to do when wC is not known in advance.

Let B and B be as defined in the simplistic disjoint query sets case. In the same manner as
the simplistic case, we can conclude that |B| ≥ εn/2. LetM be the family of all non-empty sets
Q\C such that Q ∈ B. We note that the size ofM is O(εn/q) since, by construction, the size of
the union of these sets is |B| − |C| = O(εn). It is thus easy to show that, with high probability,
a set of queries selected at random according to µp together with C contains a witness against
w, and hence a p-sampling test, with the advance knowledge of wC , rejects w with the required
probability. The combinatorial structure consisting of the set C and the family B is captured
by the following definition:

Definition 3.2. (i-pompom) A family of sets S is an i-pompom if there exists a set C, which
we refer to as the core of the i-pompom, such that the following hold.

1. |Q \ C| = i for every Q ∈ S.

2. Q \ C and Q′ \ C are pairwise disjoint for every distinct Q and Q′ in S.

The restriction of the cardinality of the sets Q \ C is required to support technical com-
putations in the proofs. We next explain how the above idea works when wC is not given in
advance.

If, given a word w, we have a large pompom with core C that is additionally made up of
witnesses against wv,C for some v ∈ Ξ|C|, then similarly to the simple case described above, the
sampling distribution will produce a set showing that w is not in the property unless wC 6= v.
This simple observation is the motivation for the following setting. Suppose that there exists a
set C and a set of families {Sσ}σ∈Ξ|C| , such that for every σ ∈ Ξ|C|, Sσ is an i-pompom consisting
of witnesses against wσ,C that has C as a core. Now, if the cardinality of C is sufficiently small
and the cardinality of every i-pompom is sufficiently large, then we can prove the following:
with high probability, a set of queries selected at random according to µp contains a set of
queries whose values rule out any possible value of wC , and hence imply that w itself is not in
the property. We refer to such a set of queries as a super-witness.

Definition 3.3 (super-witness against a word). We say that X ⊆ [n] is a super-witness against
a word w ∈ Ξn, if there exists a set Y ⊆ [n] \X such that, for every σ ∈ Ξ|Y |, there exists a set
Q ⊆ X ∪ Y which is a witness against wσ,Y .
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Recall that the set X in the above definition does not necessarily contain any set from
Supp(µ). However, as we prove next, it is sufficient to imply that w in not in the property.

Observation 3.4. Any set containing a witness against a word w is also a witness against it.
Additionally, a set is a super-witness against w if and only if it is a witness against it.

Proof. The part about containing sets follows immediately from the definition. Additionally, a
witness X is also a super-witness by setting Y = ∅. Now let X ⊆ [n] be a super-witness against
w ∈ Ξn. By the definition of a super-witness, for every u ∈ Ξn such that uX = wX , there exists
a witness against u (some subset of X ∪ Y ) and hence u 6∈ L. Thus X is a witness against w
with regards to L.

We now formally define the type of set of i-pompoms that we need for our result.

Definition 3.5. (revealing set of i-pompoms for w) Let w be any word in Ξn. A set of i-pompoms
for w is revealing if there exists C ⊆ [n] of cardinality bounded above by 4q(q+1)2 log(|Ξ|)n1−i/q,
such that, for every σ ∈ Ξ|C|, the set contains an i-pompom Sσ that satisfies:

1. C is a core of Sσ.

2. for every σ ∈ Ξ|C|, Sσ consists only of witnesses against wσ,C .

3. |Sσ| ≥ (1/3i)ε · n1−(i−1)/q.

The bounds on the cardinality of the core and the i-pompoms follow from the combinatorial
construction that we use to prove their existence. We show next that they are sufficient for our
purpose, and afterwards present the combinatorial construction.

Lemma 3.6. Let n > (24q(q+1)2(log(|Ξ|))2/ε)q, α = 15 ln |Ξ| ·q(q+1)2/ε and w ∈ Ξn. If there
exists a revealing set of i-pompoms for w with a core C, then the α · n−1/q2-sampling algorithm
rejects w, with probability at least 1

2 .

Proof. Let Bσ be the set {Q \ C : Q ∈ Sσ}. We observe that |Bσ| = |Sσ|. Let R ⊆ [n] be the
set of indexes sampled by the α · n−1/q2-sampling algorithm.

Referring to Calculation 1 (see appendix), for every σ ∈ Ξ|C|, the probability that R does

not contain a set from Bσ is at most (1−αi ·n−i/q2)(1/3i)ε·n1−(i−1)/q ≤ 1
2 |Ξ|

−4q(q+1)2 log(|Ξ|)n1−i/q ≤
1
2 |Ξ|

−|C|. Thus, by the union bound, with probability at least 1
2 , for every σ ∈ Ξ|C| the set R

contains a set from Bσ. We note that this means that R is a super-witness against w, which by
Observation 3.4 makes it a witness against w. Thus, the α · n−1/q2-sampling algorithm rejects
w with probability at least 1

2 , and hence the statement of the lemma follows.

We now show that, for every property L ⊆ Ξn that has a 1-sided (ε/2, 1/2(q + 1), q, 4(q +
1)2 log(|Ξ|)n)-test, and every w ∈ Ξn that is ε-far from L, there exists a revealing set of i-
pompoms for w. We first show that if Supp(µ) has a family of sets S that is almost an
i-pompom, then for every w that is ε-far from L, S admits a revealing set of i-pompoms. By
“almost” we mean that there exists a set C, which satisfies that every j ∈ (

⋃
Q∈S Q) \C is not

in too many of sets in S (where for a true pompom every such j would be in exactly one set).
First, let us formally define the “almost-pompom” sets; this definition will also serve in the

proof of the conversion for 2-sided tests.

Definition 3.7 (constellation). For i ∈ [q], n, a distribution µ over subsets of [n] of size q, and
any positive number η, an (η, i)-constellation is a pair (C,S) consisting of a set C ⊆ [n] and a
family S ⊆ Supp(µ) satisfying the following.
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1. µ(S) ≥ 1
q+1 .

2. |C| ≤ ηn1−i/q.

3. |Q \ C| = i, for every Q ∈ S.

4. If i > 1, then every j ∈
⋃
Q∈S Q \ C is in at most n(i−1)/q sets from S.

Lemma 3.8. Let i ∈ [q], n > (24q(q + 1)2(log(|Ξ|))2/ε)q, w be any word in Ξn that is ε-far
from L, and µ be the distribution of a 1-sided (ε/2, 1/2(q + 1), q, 4(q + 1)2 log(|Ξ|)n)-test for L.
If there exists a (4q(q + 1)2 log(|Ξ|), i)-constellation for µ, then there exists a revealing set of
i-pompoms for w.

Proof. Let σ be any arbitrary word in Ξ|C|. Since n > (24q(q + 1)2(log(|Ξ|))2/ε)q, |C| < εn/6,
and hence by the triangle inequality wσ,C is 5ε/6-far from L.

