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Abstract

We initiate a study of a relaxed version of the standard Erdős-Rényi random graph model, where each
edge may depend on a few other edges. We call such graphs dependent random graphs. Our main result
in this direction is a thorough understanding of the clique number of dependent random graphs. We also
obtain bounds for the chromatic number. Surprisingly, many of the standard properties of random graphs
also hold in this relaxed setting. We show that with high probability, a dependent random graph will con-
tain a clique of size p1´op1qq logpnq

logp1{pq , and the chromatic number will be at most n logp1{p1´pqq
logn . We expect

these results to be of independent interest. As an application and second main result, we give a new
communication protocol for the k-player Multiparty Pointer Jumping (MPJk) problem in the number-on-
the-forehead (NOF) model. Multiparty Pointer Jumping is one of the canonical NOF communication
problems, yet even for three players, its communication complexity is not well understood. Our protocol
for MPJ3 costs Opnplog log nq{ log nq communication, improving on a bound from [8]. We extend our
protocol to the non-Boolean pointer jumping problem yMPJk, achieving an upper bound which is opnq for
any k ě 4 players. This is the first opnq protocol for yMPJk and improves on a bound of Damm, Jukna,
and Sgall [10], which has stood for almost twenty years.

1 Introduction

Random Graphs. The study of random graphs revolves understanding the following distribution on
graphs: Given n and p, define a distribution on n vertex graphs G “ pV,Eq by placing each edge pi, jq P E
independently with probability p. The first paper on this topic, authored by Erdős and Rényi [12], focused
on connectivity of graphs. Later, Bollobás and Erdős [7] found the interesting result that almost every graph
has a clique number of either r or r ` 1, for some r « 2 logn

log 1{p . This remarkable concentration of measure
result led to further investigations of these graphs. Then, Bollobás [5] solved the question of the chromatic
number and showed that almost every graph has chromatic number p1` op1qq´n log p1´pq

2 logn . For more details,
consult Bollobás [6] and Alon and Spencer [2].

We extend this model by allowing each edge to depend on up to d other edges. We make no a priori
assumptions on how the edges depend on each other except that edges must be independent of all but at
most d other edges. This defines a family of graph distributions. We initiate a study of dependent random
graphs by considering the clique number and the chromatic number. As far as we know, this is the first
work to systematically study such distributions. However, other relaxations of the standard random graph
model have been studied. The most relevant for us is that of Alon and Nussboim [1], who study random
graphs where edges are k-wise independent. [1] give tight bounds for several graph properties, including
the clique number, the chromatic number, connectivity, and thresholds for the appearance of subgraphs. The
bounds for k-wise independent graph properties are not as tight as the standard random graphs, but this is
to be expected since k-wise independent random graphs are a family of distributions rather than a single
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distribution. Our dependent random graphs similarly represent a family of graph distributions. However,
dependent random graphs are generally not even almost k-wise independent, even for small values of d.

NOF Communication Complexity. As an application of our dependent random graphs, we study multi-
party communication problems in the Number-On-The-Forehead (NOF) communication model defined by
Chandra et al. [9]. In this model, there are k players PLR1, ¨ ¨ ¨ , PLRk who wish to compute some function
fpx1, . . . , xkq of their inputs using the minimal communication possible. Initially, players share a great deal
of information: each PLRi sees every input except xi.1 Note that a great deal of information is shared before
communication begins; namely, all players except PLRi see xi. As a result, for many functions little com-
munication is needed. Precisely how this shared information affects how much communication is needed is
not currently well understood, even when limiting how players may communicate. We consider two well-
studied models of communication. In the one-way communication model, players each send exactly one
message in order (i.e., first PLR1 sends his message, then PLR2, etc.) In the simultaneous-message (or SM)
model, each player simultaneously sends a single message to a referee, who processes the messages and
outputs an answer. We use Dpfq and D‖pfq to denote the communication complexity of f in the one-way
and simultaneous-message models respectively.

To date, no explicit function is known which requires a polynomial amount of communication for k “
Oppolylog nq players in the SM model. Identifying such a function represents one of the biggest problems
in communication complexity. Furthermore, a chain of results [19, 13, 4] showed that such a lower bound
would place f outside of the complexity class ACC0. ACC0 lies at the frontier of our current understanding
of circuit complexity, and until the recent work of Williams [18] it wasn’t even known that NEXP Ę ACC0.
The Multipary Pointer Jumping problem is widely conjectured to require enough communication to place it
outside of ACC0. This motivates our study.

The Pointer Jumping Problem. There are many variants of the pointer jumping problem. Here, we study
two: a Boolean version MPJnk , and a non-Boolean version yMPJ

n
k . (From now on, we suppress the n to ease

notation). We shall formally define these problems in Section 2, but for now, each may be described as
problems on a directed graph that has k ` 1 layers of vertices L0, . . . , Lk. The first layer L0 contains a
single vertex s0, and layers L1, . . . , Lk´1 contain n vertices each. In the Boolean version, Lk contains two
vertices, while in the non-Boolean version Lk contains n vertices. For inputs, each vertex in each layer
except Lk has a single directed edge pointing to some vertex in the next layer. The output is the the unique
vertex in Lk reachable from s0; i.e., the vertex reached by starting at s0 and “following the pointers” to the
kth layer. Note that the output is a single bit for MPJk and a log n-bit string for yMPJk. To make this into
a communication game, we place on PLRi’s forehead all edges from vertices in Li´1 to vertices in Li. If
players speak in any order except PLR1, ¨ ¨ ¨ , PLRk, there is an easy Oplog nq-bit protocol for MPJk.

This problem was first studied by Wigderson,2 who gave an Ωp
?
nq lower bound for MPJ3. This was later

extended by Viola and Wigderson [17], who showed that MPJk requires Ω̃pn1{pk´1qq communication, even
under randomized communication. On the upper-bounds side, Pudlak et al. [16] showed a protocol for MPJ3
that uses only O pnplog log nq{ log nq communication, but only works when the input on PLR2’s forehead is
a permutation. Damm et al. [10] show that DpyMPJ3q “ Opn log lognq and DpyMPJkq “ Opn logpk´1q nq,
where logprq n is the rth iterated log of n. Building on [16], Brody and Chakrabarti [8] showed DpMPJ3q “

O
´

n
a

plog log nq{ log n
¯

; they give marginal improvements for MPJk for k ą 3. Despite the attention

1Imagine xi being written on PLRi’s forehead. Then, PLRi sees inputs on other players’ foreheads, but not his own.
2This was unpublished, but an exposition appears in [3].
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devoted to this problem, the upper and lower bounds remain far apart, even for k “ 3 players, where
DpMPJ3q “ Ωp

?
nq and DpMPJ3q “ Opn

a

plog lognq{ log nq. For this reason, in this work we focus
on MPJk and yMPJk for small values of k. We strongly believe that fully understanding the communication
complexity of MPJ3 will shed light on the general problem as well.

