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Abstract

In this paper we study interactive “one-shot” analogues of the classical
Slepian-Wolf theorem. Alice receives a value of a random variable X, Bob
receives a value of another random variable Y that is jointly distributed
with X. Alice’s goal is to transmit X to Bob (with some error probability
ε). Instead of one-way transmission, which is studied in the classical
coding theory, we allow them to interact. They may also use shared
randomness.

We show, that Alice can transmit X to Bob in expected H(X|Y ) +

2
√

H(X|Y ) + O(log
2

(

1

ε

)

) number of bits. This improves a result by

Braverman and Rao, where they had 5
√

H(X|Y ). Further, we show how

to solve this problem using 3H(X|Y ) + O(log
2

(

1

ε

)

) bits and 4 rounds on
average.

In the end of the paper we discuss how many bits Alice and Bob may
need to communicate on average besides H(X|Y ). The main question
is whether the upper bounds mentioned above are tight. We provide an
example of (X, Y ), such that transmission of X from Alice to Bob with
error probability ε requires H(X|Y ) + Ω

(

log
2

(

1

ε

))

bits on average.

1 Introduction

Assume that Alice receives a value of a random variable X and she wants to
transmit that value to Bob. It is well-known ([7]) that Alice can do it using one
message over the binary alphabet of expected length less than H(X)+1. Assume
now that there are n independent random variables X1, . . . , Xn distributed as
X, and Alice wants to transmit all X1, . . . , Xn to Bob. Another classical result
from [7] states, that Alice can do it using one message of fixed length, namely
≈ nH(X), with a small probability of error.

One of the possible ways to generalize this problem is to provide Bob with a
value of another random variable Y which is jointly distributed with X. That
is, to let Bob know some partial information about X for free. This problem is
the subject of the classical Slepian-Wolf Theorem [8] which asserts that if there
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are n independent pairs (X1, Y1), . . . , (Xn, Yn), each pair distributed exactly as
(X, Y ), then Alice can transmit all X1, . . . , Xn to Bob, who knows Y1, . . . , Yn,
using one message of fixed length, namely ≈ nH(X|Y ), with a small probability
of error. However, it turns out that a one-shot analogue of this theorem is
impossible, if only one-way communication is allowed.

The situation is quite different, if we allow Alice and Bob to interact, that
is, to send messages in both directions. In [6] Orlitsky studied this problem for
the average-case communication when no error is allowed. He showed that if
pair (X, Y ) is uniformly distributed on it’s support, then Alice may transmit X
to Bob using at most

H(X|Y ) + 3 log2(H(X|Y ) + 1) + 17

bits on average and 4 rounds. For the pairs (X, Y ) whose support is a Cartesian
product Orlitsky showed that error-less transmission of X from Alice to Bob
requires H(X) bits on average.

From a result of Braverman and Rao ([2]), it follows that for arbitrary (X, Y )
it is sufficient to communicate at most

H(X|Y ) + 5
√

H(X|Y ) + O

(

log2

(

1

ε

))

bits on average (here ε stands for the error probability). Actually they showed
something more complicated. In their setting Alice’s goal was to sample an
element from some universe according to the given distribution, and Bob’s goal
was to output the same element with high probability. Transmission from Alice
to Bob is the special case in this setting, when Alice’s distribution is trivial (has
support of size 1).

We improve this result for the transmission. We show that Alice may trans-
mit X to Bob with error probability at most ε (for each pair of inputs) using
at most

H(X|Y ) + 2
√

H(X|Y ) + O

(

log2

(

1

ε

))

bits on average and O(
√

H(X|Y )) rounds. Our protocol is inspired by protocol
from [1]. The idea of the protocol is essentially the same, we only apply some
technical trick to reduce communication.