Let Sσ ⊆ S be the set of all Q ∈ S which are witnesses against wσ,C . Since µ(S) ≥ 1
q+1 , by

Lemma 2.12 we have |
⋃
Q∈Sσ Q| ≥ εn/2. Let Bσ be the set {Q \ C : Q ∈ Sσ}. We observe that

|
⋃
Q∈Bσ Q| ≥ |

⋃
Q∈Sσ Q| − |C| ≥ εn/3, because |C| < εn/6.

Suppose first that i = 1. We let S ′σ ⊆ S be maximal so that, for every Q ∈ S ′σ, Q \ C is
distinct and a member of Bσ. Clearly, |S ′σ| ≥ (1/3)ε · n, S ′σ is an 1-pompom, and C is a core of
S ′σ.

Suppose now that i > 1. Then, there exists B′σ ⊆ Bσ such that every pair of sets in B′σ is
disjoint and |B′σ| ≥ 1

3iε · n
1−(i−1)/q, because every j ∈

⋃
Q∈Bσ Q \C ⊆

⋃
Q∈S Q \C is in at most

n(i−1)/q sets from S. We let S ′σ ⊆ S be maximal so that, for every Q ∈ S ′σ, Q \ C is a distinct
member of B′σ. Clearly, |S ′σ| ≥ (1/3i)ε · n1−(i−1)/q, S ′σ is an i-pompom, and C is a core of S ′σ.

We observe that the above implies that for every σ ∈ Ξ|C|, C is a core of S ′σ, S ′σ consists
only of witnesses against wσ,C , and |S ′σ| ≥ (1/3i)ε · n1−(i−1)/q. Thus, by definition, {S ′σ}σ∈Ξ|C|

is a revealing set of i-pompoms for w.

We now prove that any distribution µ, over subsets of [n] of size q, which satisfies Supp(µ) ≤
ηn, admits an (η, i)-constellation (S, C) for some i ∈ [q], as long as a certain subset of Supp(µ)
(defined below) is not too heavy. This together with Lemma 3.6 and Lemma 3.8, substitut-
ing η = 4q(q + 1)2 log(|Ξ|) and referring to the distribution µ of the (ε/2, 1/2(q + 1), q, 4(q +
1)2 log(|Ξ|)n)-test, is sufficient for the proof of Theorem 3.1.

We start by defining three sets of families, {Mi}qi=0, {Ci}qi=0 and {Si}qi=0, where {Si}qi=0 is
a partition of Supp(µ). We prove afterwards that, as long as µ(S0) ≤ 1

q+1 , for some i ∈ [q] the
sets Mi and Ci respectively compose the claimed constellation (S, C).

Definition 3.9 (Mi, Ci and Si). Given a distribution µ over subsets of [n] of size q whose
support is bounded by ηn, we inductively define Mi, Ci and Si as follows.

1. Let M0 = Supp(µ), and C0 be the set of indexes j ∈ [n] such that j is a member of at
least nq

−1
sets in M0.

2. For i = 0, 1, . . . , q, after Mi and Ci are defined, let Si be the family of all sets Q ∈ Mi

such that |Q ∩ Ci| = q − i.

3. For i = 1, . . . , q, after Mi is defined, let Ci be the set of indexes j ∈ [n] such that j is a
member of at least ni/q sets in Mi.

4. For i = 1, . . . , q, after Mi−1 and Si−1 are defined, let Mi =Mi−1 \ Si−1.

The following statement gives the properties of these sets.
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Observation 3.10. The following hold for the sets of Definition 3.9 when they are constructed
from a distribution µ satisfying the conditions there.

1. |C0| ≤ ηqn1−1/q.

2. |Ci| ≤ ηqn1−i/q for all 1 ≤ i ≤ q.

3. Mi ⊆Mi−1 for all 1 ≤ i ≤ q.

4. Ci ⊆ Ci−1 for all 1 ≤ i ≤ q.

5. Si ∩ Sj = ∅ for all 1 ≤ i < j ≤ q.

Proof. Item 3 follows immediately from the construction, and implies Item 4 in turn. Item 1
follows from the construction along with the assumption on the support size of µ, and so does
Item 2 using Item 3. For Item 5 assume that i < j, and note the construction of Mi+1, which
makes it disjoint from Si while containing Sj .

The goal of the following two lemmas is to prove that, for every i ∈ [q] and Q ∈ Si, we
have that (Q \ Ci) ∩ Ci−1 = ∅. According to Definition 3.9, this implies that Ci and Si satisfy
Condition 4 of Definition 3.7. At a high level of abstraction the proof starts with the assumption
that for some i ∈ [q] there exists Q ∈ Si such that (Q\Ci)∩Ci−1 6= ∅; afterwards it is shown that
this Q is inMj , for some j ∈ [i− 1]; this by Definition 3.9 implies that Q 6∈ Si in contradiction
to the assumption that Q ∈ Si.

The following lemma is used to restrict the setting to the case where j = i− 1, also showing
that S0, . . . ,Sq partition Supp(µ).

Lemma 3.11. For i = 0, 1, . . . , q and every Q ∈Mi we have that |Q∩Ci| ≤ q− i; in particular
Sq =Mq and thus S0, . . . ,Sq partition Supp(µ).

Proof. By definition, |Q| ≤ q for every Q ∈ M0. Hence, |Q ∩ C0| ≤ q − 0 = q. We proceed by
induction over i. Assume that the statement of the lemma holds for i− 1 ≥ 0. Suppose for the
sake of contradiction that there exists Q ∈Mi such that |Q∩Ci| > q−i. Since Ci ⊆ Ci−1, by Item
4 of Observation 3.10, this implies that |Q∩ Ci−1| ≥ q− (i− 1). Hence, |Q∩ Ci−1| = q− (i− 1),
by the induction assumption. Therefore, Q ∈ Si−1, because, by construction, we also have that
Q ∈Mi−1. Consequently, we get the contradiction that Q 6∈ Mi, since Mi =Mi−1 \ Si−1.

Having proved the first part of the lemma, it implies that |Q ∩ Cq| = 0 for every Q ∈ Mq,
and hence by Item 2 of Definition 3.9 we have Sq =Mq.

Lemma 3.12. For i = 1, . . . , q and every Q ∈ Si we have that (Q \ Ci) ∩ Ci−1 = ∅.

Proof. We proceed by induction over i. The base case is i = 0 which follows from the definition
of S0, even if we set C−1 = [n]. Assume that the statement of the lemma holds for i − 1 ≥ 0.
Suppose for the sake of contradiction that there exists Q ∈ Si such that |(Q \ Ci) ∩ Ci−1| > 0.
Thus, |Q ∩ Ci−1| = |(Q \ Ci) ∩ Ci−1|+ |Q ∩ Ci| ≥ q − (i− 1), because |Q ∩ Ci| = q − i by Item 2
of Definition 3.9, and Ci ⊆ Ci−1 by Item 4 of Observation 3.10. Therefore, by Lemma 3.11,
|Q ∩ Ci−1| = q − (i − 1). Since by construction we also have that Q ∈ Mi−1 we deduce that
Q ∈ Si−1. Consequently, we get the contradiction thatQ 6∈ Si, since Si ⊆Mi =Mi−1\Si−1.