1.1 Our Results

We give two collections of results: one for dependent random graphs, and the other for the communication
complexity of MPJk and yMPJk. For our work on dependent random graphs, we focus on the clique number
and on the chromatic number. The clique number of a graph G, denoted cliquepGq, is the size of the
largest clique; the chromatic number χpGq is the number of colors needed to color the vertices such that the
endpoints of each edge have different colors. We use e.g. cliquepGdpn, pqq to refer to cliquepGq for some
G „ Gdpn, pq. We achieve upper and lower bounds for each graph property. Say that a graph property P
holds almost surely (a.s.) if it holds with probability approaching 1 as n approaches8 i.e. if P holds with
probability 1´ op1q.

Our strongest results3 give a lower bound for cliquepGdpn, pqq and an upper bound for χpGdpn, pqq.

Theorem 1. If 0 ă p ă 1{4 and d{p ăă
?
n, then Gdpn, pq almost surely has a clique of size Ω

´

logn
log 1{p

¯

.

Theorem 2. If 3{4 ă p ă 1 and d “ nop1q then almost surely χpGdpn, pqq ď p1` εq
´n logp1´pq

logn .

These bounds nearly match similar results for Erdős-Rényi random graphs. Our bounds on the other
side are not as tight.

Theorem 3. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely cliquepGdpn, pqq ď d log n.

Theorem 4. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely χpGdpn, pqq ě n{pd log nq.

For large values of d, there are wide gaps in the upper and lower bounds of clique number and chromatic
number. Are these gaps necessary? The existing bounds for random graphs show that Theorems 1 and 2 are
close to optimal. Our next result witnesses the tightness for cliquepGdpn, pqq.

Lemma 5. For any d “ opnq and any 0 ă p ă 1

1. there are d-dependent random graphs that almost surely contain cliques of size Ωpdq.

2. there are d-dependent random graphs that almost surely contain cliques of size Ωp
?
d log nq.

This result shows that Theorem 3 is also close to optimal. It also demonstrates that tight concentration
of measure does not generally hold for dependent random graphs, even for small values of d. Nevertheless,
we expect that for many specific dependent random graphs, tight concentration of measure results will hold.
Finally, we give two simple constructions which show that with too much dependence, very little can be said
about cliquepGdpn, pqq.

Lemma 6. For any d ě 2n, the following statements hold.

1. For any 0 ă p ă 1, there exists a d-dependent random graph Gdpn, pq that is bipartite with certainty.

2. For any 1{2 ď p ă 1, there exists a d-dependent random graph Gdpn, pq that contains a clique of
size n{2 with certainty.

3Our choice of p is motivated by what was needed to obtain the communication complexity bounds for MPJk. We suspect that
tweaking our technical lemmas will give bounds for any constant p.
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Results for Multiparty Pointer Jumping. Our main NOF communication complexity result is a new
protocol for MPJ3.

Theorem 7. DpMPJ3q “ Opnplog log nq{ log nq.

This is the first improvement in the communication complexity of MPJ since the work of Brody and
Chakrabarti [8]. Next, we use this protocol to get new bounds for the non-Boolean version.

Theorem 8. DpyMPJ4q “ O
´

n plog lognq
2

logn

¯

.

Our protocol for yMPJ4 is the first sublinear-cost protocol for yMPJk for any value of k and improves on
the protocol of Damm et al. [10] which has stood for nearly twenty years. Our last pointer jumping results
give upper bounds in the SM setting. First we show how to convert our protocol from Theorem 7 to a
simultaneous messages protocol.

Lemma 9. D‖pMPJ3q “ O
´

n log logn
logn

¯

.

Note that to solve yMPJ3, players can compute each bit of f3pf2piqq using an MPJ3 protocol. By running
log n instances in parallel, players compute all of yMPJ3pi, f2, f3q. Thus, we get the following bound for
yMPJ3.

Corollary 10. D‖pyMPJ3q “ Opn log lognq.

This matches the bound from [10] but holds in the more restrictive SM setting.

1.2 Obtaining Bounds for Dependent Random Graph Properties

In this subsection, we describe the technical hook we obtained to prove our bounds for Theorems 1 and 2. A
key piece of intuition is that when looking at only small subgraphs of G „ Gdpn, pq, the subgraph usually
looks like Gpn, pq. This intution is formalized in the following definition and lemma.

Definition 1.1. Given a dependent random graph Gdpn, pq, call a subset of vertices S Ď V UNCORRE-
LATED if any two edges in the subgraph induced by S are independent.

Lemma 11. Suppose d and k are integers such that dk3 ď n. Fix any d-dependent graph Gdpn, pq, and let
S be a set of k vertices uniformly chosen from V . Then, we have

PrrS is UNCORRELATEDs ě 1´
3dk3

2n
.

At first glance, it might appear like we are now able to appeal to the existing arguments for obtaining
bounds for cliquepGpn, pqq and then χpGpn, pqq. Unfortuantely, this is not the case—while most potential
k-cliques are UNCORRELATED, allowing correlation between edges drives up the variance. In effect, we
might expect to have roughly the same number of k-cliques, but these cliques bunch together. Nevertheless,
we are able to show that when d is small enough, these cliques don’t bunch up too much. Appropriately
bounding the variance is the most technically involved hurdle in this work, and is necessary to obtain both
the upper bound on the chromatic number, and the effecient pointer jumping protocol.
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1.3 Roadmap

The rest of the paper is organized as follows. In Section 2 we specify some notation, give formal definitions
for the problems and models we consider, and provide some technical lemmas on probability which we’ll
need in later sections. We develop our results for dependent random graphs in Section 3, deferring some
technical lemmas to Section 5. We present main result on Multiparty Pointer Jumping in Section 4, deferring
the secondary MPJk results to Section 6. In Section 7 we prove Lemmas 5 and 6.

2 Preliminaries and Notation

We use rns to denote the set t1, . . . , nu, N to denote
`

n
2

˘

, and exppzq to denote ez . For a string x P t0, 1un,
let xrjs denote the jth bit of x. For a sequence of random variables X0, X1, . . ., we use Xi to denote
the subsequence X0, . . . , Xi. For a graph G “ pV,Eq, Ḡ denotes the complement of G. Given sets
A Ă B Ă V , we use BzA to denote the set of edges tpu, vq : u, v P B and tu, vu Ę Au.

For a communication problem, we refer to players as PLR1, . . . , PLRk. When k “ 3, we anthropomor-
phize players as Alice, Bob, and Carol. Our communication complexity measures were defined in Sec-
tion 1; for an in-depth development of communication complexity, consult the excellent standard textbook
of Kushilevitz and Nisan [15].

2.1 Probability Theory and Random Graphs

Next, we formalize our notion of dependent random graphs and describe the tools we use to bound cliquepGdpn, pqq.

Definition 2.1 ([11], Definition 5.3). A sequence of random variables Y0, Y1, . . . , Yn is a martingale with
respect to another sequence X0, X1, . . . , Xn if for all i ě 0 we have

Yi “ gipXiq

for some functions tgiu and, for all i ě 1 we have

ErYi|Xi´1s “ Yi´1 .