In [3], it is established a one-shot interactive analogue of the Slepian-Wolf
theorem for the bounded-round communication. They showed that Alice may
transmit X to Bob using at most O(H(X|Y )+1) bits and O(1) rounds on aver-
age. More specifically, their protocol transmits at most 4H(X|Y ) + log2(1/ε) +
O(1) bits on average in 10 rounds on average. In this paper, we provide another
proof of this result, which seems to be easier. More specifically, we show that it
is sufficient to communicate at most

3H(X|Y ) + log2

(

1

ε

)

+ O(1)

bits on average in at most 4 rounds on average.
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From the proof of our upper bound it follows that there exists a deterministic
protocol which transmits X from Alice to Bob using the same number of bits on
average (namely H(X|Y ) + 2

√

H(X|Y ) + O
(

log2

(

1
ε

))

) and which guaranties
that for at most ε-fraction of inputs (with respect to the distribution of (X, Y ))
the transmission is incorrect. Are there random variables X, Y for which the
corresponding upper bound is tight? We make a step towards answering this
question: we provide an example of random variables X, Y such that every de-
terministic protocol which transmits X from Alice to Bob with error probability
ε must communicate at least H(X|Y ) + Ω

(

log2

(

1
ε

))

bits on average.
In the Appendix we provide an example of (X, Y ) for which it seems plausible

that the upper bound H(X|Y ) + O(
√

H(X|Y )) is tight.

2 Definitions

We will denote the set of the first n naturals {1, 2, . . . , n} by [n].

2.1 Information Theory

Let X, Y be two joint distributed random variables, taking values in the finite
sets, respectively, X and Y.

Definition 2.1. Shannon Entropy of X is defined by the formula

H(X) =
∑

x∈X

Pr[X = x] log2

(

1

Pr[X = x]

)

.

Definition 2.2. Conditional Shannon entropy of X with respect to Y is defined
by the formula:

H(X|Y ) =
∑

y∈Y

H(X|Y = y) Pr[Y = y],

where X|Y = y denotes a distribution of X, conditioned on the event {Y = y}.

If X is uniformly distributed in X then obviously H(X) = log2(|X |). We
will also use the fact that the formula for conditional entropy may be re-written
as

H(X|Y ) =
∑

(x,y)∈X ×Y

Pr[X = x, Y = y] log2

(

1

Pr[X = x|Y = y]

)

.

Generalization of the Shannon entropy is Renyi entropy.

Definition 2.3. Renyi entropy of X is defined by the formula

H2(X) = − log2

(

∑

x∈X

Pr[X = x]2

)

.

Concavity of log implies that H(X) ≥ H2(X).
For the further introduction in information theory see, for example [9].
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2.2 Communication Protocols

We will consider only communication protocols to solve transmission problems.
Assume that we are given jointly distributed random variables X and Y ,

taking values in finite sets X and Y. Let R be a random variable, that is
independent from the pair X, Y and takes values in the set R.

Definition 2.4. A (public-coin) randomized communication protocol is a rooted
binary tree, in which each non-leaf vertex is associated either with Alice or with
Bob. For each non-leaf vertex v associated with Alice there is a function fv :
X × R → {0, 1} and for each non-leaf vertex u associated with Bob there is a
function gu : Y × R → {0, 1}. For each non-leaf vertex one of an out-going
edges is labeled by 0 and other is labeled by 1. Finally, for each leaf l there is a
function φl : Y × R → X .

A computation according to a protocol runs as follows. Alice is given x ∈ X ,
Bob is given y ∈ Y. Assume that the random variable R takes a value r. Alice
and Bob start at the root of the tree. If they are in the non-leaf vertex v
associated with Alice, then Alice sends fv(x, r) to Bob and they go by the edge
labeled by fv(x, r). If they are in a non-leaf vertex associated with Bob then
Bob sends gv(y, r) to Alice and they go by the edge labeled by gv(y, r). When
they reach a leaf l Bob outputs the result φl(y, r).

A protocol is called deterministic if fv, gu and φl do not depend on the value
of R.

We distinguish between average-case communication complexity and the
worst-case communication complexity.

Definition 2.5. The (worst-case) communication complexity of a protocol π,
denoted by CC(π), is defined as the depth of the corresponding binary tree.

We say that protocol π communicates d bits on average (or expected length
of the protocol is equal to d), if the expected depth of the leaf that Alice and Bob
reach during the execution of the protocol π is equal to d, where the expectation
is taken over X, Y , R.

Alice’s goal is to transmit X to Bob. We say that protocol transmits X from
Alice to Bob with error probability ε if

Pr[X = φL(Y, R)] ≥ 1 − ε,

where L denotes the leaf that Alice and Bob reach in the protocol tree.
For the worst-case communication it is sufficient to consider only determin-

istic protocols. Indeed, assume that we are given a randomized protocol solving
our problem with error probability ε. Fix the value of R for which error prob-
ability is minimal. In this way we obtain a protocol with the same worst-case
communication complexity and error probability.