These last lemmas imply that if µ(S0) is not large, then a constellation exists.

Lemma 3.13. If µ(S0) ≤ 1
q+1 then for some i ∈ [q] the pair (Si, Ci) is an (ηq, i)-constellation

for µ.
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Proof. Following from the assumption that µ(S0) ≤ 1/(q + 1), Lemma 3.11, and Item 5 of
Observation 3.10, by averaging, there exists i ∈ [q] such that µ(Si) ≥ 1/(q + 1). Consequently,
following from the choice of i, Observation 3.10 Items 1 and 2, Definition 3.9 Item 2, and
Lemma 3.12 together with Definition 3.9 Items 1 and 3, in that order, Ci and Si satisfy the four
conditions of Definition 3.7 and thus form an (ηq, i)-constellation.

We now prove the 1-sided test conversion result.

Proof of Theorem 3.1. Given a distribution µ which corresponds to a 1-sided (ε/2, 1/2(q +
1), q, 4(q + 1)2 log(|Ξ|)n)-test for a property over Ξn, where n > (24q(q + 1)2(log(|Ξ|))2/ε)q,
we show for α = 15 ln |Ξ| · q(q + 1)2/ε that the α · n−1/q2-sampling distribution corresponds to
a 1-sided (ε, 1/2)-test for the same property.

From Definition 3.9, every set in S0 is in particular a subset of C0. Hence, the union of all the
sets in S0 is also a subset of C0 and therefore |

⋃
Q∈S0 Q| ≤ |C0|. Thus, by Item 1 of Observation

3.10, |
⋃
Q∈S0 Q| ≤ |C0| < 4q(q + 1)2 log(|Ξ|)n1−1/q < εn/2, where the last inequality follows

from n > (24q(q + 1)2(log(|Ξ|))2/ε)q. Therefore, by Lemma 2.11, µ(S0) ≤ 1/(q + 1), and so by
Lemma 3.13 there exists an (4q(q + 1)2 log(|Ξ|), i)-constellation for some i ∈ Q. Therefore, by
Lemma 3.8, there exists a revealing set of i-pompoms for w. Consequently, by Lemma 3.6 the
theorem follows.

4 Probabilistic formulas and test combinatorialization

Here we take a non-adaptive 2-sided test and make its structure more malleable to combinatorial
arguments, with the main feature being that the new query distribution will be uniform over its
support. At first, we define a structure that can generally describe tests; we use this formulation
to make the following arguments clearer and more succinct, which will also present them in their
fullest possible generality.

Definition 4.1 (probabilistic constraints and formulas). A probabilistic q-constraint (over an
alphabet Ξ) is a pair C = (Q,S) where Q ⊆ [n] is a constraint set, also called a query set, of
size q, and S is a satisfaction function from Ξ|Q| to the real interval [0, 1].

A probabilistic q-formula P = (F , µ) is a set F of q-constraints, all with distinct constraint
sets, along with a probability distribution µ over F . We call it a (q, k)-formula if additionally
|Supp(µ)| ≤ k, in which case we can assume that |F| ≤ k.

When we drop the restriction on the sizes of the query sets of the constraints (even the
restriction that they are all of the same size) then we just call P a probabilistic formula.

Given a word w ∈ Ξn and a probabilistic formula P , the satisfaction of P by w is the
average of the random variable that results from picking a constraint (Q,S) ∈ F according to µ
and obtaining the value S(wQ). P is said to be δ-sure for w if its satisfaction by w is either at
least 1− δ or at most δ.

The requirement for all sets corresponding to constraints being distinct allows us (given a
particular formula F) to identify the distribution µ with the corresponding distribution over
subsets of [n] only. This we will do throughout the sequel, but first let us justify this requirement.

Lemma 4.2. The requirement that the members of P have distinct query sets is without loss
of generality.

Proof. If C1 = (Q,S1) and C2 = (Q,S2) are two constraints in a formula P = (F , µ) (that for
now does not satisfy the distinct set requirement), then we define F ′ by replacing them with
C = (Q,S) where S = (µ(C1) ·S1 +µ(C2) ·S2)/(µ(C1)+µ(C2)), and define the corresponding µ′
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by setting µ′(C) = µ(C1) + µ(C2). This preserves satisfaction values over all words w. We can
continue doing this until there are no pairs left of constraints sharing the same query set.

We shall henceforth abuse notation, and indeed refer to µ both as a distribution over 2[n]

and as a distribution over F . Also, we shall make liberal use of the assumption (without loss of
generality) that the support of µ is the entire F (otherwise we replace F with Supp(µ) ⊆ F).

A non-adaptive 2-sided test or partial test can be described as follows.

Definition 4.3 (alternative definition of non-adaptive tests). Given two properties L′ ⊆ L ⊆
Ξn, a non-adaptive 2-sided partial (ε, δ)-test for (L′, L) is a probabilistic formula whose satis-
faction over any w ∈ L′ is at least 1− δ, while its satisfaction for any w ∈ Ξn that is ε-far from
L is at most δ.

If L′ = L then we just call it a 2-sided (ε, δ)-test for L.
If the test uses a q-formula then we may also call it an (ε, δ, q)-test, and if it uses a (q, k)-

formula then we may call it an (ε, δ, q, k)-test.

To convert a non-adaptive test to this definition, we take µ to be the query distribution
corresponding to the test, and set each pair (Q,S) so that S will describe the acceptance
probability of the test given each possible outcome of its queries to Q.

We need the following technicality for the pairs (L′, L) that we consider. It is safe to restrict
our discussion to such pairs because otherwise there exists a trivial partial test.

Definition 4.4. Given two properties L′ ⊆ L ⊆ Ξn, we say that the pair (L′, L) is ε-nontrivial
if there exist some word in L′ and some word ε-far from L.

The main purpose of this section is to show that all tests can be made to obey certain
restrictions, at some reasonable cost for their parameters. To formulate the main lemma we
need to define what these restrictions may be.

Definition 4.5 (restrictions on formulas and tests). A probabilistic formula P is said to be
zero-one if all its constraints have the range {0, 1} (instead of the whole interval).

P is said to be β-equitable if for every two constraints C1 and C2 in the support of the
corresponding distribution µ, we have µ(C1) ≤ βµ(C2). In particular, for a 1-equitable formula
the distribution µ is uniform over its support.

A q-formula P is said to be combinatorial if it is zero-one and equitable.
We use the same adjectives for tests. For example a test is called combinatorial if its

corresponding formula is combinatorial.

We will prove the main combinatorialization lemma of this section following a sequence of
steps. The easiest of these steps is making the corresponding formula zero-one.

Lemma 4.6. A formula P can be made into a zero-one formula P ′ without any change to
its other parameters (including also its support size and equitability), so that for any input for
which P was δ-sure about, P ′ will be 2δ-sure about and in the same direction.

