
Compressing Communication in Distributed Protocols

Yael Tauman Kalai ∗ Ilan Komargodski †

Abstract

We show how to compress communication in distributed protocols in which parties do not
have private inputs. More specifically, we present a generic method for converting any protocol
in which parties do not have private inputs, into another protocol where each message is “short”
while preserving the same number of rounds, the same communication pattern, the same output
distribution, and the same resilience to error. Assuming that the output lies in some universe of
size M , in our resulting protocol each message consists of only polylog(M,n, d) many bits, where
n is the number of parties and d is the number of rounds. Our transformation works in the full
information model, in the presence of either static or adaptive Byzantine faults.

In particular, our result implies that for any such poly(n)-round distributed protocol which
generates outputs in a universe of size poly(n), long messages are not needed, and messages of
length polylog(n) suffice. In other words, in this regime, any distributed task that can be solved in
the LOCAL model, can also be solved in the CONGEST model with the same round complexity
and security guarantees.

As a corollary, we conclude that for any poly(n)-round collective coin-flipping protocol, leader
election protocol, or selection protocols, messages of length polylog(n) suffice (in the presence of
either static or adaptive Byzantine faults).

Keywords: Communication complexity, distributed computing, compression, coin-flipping.

∗Microsoft Research. Email: yael@microsoft.com.
†Weizmann Institute of Science, Israel. Email: ilan.komargodski@weizmann.ac.il. Part of this work done while

an intern at MSR New England. Supported in part by a grant from the I-CORE Program of the Planning and
Budgeting Committee, the Israel Science Foundation, BSF and the Israeli Ministry of Science and Technology.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 92 (2015)

1 Introduction

In classical algorithmic design the goal is to design efficient algorithms, where the common com-
plexity measures are time and space. In distributed algorithms, where a set of parties tries to
perform a predefined task, there are more parameters of interest, such as round complexity, message
complexity, fault-tolerance, and more.

These measures have been studied in the literature under two main models: LOCAL and
CONGEST [Pel00]. The LOCAL model is aimed at studying “localized” executions of distributed
protocols, and thus, messages of unlimited size are allowed. The CONGEST model is geared to-
wards understanding the effect of congestion in the network, and thus, messages of poly-logarithmic
size (in the number of parties) are allowed.1

Most of the work in distributed computing assumes one of the models above and focuses on
optimizing resources such as round complexity, message complexity and fault-tolerance. We initiate
the study of the following question:

Is there a generic way to transform protocols in the LOCAL model to protocols in the CONGEST
model, without negatively affecting the round complexity, fault-tolerance and other resources?

We give a positive answer to this question for protocols in which parties do not have private inputs,
without incurring any cost to the round complexity or the resilience to errors. More details follow.

Our model. In this work, our focus is on the synchronous, full information model. Namely, we
consider a distributed model in which n parties are trying to perform a predefined task. Each
party is equipped with a source of private randomness and a unique ID. We assume the existence
of a global counter which synchronizes parties in between rounds, but the parties are asynchronous
within each round. The goal is to fulfill the task even in the presence of Byzantine faults. In the
full information model no restrictions are made on the computational power of the faulty parties or
the information available to them. Namely, the faulty parties may be infinitely powerful, and we do
not assume the existence of private channels connecting pairs of honest parties.

We model faulty parties by a computationally unbounded adversary who controls a subset of
parties and whose aim is to bias the output of the protocol. We assume that the adversary has
access to the entire transcript of the protocol, and once a party is corrupted, the adversary gains
complete control over the party and can send any messages on its behalf, and the messages can
depend on the entire transcript so far. In addition, we allow our adversary to be “rushing”, i.e., it
can schedule the delivery of the messages within each round. We consider two classes of adversaries:
static and adaptive. A static adversary is an adversary that chooses which parties to corrupt ahead
of time, before the protocol begins. An adaptive adversary, on the other hand, is allowed to choose
which parties to corrupt adaptively in the course of the protocol as a function of the messages seen
so far.

The focus of this work, is on protocols in which parties do not have private inputs. Many classical
distributed tasks fall in this category, including collective coin-flipping, leader election, selection and
more.

A concrete motivation: adaptively-secure coin-flipping. An important distributed task that
was extensively studied in the full information model, is that of collective coin-flipping. In this
problem, a set of n parties use private randomness and are required to generate a common random
bit. The goal of the parties is to jointly output a somewhat uniform bit even in the case that some

1We note that often the term CONGEST is a short-hand writing for CONGEST (B), where B is a bandwidth
constraint. In many cases, the convention is to set B to be bounded by O(logn), where n is the number of parties. Here,
we take a more liberal interpretation, which allows for messages of size bounded by polylog(n) (see e.g., [SMPU15]).

1

of the parties are faulty and controlled by a static (resp. adaptive) adversary whose goal is to bias
the output of the protocol in some direction.

This problem was first formulated and studied by Ben-Or and Linial [BL85]. In the case of
static adversaries, collective coin-flipping is well studied and almost matching upper and lower
bounds are known [Fei99, RSZ02], whereas the case of adaptive adversaries has received much less
attention. Ben-Or and Linial [BL85] showed that the majority protocol (in which each party sends
a uniformly random bit and the output of the protocol is the majority of the bits sent) is resilient to
Θ(
√
n) adaptive corruptions. Furthermore, they conjectured that this protocol is optimal, that is,

they conjectured that any coin-flipping protocol is resilient to at most O(
√
n) adaptive corruptions.

Shortly afterwards, Lichtenstein, Linial and Saks [LLS89] proved the conjecture for protocols in
which each party is allowed to send only one bit. Very recently, Goldwasser, Kalai and Park [GKP15]
proved a different special-case of the aforementioned conjecture: any symmetric (many-bit) one-
round collective coin-flipping protocol2 is resilient to at most Õ(

√
n) adaptive corruptions. Despite

all this effort, proving a general lower bound, or constructing a collective coin-flipping protocol that
is resilient to at least ω(

√
n) adaptive corruptions, remains an intriguing open problem.

The result of [LLS89] suggests that when seeking for a collective coin-flipping protocol that is
resilient to at least ω(

√
n) adaptive corruptions, to focus on protocols that consist of many commu-

nication rounds, or protocols in which parties send long messages. Our main result (Theorem 1.1) is
that long messages are not needed in adaptively secure coin-flipping protocols with poly(n) rounds,
and messages of length polylog(n) suffice. This is true more generally for leader election protocols,
and for selection protocols where the output comes from a universe of size at most quasi-polynomial
in n.

1.1 Our Results

Our main result is that “long” messages are not needed for distributed tasks in which parties do not
have private inputs. More specifically, we show how to convert any n-party d-round protocol, where
parties do not have private inputs, and whose output comes from a universe of size M , into a d-round
protocol, with the same communication pattern, the same output distribution, the same security
guarantees, and where each message is of length polylog(M,n, d). Note that for many well studied
distributed tasks, such as coin-flipping, leader election, and more, the output is from a universe of
size at most poly(n), in which case our result says that if we consider poly(n)-round protocols, then
messages of length polylog(n) suffice.

Our results in more detail. Formally, we say that a protocol Π, in which parties do not have
private inputs, is (t, δ, s)-statically (resp., adaptively) secure if for any adversary A that statically
(resp., adaptively) corrupts at most t = t(n) parties, and any subset S of the output universe such
that |S| = s, it holds that∣∣∣Pr [Output of A(Π) ∈ S]− Pr [Output of Π ∈ S]

∣∣∣ ≤ δ,
where “Output of A(Π)” means the output of the protocol when executed in the presence of the
adversary A, “Output of Π” means the output of the protocol when executed honestly, and the
probabilities are taken over the internal randomness of the parties. In addition, we say that a
protocol Π simulates a protocol Π′ if the outcomes of the protocols are statistically close (when
executed honestly) and their communication patterns are the same.