For the further introduction in Communication Complexity see [4]
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3 Near-optimal one-shot Slepian-Wolf theorem

Consider the following auxiliary problem. Let A be a finite set. Assume that
Alice receives an arbitrary a ∈ A and Bob receives and arbitrary probability
distribution µ on A. Alice wants to communicate a to Bob in about log(1/µ(a))
bits with small probability of error.

Lemma 3.1. Let ε be a positive real and h a positive integer. There exists a
public coin randomized communication protocol such that for all a in the support
of µ the following hold:

• in the end of the communication Bob outputs b ∈ A which is equal to a
with probability at least 1 − ε;

• the protocol communicates at most

log2

(

1

µ(a)

)

+
log2

(

1
µ(a)

)

h
+ h + log2

(

1

ε

)

+ O(1)

bits, regardless of the randomness.

Proof. Alice and Bob interpret each portion of |A| consecutive bits from the
public randomness source as a table of a random function h : A → {0, 1}. That
is, we will think that they have access to a large enough family of mutually
independent random functions of the type A → {0, 1}. Those functions will be
called hash functions and their values hash values below.

The first set k =
⌈

log2

(

1
ε

)⌉

+ 1. Then Bob sets:

Si =
{

x ∈ A | µ(x) ∈ (2−i−1, 2−i]
}

.

Then Alice and Bob work in stages numbered 0, 1, . . . .
On Stage 0:

1. Alice sends k hash values of a to Bob.

2. Bob computes set S′
0, which consists of all elements from S0 that have the

same hash values as sent by Alice (actually S0 has at most one element).

3. If S′
0 6= ∅, then Bob sends 1 to Alice, outputs any element of S′

0 and they
terminate. Otherwise Bob sends 0 to Alice and they proceed of Stage 1.

On Stage t:

1. Alice sends h new hash values of a to Bob so that the total number of
hash values of a available to Bob be k + ht.

2. For each i ∈ {h(t − 1) + 1, . . . , ht} Bob computes set S′
i, which consists of

all elements from Si, which agree with all Alice’s hash values.
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3. If there exists i ∈ {h(t − 1) + 1, . . . , ht} such that S′
i 6= ∅, then Bob sends

1 to Alice, outputs any element of S′
i and they terminate. Otherwise Bob

sends 0 to Alice and they proceed to Stage t + 1.

Let us at first show that the protocol terminates for all a in the support of µ.

Assume that Alice has a and Bob has µ. Let i =
⌊

log2

(

1
µ(a)

)⌋

so that a ∈ Si.

The protocol terminates on Stage t where

h(t − 1) + 1 ≤ i ≤ ht

or earlier. Indeed all hash values of a available to Bob on Stage t coincide with
hash values of some element of Si (for instance, with those of a).

Thus Alice sends at most k + ht bits to Bob and Bob sends at most 1 + t
bits to Alice. Therefore total communication is bounded by

k + ht + 1 + t = k + h(t − 1) + h + 2 + (t − 1)

≤ k + i − 1 + h + 2 +
i − 1

h

≤ k + log2

(

1

µ(a)

)

+
log2

(

1
µ(a)

)

h
+ h + O(1).

Since k =
⌈

log2

(

1
ε

)⌉

+ 1, the required bound follows.
Now we bound the error probability. An error may occurs, if for some t a

set Si considered on Stage t has an element b 6= a which agrees with hash values
sent from Alice. At that time Bob has already k + ht ≥ k + i hash values. The
probability that k + i hash values of b coincide with those of a is 2−k−i. Hence
by union bound error probability does not exceed

∞
∑

i=0

|Si|2
−k−i = 2−k+1

∞
∑

i=0

|Si|2
−i−1 < 2−k+1

∞
∑

i=0

∑

x∈Si

µ(x)

= 2−k+1
∑

x∈A

µ(x) = 2−k+1 = 2−⌈log
2( 1

ε )⌉ ≤ ε.

Theorem 3.1. Let X, Y be jointly distributed random variables that take values
in the finite sets X and Y. Then for every positive ε there exists a public-coin
protocol with the following properties.