Proof. For every constraint C = (Q,S) in Supp(µ), we replace it with C ′ = (Q,S′), where S′

is defined so that S′(v) = 0 if S(v) < 1
2 , and otherwise S′(v) = 1. We leave µ “unmodified”,

that is, the new µ′ is defined by having µ′(C ′) = µ(C), in particular remaining identical as a
distribution over query sets.

We present here the analysis for the case where the satisfaction of P by w ∈ Ξn is at most
δ. The case where it is at least 1− δ is symmetric. Given such a w, we set F = Supp(µ), and
let F2 be the set of clauses whose satisfaction by w is at least 1/2. Clearly µ(F2) ≤ 2δ. The
satisfaction of P ′ by w is now bounded by 0 · µ(F \ F2) + 1 · µ(F2) ≤ 2δ.
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In the sequel we will need to analyze formulas conditioned on subsets of the original con-
straint set.

Definition 4.7. Given a probabilistic formula P = (F , µ) and ∅ 6= F ′ ⊆ F , the F ′-conditioned
formula is P ′ = (F ′, µ′), where µ′ is µ conditioned on the event that a member from F ′ was
chosen.

The following fact about conditioned formulas is trivial.

Observation 4.8. Given P = (F , µ), if F ′ ⊆ F satisfies µ(F ′) ≥ η, then for every input for
which P was δ-sure about, the conditioned formula P ′ will be δ/η-sure about and in the same
direction.

Proof. Again we analyze the case where the satisfaction of P by w ∈ Ξn is at most δ, as the
case where it is at least 1− δ is symmetric. For such w we write:∑

(Q,S)∈F ′
µ′(Q)S(wQ) =

∑
(Q,S)∈F ′

µ(Q)S(wQ)/µ(F ′) ≤ δ/η

where in the symmetric case we refer to (1− S(wQ)) instead of S(wQ).

We next prove a lemma (which like most lemmas of this section, holds also for formulas which
are not tests), that allows us to move from β-equitable formulas all the way to 1-equitable ones.
For making the transition cost not too high, we first prove a “quantization” step.

Lemma 4.9. A β-equitable formula P = (F , µ) can be made into a formula P ′ = (F , µ′) for
which µ′ has at most log(2β) possible values, so that for any input for which P was δ-sure about,
P ′ will be 2δ-sure about and in the same direction. Moreover, since P ′ has the same F and
the same support, it preserves the original support size, query size, and zero-one property (if it
existed) of P .

Proof. We first define µ̃ by setting for every C ∈ F the value µ̃(C) to be 2−kC , where kC is the
largest integer for which 2−kC ≥ µ(C). Clearly for every C we have µ(C) ≤ µ̃(C) ≤ 2µ(C), and
clearly µ̃ has at most log(2β) possible values. However, it is not a probability measure, because
it may be that µ̃(F) > 1. We thus set µ′(C) = µ̃(C)/µ̃(F) for every C ∈ F .

Finally, if the satisfaction of P by w is at most δ, we write:∑
(Q,S)∈F

µ′(Q)S(wQ) ≤
∑

(Q,S)∈F

µ̃(Q)S(wQ) ≤ 2 ·
∑

(Q,S)∈F

µ(Q)S(wQ) ≤ 2δ

where again the case of the satisfaction being at least 1− δ is symmetric.

Lemma 4.10. A β-equitable formula P = (F , µ) can be made into a 1-equitable formula P ′ =
(F ′, µ′), so that for any input for which P was δ-sure about, P ′ will be 2δ log(2β)-sure about
and in the same direction. Moreover, F ′ ⊆ F , so P ′ preserves the support size bound, query
size bound, and possible zero-one property of P .

Proof. We first use Lemma 4.9 to move from P to P ′′ = (F , µ′′), where µ′′ has at most log(2β)
possible values, and any input for which P was δ-sure about, P ′′ is 2δ-sure about. Now there
must be some η ∈ (0, 1] so that Fη = {C ∈ F : µ′′(C) = η} satisfies µ′′(Fη) ≥ 1/ log(2β).

We set F ′ = Fη and make P ′ the formula of P ′′ conditioned on F ′. We finalize the proof
by appealing to Observation 4.8.
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Specifically for (partial) tests, we next show some correlation between subsets “covering”
few indexes and probability. The following lemma will also be used when constructing sets of
pompoms to prove the main conversion result from 2-sided tests to sampling tests.

Lemma 4.11. If a formula P = (F , µ) corresponds to an (ε/2, δ)-test for (L′, L) which is ε-
nontrivial, and F ′ ⊆ F is such that the union of its corresponding query sets occupies at most
εn/2 indexes from [n], then µ(F ′) ≤ 2δ.

Proof. Let T =
⋃

(Q,S)∈F ′ Q, u ∈ Ξn be a word in L′, w ∈ Ξn be ε-far from L, and v = wuT ,T be
such that vT = uT and v[n]\T = w[n]\T . By the triangle inequality, v is ε/2-far from L, and so∑

(Q,S)∈F ′
µ(Q)S(uQ) =

∑
(Q,S)∈F ′

µ(Q)S(vQ) ≤ δ

since this bounds the satisfaction of P by v.
On the other hand, the satisfaction of P by u is at least 1− δ, and so we obtain

1− δ ≤
∑

(Q,S)∈F ′
µ(Q)S(uQ) +

∑
(Q,S)∈F\F ′

µ(Q)S(uQ) ≤ δ + (1− µ(F ′))

which necessarily means that µ(F ′) ≤ 2δ.

Using the above lemma we can show that tests with a small enough support size can be
made into equitable ones.

Lemma 4.12. For δ < 1
8 , an (ε/2, δ, q, αn)-test for (L′, L) which is ε-nontrivial can be made

into a β-equitable (ε/2, 2δ, q, αn)-test for (L′, L), for β = 8qα/ε. This transformation also
preserves the zero-one property if it existed.

Proof. Let P = (F , µ) be the formula corresponding to the test. First we let F0 = {C ∈
F : µ(C) ≤ 1/4αn}. Clearly µ(F0) ≤ 1

4 . Now let F1 = {C ∈ F : µ(C) ≥ 2q/εn}. Clearly
|F1| ≤ εn/2q. Hence |

⋃
(Q,S)∈F1

Q| ≤ εn/2, and so by Lemma 4.11 we have µ(F1) ≤ 2δ ≤ 1
4 .

Setting F ′ = F \ (F0 ∪F1), we get µ(F ′) ≥ 1
2 . Setting P ′ to be the conditioning of P to F ′,

we obtain by Observation 4.8 that it is an (ε/2, 2δ, q, αn)-test for (L′, L). Moreover, since for
every C ∈ F ′ we have 1/4αn < µ(C) < 2q/εn, we get that the resulting test is β-equitable for
β = 8qα/ε.

We now have nearly all the ingredients we need. The final one is a way to convert a general
test to one whose support size is linear in n, which the following lemma provides even for
formulas that are not necessarily tests.

Lemma 4.13. Any q-formula P = (F , µ) can be made into a (q, αn)-formula P ′ for α =
δ−2 log(|Ξ|), with the condition that any w ∈ Ξn, for which P was δ-sure about, P ′ will be
2δ-sure about and in the same direction. This also preserves the zero-one property if it exists.