2A symmetric protocol Π is one that is oblivious to the order of its inputs: namely, for any permutation π : [n]→ [n]
of the parties, it holds that Π(r1, . . . , rn) = Π(rπ(1), . . . , rπ(n)).

2

Our main result is a generic communication compression theorem which, roughly speaking, states
that (t, δ, s)-statically (resp., adaptively) secure protocols in the above model do not need “long”
messages. Namely, we show that any secure protocol which sends arbitrary long messages can be
simulated by a protocol which is almost as secure and sends short messages.

Theorem 1.1 (Main theorem — informal). Any (t, δ, s)-statically (resp., adaptively) secure d-round
protocol that outputs m bits (or more generally, has an output universe of size 2m), can be simulated
by a d-round (t, δ′, s)-statically (resp., adaptively) secure protocol, where δ′ = δ + negl(n), and in
which parties send random messages of length at most m · polylog(n, d).

Our results can also be seen as a transformation of protocols (in which parties do not have
private inputs) in the LOCAL model to protocols in the CONGEST model, as discussed above.
Our main theorem (Theorem 1.1) implies that any task, whose output consists of at most polylog(n)
bits, and in which parties do not have private inputs, that can be solved in the LOCAL model with
d ≤ poly(n) rounds, can also be solved in the CONGEST model with d rounds.

Corollary 1.2. Any n-party (t, δ, s)-statically (resp., adaptively) secure poly(n)-round protocol that
outputs polylog(n) bits in the LOCAL model, can be simulated by a (t, δ′, s)-statically (resp., adap-
tively) secure protocol in the CONGEST model, where δ′ = δ + negl(n).

We emphasize that our results holds for any underlying communication pattern including the
broadcast channel or the message-passing model with any underlying communication graph.

Finally, we note that the transformation in Theorem 1.1 preserves the computational efficiency
of the honest parties, but the resulting protocol is non-uniform, even if the protocol we started with
is uniform. We elaborate on this in Section 1.3.

1.2 Related Work

The resource of communication is central in several fields of computer science. The field of commu-
nication complexity is devoted to the study of which problems can be solved with as little commu-
nication as possible. We refer to the book of Kushilevitz and Nisan [KN97] for an introduction to
the field. In cryptography, minimizing communication has been the focus of several works in several
contexts, including private information retrieval [KO97], random access memory machines [NN01],
and more.

Interestingly, in the setting of distributed computing most of the work focuses on optimizing
other resources such as round complexity, fault-tolerance, and the quality of the outcome. Very few
works focus on optimizing the maximal message length being sent during the protocols. Moreover,
most of the work in the literature focuses on static adversaries, and very few papers study distributed
protocols with respect to adaptive adversaries. Our results hold in both settings.

Finally, we mention that separations between the LOCAL and CONGEST models are known for
general tasks. For example, for network graphs of diameter D = Ω(log n), computing the minimum
spanning tree (MST) in the LOCAL model requires Θ(D) rounds, whereas in the CONGEST model
every distributed MST algorithm has round complexity Ω(D +

√
n/ log2 n) [PR00].

1.3 Overview of Our Techniques

In this section we provide a high-level overview of our main ideas and techniques. First, we observe
that one can assume, without loss of generality, that any protocol in which parties do not have
private inputs, can be transformed into a public-coin protocol, in which honest parties’ messages

3

consist only of random bits. This fact is a folklore, and for the sake of completeness we include a
proof sketch of it in Section 4.

Our main result is a generic transformation that converts any public-coin protocol, in which
parties send arbitrarily long messages, into a protocol in which parties send messages of length
m · polylog(n · d), where m is the number of bits the protocol outputs, n is the number of parties
participating in the protocol, and d is the number of communication rounds. The resulting protocol
simulates the original protocol, has the same round complexity and satisfies the same security
guarantees. Next, we elaborate on how this transformation works.

Suppose for simplicity that in our underlying protocol each message sent is of length L = L(n)
(and thus the messages come from a universe of size 2L), and think of L as being very large. We
convert any such protocol into a new protocol where each message consists of only ` bits, where
think of ` as being significantly smaller than L. This is done by a priori choosing 2` messages within
the 2L-size universe, and restricting the parties to send messages from this restricted universe. Thus,
now each message is of length `, which is supposedly significantly smaller than L. We note that
a similar approach was taken in [New91] in the context of transforming public randomness into
private randomness in communication complexity, in [GS10] to reduce the number of random bits
needed for property testers, and most recently in [GKP15] to prove a lower bound for coin-flipping
protocols in the setting of strong adaptive adversaries.

A priori, it may seem that such an approach is doomed to fail, since by restricting the honest
parties to send messages from a small universe within the large 2L-size universe, we give the adversary
a significant amount of information about future messages (especially in the multi-round case).
Intuitively, the reason security is not compromised is that there are many possible restrictions, and
it suffices to prove that a few (or only one) of these restrictions is secure. In other words, very
loosely speaking, since we believe that most of the bits sent by honest parties are not “sensitive”,
we believe that it is safe to post some information about each message ahead of time.

For the sake of simplicity, in this overview we focus on static adversaries, and to simplify matters
even further, we assume the adversary always corrupts the first t parties. This simplified setting
already captures the high-level intuition behind our security proof in Section 3.

Let us first consider one-round protocols. Note that for one-round protocols restricting the
message space of honest parties does not affect security at all since we consider rushing adversaries,
who may choose which messages to send based on the content of the messages sent by all honest
parties in that round. Thus, reducing the length of messages is trivial in this case, assuming the set
of parties that the adversary corrupts is predetermined. We mention that even in this extremely
simplified setting, we need ` to be linear in m for correctness (“simulation”), i.e., in order to ensure
that the output is distributed correctly.

Next, consider a multi-round protocol Π. We denote by H the restricted message space, i.e.,
H is a subset of the message universe of size 2`, and denote by ΠH the protocol Π, where the
messages are restricted to the set H. Suppose that for any set H there exists an adversary AH that
biases the outcome of ΠH , say towards 0.3 We show that in this case there exists an adversary A
in the underlying protocol that biases the outcome towards 0. Loosely speaking, at each step
the adversary A will simulate one of the adversaries AH . More specifically, at any point in the
underlying protocol, the adversary will randomly choose a set H such that the transcript so far is
consistent with a run of protocol ΠH with the adversary AH , and will simulate the adversary AH .
The main difficulty is to show that with high probability there exists such H (i.e., the remaining
set of consistent H’s is non-empty). This follows from a counting argument and basic probability

3Of course, it may be that for different sets H, the adversary AH biases the outcome to a different value. For
simplicity we assume here that all the adversaries bias the outcome towards a fixed message, which we denote by 0.

4

analysis.
In our actual construction, we have a distinct set H of size 2` corresponding to each message of

the protocol. Thus, if the underlying protocol Π has d rounds, and all the parties send a message
in each round, then the resulting (short-message) protocol is associated with d · n sets H1, . . . ,Hd·n
each of size 2`, where the message of the jth party in the ith round is restricted to be in the set Hi,j .

We denote all these sets by a matrix H ∈
(
{0, 1}L

)d·n×2`
, where the row (i, j) of H corresponds to

the set of messages that the jth party can send during the ith round.
Note that there are 2L·2

`·d·n such matrices. Each time an honest party sends a uniformly random
message in Π it reduces the set of consistent matrices by approximately a 2L-factor (with high
probability). Any time the adversary A sends a message, it also reduces the set of consistent
matrices H, since his message is consistent only with some of the adversaries AH , but again a
probabilistic argument can be used to claim that it does not reduce the set of matrices by too
much, and hence, with high probability there always exist matrices H that are consistent with the
transcript so far.