• For every pair (x, y) from the support of (X, Y ) with probability at least
1 − ε Bob outputs x;

• The expected length of communication is at most

H(X|Y ) + 2
√

H(X|Y ) + log2

(

1

ε

)

+ O(1).
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Proof. On input x, y, Alice and Bob run protocol of Lemma 3.1 with A = X ,

h =
⌈

√

H(X|Y )
⌉

, a = x and µ equal to the distribution of X, conditioned on

the event Y = y. Notice that Alice knows a and Bob knows µ.
Let us show that both requirements are fulfilled for this protocol. The first re-

quirement immediately follows from the first property of the protocol of Lemma
3.1.

From the second property of the protocol of Lemma 3.1 it follows that for
input pair x, y out protocol communicates at most:

log2

(

1

Pr[X = x|Y = y]

)

+
log2

(

1
Pr[X=x|Y =y]

)

⌈

√

H(X|Y )
⌉ +

⌈

√

H(X|Y )
⌉

+log2

(

1

ε

)

+O(1)

bits. Recalling that

H(X|Y ) =
∑

(x,y)∈X ×Y

Pr[X = x, Y = y] log2

(

1

Pr[X = x|Y = y]

)

we see on average the communication is as short as required.

Remark. One may wonder whether there exists a private-coin communica-
tion protocol with the same properties as the protocol of Theorem 3.1. New-
man’s theorem ([5]) states that every public-coin protocol can be transformed
into a private-coin protocol at the expense of increasing the error probability
by δ and the worst case communication by O(log log |X × Y| + log 1/δ) (for any
positive δ). Lemma 3.1 provides an upper bound for the error probability and
communication of our protocol for each pair of inputs. Repeating the arguments
from the proof of Newman’s theorem, we are able to transform the public-coin
protocol of Lemma 3.1 into a private-coin one with the same trade off between
the increase of error probability and the increase of communication length. It
follows that for our problem there exists a private-coin communication protocol
which errs with probability at most ε and communicates on average as many
bits as the public-coin protocol from Theorem 3.1 plus extra O(log log |X × Y|)
bits.

4 One-shot Slepian-Wolf theorem with a con-

stant number of rounds on average

In this section, we modify the construction from the previous section to reduce
the average number of rounds to a constant.

Theorem 4.1. Let X, Y be jointly distributed random variables that take values
in the finite sets X and Y. Then for every positive ε there exists a public-coin
protocol with the following properties:

• For every pair (x, y) from the support of (X, Y ) with probability at least
1 − ε Bob outputs x;
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• The expected length of the protocol does not exceed

3H(X|Y ) + log2

(

1

ε

)

+ O(1).

• The expected number of rounds in protocol is at most 4.

(Compared to Theorem 3.1, the number of rounds has decreased and the com-
munication length has increased.)

Proof. We will use the following notation:

l = ⌈H(X|Y )⌉, k =

⌈

log2

(

1

ε

)⌉

+ 1,

µ(x, y) = Pr[X = x, Y = y], µ(x|y) = Pr[X = x|Y = y].

Alice and Bob apply the following modification of the protocol of Lemma 3.1.
Recall that that protocol works in stages. On Stage 0 Alice sends to Bob k
random hash bits and on each subsequent stage Alice sends to Bob extra h
random hash bits. On each stage Bob looks for an element in all sets

Si = {x′ | µ(x′|y) ∈ (2−i−1, 2−i]}.

such that i is at least k less than the total number of hash bits he has so far.
This guarantees that the error probability is at least ε for all input pairs.

Now Alice sends k + l hash bits on Stage 0 and l2t new hash bits on Stage
t > 0. This is the main difference between the new protocol and the protocol
of Theorem 3.1. In order to keep the error probability at most ε, on Stage t
Bob looks for an element in Si with the same hash values as sent by Alice for
i ≤ l + 2l + . . . + 2tl. If there is such an element, then Bob outputs any such
element (and sends 1 to Alice). Otherwise he sends 0 and they proceed to the
next stage.

As earlier, by union bound the error probability does not exceed

∞
∑

i=0

|Si|2
−k−i = 2−k+1

∞
∑

i=0

|Si|2
−i−1 ≤ 2−k+1

∞
∑

i=0

∑

x′∈Si

µ(x′|y)

= 2−k+1
∑

x′∈X

µ(x′|y) ≤ 2−k+1 = 2−⌈log
2( 1

ε )⌉ ≤ ε.

Now we will estimate the communication length on each input pair (x, y) of
positive probability. Bob sends one bit in each round. As we will see the average
number of rounds is at most 4, thus we may forget about the communication
from Bob and concentrate on communication from Alice.