Proof. To produce the new formula, we take r = δ−2 log(|Ξ|) · n samples (Q1, S1), . . . , (Qr, Sr)
from F by independently drawing each sample according to µ. For w ∈ Ξn we set ηw =
(
∑r

i=1 Si(wQi))/r. We also let η =
∑

(Q,S)∈F µ(Q)S(wQ) denote the satisfaction of P by

w. Let Yi denote the random variable Si(wQi), and set Y =
∑r

i=1 Yi/r. Note that E[Yi] =∑
(Q,S)∈F µ(Q)S(wQ) = η. Thus also E[Y ] = η, and by Lemma 2.2 we have that the probability

for |ηw − η| > δ is bounded by 2e−2rδ2 ≤ 1
2 |Ξ|

−n.
Thus, with probability at least 1

2 , the obtained sequence is such that for all w ∈ Ξn we have
that the difference between ηw and η is at most δ. We fix such a sequence (Q1, S1), . . . , (Qr, Sr).
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To define P ′ = (F ′, µ′), we set F ′ to be the set of clauses appearing in (Q1, S1), . . . , (Qr, Sr),
where for C ∈ F ′ we set µ′(C) to be the number of times it appeared in the sequence, divided
by r.

Now we are finally ready to prove the main combinatorialization result of this section.

Lemma 4.14 (combinatorialization lemma). Any (partial) (ε/2, δ, q)-test for (L′, L) which is
ε-nontrivial can be made into a combinatorial (ε/2, δ′, q, αn)-test, where α = δ−2 log(|Ξ|) and
δ′ = 16δ log(16qδ−2 log(|Ξ|)/ε).

Proof. Setting P to be the formula corresponding to the test, we can assume that δ < 1
16 , as

otherwise we can just ignore P and provide a “test” that is satisfied by all inputs. We perform
the following sequence of steps.

• Use Lemma 4.13 to make it into a formula P1 corresponding to an (ε/2, 2δ, q, αn)-test for
α = δ−2 log(|Ξ|).

• Use Lemma 4.12 to make P1 into a formula P2 that is an (8qδ−2 log(|Ξ|)/ε)-equitable
(ε/2, 4δ, q, αn)-test. This is the only step that requires the formula to correspond to a
test.

• Use Lemma 4.10 to make P2 into P3 which is an (ε/2, 8δ log(16qδ−2 log(|Ξ|)/ε), q, αn)-test
that is 1-equitable.

• Finally use Lemma 4.6 to make P3 into the formula P ′, which is a combinatorial partial
(ε/2, 16δ log(16qδ−2 log(|Ξ|)/ε), q, αn)-test for (L′, L).

The final formula P ′ is the required test.

Before concluding this section, we note that by analyzing the only place in the proof where
we used that P is a test, we can formulate the following more general combinatorialization
lemma, that can be of independent use.

Lemma 4.15 (general combinatorialization). If P is a probabilistic q-formula resolving with δ
confidence a promise problem, for which there are both “yes” instances, and words where every
ε/2-close word is a “no” instance, then P can be made into a combinatorial (q, αn) formula
resolving the same promise problem with δ′ confidence, where α and δ′ are as in Lemma 4.14.

To conclude this section, we combine Lemma 4.14 with an amplification technique to show
how general 2-sided (ε/2, δ, q)-tests can be converted to combinatorial tests.

Lemma 4.16. A partial (ε/2, δ, q)-test for (L′, L) which is ε-nontrivial can be converted to a
combinatorial partial (ε/2, 1/10(q′ + 1), q′, (q′ + 1)2 log(|Ξ|)(log((q′ + 1) log(|Ξ|)/ε))2n)-test for
(L′, L), where q′ = O(q log(q) log log(log(|Ξ|)/ε) log(1/(1

2 − δ))/(
1
2 − δ)

2).

Proof. We first use 2-sided amplification for the original test: We repeat the original test
100 log(q) log log(log(|Ξ|)/ε) log(1/(1

2−δ))/(
1
2−δ)

2 times, taking the majority vote to obtain an
(ε/2, 1/1012(q̃+ 1) log((q̃+ 1) log(|Ξ|)/ε), q̃)-test for q̃ = O(q log(q) log log(log(|Ξ|)/ε) log(1/(1

2 −
δ))/(1

2 − δ)2). Now we use Lemma 4.14 on the amplified test, and obtain a combinatorial
(ε/2, 1/108(q̃+ 1), q̃, 1012(q̃+ 1)2 log(|Ξ|)(log((q̃+ 1) log(|Ξ|)/ε))2n)-test. To obtain the lemma’s
conclusion, we artificially increase the number of queries from q̃ to q′ = 107q̃.
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We note that the dependency of q′ above on log log(log(|Ξ|)/ε) implies that a constant power
of n is guaranteed only for properties for which the alphabet does not depend on n. However, it
is unlikely to destroy sublinearity by itself even for a variable alphabet setting, because already
for |Ξ| = 2n there are examples with no sublinear sampling tests at all by [9]. Our main theorem
will cease to work, due to its minimum n requirement, when |Ξ| is larger than an exponential
in some power of n (that is linear in 1/q).

5 A conversion of a 2-sided test to a 2-sided sampling test

Here we prove that if the properties L′ ⊆ L ⊆ Ξn admit a 2-sided test with a constant number
of queries for (L′, L), then there is a corresponding 2-sided p-sampling test where p corresponds
to a constant negative power of n. Specifically we prove the following.

Theorem 5.1. Let α = 103 ln(|Ξ|)(q + 1)2/ε for any q ≥ 3, and n > (24q(q + 1)2(log((q +
1)|Ξ|))2/ε)q. if (L′, L) is ε-nontrivial and admits a 2-sided combinatorial partial (ε/2, 1/10(q +
1), q, (q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2n)-test, then it also admits a p-sampling 2-sided
(ε, 1/10)-test such that p = αn−1/q2.

As with the proof of the 1-sided case, we set µ to be a distribution of the test, and find for
it pompoms that cover every possible assignment to a common core set C. Here however there
are many pompoms involved, and they serve all assignments to C at once, because we need to
cover enough of the “weight” of the distribution µ. Also, the pompoms are not necessarily of
witnesses, but rather of query sets; we will use them to approximate for every assignment to C
the “amount” of query sets that would cause its rejection (hence they need to cover sufficient
weight). We need the test to be combinatorial, i.e., that µ is uniform over its support, for
exactly one proof step: The sampling test will approximate the number of rejecting query sets,
and only for a uniform µ will this correspond to the rejection probability of the original test.

Let us formally define the set of pompoms that we will use.

Definition 5.2. Given a distribution µ over sets of size q, a set J of i-pompoms made from
members of Supp(µ) is discerning for µ if the following holds:

1. µ(I) ≥ 1
2(q+1) , where I =

⋃
W∈JW is the union of all the i-pompoms in J .