We briefly mention that the analysis in the case of adaptive corruptions follows the same outline
presented above. One complication is that the mere decision of whether to corrupt or not reduces
the set of consistent matrices H. Nevertheless, we argue that many consistent matrices remain.

We emphasize that the above is an over-simplification of our ideas, and the actual proof is more
complex. We refer to Section 3 for more details.

2 Preliminaries

In this section we present the notation and basic definitions that are used in this work. For an
integer n ∈ N we denote by [n] the set {1, . . . , n}. For a distribution X we denote by x ← X the
process of sampling a value x from the distribution X. Similarly, for a set X we denote by x← X
the process of sampling a value x from the uniform distribution over X. Unless explicitly stated,
we assume that the underlying probability distribution in our equations is the uniform distribution
over the appropriate set. We let UL denote the uniform distribution over {0, 1}L. We use log x to
denote a logarithm in base 2.

A function negl : N→ R is said to be negligible if for every constant c > 0 there exists an integer
Nc such that negl(n) < n−c for all n > Nc.

The statistical distance between two random variables X and Y over a finite domain Ω is defined
as

SD(X,Y) ,
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]| . (2.1)

The Model

The communication model and distributed tasks. We consider the synchronous model where
a set of n parties P1, . . . ,Pn run protocols. Each protocol consists of rounds in which parties send
messages. We assume the existence of a global counter which synchronizes parties in between rounds
(but they are asynchronous within a round).

The focus of this work is on tasks where parties do not have any private inputs. Examples of
such tasks are coin-flipping protocols, leader election protocols, Byzantine agreement protocols, etc.

Throughout this paper, we restrict ourselves to public-coin protocols.

Definition 2.1 (Public-coin protocols). A protocol is public-coin if all honest parties’ messages
consist only of uniform random bits.

5

Jumping ahead, we consider adversaries in the full information model. In Section 4 we argue
that the restriction to public-coin protocols is without loss of generality since in the full information
model any protocol (in which parties do not have private inputs) can be converted into a public-
coin one, without increasing the round complexity and without degrading security (though this
transformation may significantly increase the communication complexity).

The adversarial model. We consider the full information model where it is assumed the adversary
is all powerful, and may see the entire transcript of the protocol. The most common adversarial
model considered in the literature is the Byzantine model, where a bound t = t(n) ≤ n is specified,
and the adversary is allowed to corrupt up to t parties. The adversary can see the entire transcript,
has full control over all the corrupted parties, and can send any messages on their behalf. Moreover,
the adversary has control over the order of the messages sent within each round of the protocol.4

We focus on the Byzantine model throughout this work.
Within this model, two types of adversaries were considered in the literature: static adversaries,

who need to specify the parties they corrupt before the protocol begins, and adaptive adversaries,
who can corrupt the parties adaptively based on the transcript so far. Our results hold for both
types of adversaries. Throughout this work, we focus on the adaptive setting, since the proof is
more complicated in this setting. In Subsection 3.3 we mention how to modify (and simplify) the
proof for the static setting.

Correctness and security. For any protocol Π and any adversary A, we denote by

out(AΠ | r1, . . . , rn)

the output of the protocol Π when executed with the adversary A, and where each honest party Pi
uses randomness ri.

Let Π be a protocol whose output is a string in {0, 1}m for some m ∈ N. Loosely speaking,
we say that an adversary is “successful” if he manages to bias the output of the protocol to his
advantage. More specifically, we say that an adversary is “successful” if he chooses a predetermined
subset M ⊆ {0, 1}m of some size s, and succeeds in biasing the outcome towards the set M . To this
end, for any set size s, we define

succs(AΠ)
def
= max

M⊆{0,1}m s.t. |M |=s
succM (AΠ)

def
= max

M⊆{0,1}m s.t. |M |=s

(
Pr

r1,...,rn
[out(AΠ | r1, . . . , rn) ∈M]− Pr

r1,...,rn
[outΠ(r1, . . . , rn) ∈M]

)
,

where outΠ(r1, . . . , rn) denotes the outcome of the protocol Π if all the parties are honest, and use
randomness r1, . . . , rn.

Intuitively, the reason we parameterize over the set size s is that we may hope for different
values of succM (AΠ) for sets M of different sizes, since for a large set M it is often the case that
Prr1,...,rn [outΠ(r1, . . . , rn) ∈M] is large, and hence succM (AΠ) is inevitably small, whereas for small
sets M the value succM (AΠ) may be large.

For example, for coin-flipping protocols (where m = 1 and the outcome is a uniformly random
bit in the case that all parties are honest), often an adversary is considered successful if it biases
the outcome to his preferred bit with probability close to 1, and hence an adversary is considered
successful if succM (AΠ) ≥ 1

2 − o(1) for either M = {0} or M = {1}, whereas for general selection
protocols (where m is a parameter) one often considers subsets M ⊆ {0, 1}m of size γ · 2m for some
constant γ > 0, and an adversary is considered successful if there exists a constant δ > 0 such that
succM (AΠ) ≥ δ.

4Such an adversary is often referred to as “rushing”.

6

Definition 2.2 (Security). Fix any constant δ > 0, any t = t(n) ≤ n, and any n-party protocol
Π whose output is an element in {0, 1}m. Fix any s = s(m). We say that Π is (t, δ, s)-adaptively
secure if for any adversary A that adaptively corrupts up to t = t(n) parties, it holds that

succs(AΠ) ≤ δ.

We note that this definition generalizes the standard security definition for coin-flipping protocols
and selection protocols. We emphasize that our results are quite robust to the specific security
definition that we consider, and we could have used alternative definitions as well. Intuitively, the
reason is that we show how to transform any d-round protocol Π into another d-round protocol with
short messages, that simulates Π (see Definition 2.3 below), where this transformation is independent
of the security definition. Then, in order to prove that the resulting protocol is as secure as the
original protocol Π, we show that if there exists an adversary for the short protocol that manages to
break security according to some definition, then there exists an adversary for Π that “simulates”
the adversary of the short protocol and breaches security in the same way. (See Section 1.3 for more
details, and Section 3 for the formal argument).

Finally, we mention that an analogous definition to Definition 2.2 can be given for static adver-
saries. Our results hold for the static definition as well.

Definition 2.3 (Simulation). Let Π be an n-party protocol with outputs in {0, 1}m. We say that
an n-party protocol Π′ simulates Π if

SD (outΠ, outΠ′) = negl(n),

where outΠ is a random variable that corresponds to the output of protocol Π assuming all parties
are honest, and outΠ′ is a random variable that corresponds to the output of protocol Π′ assuming
all parties are honest.

Probabilistic Tools

In the analysis we will use the following simple claims.

Claim 2.4. Let k,M ∈ N be two integers. Let U ⊆ {0, 1}k and f : U → [M]. For every i ∈ [M],
denote by

αi = Pr
u←U

[f(u) = i] .

Then,

E
u←U

[
αf(u)

]
≥ 1

M
,

and for any ε > 0,

Pr
u←U

[
αf(u) ≥

ε

M

]
≥ 1− ε.

Proof. We begin with the proof of the first part. By the definition of expectation

E
u←U

[
αf(u)

]
=
∑
u∈U

Pr[U = u] · αf(u) =

M∑
i=1

αi · Pr
u←U

[
αf(u) = αi

]
≥

M∑
i=1

α2
i .

7

This, together with the the Cauchy-Schwarz inequality, implies that

E
u←U

[
αf(u)

]
≥

M∑
i=1

α2
i =

M∑
i=1

α2
i ·

M∑
i=1

(
1√
M

)2

≥

(
M∑
i=1

αi ·
1√
M

)2

=
1

M
,

where the last equality follows from the fact that
∑M

i=1 αi = 1.
For the second part, let

B =
{
i ∈ [M] | αi <

ε

M

}
.