Theorem 12 (Azuma’s Inequality). Let Y0, . . . , Yn be a martingale with respect to X0, . . . , Xn such that
ai ď Yi ´ Yi´1 ď bi for all i ě 1. Then

PrrYn ą Y0 ` ts,PrrYn ă Y0 ´ ts ď exp

ˆ

´
2t2

ř

ipbi ´ aiq
2

˙

.

Of particular relevance for our work is the edge-exposure martingale. Let G be a random graph. Arbi-
trarily order possible edges of the graph e1, . . . , eN , and let Xi be the indicator variable for the event that
ei P G. Let f :

`

n
2

˘

Ñ R be any function on the edge set, and let Yi :“ ErfpX1, . . . , XN q|Xis. It is easy to
verify that for any f , ErYi|Xăis “ Yi´1, and therefore tYiu are a matingale with respect to tXiu. We say
that tYiu is the edge-exposure martingale for G.

It is worth noting that martingales make no assumptions about the independence of tXiu. We’ll use
martingales on graph distributions where each edges may depend on a small number of other edges. This
notion of local dependency is formalized below.

A dependency graph for a set of random variables X “ tX1, . . . , XNu is a graph H on rN s such that
for all i, Xi is independent of tXj : pi, jq R Hu. We say that a set of variables X is d-locally dependent if
there exists a dependency graph for X where each vertex has degree at most d.
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The following lemma of Janson [14] (rephrased in our notation) bounds the probability that the sum of
a series of random bits deviates far from its expected value, when the random bits have limited dependence.

Lemma 13. [14] LetX “ tXiuiPrNs be a d-locally dependent set of identically distributed binary variables,
and let Y “

ř

iPrNsXi. Then, for any t we have

Prr|Y ´ ErY s| ě ts ď e
´2t2

pd`1qN .

For more details and results on probability and concentration of measure, consult the textbook of Dub-
hashi and Panconesi [11].

Definition 2.2. A distribution Gdpn, pq is d-dependent if each edge is placed in the graph with probability
p, and furthermore that the set of edges are d-locally dependent.

Note that taking d “ 0 gives the standard Erdős-Rényi graph model. As with k-wise independent
random graphs, d-dependent random graphs are actually a family of graph distributions. We make no as-
sumptions on the underlying distribution beyond the fact that each edge depends on at most d other edges.
We use Gdpn, pq to denote an arbitrary dependent random graph.

A clique in a graph G “ pV,Eq is a set of vertices S such that the subgraph induced on S is complete.
Similarly, an independent set T is a set of vertices whose induced subgraph is empty. A clique cover of G
is a partition of V into cliques. We let cliquepGq denote the size of the largest clique in G. Let χpGq denote
the chromatic number of G; i.e., the minimum number of colors needed to color the vertex set such that no
two adjacent vertices are colored the same. Note that χpGq is the size of the smallest clique cover of Ḡ.

2.2 Multiparty Pointer Jumping

Finally, we formally define the Boolean Multiparty Pointer Jumping function. Let i P rns, and let f2, . . . , fk :
rnsn, be functions from rns to rns. Let x P t0, 1un. We define the k-player pointer jumping function
MPJnk : rns ˆ prnsnqk´2 ˆ t0, 1un recursively as follows:

MPJn3 pi, f2, xq :“ xrf2piqs ,

MPJnkpi, f2, . . . , fk´1, xq :“ MPJnk´1pf2piq, f3, . . . , fk´1, xq .

The non-Boolean version yMPJ
n
k : rns ˆ prnsnqk´1 is defined similarly recursively:

yMPJ
n
3 pi, f2, f3q :“ f3pf2piqq ,

yMPJ
n
kpi, f2, . . . , fkq :“ yMPJ

n
k´1pf2piq, f3, . . . , fkq .

Henceforth, we drop the superscript n to ease notation. Each problem is turned into a communication game
in the natural way. PLR1 is given i; for each 2 ď j ă k, PLRj receives fj , and PLRk receives x. Players
must communicate to output MPJkpi, f2, . . . , fk´1, xq.

3 Dependent Random Graphs

In this section, we prove our main results regarding dependent random graphs, namely that with high prob-
ability they contain a large clique, and with high probability the chromatic number is not too large. The two
theorems are formally stated below.
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Theorem 14. (Formal Restatement of Theorem 1) For all 0 ă ε ă 1{4 there exists n0 such that

PrrcliquepGdpn, pqq ą ks ą 1´ expp´n1`εq ,

for all n ě n0, for all n´ε{4 ă p ă 1
4 and for all d, k such that k ď logpn{p2d log3 nqq

logp1{pq and d{p ď n1{2´ε.

This theorem shows cliquepGdpn, pqq “ Ω
´

logn
log 1{p

¯

with high probability, as long as d{p is bounded

away from
?
n. Furthermore, when d “ nop1q, cliquepGdpn, pqq ě p1´ εq

logn
logp1{pq with high probability.

Proof. This proof follows the classic technique of Bollobás [5], modified to handle dependent random
graphs. We need to show that Gdpn, pq contains clique of size k. To that end, let Y be the largest num-
ber of edge-disjoint UNCORRELATED k-cliques. First, we give a lower bound on ErY s; we defer its proof
to Section 5.

Lemma 15. ErY s ě n2p
19k5

.

Now, we use the edge-exposure martingale on Gdpn, pq to show that with high probability, Y does not
stray far from it’s expectation. Let Y0, Y1, ¨ ¨ ¨YN , be the edge exposure martingale on Gdpn, pq. Recall
that Y0 “ ErY s, YN “ Y , and Yi “ ErY |Xis. In a standard random graph model where all edges are
independently placed in G, it is easy to see that conditioning on whether or not an edge is in the graph
changes the expected number of edge-disjoint UNCORRELATED k-cliques by at most one. This no longer
holds when edges are dependent. However, if the graph distribution is d-dependent, then conditioning on
Xi changes the expected number of edge-disjoint UNCORRELATED k-cliques by at most d. Therefore,
|Yi`1 ´ Yi| ď d. Then, by Azuma’s inequality, Lemma 15, and our assumption that d{p ď n1{2´ε, we have

PrrY “ 0s ď PrrY ´ ErY s ď ´ErY ss

ď exp

ˆ

´ErY s2

2Nd2

˙

“ exp

ˆ

´
n2p2

192d2k10
p1` op1qq

˙

ď expp´n1`εq .

Thus, it follows thatGdpn, pq contains an UNCORRELATED k-clique with probability at least 1´expp´n1`εq.
Since every UNCORRELATED clique is still a clique, it is clear that

PrrcliquepGdpn, pqq ě ks ě 1´ expp´n1`εq .

Next, we use the lower bound on cliquepGdpn, pqq to obtain an upper bound on χpGdpn, pqq.