2. Every i-pompom in J has cardinality exactly ε · n1−(i−1)/q/3i.

3. There exists C ⊆ [n] of size at most q(q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2n1−i/q that
is a core of all the i-pompoms in J .

Next we define and show how each pompom of such a set can be used for the proof of
something like Theorem 5.1.

Definition 5.3. Given a q-formula P = (F , µ) over Ξn, an i-pompom W ⊆ Supp(µ) of size
ε · n1−(i−1)/q/3i with core C of size at most q(q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2n1−i/q, a
word w ∈ Ξn, a possible assignment σ ∈ Ξ|C| to C, and a query set U ⊆ [n], the approximated
satisfiability of W by σ with respect to w is defined to be the value γσ,U,W obtained in the
following manner.

SetWU = {Q ∈ W : Q\C ⊆ U} (i.e., take the set of members ofW whose indexes outside C
are contained in U), and then take the average γσ,U,W = (

∑
{(Q,S)∈F :Q∈WU} S((wσ,C)Q))/|WU |,

which we arbitrarily set to 1
2 if WU = ∅.
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An explanation to the above definition: Assume that U is a set of queries that we have
made. We would like to assess the assignment σ to C, with respect to what U tells us about
w outside of C. Given the i-pompom W, we want to approximate the relative weight of the
members of W for which the corresponding constraints accept wσ,C . We do so by restricting
ourselves to the members of WU , for which we can tell by querying U whether they accept
wσ,C or not. We ignore all aspects of µ apart from its support, because we will assume that
it is uniform over Supp(µ) (i.e., that the formula P corresponds to a combinatorial test). This
assumption is essential to show that a set U chosen according to a sampling distribution will
indeed yield with high probability a good approximation.

Note that γσ,[n],W is the true acceptance average of the pompom W. We now prove that
the sampling distribution with high probability provides a U such that γσ,U,W approximates
γσ,[n],W .

Lemma 5.4. Let q ≥ 3, n > (24q(q + 1)2(log((q + 1)|Ξ|))2/ε)q, α = 103 ln(|Ξ|)(q + 1)2/ε and
w ∈ Ξn. Suppose that the formula P = (F , µ), the i-pompom W and its core C, and the words
w and σ are as per the requirements of Definition 5.3, and additionally that P is combinatorial.
Then with probability at least 1− 1

100 |Ξ|
−|C|, a set U drawn according to the α ·n−1/q2-sampling

distribution satisfies |γσ,U,W − γσ,[n],W | ≤ 1
10 .

Proof. Let us first analyze which members ofW get intoWU . Since {Q\C : Q ∈ W} is a family
of disjoint sets of size i, the choice of U means that every Q ∈ W becomes a member ofWU with
probability exactly αi · n−i/q2 , independently of other members of W. We now refer to Lemma
2.4 (where (γ1, . . . , γm) there are the satisfaction values S((wσ,C)Q) for (Q,S) ∈ F such that

Q ∈ W), which bounds the probability for |γσ,U,W−γσ,[n],W | > 1
10 by e−10−3αi·n−i/q2 ·ε·n1−(i−1)/q/3i.

Calculation 2 bounds this by 1
100 |Ξ|

−q(q+1)2 log(|Ξ|)(log((q+1) log(|Ξ|)/ε))2n1−i/q ≤ 1
100 |Ξ|

−|C|.

From the above lemma we formulate a way of approximating all pompoms in a discerning
set J , assuming that we have knowledge of J , the common core set C, and of course the original
combinatorial test (F , µ).

Lemma 5.5. Assume that q ≥ 3, n > (24q(q + 1)2(log((q + 1)|Ξ|))2/ε)q and w ∈ Ξn. Let
P = (F , µ) be a combinatorial (ε/2, 1/10(q + 1), q, (q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2n)-
test for (L′, L) which is ε-nontrivial, let J be a discerning set of i-pompoms for it with core C,
and let U be chosen by the α ·n−1/q2-sampling distribution where α = 103 ln(|Ξ|)(q+1)2/ε. With
probability at least 9

10 , for every σ ∈ Ξ|C| it holds that | 1
|J |
∑
W∈J γσ,U,W−

1
|J |
∑
W∈J γσ,[n],W | ≤ 1

5 .

Proof. For a fixed σ ∈ Ξ|C|, by using Lemma 5.4 and Markov’s inequality, we obtain that with
probability at most 1

10 |Ξ|
−|C| we have more than 1

10 |J | instances W ∈ J for which |γσ,U,W −
γσ,[n],W | > 1

10 . Therefore, with probability at least 1 − 1
10 |Ξ|

−|C| (noting that every γ value is
always between 0 and 1) the following holds:

| 1

|J |
∑
W∈J

γσ,U,W −
1

|J |
∑
W∈J

γσ,[n],W | ≤
1

|J |
∑
W∈J

|γσ,U,W − γσ,[n],W | ≤
1

10
+

1

10
=

1

5

A union bound over the bad events for every possible σ ∈ Ξ|C| concludes the proof.

We now show that a constellation as defined in Definition 3.7 implies a discerning set of
pompoms. Later we will use Definition 3.9 and Lemma 3.13 to find the required constellation,
just as we did for the case of 1-sided tests.
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Lemma 5.6. Let i ∈ [q] and n > (24q(q + 1)2(log((q + 1)|Ξ|))2/ε)q, (L′, L) be ε-nontrivial,
P = (F , µ) be a combinatorial (ε/2, 1/10(q + 1), q, (q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2n)-
test for (L′, L), and let (C,S) be a (q(q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2, i)-constellation
for µ. Then there exists a set J of i-pompoms that is discerning for P with core C.

Proof. We extract pompoms from S greedily. We claim that as long as µ(S) > 1
2(q+1) , we can

extract an i-pompom W of size ε · n1−(i−1)/q/3i with center C from S, which we then subtract
from S and make into a new member of J . Assuming the claim holds, the process stops only
when J becomes such that Item 1 of Definition 5.2 holds, because we started with a set S of
weight at least 1

q+1 . Also, Item 3 of Definition 5.2 follows from Condition 2 of Definition 3.7
(regarding S and C), while Item 2 follows from the construction described above.

It thus remains to show the following claim: Given a set S ′ ⊆ S for which µ(S ′) > 1
2(q+1)

where (S, C) is a (q(q+1)2 log(|Ξ|)(log((q+1) log(|Ξ|)/ε))2, i)-constellation for µ, an i-pompom
W ⊆ S ′of size ε · n1−(i−1)/q/3i with center C exists.

Since µ(S ′) > 1
2(q+1) , by Lemma 4.11, we have that |

⋃
Q∈S′ Q| ≥ εn/2. Defining B′ =

{Q \ C : Q ∈ S ′}, we observe that |
⋃
Q∈B′ Q| ≥ |

⋃
Q∈S′ Q| − |C| ≥ εn/3, because n > (24q(q +

1)2(log((q + 1)|Ξ|))2/ε)q and so |C| < εn/6. Thus, by Condition 4 of Definition 3.7, there exist
a disjoint family V ⊆ B of ε · n1−(i−1)/q/3i sets. Hence, the family W = {Q : Q \ C ∈ V} is the
required i-pompom for the claim.