Then,

Pr
u←U

[
αf(u) <

ε

M

]
= Pr

u∈U
[f(u) ∈ B] ≤

∑
i∈B

αi ≤ |B| ·
ε

M
≤ ε,

as desired, where the first inequality follows from the union bound and the definition of αi, the
second inequality follows from the definition of B, and the third inequality follows from the fact
that |B| ≤M .

Definition 2.5 (Entropy). Let X be a random variable with finite support. The (Shannon) entropy
of X is defined as

entropy(X) =
∑

x∈supp(X)

Pr[X = x] · log
1

Pr[X = x]
= E

x←X

[
log

1

Pr[X = x]

]
.

Claim 2.6. Let X be a random variable with domain {0, 1}k. If entropy(X) ≥ k − ε, then

SD(X,Uk) ≤
√
ε

2
,

where Uk is the uniform distribution over k bits, and where SD(X,Uk) denotes the statistical dis-
tance between X and Uk (see Equation (2.1) for the definition of statistical distance).

Proof. The relative entropy (a.k.a. the Kullback-Leibler divergence) between two distributions
D1,D2 ⊆ {0, 1}k is defined as

DKL(D1‖D2) =
∑

x∈{0,1}k
D1(x) · log

(
D1(x)

D2(x)

)
.

A well known relation between relative entropy and the statistical distance is known as Pinsker’s
inequality which states that for any two distributions D1,D2 as above, it holds that

SD(D1,D2) ≤
√

ln 2

2
·DKL(D1‖D2). (2.2)

8

Thus, it remains to bound the relative entropy of X and Uk. Let px = Prx∈{0,1}k [X = x]. We
get that

DKL(X‖Uk) =
∑

x∈{0,1}k
px · log

(
px · 2k

)
=

∑
x∈{0,1}k

px · (log(px) + k)

= −entropy(X) + k.

Since entropy(X) ≥ k − ε, we get that

DKL(X‖Uk) ≤ −k + ε+ k = ε.

Plugging this into Pinsker’s inequality (see Equation (2.2)), we get that

SD(X,Uk) ≤
√

ln 2

2
· ε ≤

√
ε

2
.

3 Compressing Communication in Distributed Protocols

In this section we show how to transform any n-party d-round t-adaptively secure public-coin
protocol, that outputs messages of length m and sends messages of length L, into an n-party
d-round t-adaptively secure public-coin protocol in which every party sends messages of length
` = m · polylog(n, d).

Throughout this section, we fix µ∗ to be the negligible function defined by

µ∗ = µ∗(n, d) =
(√

ε+ 1− (1− ε)dn
)
· 2dn, (3.1)

and where ε = 2− log2(dn).

Theorem 3.1. Fix any m = m(n), d = d(n), L = L(n), and any n-party d-round public-coin
protocol Π that outputs messages in {0, 1}m and in which all parties send messages of length L =
L(n). Then, for any constant δ > 0, any t = t(n) < n, and any s = s(m), if Π is (t, δ, s)-
adaptively secure then there exists an n-party d-round (t, δ′, s)-adaptively secure public-coin protocol,
that simulates Π, where all parties send messages of length ` = m · log4(n · d), and where δ′ ≤ δ+µ∗

(and µ∗ = µ∗(n, d) is the negligible function defined in Equation (3.1)).

Proof. Fix any m = m(n), d = d(n), L = L(n), and any n-party d-round public-coin protocol Π
that outputs messages in {0, 1}m and in which all parties send messages of length L = L(n). Fix
any constant δ > 0, any t = t(n) < n, and any s = s(m) such that Π is (t, δ, s)-adaptively secure.
We start by describing the construction of the (short message) protocol. Let

N = 2` = 2m·log4(n·d). (3.2)

Let
H = {H : [d · n]× {0, 1}` → {0, 1}L}

9

be the set all possible [d ·n]×{0, 1}` ≡ [d ·n]× [N] matrices, whose elements are from {0, 1}L. Note
that |H| = 2d·n·N ·L. We often interpret H : [d · n]× {0, 1}` → {0, 1}L as a function

H : [d]× [n]× {0, 1}` → {0, 1}L,

or as a matrix where each row is described by a pair from [d]× [n]. We abuse notation and denote
by

H(i, j, r) , H((i− 1)n+ j, r).

As a convention, we denote by R a message from {0, 1}L and by r and a message from {0, 1}`.

From now on, we assume for the sake of simplicity of notation, that in protocol Π, in each round,
all the parties send a message. Recall that we also assume for the sake of simplicity (and without
loss of generality) that Π is a public-coin protocol (see Definition 2.1). For any H ∈ H we define a
protocol ΠH that simulates the execution of the protocol Π, as follows.

The Protocol ΠH . In the protocol ΠH , for every i ∈ [d] and j ∈ [n], in the ith round, party Pj
sends a random string ri,j ← {0, 1}`. We denote the resulting transcript in round i by

TransH,i = (ri,1, . . . , ri,n) ∈
(
{0, 1}`

)n
,

and denote the entire transcript by

TransH = (TransH,1 . . . ,TransH,d).

We abuse notation, and define for every round i ∈ [d],

H(TransH,i) = (H(i, 1, ri,1), . . . ,H(i, n, ri,n)).

Similarly, we define
H(TransH) = (H(TransH,1) . . . , H(TransH,d)).

The outcome of protocol ΠH with transcript TransH is defined to be the outcome of protocol Π with
transcript H(TransH).

It is easy to see that the round complexity of ΠH (for every H ∈ H) is the same as that of Π.
Moreover, we note that with some complication in notation we could have also preserved the exact
communication pattern (instead of assuming that in each round all parties send a message).

In order to prove Theorem 1.1 it suffices to prove the following two lemmas.

Lemma 3.2. There exists a subset H0 ⊆ H of size |H|2 , such that for every matrix H ∈ H0 it holds
that ΠH is (t, δ′, s)-adaptively secure for δ′ = δ + µ∗, where µ∗ is the negligible function defined in
Equation (3.1).

Lemma 3.3. There exists a negligible function µ = µ(n, d) such that,

Pr
H←H

[SD(outΠH , outΠ) ≤ µ] ≥ 2

3
.

Indeed, given Lemmas 3.2 and 3.3, we obtain that there exists an H ∈ H such that ΠH is
(t, δ′, s)-adaptively secure and it simulates Π.

In Section 3.1 we give the proof of Lemma 3.3 and in Section 3.2 we give the proof of Lemma 3.2.

10

3.1 Proof of Lemma 3.3

By the definition of statistical distance, in order to prove Lemma 3.3 it suffices to prove that there
exists a negligible function µ = µ(n, d) such that,

Pr
H←H

[
∀z ∈ {0, 1}m, |Pr[outΠH = z]− Pr[outΠ = z]| ≤ µ

2m

]
≥ 2

3
.

Note that

Pr
H←H

[
∀z ∈ {0, 1}m, |Pr[outΠH = z]− Pr[outΠ = z]| ≤ µ

2m

]
=

1− Pr
H←H

[
∃z ∈ {0, 1}m, |Pr[outΠH = z]− Pr[outΠ = z]| > µ

2m

]
≥

1−
∑

z∈{0,1}m
Pr

H←H

[
|Pr[outΠH = z]− Pr[outΠ = z]| > µ

2m

]
.

Therefore, it suffices to prove that there exists a negligible function µ such that for every z ∈ {0, 1}m,

Pr
H←H

[
|Pr[outΠH = z]− Pr[outΠ = z]| > µ

2m

]
≤ 1

3 · 2m
.

To this end, for any z ∈ {0, 1}m, we denote by pz = Pr[outΠ = z] and pz,H = Pr[outΠH = z].
Using this notation, it suffices to prove that there exists a negligible function µ such that for every
z ∈ {0, 1}m,

Pr
H←H

[
|pz,H − pz| >

µ

2m

]
≤ 1

3 · 2m
.