Theorem 16. For all 0 ă ε ă 1{8 there exists n0 such that

Pr

„

χpGdpn, qqq ă p1` 4εq
´n logp1´ qq

log n



ą 1´ exppn1`εq ,

for all 3{4 ă q ă 1´ n´ε{4, all d ď nop1q, and all n ě n0.
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Proof. This follows a greedy coloring approach similar to [5, 16], but adapted to dependent random graphs.
Set m “ n

log2 n
, ε1 “ 2ε, and p “ 1 ´ q. Let E be the event that every induced subgraph H of Gdpn, qq

with m vertices has an independent set of size at least k :“ p1´ ε1q logm
´ logp1´qq . Independent sets in Gdpn, qq

correspond to cliques in the complement graph Gdpn, qq, which is distributed identically to Gdpn, pq. Thus,
we’re able to leverage Theorem 14 to bound PrrEs. In particular, since d ď nop1q ď mop1q,4 by Theorem 14
and a union bound we have

PrrEs ą 1´

ˆ

n

m

˙

expp´n1`ε
1

q ą 1´ exp

ˆ

n

log n
´ n1`ε

1

˙

ą 1´ expp´n1`εq .

Now, assume E holds. We iteratively construct a coloring for Gdpn, qq. Start with each vertex uncol-
ored. Repeat the following process as long as more than m uncolored vertices remain: Select m uncol-
ored vertices. From their induced subgraph, identify an independent set I of size at least k. Then, color
each vertex in I using a new color. When at most m uncolored vertices remain, color each remaining
vertex using a different color. Since two vertices share the same color only if they are in an indepen-
dent set, it’s clear this is a valid coloring. More over, for each color in the first phase, we color at least
k ą p1´ ε1q logm

´ log p ą p1´ p3{2qεq
logn
´ log p vertices. Hence, the overall number of colors used is at most

n´m

p1´ p3{2qε1qplog nq{p´ logp1´ qqq
`m ď p1` 4εq

´n logp1´ qq

log n
.

Therefore, χpGdpn, qqq ď p1` 4εq´n logp1´qq
logn as long as E holds. This completes the proof.

Finally, we give an upper bound on cliquepGdpn, pqq and a lower bound on χpGdpn, pqq, which follow
directly from Lemma 13.

Theorem 17. For all 0 ă p ă 1 and d ď n{ log2 n, almost surely cliquepGdpn, pqq “ Opd log nq.

Proof. Let G „ Gdpn, pq, and fix some constant c to be determined later. For a set of vertices S Ď V of
size |S| “ cd log n, let BADS denote the event that S is a clique, and let BAD :“

Ž

S BADS . Note that
there are

`

n
cd logn

˘

ď exppcd log2 nq such events. Since G is d-dependent and S Ă V , then the subgraph

induced by S is also d-dependent. Now, define z :“
`

cd logn
2

˘

and let X1, . . . , Xz be indicator variables for
the edges in the subgraph induced by S. Finally, let Y :“

ř

iXi. Then, ErY s “ pz, and BADS amounts
to having Y “ z. By Lemma 13,

PrrBADSs “ PrrY “ zs “ PrrY´ErY s ě zp1´pqs ď exp

ˆ

´
2z2p1´ pq2

pd` 1qz

˙

“ exp

ˆ

´
2zp1´ pq2

d` 1

˙

.

Choosing c “ 1{p1´ pq2 and using a union bound yields

PrrBADs ď

ˆ

n

z

˙

PrrBADSs ď exp

ˆ

cd log2 n´
2p1´ pq2

d` 1
pcd log nq2

˙

“ exp
`

cd log2 np1´ 2cp1´ pq2q
˘

ă expp´Ωpd log2 nqq ,

Thus, almost surely Gdpn, pq has no clique of size ě cd log n.

4note that nδ “ mδ1

, where δ1 “ δ logn
logn´2 log logn

. If δ “ op1q then δ1 “ op1q as well.
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Our lower bound on χpGdpn, pqq follows as a direct corollary, since any independent set in Gdpn, pq is
a clique in the complement graph ĞGdpn, pq, which is also d-dependent.

Corollary 18. If 0 ă p ă 1 and d ď n{ log2 n, then almost surely χpGdpn, pqq ě n{pd log nq.

4 A New Protocol for MPJ3

Below, we describe a family of MPJ3 protocols tPHu parameterized by a bipartite graph H “ pA Y B,Eq
with |A| “ |B| “ n. In each protocol PH , Alice and Bob each independently send a single message to
Carol, who must take the messages and the input she sees and output MPJ3pi, f, xq. Bob’s communication
in each protocol is simple: given i, he sends xj for each j such that pi, jq P H . Alice’s message is more
involved. GivenH and f , she partitions rns into clusters. For each cluster in the partition, she sends the XOR

of the bits for x. (e.g. if one cluster is t1, 3, 5u, then Alice would send xr1s ‘ xr3s ‘ xr5s) This partition of
rns into clusters is carefully chosen and depends on H and f . Crucially, it is possible to make this partition
so that for any inputs i, f , Bob sends xrjs for each j in the cluster containing fpiq, except for possibly
xrfpiqs itself. We formalize this clustering below. Thus, Carol can compute xrfpiqs by taking the relevant
cluster from Alice’s message and “XOR-ing out” the irrelevant bits using portions of Bob’s message.

Each protocol PH will correctly compute MPJ3pi, f, xq; we then use the probabilitic method to show
that there exists a graph H such that PH is efficient. At the heart of this probabilistic analysis is a bound on
the chromatic number of a dependent random graph. For functions with large preimages, this dependency
becomes too great to handle.

Definition 4.1. A function f : rns Ñ rns is d-limited if |f´1pjq| ď d for all j P rns.

We end up with a protocol PH that is efficient for all inputs pi, f, xq as long as f is d-limited (d « log n
suffices); later, we generalize PH to work for all inputs.

Remark 1. This construction is inspired by the construction of Pudlák et al. [16], who gave a protocol for
MPJ3 that works in the special case that the middle layer is a permutation π instead of a general function
f . They also use the probabilistic method to show that one PH must be efficient. The probablistic method
argument in our case depends on the chromatic number of a dependent random graph; the analysis of the
permutation-based protocol in [16] relied on the chromatic number of the standard random graph Gpn, pq.

Description of PH . LetH “ pAYB,Eq be a bipartite graph with |A| “ |B| “ n. GivenH and f , define
a graph Gf,H by placing pi, jq P Gf,H if and only if both pi, fpjqq and pj, fpiqq are in H. Let C1, . . . , Ck be
a clique cover of Gf,H , and for each 1 ď ` ď k, let S` :“ tfpjq : j P C`u.