Set j = j(x, y) =
⌊

log2

(

1
µ(x|y)

)⌋

. Notice that x ∈ Sj . Consider t such that

l + 2l + . . . + 2t−1l < j ≤ l + 2l + . . . + 2tl. (1)
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By the construction of the protocol the communication length for input x, y is
at most

k + l + 2l + . . . + 2tl

= k + l + 2(l + 2l + . . . + 2t−1l)

< k + l + 2j.

Hence the expected length of communication from Alice to Bob is at most

∑

(x,y)∈X ×Y

µ(x, y)(k + l + 2j(x, y))

≤ k + l + 2
∑

(x,y)∈X ×Y

µ(x, y) log2

(

1

µ(x|y)

)

= k + l + 2H(X|Y ) = 3H(X|Y ) + k + O(1).

Let us bound the expected number of rounds in our protocol. Let R(x, y)
stand for the number for inputs X = x, Y = y. Then R(x, y) is at most 2t + 2,
where t is defined by (1). By (1) we have

(2t − 1)l < j ≤ log2

(

1

µ(x|y)

)

and hence:

t ≤ log2



1 +
log2

(

1
µ(x|y)

)

l



 .

Thus:

R(x, y) ≤ 2 + 2 log2



1 +
log2

(

1
µ(x|y)

)

l



 .

By concavity of the logarithmic function the average number of rounds does not
exceed:

∑

(x,y)∈X ×Y

µ(x, y)R(x, y) ≤
∑

(x,y)∈X ×Y

µ(x, y)



2 + 2 log2



1 +
log2

(

1
µ(x|y)

)

l









≤ 2 + 2 log2





∑

(x,y)∈X ×Y

µ(x, y)



1 +
log2

(

1
µ(x|y)

)

l









≤ 2 + 2 log2(2) = 4.
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5 A Lower Bounds for the Average-Case Com-

munication

Let (X, Y ) be a pair of jointly distributed random variables. Assume that π is
a deterministic protocol to transmit X from Alice to Bob who knows Y . Let
π(X, Y ) stand for the result output by the protocol π for input pair (X, Y ). We
assume that for at least 1 − ε input pairs this result is correct:

Pr[π(X, Y ) 6= X)] ≤ ε.

It is not hard to see that in this case the expected communication length can-
not be much less than H(X|Y ) bits on average. Moreover, this applies for
communication from Alice to Bob only.

Proposition 5.1. For every deterministic protocol as above the expected com-
munication from Alice to Bob is at least H(X|Y ) − ε log2 |X | − 1.

Proof. Indeed, let ΠA denote the concatenation of all bits sent by Alice. If Bob’s
input is fixed, then the set of all possible values of ΠA forms a prefix-free code.
Hence

E [|ΠA| | Y = y] ≥ H(ΠA|Y = y)

and therefore

E|ΠA| = Ey∼Y E [|ΠA| | Y = y] ≥ Ey∼Y H(ΠA|Y = y) = H(ΠA|Y ).

Consider I(X : ΠA|Y ). By definition I(X : ΠA|Y ) ≤ H(ΠA|Y ). On the other
hand we have

I(X : ΠA|Y ) = H(X|Y ) − H(X|Y, ΠA).

Notice that π(X, Y ) is a function of Y and πA (Bob’s guess is based on Y and
on bits received from Alice) and hence H(X|Y, ΠA) ≤ H(X|π(X, Y )). Since
Pr[π(X, Y ) 6= X] ≤ ε, from Fano inequality it follows that

H(X|π(X, Y )) ≤ 1 + ε log2 |X |.

Therefore E|ΠA| ≥ H(X|Y ) − ε log2 |X | − 1.

There are random variables for which this lower bound is tight. For instance,
let Y be empty and let X take the value x ∈ {0, 1}n with probability ε/2n (for
all such x) and let X = (the empty string) with the remaining probability
1 − ε. Then the trivial protocol with no communication solves the job with
error probability ε and H(X|Y ) ≈ ε log2 |X |.