For any H ∈ H, consider the experiment, where we run the protocol ΠH independently B =
2m·log3(nd) times, and check how many times the output is z. Denote by X1, . . . , XB the identically
distributed random variables, where Xi = 1 if in the ith run of the protocol the outcome is z, and
Xi = 0 otherwise. The Chernoff bound5 implies that for every H ∈ H and for every γ > 0,

Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Xi − pz,H

∣∣∣∣∣ ≥ γ
]
≤ e−

γ2·B
3 .

In particular, setting γ = 2−m·log2(nd) we deduce that

Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Xi − pz,H

∣∣∣∣∣ ≥ γ
]
≤ e−2m·log

2(nd)
. (3.3)

We next define random variables Y1, . . . , YB as follows: We run the protocol Π independently B
times, and we set Yi = 1 if in the ith run the outcome is z, and otherwise we set Yi = 0. We note
that the same argument used to deduce Equation (3.3) can be used to deduce that

Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Yi − pz

∣∣∣∣∣ ≥ γ
]
≤ e−2m·log

2(nd)
. (3.4)

5The Chernoff bound states that for any identical and independent random variables X1, . . . , XB , such that Xi ∈
{0, 1} for each i, if we denote by p = E[Xi] then Pr[

∣∣∣ 1B ∑B
i=1Xi − p

∣∣∣ ≥ δ] ≤ e− δ2

3
B .

11

Note that,

Pr [|pz,H − pz| > 4γ] ≤

Pr

[∣∣∣∣∣pz,H − 1

B

B∑
i=1

Xi

∣∣∣∣∣+

∣∣∣∣∣ 1

B

B∑
i=1

Xi −
1

B

B∑
i=1

Yi

∣∣∣∣∣+

∣∣∣∣∣ 1

B

B∑
i=1

Yi − pz

∣∣∣∣∣ > 4γ

]
≤

Pr

[∣∣∣∣∣pz,H − 1

B

B∑
i=1

Xi

∣∣∣∣∣ > γ

]
+ Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Xi −
1

B

B∑
i=1

Yi

∣∣∣∣∣ > 2γ

]
+ Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Yi − pz

∣∣∣∣∣ > γ

]
≤

2 · e−2m·log
2(nd)

+ Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Xi −
1

B

B∑
i=1

Yi

∣∣∣∣∣ > 2γ

]
,

where the first inequality follows from the triangle inequality, the second inequality follows from the
union bound, and the third inequality follows from Equations (3.3) and (3.4). Thus, it suffices to
prove that there exists a negligible function µ = µ(n, d) such that

Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Xi −
1

B

B∑
i=1

Yi

∣∣∣∣∣ > 2γ

]
≤ µ

2m
.

To this end, notice that for a random H ← H,

SD ((X1, . . . , XB) , (Y1, . . . , YB)) ≤
B∑
i=1

SD ((X1, . . . , Xi−1, Xi, Yi+1, . . . , YB) , (X1, . . . , Xi−1, Yi, Yi+1, . . . , YB)) =

B∑
i=1

SD ((X1, . . . , Xi−1, Xi) , (X1, . . . , Xi−1, Yi)) ≤

B · SD ((X1, . . . , XB−1, XB) , (X1, . . . , XB−1, YB)) ≤

B · nd · (B − 1)nd

Nnd
≤

B2 · nd
N

≤

22m log3(nd) · nd
2m log4(nd)

≤

2−m log3(nd),

where the first equation follows from a standard hybrid argument. The second equation follows from
the fact that Yi+1, . . . , YB are independent of X1, . . . , Xi, Yi. The third equation follows from the
fact that the statistical distance between (X1, . . . , Xi−1, Xi) and (X1, . . . , Xi−1, Yi) is maximal for
i = B. The forth equation follows from the fact that (X1, . . . , XB−1, XB) and (X1, . . . , XB−1, YB)
are identically distributed if the following event, which we denote by Good, occurs: Recall that
each Xi depends only on nd random coordinates of H ← H. We say that Good occurs if the nd
coordinates that XB depends on are disjoint from all the nd(B − 1) coordinates that X1, . . . , XB−1

depend on. The forth equation follows from the fact that Pr[¬Good] ≤ nd · (B−1)nd
Nnd . The rest of the

equations follow from basic arithmetics and from the definition of B and N .
In particular, this implies that

SD

((
1

B

B∑
i=1

Xi

)
,

(
1

B

B∑
i=1

Yi

))
≤ 2−m log3(nd). (3.5)

12

Consider the algorithm D that given p′z, supposedly distributed according to 1
B

∑B
i=1Xi or dis-

tributed according to 1
B

∑B
i=1 Yi, outputs 1 if |p′z−pz| ≤ γ, and otherwise outputs 0. Equation (3.4)

implies that

Pr

[
D

(
1

B

B∑
i=1

Yi

)
= 1

]
≥ 1− e−2m·log

2(nd)
.

This together with Equation (3.5), implies that

Pr

[
D

(
1

B

B∑
i=1

Xi

)
= 1

]
≥ 1− e−2m·log

2(nd) − 2−m log3(nd) ≥ 1− 2−m log2(nd),

which by the definition of D, implies that

Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Xi − pz

∣∣∣∣∣ ≤ γ
]
≥ 1− 2−m log2(nd).

This, in particular, implies that

Pr

[∣∣∣∣∣ 1

B

B∑
i=1

Xi −
1

B

B∑
i=1

Yi

∣∣∣∣∣ ≤ 2γ

]
≥ 1− 2 · 2−m log2(nd),

as desired.

3.2 Proof of Lemma 3.2

Assume towards contradiction that for every set H0 ⊆ H of size |H|2 there exists H ∈ H0 such that
ΠH is not (t, δ′, s)-adaptively secure, for δ′ = δ+ µ∗. This implies that there exists a set H0 ⊆ H of

size |H|2 such that for every H ∈ H0 there exists an adversary AH that adaptively corrupts at most t
parties and satisfies

succs(
(
AH
)

ΠH
) ≥ δ′.

This, in turn, implies that there exists a set M ⊆ {0, 1}m of size s > 0 such that for at least
1/
(

2m

s

)
-fraction of the H’s in H0 the adversary AH satisfies that succM (

(
AH
)

ΠH
) ≥ δ′. We denote

this set of H’s by H1. Notice that

|H1| ≥
|H0|(
2m

s

) =
|H|

2 ·
(

2m

s

) ≥ |H|
22m

= 2dnNL−2m . (3.6)

The proof proceeds as follows: we show how to use these adversaries {AH}H∈H1 to construct an
adversary A such that

succM (AΠ) ≥ δ′ − µ∗/2 = δ + µ∗ − µ∗/2 > δ,

contradicting the (t, δ, s)-adaptive security of Π.
The idea is for the adversary A to simulate the execution of one of the AH ’s. The problem is

that we do not know ahead of time which H will be consistent with the transcript of the protocol,
since we have no control over the (long) random messages of the honest parties. We overcome this
problem by choosing H adaptively. Namely, at any point in the protocol, A simulates a random
adversary AH , where H is a random matrix that is consistent (in some sense that we explain later)
with the transcript up to that point.