Now we prove the main result of this section.

Proof of Theorem 5.1. Given a (ε/2, 1/10(q + 1), q, (q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2n)-
test for (L′, L) that is combinatorial, where n > (24q(q+ 1)2(log((q+ 1)|Ξ|))2/ε)q, we construct
for α = 103 ln(|Ξ|)(q + 1)2/ε a 2-sided (ε, 1

10)-test for (L′, L) that uses the α · n−1/q2-sampling
distribution.

First we construct for the distribution µ of the combinatorial test the families Mi, Ci and
Si as per Definition 3.9. Similarly to the proof of Theorem 3.1, every set in S0 is in particular a
subset of C0, and so the union of all the sets in S0 is also a subset of C0. Therefore, by Item 1 of
Observation 3.10, |

⋃
Q∈S0 Q| ≤ |C0| < q(q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2n1−1/q < εn/2,

where the last inequality follows from n > (24q(q + 1)2(log((q + 1)|Ξ|))2/ε)q. Therefore, by
Lemma 4.11, µ(S0) ≤ 1/(q + 1), so by Lemma 3.13 there exists a (q(q + 1)2 log(|Ξ|)(log((q +
1) log(|Ξ|)/ε))2, i)-constellation for some i ∈ Q.

Moreover, we note that such a constellation can indeed be computed from only the knowledge
of Supp(µ). We set (S, C) to be such a constellation, and then use Lemma 5.6 (which is also
constructive) to obtain the discerning set J of i-pompoms.

The test proceeds as follows. Given the set U produced by the α ·n−1/q2-sampling distribu-
tion, we query all of it. Then, for every σ ∈ Ξ|C| and every W ∈ J , we calculate γσ,U,W using
our queries, and then calculate γσ,U = 1

|J |
∑
W∈J γσ,U,W for every σ. If there was a σ ∈ Ξ|C| for

which γσ,U >
1
2 , then we accept the input, and otherwise we reject it.

It remains to prove that this is indeed a correct test for (L′, L). Set I =
⋃
W∈JW as per

Definition 5.2. Since µ(I) ≥ 1
2(q+1) , if u is any word for which the original test was 1

10(q+1) -sure
about, then the conditioning of the test to the set of constraints corresponding to the members
of I will be 1

5 -sure for u by Observation 4.8. Now, since µ is uniform over its support, for any

σ ∈ Ξ|C|, the satisfaction of the original test conditioned on I by wσ,C is identical to the average
γσ,[n] = 1

|J |
∑
W∈J γσ,[n],W . In turn, Lemma 5.5 guarantees that with probability at least 9

10 , for

all such σ we have |γσ,U −γσ,[n]| ≤ 1
5 . Assume from now on that this event has indeed occurred.
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If w was a word in L′, then the original test accepted it with probability at least 1− 1
10(q+1) ,

and hence for σ = wC (for which wσ,C = w) we have γσ,[n] ≥ 4
5 and hence γσ,U ≥ 3

5 >
1
2 , and

the sampling test will accept on account of this σ.
On the other hand, if w was a word ε-far from L, then for every σ ∈ Ξ|C|, the word wσ,C is

ε/2-far from L (recall that in particular |C| < εn/2), and so the original test will accept it with
probability at most 1

10(q+1) . Hence γσ,[n] ≤ 1
5 for every such σ, and hence γσ,U ≤ 2

5 <
1
2 . This

means that the sampling test will reject, as there will be no σ on whose account the test can
accept.

6 Implications of our results

The following corollaries result respectively from Theorem 3.1 and Theorem 5.1, considering
that a multitest scheme (as described in the introduction) immediately leads to a test for a
union of the properties.

Corollary 6.1. Let q = 60q′ log(q′)/(1 − δ) and α1 = log(|Ξ|)q3/ε. For every n > (24q(q +
1)2(log(|Ξ|))2/ε)q, if L ⊆ Ξn is the union of r properties L1, . . . , Lr, each having a 1-sided

(ε/2, δ, q′)-test where r ≤ 2(α1)−1n(q−2−γ)−1, then L has a non-adaptive 1-sided (ε, 1/2)-test with
query complexity O(n1−γ).

Proof. First, we use Lemma 2.10 to convert the (ε/2, δ, q′)-test for every Li to a non-adaptive
1-sided (ε/2, 1/2(q + 1), q, 4(q + 1)2 log(|Ξ|)n)-test where q = 60q′ log(q′)/(1 − δ). We then
use Theorem 3.1 to obtain an α1n

−1/q2-sampling 1-sided (ε/2, 1/2)-test for every Li. We then
amplify the probability, by repeating the test and rejecting if any of the runs rejected, to obtain
a log(2r)α1n

−1/q2-sampling 1-sided (ε/2, 1/2r)-test for every Li. We construct a multitest for
L1, . . . , Lr, which reuses the same queries for each sample-based test, and from it derive the test

for
⋃r
i=1 Li. Since r is at most 2(α1)−1n(q−2−γ)−1, this gives a non-adaptive 1-sided (ε, 1/2)-test

with query complexity O(n1−γ).

Corollary 6.2. Let q = 109q′ log(q′) log log(log(|Ξ|/ε)) log(1/(1
2 − δ))/(

1
2 − δ)

2 and let α2 =
103 ln(|Ξ|)(q + 1)2/ε. For every n > (24q(q + 1)2(log((q + 1)|Ξ|))2/ε)q, if a property L ⊆
Ξn is the union of r properties L1, . . . , Lr, each having a 2-sided (ε/2, δ, q′)-test where r ≤
2(10α2)−1n(q−2−γ)

, then L has a non-adaptive 2-sided (ε, 1/10)-test with query complexity O(n1−γ).

Proof. First, use Lemma 4.16 to convert the (ε/2, δ, q′)-test for each Li to a combinatorial
2-sided (ε/2, 1/10(q + 1), q, (q + 1)2 log(|Ξ|)(log((q + 1) log(|Ξ|)/ε))2n)-test for each Li, where
q = 109q′ log(q′) log log(log(|Ξ|)/ε) log(1/(1

2−δ))/(
1
2−δ)

2). Then we use Theorem 5.1 to convert

each of these tests to an α2n
−1/q2-sampling 2-sided (ε, 1/10) test. Now, we convert them to

10 log(r)α2n
−1/q2-sampling 2-sided (ε, 1/10r)-tests by repeating each test 10 log r times inde-

pendently and taking the majority vote. We construct a multitest for L1, . . . , Lr, which reuses
the same queries for each sample-based test, and from it derive the test for

⋃r
i=1 Li. Since r is at

most 2(10α2)−1n(q−2−γ)
, this gives the 2-sided (ε, 1/10)-test with query complexity O(n1−γ).

