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Abstract

In his 1947 paper that inaugurated the probabilistic method, Erdös [Erd47] proved
the existence of 2 log n-Ramsey graphs on n vertices. Matching Erdös’ result with a
constructive proof is a central problem in combinatorics, that has gained a significant
attention in the literature. The state of the art result was obtained in the celebrated
paper by Barak, Rao, Shaltiel and Wigderson [Ann. Math’12], who constructed a

22(log logn)1−α
-Ramsey graph, for some small universal constant α > 0.

In this work, we significantly improve the result of Barak et al. and construct
2(log logn)c-Ramsey graphs, for some universal constant c. In the language of theoretical
computer science, our work resolves the problem of explicitly constructing two-source
dispersers for polylogarithmic entropy.

∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. Email: coheng@gmail.com. Partially supported by an ISF grant and by the I-CORE program of the
planning and budgeting committee.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 95 (2015)



Contents

1 Introduction 1
1.1 Two-source dispersers, extractors, and sub-extractors . . . . . . . . . . . . . . . . . . 1
1.2 Organization of this paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview of the Challenge-Response Mechanism 5
2.1 Motivating the challenge-response mechanism . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The challenge-response mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The three-types lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Playing with the challenge-response mechanism . . . . . . . . . . . . . . . . . . . . . 8

3 Overview of the Construction and Analysis 10
3.1 Entropy-trees and tree-structured sources . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Identifying the entropy-path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 The strategy for the rest of our construction . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Finding vmid(TX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Determining the output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Preliminaries 21
4.1 Standard (and less standard) notations and definitions . . . . . . . . . . . . . . . . . 21
4.2 Li’s block-source–weak-source extractor . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Subsources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 The Challenge-Response Mechanism 23

6 Entropy-Trees and Tree-Structured Sources 25

7 The Two-Source Sub-Extractor 27

8 Analysis of the Construction 29
8.1 Analysis of Step 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.2 Analysis of Step 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 Analysis of Step 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Conclusion and Open Problems 38



1 Introduction

Ramsey theory is a branch of combinatorics that studies the unavoidable presence of local
structure in globally-unstructured objects. In the paper that pioneered this field of study,
Ramsey [Ram28] considered an instantiation of this phenomena in graph theory.

Definition 1.1 (Ramsey graphs). A graph on n vertices is called k-Ramsey if it contains
no clique or independent set of size k.

Ramsey showed that there does not exist a graph on n vertices that is log(n)/2-Ramsey.
In his influential paper that inaugurated the probabilistic method, Erdös [Erd47] comple-
mented Ramsey’s result and showed that most graphs on n vertices are 2 log n-Ramsey.
Unfortunately, Erdös’ argument is non-constructive and one does not obtain from Erdös’
proof an example of a graph that is 2 log n-Ramsey. In fact, Erdös offered a $100 dollar prize
for matching his result, up to any multiplicative constant factor, by a constructive proof.
That is, coming up with an explicit construction of an O(log n)-Ramsey graph. Erdös’
challenge gained a significant attention in the literature as summarized in Table 1.

Explicitness got a new meaning in the computational era. While, classically, a succinct
mathematical formula was considered to be an explicit description, complexity theory sug-
gests a more relaxed, and arguably more natural interpretation of explicitness. An object is
deemed explicit if one can efficiently construct that object from scratch. More specifically, a
graph on n vertices is explicit if given the labels of any two vertices u, v, one can efficiently
determine whether there is an edge connecting u, v in the graph. Since the description
length of u, v is 2 log n bits, quantitatively, by efficient we require that the running-time is
polylog(n).

Ramsey graphs have an analogous definition for bipartite graphs. A bipartite graph on
two sets of n vertices is a bipartite k-Ramsey if it has no k × k complete or empty bipartite
subgraph. One can show that a bipartite Ramsey graph induces a Ramsey graph with
comparable parameters. Thus, constructing bipartite Ramsey-graphs is at least as hard as
constructing Ramsey graphs, and it is believed to be a strictly harder problem. Furthermore,
Erdös’ argument holds as is for bipartite graphs.