In this section we consider the following question: are there a random vari-
ables (X, Y ), for which for every deterministic communication protocol the ex-
pected communication is significantly larger than H(X|Y ), say close to the up-
per bound H(X|Y ) + 2

√

H(X|Y ) + log2

(

1
ε

)

of Theorem 3.1? Notice that from
the proof of the theorem 3.1 it follows that there exists a deterministic protocol
which transmits X from Alice to Bob using H(X|Y )+2

√

H(X|Y )+O
(

log2

(

1
ε

))
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bits on average and which guaranties that for at most ε-fraction of inputs (with
respect to the distribution of (X, Y )) the transmission is incorrect. Indeed, for
any choice of randomness the communication on each pair of inputs is bounded
by lemma 3.1. Thus we may fix random bits so that the error probability is at
most ε.

Orlitsky showed that if no error is allowed and the support of (X, Y ) is a
Cartesian product, then every deterministic protocol must communicate H(X)
bits on average.

Lemma 5.1. Let (X, Y ) be a pair of jointly distributed random variables whose
support is a Cartesian product. Assume that π is a deterministic protocol, which
transmits X from Alice to Bob who knows Y and

Pr[π(X, Y ) 6= X)] = 0.

Then the expected length of π is at least H(X).

For the sake of completeness we provide a proof of this result in the Ap-
pendix. The main result of this section states that there are random variables
(X, Y ) such that transmission of X from Alice to Bob with error probability ε
requires H(X|Y ) + Ω

(

log2

(

1
ε

))

bits on average.
The random variables X, Y are specified by two parameters, δ ∈ (0, 1/2) and

n ∈ N. Both random variables take values in {0, 1, . . . , n} and are distributed as
follows: Y is distributed uniformly in {0, 1, . . . , n} and X = Y with probability
1 − δ and X is uniformly distributed in {0, 1, . . . , n} \ {X} with the remaining
probability δ. That is,

Pr[X = i, Y = j] =
(1 − δ)δij + δ

n
(1 − δij)

n + 1
,

where δij stands for the Kronecker’s delta. Notice that X is uniformly dis-
tributed on {0, 1, . . . , n} as well. A straightforward calculation reveals that

Pr[X = i|Y = j] =
Pr[X = i, Y = j]

Pr[Y = j]
= (1 − δ −

δ

n
)δij +

δ

n

and

H(X|Y ) = (1 − δ) log2

(

1

1 − δ

)

+ δ log2

(n

δ

)

= δ log2 n + O(1).

We will think of δ as a constant, say 1/4. For one-way protocol we are able
to show that communication length must be close to log n, which is about 1/δ
times larger than H(X|Y ):

Proposition 5.2. Assume that π is a one-way deterministic protocol, which
transmits X from Alice to Bob who knows Y and

Pr[π(X, Y ) 6= X)] ≤ ε.

Then the expected length of π is at least
(

1 − ε
δ

)

log2(n + 1) − 2.
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Proof. Let S be the number of leafs in π. For each j ∈ {0, 1, . . . , n}

# {i ∈ {0, 1, . . . , n} | π(i, j) = i} ≤ S.

Hence the error probability ε is at least (n + 1 − S) δ
n

. This implies that

S ≥ n
(

1 −
ε

δ

)

+ 1 ≥ (n + 1)
(

1 −
ε

δ

)

.

Let Π(X) denote the leaf Alice and Bob reach in π (since the protocol is one-
way, the leaf depends only on X). The expected length of Π(X) is at least
H(Π). Let l1, l2, . . . , lS be the list of all leaves in the support of the random
variable Π(X). As X is distributed uniformly, we have

Pr[Π = li] ≥
1

n + 1

for all i. The statement follows from

Lemma 5.2. Assume that p1, . . . , pk, q1, . . . , qk ∈ (0, 1) satisfy

k
∑

i=1

pi = 1,

∀i ∈ {1, . . . , k} pi ≥ qi.

Then
k
∑

i=1

pi log2

1

pi

≥
k
∑

i=1

qi log2

1

qi

− 2.

The proof of this technical lemma is deferred to the Appendix. The lemma
implies that

H(Π) =

S
∑

i=1

Pr[Π = li] log2

(

1

Pr[Π = li]

)

≥
S

n + 1
log2(n + 1) − 2 ≥

(

1 −
ε

δ

)

log2(n + 1) − 2.

The next theorem states that for any fixed δ every two-way determinis-
tic protocol with error probability ε must communicate about H(X|Y ) + (1 −
δ) log2(1/ε) bits on average.