Definition 6.3 (following Definition 2.1 of [11]). A Merlin-Arthur proof of proximity (MAP)
for a property L ⊆ Ξn, with proximity parameter ε, query complexity q and proof complexity p,
consists of a probabilistic algorithm V , called the verifier, that is given a proof string π ∈ Ξp;
in addition, it is given oracle access to a word w ∈ Ξn, to which it is allowed to make up to q
queries. The verifier satisfies the following two conditions:
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1. Completeness: For every w ∈ L, there exists a string π ∈ Ξp (referred to as a proof or
witness) such that Pr[V (n, ε, w, π) = 1] ≥ 2/3.

2. Soundness: For every w ∈ Ξn which is ε-far from L, and any π ∈ Ξp, Pr[V (n, ε, w, π) =
1] ≤ 1/3.

If the completeness condition holds with probability 1, then we say that the MAP has 1-sided
error, and otherwise we say that it has 2-sided error. Also, we may say that it is non-adaptive
if it makes its queries to w based only on π, before receiving any responses from w.

For our purposes, we note that the proof of a MAP scheme for a property L induces a
decomposition of L into sets whose union is L, each admitting a corresponding partial testing
algorithm. Specifically, for every w ∈ L we define Πw to be any non-empty subset of the set of
proofs π ∈ Ξp that make the verifier accept w with the required probability. Then, for every
π ∈ Ξp we set Lπ = {w ∈ L : π ∈ Πw} (it may be the case that some Lπ are empty).

Under this interpretation, for a word in the property, the proof π is simply an indicator
that the word belongs to Lπ. Thus, the verifier of the MAP scheme can be seen as receiving
as input a proof π and then running a partial test for (Lπ, L). Consequently, the existence of
a MAP scheme with query complexity q and proof complexity p for a property L is the same
as having a family of |Ξ|p properties {Lπ : π ∈ Ξp} such that L =

⋃
π∈Ξp Lπ, and there exists a

partial test for every pair (Lπ, L).
Similarly to Corollary 6.2, only using the validity of Theorem 5.1 for partial tests as well,

we obtain:

Corollary 6.4. Let q = 109q′ log(q′) log log(log(|Ξ|/ε)) log(1/(1
2 − δ))/(

1
2 − δ)

2 and let α2 =
103 ln(|Ξ|)(q + 1)2/ε. For every n > (24q(q + 1)2(log((q + 1)|Ξ|))2/ε)q, if a property L ⊆ Ξn

has a non-adaptive 2-sided (ε/2, 1/10)-test with query complexity of Ω(n1−γ), then every 2-sided
MAP scheme for L, that has query complexity q′, has proof complexity Ω(nq

−2−γ/10α2).

Although Theorem 3.1 was stated and proved for (non-partial) 1-sided tests only, it can also
be made to work for partial tests, and to give a corollary with an improved bound for this case.

Corollary 6.5. Let q = 60q′ log(q′)/(1− δ) and let α1 = log(|Ξ|)q3/ε. For every n > (24q(q +
1)2(log(|Ξ|))2/ε)q, if a property L ⊆ Ξn has a non-adaptive 1-sided (ε/2, 1/2) query complexity
of Ω(n1−γ), then every 1-sided MAP scheme for L, that has query complexity q′, has proof
complexity Ω(nq

−2−γ/α1 − 1).

We note some concrete applications of the above results.

• In [13], it was shown that there exists a language LS with logarithmic space complexity
that satisfies the following: every non-adaptive 2-sided (ε/2, δ)-test for LS ∩ {0, 1}n has
query complexity Ω(n). By Corollary 6.2, this means that for every fixed γ > 0 and

large enough n, L is not the union of less than 2(10α2)−1n(q−2−γ)
properties over L∗ ⊆ Ξn

each having a 2-sided (ε/2, δ, q′)-test where q = 109q′ log(q′) log log(log(|Ξ|/ε)) log(1/(1
2 −

δ))/(1
2−δ)

2 . By Corollary 6.4, LS does not have a 2-sidedMAP with query complexity q′

and proof complexity o(nq
−2−γ/10α2). Similarly, such conclusions apply to the properties

of the small CNF formula that was studied in [1].

• Our result also applies to the sparse graph property of 3-colorability, which in [3] is shown
to have a linear 2-sided test query complexity. Note that in the sparse graph model the size
of the alphabet Ξ is n, but this is still small enough for our results to provide non-trivial
conclusions against decomposability.
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• According to the results in [14] and [5] respectively, every property defined by a constant
width read-once branching program or a constant arity read-once Boolean formula is
testable. Hence our results imply that properties whose testing requires Ω(n1−γ) many
queries, for a corresponding γ, cannot be written as the union of a small number of
properties that have such representations.
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A Calculations

This appendix is reserved for calculations that are too long and bothersome to be put where
they are originally used.

Calculation 1. For an alphabet Ξ, positive integers q and n > (24q(q+ 1)2(log(|Ξ|))2/ε)q, any
0 < ε ≤ 1, i ∈ [q], and α = 15 ln |Ξ| · q(q + 1)2/ε, we write:

(
1− αi · n−i/q2

)(1/3i)ε·n1−(i−1)/q

≤
(
e−α

i·n−i/q2
)(1/3i)ε·n1−(i−1)/q

= e−α
i·n−i/q2 ·(1/3i)ε·n1−(i−1)/q

If i ≥ 2 then we can clearly bound this so:

e−α
i·n−i/q2 ·(1/3i)ε·n1−(i−1)/q

< e− ln |Ξ|·5q(q+1)2 log(|Ξ|)n1−(i−1)/q−i/q2
<

1

2
· |Ξ|−4q(q+1)2 log(|Ξ|)n1−i/q

For i = 1, we use the lower bound on n to show n1−1/q2 > log(|Ξ|)n1−1/q, and so:

e−α·n
−1/q2 ·(1/3)ε·n1−(1−1)/q

< e− ln |Ξ|·5q(q+1)2 log(|Ξ|)n1−1/q
<

1

2
· |Ξ|−4q(q+1)2 log(|Ξ|)n1−1/q

Calculation 2. For n > (24q10(log(|Ξ|))2/ε)q, α = 103 ln(|Ξ|) · q4/ε, q ≥ 3 and i ∈ [q], for the
case i ≥ 3 we write:

e−103αi·ε·n1−(i−1)/q−i/q2 · 1
3i ≤ e− ln(|Ξ|)3q12·ε−2·n1−(i−1)/q−i/q2 · 1

3q ≤ 1

100
|Ξ|−q10 log(|Ξ|)(log(log(|Ξ|/ε)))2n1−i/q

For i = 1, we use n1/q−i/q2 > (24q10(log(|Ξ|))2/ε)1−1/q ≥ 8q6(log(|Ξ|))4/3/ε2/3, and for i = 2
we use n1/q−i/q2 > (24q10(log(|Ξ|))2/ε)1−2/q ≥ 2q3(log(|Ξ|))1/3. In both cases we substitute the
value of αi and write:

e−103αi·ε·n1−(i−1)/q−i/q2 · 1
3i = e−103αi·ε·n1/q−i/q2 ·n1−i/q · 1

3i ≤ 1

100
|Ξ|−q10 log(|Ξ|)(log(log(|Ξ|/ε)))2n1−i/q
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