13

More specifically, for every i ∈ [d] and every j ∈ [n], we denote by Hi,j−1 the set of matrices that
are consistent with the transcript up until the point where the jth message of the ith round is about
to be sent. Fix any round i ∈ [d] and any j ∈ [n]. Roughly speaking, in the ith round before the jth

message is to be sent, the adversary A simulates AH∗ where H∗ ← Hi,j−1 is chosen uniformly at
random. If AH∗ corrupts a party Pu then A also corrupts Pu. If AH∗ sends a message r∗i on behalf
of a corrupted party Pu, then A will send the message R∗i = H∗(i, u, r∗i) on behalf of party Pu. In
this case, we define Hi,j to be all the matrices in Hi,j−1 which are consistent with the transcript
so far and agree with H∗ on row (i, u). If AH∗ asks an honest party Pu to send its message, the
adversary A will also ask honest party Pu to send a message. Upon receiving a message R∗ from
Pu, we choose a random matrix H ← Hi,j−1 that is consistent with the transcript so far, and set
Hi,j to be all the matrices in Hi,j−1 that are consistent with the transcript so far, and where we fix
the (i, u) row to be the (i, u) row of H.

Before giving the precise description of the adversary A, we provide some useful notation. We
denote the transcript generated in an execution of the protocol Π with an adversary A by TransA.
Note that TransA consists of d vectors (one per each round), where each vector consists of n pairs
of the form

((Pj1 ,R1), . . . , (Pjn ,Rn)),

where R1, . . .Rn ∈ {0, 1}L and j1, . . . , jn ∈ [n], where the order means that in this round party
Pj1 sent his message first, then party Pj2 sent his message, and so on (recall that in our model,
the adversary has control over the scheduling of the messages within each round). We sometimes
consider a partial transcript Transi,j (i.e., a prefix of a transcript) which corresponds to a partial
execution of the protocol Π with the adversary A until after the jth message in the ith round was
sent. For H ∈ H, we denote by

MAPH : [d]× [n]× {0, 1}L → {0, 1}` ∪ {⊥}

the mapping that takes as input a row number (i, j) ∈ [d]× [n] and a (long) message in R ∈ {0, 1}L,
and converts it into a (short) message r ∈ {0, 1}` such that H(i, j, r) = R. If no such message exists,
MAPH outputs ⊥.

Let Transi,j be a (long) partial transcript of Π. The corresponding (short) transcript of ΠH ,
denoted by MAPH(Transi,j), is defined recursively, as follows. Let Transi,j = (Transi,j−1, (Pu,R)).
Then,

MAPH(Transi,j) =
(
MAPH(Transi,j−1), (Pu,MAPH(i, u,R))

)
.

We initialize Trans1,0 = ∅ and H1,0 = H1. Using this notation, a formal description of the adversary
A is given in Figure 1.

In order to prove Lemma 3.2 (and thus to complete the proof of Theorem 1.1), it suffices to
prove the following lemma.

Lemma 3.4. The adversary A makes at most t adaptively-chosen corruptions, and succM (AΠ) ≥
δ′ − µ∗/2.

Proof. We first note that A always makes at most t corruptions. This follows from the fact that A
is always consistent with some adversary AH , for some H ∈ H1 (or else A aborts), and by our
assumption, every AH makes at most t corruptions.

14

The adversary A(Transi,j−1) before the jth message of round i

1. If Hi,j−1 = ∅, output ⊥ and HALT.

2. Choose H∗ ← Hi,j−1 uniformly at random. Let TransH∗ = MAPH∗(Transi,j−1) denote the
(short) transcript in the protocol ΠH∗ that corresponds to the (long) transcript Transi,j−1.

3. If AH∗(TransH∗) corrupts a party Pu then corrupt Pu.

4. If AH∗(TransH∗) sends a message on behalf of a corrupt party Pu, then do the following:

(a) Denote by r∗ ∈ {0, 1}` the message that AH∗(TransH∗) sends on behalf of Pu. Let
R∗ = H∗(i, u, r∗).

(b) Send the message R∗ on behalf of party Pu.

(c) Add (Pu,R
∗) to the partial transcript. Namely, set

Transi,j = (Transi,j−1, (Pu,R
∗)) .

(d) Define Hi,j to be the set of all H ∈ Hi,j−1 that are consistent with the transcript so far,
and for which H(i, u, ·) = H∗(i, u, ·). Namely, set

Hi,j =
{
H ∈ Hi,j−1 | ∀r : H(i, u, r) = H∗(i, u, r), and

AH(TransH) sends r∗ on behalf of Pu,

where TransH = MAPH(Transi,j−1)
}
.

5. If AH∗(TransH∗) does not corrupt, and orders an honest party Pu to send a message, then do
the following:

(a) Do not corrupt, and order honest party Pu to send a message. Denote the message it
sends by R∗.

(b) Add (Pu,R
∗) to the partial transcript. Namely, set

Transi,j = (Transi,j−1, (Pu,R
∗)).

(c) Choose a random matrix

H ′ ← {H ∈ Hi,j−1 | AH(TransH) orders honest Pu to send a message, and

∃r s.t. H(i, u, r) = R∗}.

(d) Define Hi,j to be the set of all H ∈ Hi,j−1 that are consistent with the transcript so far,
and agree with H ′ on row (i, u). That is,

Hi,j = {H ∈ Hi,j−1 | ∀r : H(i, u, r) = H ′(i, u, r), and

AH(TransH) orders honest Pu to send a message}.

6. If j = n, set Hi+1,0 = Hi,j and Transi+1,0 = Transi,j .

Figure 1: The adversary A before the jth message of round i.

15

We next prove that succM (AΠ) ≥ δ′ − µ∗/2. Recall that we denote by TransA the random
variable that corresponds to the transcript generated by running the protocol Π with the adversaryA
(described in Figure 1).

Let Transideal be an “ideal” transcript, generated as follows: Choose a random H ← H1, run the
protocol ΠH with the adversary AH . Denote the resulting transcript by TransH . As above, TransH
consists of d vectors (one per each round), where each vector consists of n pairs of the form

((Pj1 , r1), . . . , (Pjn , rn)),

where r1, . . . rn ∈ {0, 1}` and j1, . . . , jn ∈ [n]. We define

Transideal = H(TransH)

where H(TransH) is the transcript obtained by applying H(i, u, ·) to each element in the (i, u)th row
of TransH . Formally, H(TransH) is defined recursively, as follows: For every i ∈ [d] and every j ∈ [n],
we let TransH,i,j denote the transcript TransH up until after the jth message in the ith round is sent.
We define H(TransH,i,j) recursively, as follows: For TransH,i,j = (TransH,i,j−1, (Pu, r)), we define

H(TransH,i,j) = (H(TransH,i,j−1), (Pu, H(i, u, r))).

In order to prove Lemma 3.4 it suffices to prove the following claim.

Claim 3.5.

SD(TransA,Transideal) = µ∗/2,

Proof. We prove Claim 3.5 using a hybrid argument. Specifically, we define a sequence of d · (n+1)
experiments. For every i ∈ [d] and every j ∈ {0, 1, . . . , n}, we define the experiment Exp(i,j) as
follows:

1. Generate Transi,j and Hi,j , as defined in Figure 1.

2. Choose a random H ← Hi,j , and let TransH,i,j = MAPH(Transi,j).

3. Run the protocol ΠH with the adversary AH , given the partial transcript TransH,i,j . Namely,
run ΠH withAH from after the jth message in the ith round was sent, and assume the transcript
up until that point is TransH,i,j . Denote the entire transcript (including TransH,i,j) by TransH .

4. Output H(TransH).

Notice that

Exp(d,n) ≡ TransA,

and

Exp(1,0) ≡ Transideal.

It remains to argue that for every i ∈ [d] and every j ∈ [n] the statistical distance between any
two consecutive experiments Exp(i,j−1) and Exp(i,j) is small. In particular, it suffices to prove that

SD
(
Exp(i,j−1),Exp(i,j)

)
=

µ∗

2dn
. (3.7)

16

The reason is that given this inequality, we obtain that

SD(TransA,Transideal) ≤
∑

i∈[d],j∈[n]

SD(Exp(i,j−1),Exp(i,j)) ≤ d · n · µ
∗

2dn
=
µ∗

2
,

which completes the claim. We note that the first inequality follows from the union bound together
with the fact that Exp(i,n) = Exp(i+1,0) for every i ∈ [d− 1] (see Figure 1 Item 6).