Theorem 5.1. Assume that π is a deterministic protocol which transmits X
from Alice o Bob who knows Y and

Pr[π(X, Y ) 6= X)] ≤ ε.

Then the expected length of π is at least

(1 − δ − δ/n) log2

(

δ

ε + δ/n

)

+ (δ − 2ε) log2(n + 1) − 2δ.

12



The lower bound in this theorem is quite complicated and comes from its
proof. To understand this bound assume that δ is a constant, say δ = 1/4,
and 1

n
≤ ε ≤ 1

log
2

n
. Then H(X|Y ) = (1/4) log2 n + O(1) and the lower bound

becomes
(

1 −
1

4
−

1

4n

)

log2

( 1
4

ε + 1
4n

)

+ (1/4 − 2ε) log2(n + 1) −
1

2

Condition 1
n

≤ ε implies that the first term is equal to

(3/4) log2

(

1

ε

)

− O(1).

Condition ε ≤ 1
log

2
n

implies that the seconds term is equal to

(1/4) log2 n − O(1).

Therefore under these conditions the lower bound becomes

(1/4) log2 n + (3/4) log2

(

1

ε

)

− O(1) = H(X|Y ) + (3/4) log2

(

1

ε

)

− O(1).

Proof. Let Π = Π(X, Y ) denote the leaf Alice and Bob reach in the protocol π for
input pair (X, Y ). As we have seen, the expected length of communication is at
least the entropy H(Π(X, Y )). Let l1, . . . , lS denote all the leaves in the support
of the random variable Π(X, Y ). The set {(x, y) | Π(x, y) = li} is a combinatorial
rectangle Ri ⊂ {0, 1, . . . , n} × {0, 1, . . . , n}. Imagine {0, 1, . . . , n} × {0, 1, . . . , n}
as a table in which Alice owns columns and Bob owns rows. Let hi be the
height of Ri and wi be the width of Ri. Let di stand for the number of diagonal
elements in Ri (pairs of the form (j, j)). By definition of (X, Y ) we have

Pr[Π(X, Y ) = li] =
(1 − δ)di

n + 1
+

δ(hiwi − di)

n(n + 1)
. (2)

The numbers {Pr[Π(X, Y ) = li]}
S
i=1 define a probability distribution over the

set {1, 2, . . . , S} and its entropy equals H([Π(X, Y )). Equation (2) represents

this distribution as a weighted sum of the following distributions:
{

di

n+1

}S

i=1

and
{

hiwi

(n+1)2

}S

i=1
. That is, Equation (2) implies that

{Pr[Π = li]}
S
i=1 = (1 − δ − δ/n)

{

di

n + 1

}S

i=1

+ (δ + δ/n)

{

hiwi

(n + 1)2

}S

i=1

.

Since entropy is concave, we have

H(Π) = H
(

{Pr[Π = li]}
S
i=1

)

≥ (1 − δ − δ/n)H

(

{

di

n + 1

}S

i=1

)

+ (δ + δ/n)H

(

{

hiwi

(n + 1)2

}S

i=1

)

(3)

13



The lower bound of the theorem follows from lower bounds of the entropies of
these distributions.

A lower bound for H

(

{

di

n+1

}S

i=1

)

. In each row of Ri there is at most 1

element (x, y), for which π(x, y) = x. The rectangle Ri consists of di diagonal
elements and hence there are at least d2

i − di elements (x, y) in Ri for which
π(x, y) 6= x. Summing over all i we get

ε ≥

S
∑

i=1

δ(d2
i − di)

n(n + 1)

and thus
S
∑

i=1

(

di

n + 1

)2

≤
ε + δ/n

δ
.

Since Renyi entropy is a lower bound for the Shannon entropy, we have

H

(

{

di

n + 1

}S

i=1

)

≥ log2









1
S
∑

i=1

(

di

n+1

)2









≥ log2

(

δ

ε + δ/n

)

.

In Ri, there are at most hi good pairs (for which π works correctly). At most
di of them has probability 1−δ

n+1 . Hence

Pr[Π = li, π(X, Y ) = X] ≤
(1 − δ)di

n + 1
+

δ(hi − di)

n(n + 1)

and

1 − ε ≤ Pr[π(X, Y ) = X] =
S
∑

i=1

Pr[Π = li, π(X, Y ) = X]

≤

S
∑

i=1

(

(1 − δ)di

n + 1
+

δ(hi − di)

n(n + 1)

)

= 1 − δ − δ/n +
δ

n(n + 1)

S
∑

i=1

hi.