The protocol PH proceeds as follows. Given f and x, Alice constructs Gf,H . For each clique C`, Alice
sends b` :“

À

jPS`
xrjs. Bob, given i and x, sends xrjs for all pi, jq P H . We claim these messages enable

Carol to recover MPJ3pi, f, xq. Indeed, given i and f , Carol computes Gf,H . Let C be the clique in the
clique cover of Gf,H containing i, and let S :“ tfpjq : j P Cu and b :“

À

jPS xrjs. Note that Alice
sends b. Also note that for any j ‰ i P C, there is an edge pi, jq P Gf,H . By construction, this means that
pi, fpjqq P H , so Bob sends xrfpjqs. Thus, Carol computes xrfpiqs by taking b (which Alice sends) and
“XOR-ing out” xrfpjqs for any j ‰ i P C. In this way, PH computes MPJ3.

While PH computes MPJ3, it might not do so in a communication-efficient manner. The following
lemma shows that there is an efficient protocol whenever f has small preimages.
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Lemma 19. For any d ď nop1q, there exists a bipartite graph H such that for all i P rns, x P t0, 1un, and
all d-limited functions f , we have

costpPHq “ O

ˆ

n
log log n

log n

˙

.

Before proving Lemma 19, let us see how this gives the general upper bound.

Theorem 20 (Restatement of Theorem 7). DpMPJ3q “ Opnplog lognq{ log nq.

Proof. Fix d “ log n and let PH be the protocol guaranteed by Lemma 19. We construct a general protocol
P for MPJ3 as follows. Given f , Alice and Carol select a d-limited function g such that gpjq “ fpjq for all j
such that |f´1pfpjqq| ď d. Note that Alice and Carol can do this without communication, by selecting (say)
the lexicographically least such g. On input pi, f, xq, Alice sends the message she would have sent in PH

on input pi, g, xq, along with xrjs for all j with large preimages. Bob merely sends the message he would
have sent in PH . If the preimage of fpiq is large, then Carol recovers xrfpiqs directly from the second part
of Alice’s message. Otherwise, Carol computes MPJ3pi, g, xq using PH . Since fpiq has a small preimage,
we know that xrgpiqs “ xrfpiqs “ MPJ3pi, f, xq, so in either case Carol recovers MPJ3pi, f, xq.

The communication cost of P is the cost of PH , plus one bit for each j with preimage |f´1pjq| ą d.
There are at most n{d such j. With d “ log n and using Lemma 19, the cost of P is

costpPq ď costpPHq ` n{d “ Opnplog lognq{ log nq `Opn{ log nq “ Opnplog log nq{ log nq .

Proof of Lemma 19. We use the Probabilitstic Method. Place each edge inH independently with probability
p “ Θ

´

log logn
logn

¯

. Now, for any d-limited function f , consider the graph Gf,H . Each edge pi, jq is in Gf,H

with probability p2, but the edges are not independent. However, we claim that if f is d-limited, then
Gf,H is (2d ´ 2)-dependent. To see this, note that pi, jq is in Gf,H if both pi, fpjqq and pj, fpiqq are in H .
Therefore, pi, jq is dependent on (i) any edge pi, j1q such that fpj1q “ fpjq, and (ii) any edge pi1, jq such
that fpiq “ fpi1q. Since f is d-limited, there are at most d ´ 1 choices each for i1 and j1. Thus, each edge
depends on at most 2d´ 2 other edges, and Gf,H is p2d´ 2q-dependent.

In PH , Alice sends one bit per clique in the clique cover ofGf,H . Bob sends one bit for each neighbor of
i in H . Thus, we’d like a graph H such that every i P rns has a few neighbors and every d-limited function
f has a small clique cover.

Let BADi denote the event that i has more than 2pn neighbors in H . By a standard Chernoff bound
argument, PrrBADis ď expp´np2{2q. Next, let BADf be the event that at least p1` εq´n logpp2q

logn cliques
are needed to cover the vertices in Gf,H . Note that any clique in Gf,H is an independent set in the comple-
ment graph ĘGf,H , so the clique cover number of Gf,H equals the chromatic number of ĘGf,H . Also note that
ĘGf,H is itself a d-dependent random graph, with edge probability q “ 1 ´ p2. Therefore, by Theorem 16,

PrrBADf s ă expp´n1`εq. Finally, let BAD :“ p
Ž

iBADiq
Ž

´

Ž

d-limited f BADf

¯

. There are n
indices i and at most nn ď exppn log nq d-limited functions f . Therefore, buy a union bound we have

PrrBADs ă nPrrBADis ` n
n PrrBADf s ă ne´

np2

2 ` nne´n
1`ε
ă 1.

Therefore, there exists a good H . Also note that in PH for a good H , Alice and Bob each communicate
Opn log logn

logn q bits. This completes the proof. l
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Simultaneous Messages. We conclude this section by showing how to convert PH into an SM protocol.
Observe that Carol selects a bit from Alice’s message (namely, the clique containing fpiq) and a few bits
from Bob’s message (the neighbors of i in H) and XORs them together. To convert PH to an SM protocol,
Alice and Bob send the same messages as in PH . Carol, given i and f , sends a bitmask describing which
bit from Alice’s message and which bits from Bob’s message are relevant. The Referee then XORs these bits
together, again producing MPJ3pi, f, xq. Carol sends one bit for each bit of communication sent by Alice
and Bob. Thus, this SM protocol costs twice as much as the cost of PH . We get the following result.

Lemma 21 (Restatement of Lemma 9). D‖pMPJ3q “ Opn log logn
logn q.

5 Proofs of Main Technical Lemmas

In this section, we state and prove three technical lemmas which form key insights to our contribution.
The first lemma states that most sets of k vertices “look independent”. The second bounds the expected
number of intersecting k-cliques. The final lemma gives a lower bound on the expected number of disjoint
UNCORRELATED k-cliques.

We remind the reader that all three lemmas apply to arbitrary d-dependent random graph distributions.

Lemma 22 (Restatement of Lemma 11). Suppose d and k are integers such that dk3 ď n. Fix any
d-dependent graph Gdpn, pq, and let S be a set of k vertices uniformly chosen from V . Then, we have

PrrS is UNCORRELATEDs ě 1´
3dk3

2n
.

Proof. We divide the possible conflicts into two classes, bound the probability of each, and use a union
bound. Say that correlated edges are local if they share a vertex. Otherwise, call them remote. Let L and R
be the events that S contains a local and remote dependency respectively.

First, we bound PrrRs. Imagine building S by picking vertices v1, . . . , vk one at a time uniformly. Let
Si :“ tv1, . . . , viu, and let Bi be the the set of vertices that would create a remote dependency if added to
Si. Note that B1 “ H since there are no edges in S1 (it contains only one vertex). More importantly, for
i ą 1, there are at most

`

i
2

˘

¨ p2dq ă di2 vertices in Bi, because Si contains
`

i
2

˘

edges; each edge depends
on at most d other edges, and each of these edges contributes at most two vertices to Bi. It follows that R is
avoided if vi`1 R Bi for each i “ 2 . . . k ´ 1. There are pn´ iq choices for vi`1, so

Prr Rs ě
k´1
ź

i“2

ˆ

1´
di2

n´ i

˙

ě

ˆ

1´
dk2

n´ k

˙k´2

ě 1´
dk3

n
,

Hence PrrRs ď dk3{n. At first glance, it might appear like we’ve handled local dependencies as well.
However, it is possible that when adding vi, we add local dependent edges, if these edges are both adjacent
to vi. Thus, we handle this case separately.