We proceed with the proof of Equation (3.7). To this end, fix any i ∈ [d] and j ∈ [n]. Let
k , (i − 1) · d + j. Note that in both Expi,j−1 and Expi,j the first k − 1 messages are generated
according to TransA.

Denote by corruptk the event that the kth message is sent by a corrupted party. We first argue
that

Pr
[
corruptk | Exp(i,j−1)

]
= Pr

[
corruptk | Exp(i,j)

]
.

This follows immediately from the definition of the two experiments. In Exp(i,j) (according to
Figure 1, Items 2-4), before sending the kth message, a random function is chosen H∗ ← Hi,j−1 and
the kth message is sent by a corrupted party if and only if AH∗ chooses the kth message to be sent
by a corrupted party (given the transcript so far). Note that in Exp(i,j−1), the same exact process
occurs (see Items 2 to 4 at the beginning of the proof of Claim 3.5).

We next argue

SD
((

Exp(i,j−1) | corruptk
)
,
(
Exp(i,j) | corruptk

))
= 0. (3.8)

To see why Equation (3.8) holds, note that according to Figure 1 (see Items 2 to 4), the kth message

in
(
Exp(i,j) | corruptk

)
is chosen by sampling a random matrix H∗ ← Hi,j−1 conditioned on the fact

that the kth message sent in ΠH∗ with AH∗ is sent by a corrupted party. Denote this corrupted
party by Pu and denote by r∗ the message that AH∗ sends on behalf of Pu. Then the kth message in
Exp(i,j) is set to be H∗(i, u, r∗). Note that the kth message in Exp(i,j−1) is chosen in exactly the same
way (see Items 2 to 4 at the beginning of the proof of Claim 3.5). Moreover, the distribution of the
set Hi,j in both cases is identical, which implies that the distributions of the rest of the messages in(
Exp(i,j−1) | corruptk

)
and in

(
Exp(i,j) | corruptk

)
are identical as well.

It remains to prove that

SD
((

Exp(i,j−1) | ¬corruptk
)
,
(
Exp(i,j) | ¬corruptk

))
=

µ∗

2dn
. (3.9)

Recall that in
(
Exp(i,j) | ¬corruptk

)
the kth message is uniformly distributed in {0, 1}L. Denote

by R′ the kth message in
(
Exp(i,j−1) | ¬corruptk

)
. Recall that R′ is distributed as follows: Choose

a random H ← Hi,j−1 such that the adversary A (given the partial transcript MAPH(Transi,j−1))
orders an honest party Pu to send the jth message in the ith round. Choose a random r′ ← {0, 1}`,
and and set R′ = H(i, u, r′).

Notice that in order to prove Equation (3.9), it suffices to prove that

SD(R′,UL) =
µ∗

2dn
. (3.10)

17

Recall that we fixed ε = 2− log2(dn). We argue that in order to prove Equation (3.10) it suffices
to prove that,

Pr

[
|Hi,j−1| ≥

2dnNL

2(k−1)NL ·
(

4nN
ε

)k−1 · 22m

]
≥ (1− ε)k−1, (3.11)

where the probability is over the randomness of the honest parties.
To this end, suppose that Equation (3.11) holds. Denote by E the event that

|Hi,j−1| ≥
2dnNL

2(k−1)NL ·
(

4nN
ε

)k−1 · 22m
. (3.12)

By Equation (3.11),
Pr[E] ≥ (1− ε)k−1.

Therefore,

SD(R′,UL) ≤
SD((R′ | E),UL) · Pr[E] + SD((R′ | ¬E),UL) · Pr[¬E] ≤
SD((R′ | E),UL) + Pr[¬E] ≤
SD((R′ | E),UL) + 1− (1− ε)k−1.

This, together with the definition of µ∗ (see Equation (3.1)), implies that in order to prove Equa-
tion (3.10) it suffices to prove that

SD((R′ | E),UL) ≤
√
ε.

This, together with Claim 2.6, implies that it suffices to prove that

entropy(R′ | E) ≥ L− ε. (3.13)

To this end, let H ← Hi,j−1. Then,

entropy(H | E) ≥

dnNL− (k − 1)NL− (k − 1)(log 4nN)− (k − 1) log
1

ε
− 2m =

(dn− k + 1)NL− (k − 1)

(
log 4nN + log

1

ε

)
− 2m,

where the first inequality follows from Equation (3.12) together with the definition of entropy (see
Definition 2.5), and the latter equality follows from basic arithmetics.

For every α ∈ [d] and every β ∈ [n], we denote by Rowα,β ∈ {0, 1}NL the random variable
obtained by choosing a random matrix H ← Hi,j−1, and setting Rowα,β to be the (α, β)th row of H.
Note that

entropy(H | E) ≤
∑

α∈[d],β∈[n]

entropy(Rowα,β | E) ≤ entropy(Rowi,u | E) +NL(dn− k),

where the first inequality follows from the basic property of Shannon entropy, that for any random
variables X and Y , it holds that entropy(X,Y) ≤ entropy(X) + entropy(Y), and the second equality

18

follows from the fact that k − 1 of the rows in Hi,j−1 are fixed. This, together with the equations
above, implies that

entropy(Rowi,u | E) ≥

(dn− k + 1)NL− (k − 1)

(
log 4nN + log

1

ε

)
− 2m −NL(dn− k) =

NL− (k − 1)

(
log 4nN + log

1

ε

)
− 2m =

NL− (k − 1)
(
log 4nN + log2(dn)

)
− 2m.

Recall that (R′ | E) is the random variable defined by choosing H ← Hi,j−1 (where we assume
that event E holds for Hi,j−1), choosing a random α← [N], and setting R′ = H(i, u, α). Thus,

entropy(R′ | E) ≥
NL− (k − 1)(log 4nN + log2(dn))− 2m

N
=

L− (k − 1)(log 4nN + log2(dn)) + 2m

N
≥

L− ε,

proving Equation (3.13), where the latter inequality follows from the definition of N (see Equa-
tion (3.2)).

It remains to prove Equation (3.11). We prove that Equation (3.11) holds for any (i, j) ∈
[d] × {0, 1, . . . , n}. The proof is by induction on k = (i − 1) · n + j. The base case is k = 0, which
corresponds to (i, j) = (1, 0). In this case, it is always holds that

|Hi,j | = |H1,0| = |H1| ≥
2dnNL

22m
,

where the latter inequality follows from the definition of H1 (see Equation (3.6)).
Next, assume that Equation (3.11) holds for k − 1, and we prove that it holds for k. Fix i ∈ [d]

and j ∈ [n] such that k = (i− 1) · n+ j. By the induction hypothesis,

Pr

[
|Hi,j−1| ≥

2dnNL

2(k−1)NL ·
(

4nN
ε

)k−1 · 22m

]
≥ (1− ε)k−1.

We denote by E the event that indeed

|Hi,j−1| ≥
2dnNL

2(k−1)NL ·
(

4nN
ε

)k−1 · 22m
. (3.14)

Thus, by our induction hypothesis,

Pr[E] ≥ (1− ε)k−1.

In what follows, fix any Hi,j−1 such that event E holds. Claim 2.4 (with U = Hi,j−1 and
M = 2NL · 4nN) implies that

Pr

[
|Hi,j | ≥

|Hi,j−1|
2NL · 4nN

ε

]
≥ 1− ε.

19

This, in turn, implies that

Pr

[
|Hi,j | ≥

2dnNL

2kNL ·
(

4nN
ε

)k · 22m

]
≥

Pr

[
|Hi,j | ≥

2dnNL

2kNL ·
(

4nN
ε

)k · 22m
| E

]
· Pr[E] ≥

Pr

[
|Hi,j | ≥

|Hi,j−1|
2NL · 4nN

ε

| E

]
· Pr[E] ≥

(1− ε) · (1− ε)k−1 =

(1− ε)k,

as desired.