The last inequality implies that

S
∑

i=1

hi ≥ (1 − ε/δ)(n + 1)2.

A lower bound for H

(

{

hiwi

(n+1)2

}S

i=1

)

. Since hi ≤ n + 1, we have

S
∑

i=1

hiwi

(n + 1)2
log2

(

(n + 1)2

hiwi

)

≥

S
∑

i=1

hiwi

(n + 1)2
log2

(

(n + 1)2

(n + 1)wi

)

= − log2(n + 1) +
S
∑

i=1

hi

wi

(n + 1)2
log2

(

(n + 1)2

wi

)

.

14



Obviously wi

(n+1)2 ≥ 1
(n+1)2 . By lemma 5.2 we get

S
∑

i=1

hi

wi

(n + 1)2
log2

(

(n + 1)2

wi

)

≥

(

S
∑

i=1

hi

)

1

(n + 1)2
log2

(

(n + 1)2
)

− 2

≥ (2 − 2ε/δ) log2(n + 1) − 2.

Thus

H

(

{

hiwi

(n + 1)2

}S

i=1

)

≥ (1 − 2ε/δ) log2(n + 1) − 2.
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A The proof of Lemma 5.1

Let X × Y stand for the support of (X, Y ). Fix x ∈ X . Consider the set of all
possible leafs Alice and Bob may reach in π when X = x. Let lx be the leaf of
minimal depth from this set. Denote the depth of lx by d(lx). Notice that the
expected length of the protocol π is at least Ex∼Xd(lx).

Suppose that for some x1, x2 ∈ X , x1 6= x2 we have lx1
= lx2

. It means
that there exists y1, y2 ∈ Y such that when X = x1, Y = y1 and when X =
x2, Y = y2 Alice and Bob reach the same leaf lx1

. From the rectangle property
it follows that when X = x1, Y = y2 Alice and Bob reach lx1

too. Hence when
X = x1, Y = y2 and when X = x2, Y = y2, Bob outputs the same answer,
which is contradiction.

Thus lx defines bijection from the set of all possible values of X to some
prefix-free set of binary strings. Hence Ex∼Xd(lx) ≥ H(X).

B The proof of Lemma 5.2

The function f(x) = x log2
1
x

increases on [0, e−1] and its maximum value is
e−1 log2 e < 1. Indeed,

f ′(x) =
1

ln 2
(−1 − ln x) =

ln
(

1
ex

)

ln 2
≥ 0

when x ∈ [0, e−1]. Since
k
∑

i=1

pi = 1, we have

#
{

i ∈ {1, . . . , k} | pi > e−1
}

< e.

The left hand side of this inequality is an integer hence
#
{

i ∈ {1, . . . , k} | pi > e−1
}

≤ 2. Thus we conclude

k
∑

i=1

pi log2

1

pi

=
∑

pi≤e−1

pi log2

1

pi

+
∑

pi>e−1

pi log2

1

pi

≥
∑

pi≤e−1

qi log2

1

qi

+
∑

pi>e−1

0

≥
∑

pi≤e−1

qi log2

1

qi

+
∑

pi>e−1

(

qi log2

1

qi

− 1

)

≥

k
∑

i=1

qi log2

1

qi

− 2.

C Random variables, for which Theorem 3.1

may be tight

We finish this paper with the example of random variables (X, Y ), for which we
believe that the upper bound from Theorem 3.1 is tight. Let Hn be the n-th
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harmonic number:

Hn =

n
∑

k=1

1

k
= ln n + O(1).

Let X take values in {1, 2, . . . , n} and Y take values in Sn, the set of all
permutations of the set {1, . . . , n}. The distribution of X, Y is defined as follows:

Pr[X = i, Y = σ] =
1

σ(i)Hnn!
.

This formula implies that H(X|Y = σ) does not depend on σ ∈ Sn and equals

n
∑

i=1

log2(iHn)

iHn

=
log2 n

2
+ O(log log n).

Thus H(X|Y ) = log
2

n

2 + O(log log n).
We conjecture that every deterministic protocol, which transmits X from

Alice to Bob who knows Y with error probability ε < 1/ log2 n, communicates

at least log
2

n

2 + Ω(
√

log2(n)) bits on average.
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