Let Lij denote the event that i, j P S and there are no local dependencies in S involving pi, jq. Call a
vertex ` bad for pi, jq if either pi, `q or pj, `q depend on pi, jq. There are at most d bad vertices for pi, jq.
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Note that Prri, j P Ss “
`

n´2
k´2

˘

{
`

n
k

˘

“ kpk ´ 1q{npn´ 1q and that

Prr Lij |i, j P Ss ě

ˆ

n´ 2´ d

k ´ 2

˙

{

ˆ

n´ 2

k ´ 2

˙

ě

d´1
ź

z“0

ˆ

1´
k ´ 2

n´ 2´ z

˙

ě

ˆ

1´
k ´ 2

n´ 2´ d

˙d

ě 1´
dpk ´ 2q

n´ 2´ d

ě 1´
dk

n
.

It follows that PrrLijs “ Prri, j P SsPrrLij |i, j P Ss ď
kpk´1q
npn´1q ¨

dk
n . There are

`

n
2

˘

possible pairs i, j, so

by a union bound, we have PrrLs ď npn´1q
2

kpk´1q
npn´1q

dk
n ď dk3

2n . Another union bound on R and L completes
the lemma.

Lemma 23. Let d, p, k be such that k ă logpn{p2d log3 nqq
log 1{p . Fix a d-dependent random graph distribution

Gdpn, pq. Let G „ Gdpn, pq, and let W be the set of ordered pairs pS, T q such that S, T are intersecting
UNCORRELATED k-cliques. Then,

Er|W |s ď 2k

ˆ

n

k

˙

p2p
k
2q´1

ˆ

k

2

˙ˆ

n

2

˙

.

Note: To understand the relationship between d, k, p, n, it is helpful to consider the case d “ nop1q. In
this setting, the lemma holds as long as k ď p1´ op1qq logn

log 1{p .

Proof. Let S, T be arbitrary sets of k vertices, and let X “ S X T . We calculate Er|W |s by iterating over
all possible values of S,X and for each pair, counting the expected number of T such that S X T “ X and
S, T are both k-cliques. For S,X , let F pS,Xq be the expected number of UNCORRELATED k-cliques T
such that S X T “ X , conditioned on S being a k-clique. Also let F p`q be the maximum of all F pS,Xq,
taken over all S and all X Ă S with |X| “ `. We have

Er|W |s “
ÿ

S

PrrS is k-cliques
ÿ

XĂS

ÿ

T :SXT“X

PrrT is k-clique|S is k-cliques (1)

“
ÿ

S

pp
k
2q

ÿ

XĂS

F pS,Xq (2)

ď
ÿ

S

pp
k
2q

k´1
ÿ

`“2

ÿ

XĂS
|X|“`

F p`q (3)

ď

ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

F p`q . (4)

Next, we obtain an upper bound on F p`q. Since we need only an upper bound, we take a very pessimistic
approach. Let M Ă rns zS be the set of vertices adjacent to an edge e that depends on some edge from
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SzX . Each edge in SzX depends on at most d other edges, and there are
`

k
2

˘

´
`

`
2

˘

edges in SzX . Therefore,
|M | ď dp

`

k
2

˘

´
`

`
2

˘

q. Now, let EpMq be the set of edges with one endpoint in M and the other endpoint
in M Y X . Each of these edges may be correlated with edges in SzX , so for any e P EpMq we assume
only Prre|S is k-cliques ď 1. On the other hand, by construction any edge e not in EpMq is independent
of S, and therefore Prre P G|S is k-cliques “ p. Next, we sum over all possible T , grouping by how much
T instersects M . Suppose |T X M | “ `1 for some 0 ď `1 ď k ´ `. Then, T contains

`

k
2

˘

edges,
`

`
2

˘

of these edges have both endpoints in X , and are fixed after conditioning on S being a k-clique. Of the
remaining edges, ` ¨ `1 `

`

`1

2

˘

are in EpMq; the rest are independent of S. Thus, when |T XM | “ `1, then

PrrT is k-clique|S is k-cliques ď pp
k
2q´p

`
2q´``

1´p`
1

2q.

F p`q “
ÿ

T :SXT“X

PrrT is k-clique|S is k-cliques (5)

“

k´
ÿ̀

`1“0

ÿ

T :SXT“X
|TXM |“`1

PrrT is k-clique|S is k-cliques (6)

ď

k´
ÿ̀

`1“0

ˆ

M

`1

˙ˆ

n´ k ´M

k ´ `´ `1

˙

pp
k
2q´p

`
2q´``

1´p`
1

2q (7)

“ pp
k
2q´p

`
2q

k´
ÿ̀

`1“0

F ˚p`1q , (8)

where F ˚p`1q :“
`

M
`1

˘`

n´k´M
k´`´`1

˘

p´``
1´p`

1

2q. Next, we show that the summation in Equation (8) telescopes.

Claim 24. If k ď
log

´

n
2d log3 n

¯

log 1{p then
řk´1

`1“0 F
˚p`1q ď 2F ˚p0q.

Proof. Fix any 0 ď i ă k ´ `, and consider F ˚pi ` 1q{F ˚piq. Using
`

a
b`1

˘

{
`

a
b

˘

“ a´b
b`1 and

`

a
b´1

˘

{
`

a
b

˘

“

b
a´b´1 and recalling that M ă d

`

k
2

˘

, we have:

F ˚pi` 1q

F ˚piq
“

`

M
i`1

˘`

n´k´M
k´pi`1q

˘

p´`pi`1q´pi`1qi{2

`

M
i

˘`

n´k´M
k´i

˘

p´`i´ipi´1q{2

“
M ´ 1

i` 1

k ´ i

n´ k ´M ´ k ` i
p´`´i

ď
dk2

2

k

n´ opnq

ˆ

1

p

˙k

ă
dk3

n

ˆ

1

p

˙k

ă
k3

2 log3 n

ă 1{2 ,

where the penultimate inequality holds because of our assumption on k, and the final inequality holds be-
cause k ă log n. We’ve shown that for all i, F ˚pi ` 1q{F ˚piq ă 1{2. Hence F ˚piq ă F ˚p0q2´i, and so
ř

`1 F
˚p`1q ď

ř

`1 F
˚p0q2´`

1

ď 2F ˚p0q.
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From claim 24, we see that

F p`q ď pp
k
2q´p

`
2q

k´
ÿ̀

`1“0

F ˚p`1q ď 2pp
k
2q´p

`
2qF ˚p0q “ 2pp

k
2q´p

`
2q

ˆ

n´ k ´M

k ´ `

˙

.