3.3 Static Adversaries

We note that Theorem 3.1 holds also for static adversary. For completeness, we restate the theorem
for static adversaries.

Theorem 3.6. Fix any m = m(n), d = d(n), L = L(n), and any n-party d-round public-coin
protocol Π that outputs messages in {0, 1}m and in which all parties send messages of length L =
L(n). Then, for any constant δ > 0, any t = t(n) < n, and any s = s(m), if Π is (t, δ, s)-
statically secure then there exists an n-party d-round (t, δ′, s)-statically secure public-coin protocol
that simulates Π, where all parties send messages of length ` = m · log4(n · d), and where δ′ ≤ δ+µ∗

(where µ∗ is the negligible function defined in Equation (3.1)).

The proof is almost identical to the proof of Theorem 3.1 except that in the static setting, the
adversary A needs to decide which t parties to corrupt before the protocol begins.

Recall that in the proof of Theorem 3.1, the adversary A simulates one of the adversaries AH .
In the static setting, the adversary A will choose to corrupt the t parties that are consistent with
as many AH as possible. More specifically, recall that in the proof of Theorem 3.1 we defined H1

to be the set of all matrices H such that AH tries to bias the outcome towards a specific set M .
Recall that |H1| ≥ |H|

22m
.

In the static setting, for every H ∈ H1 we denote by TH the set of parties that the adversary
AH corrupts. For every set T ⊆ [n] of size t let

α(T) =
∣∣{H ∈ H1 : TH = T}

∣∣ .
We define

T ∗ = argmax
T
{α(T)},

and the adversary A corrupts the set of parties T ∗. We define H′1 ⊆ H1 to consist of all the matrices
H ∈ H1 for which AH corrupts the set of parties T ∗. Note that∣∣H′1∣∣ ≥ |H1|

2n
≥ |H|

22m · 2n
.

The rest of the proof is similar to that of Theorem 3.1, except that the analysis is easier in the
static setting, since the decision of who to corrupt has already been made.

20

4 Public-Coin Protocols

In this section we show how to convert any distributed protocol in which parties do not have private
inputs into a public-coin protocol.

Theorem 4.1. Every protocol Π in which parties do not have private inputs can be transformed
into a protocol Π′ which simulates Π and such that the messages sent in Π′ are uniformly random.
Moreover, the protocol Π′ preserves the security of Π and its round complexity.

Proof Sketch. Let Π be an n-party protocol in which parties do not have private inputs. Let
d = d(n) be the number of communication rounds and let us assume for simplicity that each
party speaks at each round. Assume, without loss of generality, that each party samples its own
randomness ahead of time, when the protocol begins. That is, for every j ∈ [n], party Pj has
randomness rj ∈ {0, 1}`, where we let ` be the maximum number of random bits used by all parties
during the protocol. At each round i, party Pj evaluates a function fi,j which depends on the
transcript of the protocol so far, which we denote by Transi−1 (i.e., Transi−1 are the messages sent
by all parties in rounds 1, . . . , i − 1), and on its own randomness rj . Namely, the message sent at
round i ∈ [d] by party Pj is

mi,j = fi,j(Transi−1, rj).

Before we define the protocol Π′, we introduce some notation. We say that a random string r
is good with respect to transcript Transi and party Pj if when it is used as the randomness of that
party, it generates the same exact transcript.

Next, we define the protocol Π′. In round i ∈ [d], party Pj sends a uniformly random string
ui,j of length 2`. Specifically, each party sends a uniformly random permutation of all possible `-bit
strings. At the end, after the dth round ends, we interpret each ui,j as a collection of many possible
random strings for party Pj , choose one (say the first), denoted by ri,j , which is good with respect
to the transcript so far and think of the (i, j)th message as fi,j(Transi−1, ri,j).

First, we observe that the round complexity of Π′ is the same as that of Π. Next, we claim that
in an honest execution (i.e., in the absence of an adversary), the distribution of the output of the
protocol Π is identical to that of Π′ (namely, Π′ simulates Π). We first note that conditioned on
the fact that a good randomness was found for all d · n messages, the above distributions are the
same. This is true since in Π′ each party sends all possible ` bit strings in a uniformly random order.
Second, we note that, since each party sends all possible `-bit strings in each round, there always
exists good randomness.

Next, we argue that the protocol Π′ is as secure as Π. This follows by a simple hybrid argument.
We define a sequence of protocols Π(i) for i ∈ {0, . . . , dn} in which until (and including) the ith

message, the parties act according to Π and in the rest of the protocol they act according to Π′.
Notice that Π′ ≡ Π(0) and Π ≡ Π(dn). We argue that for every i ∈ [dn], the “advantage” of any A(i)

in Π(i) over any A(i−1) in Π(i−1) is zero.
To this end, observe that the first i− 1 messages are distributed exactly the same. In the next

message (i.e., the ith one) the protocols deviate. Assume party Pj speaks in both. While in Π(i) the
message sent is some function of the transcript so far and the initial randomness Pj has, in Π(i−1) it
is a random permutation of all possible random strings. We first note that if party Pj is corrupted,
then both the adversary A(i) and A(i−1) can force any message in the name of Pj and thus they
have the same power in both protocols (recall that after the ith message, the protocols are identical).
Hence, assume that Pj is not corrupted. In this case, the adversary A(i) sees a message which is
a function of the transcript up to that point and the (private) randomness of that party, whereas

21

A(i−1) sees a message which is a random permutation of all possible random strings. The theorem
now follows by observing that one adversary can simulate the view of the other, and recalling that
the rest of the messages in both protocols are identically distributed.

Acknowledgments

We thank Nancy Lynch, Merav Parter and David Peleg for helpful remarks and pointers. The
second author thanks his advisor Moni Naor for his continuous support.

References

[BL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and
minima of banzhaf values. In 26th Annual Symposium on Foundations of Computer
Science, FOCS, pages 408–416, 1985.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In 40th Annual Symposium on Foun-
dations of Computer Science, FOCS, pages 142–153, 1999.

[GKP15] Shafi Goldwasser, Yael Tauman Kalai, and Sunoo Park. Adaptively secure coin-flipping,
revisited. In 42nd International Colloquium on Automata, Languages and Programming,,
ICALP, pages 663–674, 2015.

[GS10] Oded Goldreich and Or Sheffet. On the randomness complexity of property testing.
Computational Complexity, 19(1):99–133, 2010.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th Annual Symposium on Founda-
tions of Computer Science, FOCS, pages 364–373, 1997.

[LLS89] David Lichtenstein, Nathan Linial, and Michael E. Saks. Some extremal problems arising
form discrete control processes. Combinatorica, 9(3):269–287, 1989.

[New91] Ilan Newman. Private vs. common random bits in communication complexity. Inf.
Process. Lett., 39(2):67–71, 1991.

[NN01] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function
evaluation. In 33rd Annual ACM Symposium on Theory of Computing, STOC, pages
590–599, 2001.

[Pel00] David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Indus-
trial and Applied Mathematics, 2000.

[PR00] David Peleg and Vitaly Rubinovich. A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM J. Comput., 30(5):1427–
1442, 2000.

[RSZ02] Alexander Russell, Michael E. Saks, and David Zuckerman. Lower bounds for leader
election and collective coin-flipping in the perfect information model. SIAM J. Comput.,
31(6):1645–1662, 2002.

22

[SMPU15] Atish Das Sarma, Anisur Rahaman Molla, Gopal Pandurangan, and Eli Upfal. Fast
distributed pagerank computation. Theor. Comput. Sci., 561:113–121, 2015.

23

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