Now, plugging this inequality back into Equation 4, we get

Er|W |s ď

ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

F p`q ď 2

ˆ

n

k

˙

pp
k
2q
ÿ

`

ˆ

k

`

˙

pp
k
2q´p

`
2q

ˆ

n´ k ´M

k ´ `

˙

.

Let Gp`q :“ pp
k
2q´p

`
2q
`

k
`

˘`

n´k´M
k´`

˘

, and for 2 ď ` ă k ´ 1, let G˚p`q :“ Gp`q{Gp`` 1q. Note that

G˚p`q “ p`
`` 1

k ´ `

n´ 2k ´M ` `` 1

k ´ `
.

We claim that G˚p`q decreases as long as p ă 8{27´ Ωp1q. To see this, note that

G˚p`q

G˚p`` 1q
“ p

`` 1

`
¨

ˆ

k ´ `` 1

k ´ `

˙2 n´ 2k ´M ` `` 1

n´ 2k ´M ` `
ă pp3{2q3p1` op1qq ,

where the inequality holds because pa ` 1q{a “ 1 ` 1{a and because `, k ´ ` ě 2 for the range of ` we
need when calculating G˚p`q. In a way, saying that G˚p`q is decreasing amounts to saying that Gp`q is
convex—once Gpiq ď Gpi ` 1q, then Gpjq ď Gpj ` 1q for all j ą i. Next, a straightforward calculation
using our choice of k shows that Gpk ´ 1q ď Gp2q. Thus, it must be the case that Gpiq ď Gp2q for all i,
and therefore

Er|W |s ď 2

ˆ

n

k

˙

pp
k
2qkGp2q “ 2k

ˆ

n

k

˙

p2p
k
2q´1

ˆ

k

2

˙ˆ

n´ k ´M

k ´ 2

˙

ă 2k

ˆ

n

k

˙

p2p
k
2q´1

ˆ

k

2

˙ˆ

n

k ´ 2

˙

.

This completes the proof of Lemma 23.

Finally, we prove the lemma that in any d-dependent graph distribution, the expected number of disjoint
UNCORRELATED k-cliques is large. Recall that Y is the maximal number of disjoint UNCORRELATED

k-cliques.

Lemma 25 (Restatement of Lemma 15). ErY s ě n2p
19k5

.

Proof. We construct Y probabilistically, by selecting each potential UNCORRELATED k-clique with small
probability and removing any pairs of k-cliques that intersect. Let K denote the family of UNCORRELATED

k-cliques. By Lemma 11 and our choice of d, a randomly chosen set S of k vertices is UNCORRELATED

with probability at least 2{3. By this and our choice of k, we have

Er|K|s ě
2

3

ˆ

n

k

˙

pp
k
2q .

Recall that W is the set of ordered pairs tS, T u of UNCORRELATED k-cliques such that 2 ď |S X T | ă k.
For our argument, we require an upper bound on Er|W |s. In the standard random graph model, if |SXT | “
`, then PrrS, T both k-cliquess “ pp

k
2q´p

`
2q. However, this no longer holds for d-dependent distrubtions,

even if S and T are both UNCORRELATED. This is because while edges in S and T are independent,
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edges in S but not T may be correlated with edges in T but not S. As an extreme case, suppose all
edges in S are independent, but each edge in S zT is completely correlated with an edge in T zS. Then,
PrrS, T k-cliquess “ PrrS is k-cliques “ PrrT is k-cliques “ pp

k
2q. Essentially, allowing edges to be

correlated has the potential to drive up the variance on the number of k-cliques, even when these k-cliques
are UNCORRELATED. This is perhaps to be expected. Nevertheless, in Lemma 23, we were able to show
that when d is small, this increase is not much more than in the standard graph model.

With this claim, we are now able to construct a large set of disjoint UNCORRELATED k-cliques with high
probability. Create K 1 Ď K by selecting each uncorrelated S P K independently with probability

PrrS P K 1s “ γ “
1

12kpp
k
2q´1

`

k
2

˘`

n
k´2

˘

.

Finally, create L from K 1 by removing each pair S, T P K 1 such that S, T P W . By construction, L is a set
of edge-disjoint UNCORRELATED k-cliques; furthermore, we have

Er|L|s “ γEr|K|s ´ 2γ2Er|W |s

ě
2γ

3

ˆ

n

k

˙

pp
k
2q ´

2γ ¨ 2k
`

n
k

˘

p2p
k
2q´1

`

k
2

˘`

n
k´2

˘

12kpp
k
2q´1

`

k
2

˘`

n
k´2

˘

“
2γ

3

ˆ

n

k

˙

pp
k
2q ´

γ

3

ˆ

n

k

˙

pp
k
2q

“
γ

3

ˆ

n

k

˙

pp
k
2q

“

`

n
k

˘

pp
k
2q

3 ¨ 12kpp
k
2q´1

`

k
2

˘`

n
2

˘

ě

`

n
k

˘

`

n
k´2

˘

p

36k

1
`

k
2

˘

ě
p

18k3

`

n
k

˘

`

n
k´2

˘

“
p

18k3
pn´ k ´ 2qpn´ k ´ 1q

kpk ´ 1q

ě
p

18k3
18n2

19k2

“
n2p

19k5
,

where the final inequality holds for large enough n.

6 Results for Non-Boolean Pointer Jumping

In this section, we leverage the protocol for MPJ3 to achieve new results for the non-Boolean Pointer Jumping
problem yMPJ. Let Q be the protocol for MPJ3 given in Lemma 9. First, we give a protocol for yMPJ3. The
cost matches the upper bound from [10] but has the advantange of working in the Simultaneous Messages
model.
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Lemma 26 (Restatement of Lemma 10). There is an Opn log log nq-bit SM protocol for yMPJ3.

Proof. Run Q log n times in parallel, on inputs pi, f2, z1q, pi, f2, z2q, . . . , pi, f2, zlognq, where zj denotes the
jth most significant bit of f3. This allows the Referee to recover each bit of f3pf2piqq “ yMPJpi, f2, f3q.

Next we give a new upper bound for yMPJ4. As far as we know, this is the first protocol for yMPJk for any
k that uses a sublinear amount of communication.

Theorem 27 (Restatement of Theorem 8). There is a one-way protocol for yMPJ4 with costOpn plog lognq
2

logn q.

Proof. Let i, f2, f3, f4 be the inputs to yMPJ4, and for 1 ď j ď log n, let zj P t0, 1un be the string obtained
by taking the jth most significant bit of each f3pwq (i.e., zjrws is the jth most significant bit of f3pwq.) Fix
a parameter k to be determined shortly. PLR1, PLR2, and PLR3 run Q on tpi, f2, zjq : 1 ď j ď ku. From
this, PLR3 learns the first k bits of f3pf2piqq. She then sends f4pzq for every z P t0, 1ulogn whose k most
significant bits match those of f3pf2piqq. PLR4 sees i, f2, and f3, computes z˚ :“ f3pf2piqq, and recovers
f4pz

˚q from PLR3’s message. Note that there are n{2k strings that agree on the first k bits, and for each
of these strings, PLR3 sends log n bits. Therefore, the cost of this protocol is k costpQq ` n logpnq{2k “

O
´

kn log logn
logn ` n logpnq2´k

¯

. Setting k :“ 2 log ln 2 logn
log logn “ Θplog lognq minimizes the communication

cost, giving a protocol with cost O
´

n plog lognq
2

logn

¯

.

7 Dependent Graphs with Large Cliques or Large Dependency

In this section, we provide results that witness the tightness of our current bounds. The next lemma shows
that there exist dependent random graphs that almost surely contain cliques of size Ωpdq, and others that
almost surely have cliques of size Ωp

?
d logpnqq.

Lemma 28. (Restatement of Lemma 5) For all constant 0 ă p ă 1 and d “ opnq,

1. there exists a d-dependent random graph Gdpn, pq such that

Pr

„

cliquepGdpn, pqq ą
d
?
p

2
´ d

1
2 p

1
4



ą 1´ e´2n{d .

2. there exists a d-dependent random graph Gdpn, pq such that almost surely

cliquepGdpn, pqq “ Ωp
?
d logpnqq .

Proof. We give two constructions.
For the first result, fix d1 :“

d
?
p

2 ´
a

d
?
p and M1 :“ 2n{d. Partition the vertices into M1 sets

V1, . . . , VM1 each of size d{2. Let cpiq denote the part containing i (we think of i has having color c). Now,
let tXi,c : i P V, 1 ď c ď M1u be a series of i.i.d. random bits with PrrXi,c “ 1s “

?
p, and place

pi, jq P Gdpn, pq if Xi,cpjq

Ź

Xj,cpiq “ 1. Thus, pi, jq is an edge with probability p. Also note that edges
pi, jq and pi1, j1q are dependent if either cpiq “ cpi1q or cpjq “ cpj1q. Since there are d{2 vertices in each V`,
pi, jq is dependent on at most d other edges and Gdpn, pq is d-dependent.

Now, fix a color c, and let Sc :“ ti : cpiq “ c^Xi,c “ 1u. For any i, j P Sc we have Xi,c “ Xj,c “ 1
and that cpiq “ cpjq “ c. Therefore, pi, jq P Gdpn, pq for any i, j P Sc, hence Sc is a clique.
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Next, consider |Sc|. There are d{2 vertices with color c, so Er|Sc|s “
d
?
p

2 . By the Chernoff bound,
Prr|Sc| ă d1s ă 1

e , so the probability that there is some color c with |Sc| ě d1 is at least 1 ´ e´2n{d.
Therefore, Gdpn, pq almost surely contains a clique of size at least d1.

For the second graph, partition the vertices rns into M2 :“ n{
?
d subsets V1, . . . , VM2 , each of size

?
d.

Let cpiq be the subset containing i. Let tXc1,c2 : 1 ď c1, c2 ď M2u be a set of independent, identically
distributed binary variables with PrrXc,c1 “ 1s “ p. Now, place edge pi, jq in the graph if Xcpiq,cpjq “ 1. In
this way, for any Vs, Vt, either all edges between Vs and Vt exist, or none do, and similarly for any Vs, either
all edges between vertices in Vs will be in the graph, or none will.

Next, let S be the set of all i such that edges between vertices in Vi are in the graph. Each i P S with
probability p. By standard Chernoff bounds, |S| ě pM2{2 with high probability. Let M 1 :“ pM2{2.
The construction above induces a new random graph G1 on M 1 vertices where all edges are i.i.d. in
G1 with probablity p. i.e., G1 is an Erdős-Rényi random graph on M 1 vertices. By [7], cliquepG1q ě
2 logpM 1q{ logp1{pq “ Ωplogpnq{ logp1{pqq with high probability. Finally, a clique of size k in G1 gives a
clique of size k

?
d inG, henceG contains a clique of size Ωp

?
d logpnq{ logp1{pqqwith high probablity.

Our second result in this section shows that when the dependency factor becomes Ωpnq, essentially
nothing can be said about the clique number of dependent random graphs.

Lemma 29. (Restatement of Lemma 6) Fix d :“ 2n´ 2. Then, the following statements hold.

1. For any 0 ă p ă 1, there exists a d-dependent random graph Gdpn, pq that is bipartite with certainty.

2. For any 1{2 ď p ă 1, there exists a d-dependent random graphGdpn, pq such that cliquepGdpn, pqq ě
n{2 with certainty.

Proof. We again provide two constructions. For the first construction, set q1 :“ 1 ´
?

1´ p, and let
X1, . . . , Xn be i.i.d. random bits such that Xi “ 1 with probability q1. Think of each Xi as being assinged
to vertex vi. Now, place edge pi, jq P Gdpn, pq iff Xi ‘ Xj “ 1. Note that pi, jq P Gdpn, pq with
probability 2qp1 ´ qq “ p. It is easy to see that pi, jq depends on pi1, j1q only if either i “ i1 or j “ j1.
There are at most 2pn ´ 1q such edges, hence the random graph is d-dependent. Finally, we claim that the
graph is bipartite. To see this, suppose for the sake of contradiction that Gdpn, pq contains an odd cycle
p1, 2, . . . , 2k` 1, 1q. Without loss of generality, assume that X1 “ 1 (the proof is similar if X1 “ 0.) Since
each edge pi, i` 1q P Gdpn, pq, we must have that X2, X4, . . . , X2k all equal 0, and X1, X3, . . . , X2k`1 all
equal 1. But then X1 “ X2k`1 “ 1, hence p1, 2k ` 1q R Gdpn, pq. This contradicts the assumption that
p1, 2, . . . , 2k ` 1, 1q is a cycle.

We proceed with the second construction in a similar manner. Let q2 :“ 1
2p1 ´

?
2p´ 1q, and let

X1, . . . , Xn be i.i.d. random bits with PrrXi “ 1s “ q2. This time, place pi, jq P Gdpn, pq iff Xi “ Xj .
Note that pi, jq is an edge with probablity q22 ` p1 ´ q2q

2 “ p. Now, let S0 :“ ti : Xi “ 0u and similarly
S1 :“ ti : Xi “ 1u. It is easy to see that S0 and S1 are both cliques in Gdpn, pq. One of them must contain
at least half the vertices.
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[7] Béla Bollobás and Paul Erdős. Cliques in random graphs. Mathematical Proceedings of the Cambridge
Philosophical Society, 80:419–427, 11 1976.

[8] Joshua Brody and Amit Chakrabarti. Sublinear communication protocols for multi-party pointer jump-
ing and a related lower bound. In Proc. 25th International Symposium on Theoretical Aspects of Com-
puter Science, pages 145–156, 2008.

[9] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton. Multi-party protocols. In Proc. 15th
Annual ACM Symposium on the Theory of Computing, pages 94–99, 1983.
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