The main result of this paper is an explicit construction of bipartite Ramsey graphs that
significantly improves previous results.

Theorem 1.2 (Ramsey graphs). There exists an explicit bipartite 2(log logn)O(1)
-Ramsey graph

on n vertices.

In fact, the graph that we construct has a stronger property. Namely, for k = 2(log logn)O(1)
,

any k by k bipartite subgraph has a relatively large subgraph of its own that has density
close to 1/2.

1.1 Two-source dispersers, extractors, and sub-extractors

In the language of theoretical computer science, Theorem 1.2 yields a two-source disperser
for polylogarithmic entropy. We first recall some basic definitions.
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Construction k(n) Bipartite

[Erd47] (non-constructive) 2 log n X

[Abb72] nlog 2/ log 5

[Nag75] n1/3

[Fra77] no(1)

[Chu81] 2O((logn)3/4·(log logn)1/4)

[FW81, Nao92, Alo98, Gro01, Bar06] 2O(
√

logn·log logn)

The Hadamard matrix (folklore) n/2 X

[PR04] n/2−
√
n X

[BKS+10] o(n) X

[BRSW12] 22(log logn)1−α
= no(1) X

This work 2(log logn)O(1)
X

Table 1: Summary of constructions of Ramsey graphs.

Definition 1.3 (Statistical distance). The statistical distance between two distributions X, Y
on a common domain D is defined by

SD (X, Y ) = max
A⊆D
{|Pr[X ∈ A]−Pr[Y ∈ A] |} .

If SD(X, Y ) ≤ ε we say that X is ε-close to Y .

Definition 1.4 (Min-entropy). The min-entropy of a random variable X is defined by

H∞(X) = min
x∈supp(X)

log2

(
1

Pr[X = x]

)
.

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In such
case, if X has min-entropy k or more, we say that X is an (n, k)-weak-source or simply an
(n, k)-source.

Definition 1.5 (Two-source zero-error dispersers). A function Disp : {0, 1}n × {0, 1}n →
{0, 1}m is called a two-source zero-error disperser for entropy k if for any two independent
(n, k)-sources X, Y , it holds that

supp(Disp(X, Y )) = {0, 1}m.
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Note that a two-source zero-error disperser for entropy k, with a single output bit, is
equivalent to a bipartite 2k-Ramsey graph on 2n vertices on each side. Constructing two-
source dispersers for polylogarithmic entropy is considered a central problem in pseudoran-
domness, that we resolve in this paper. Indeed, a 2poly(log logn)-Ramsey graph on n vertices is
equivalent to a disperser for entropy polylog(n). From the point of view of dispersers, it is
easier to see how challenging is Erdös’ goal of constructing O(log n)-Ramsey graphs. Indeed,
these are equivalent to dispersers for entropy log(n) + O(1). Even a disperser for entropy
O(log n) does not meet Erdös’ goal as it translates to a polylog(n)-Ramsey graph.

While Theorem 1.2 already yields a two-source zero-error disperser for polylogarithmic
entropy, we can say something stronger.

Theorem 1.6 (Two-source zero-error dispersers). There exists an explicit two-source zero-
error disperser for n-bit sources having entropy k = polylog(n), with m = kΩ(1) output bits.

Theorem 1.6 gives an explicit zero-error disperser for polylogarithmic entropy, with many
output bits. In fact, we prove a stronger statement than that. To present it, we recall the
notion of a two-source extractor, introduced by Chor and Goldreich [CG88].

Definition 1.7 (Two-source extractors). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is
called a two-source extractor for entropy k, with error ε, if for any two independent (n, k)-
sources X, Y , it holds that Ext(X, Y ) is ε-close to uniform.

Chor and Goldreich [CG88] proved that there exist two-source extractors with error ε
for entropy k = log(n) + 2 log(1/ε) + O(1) with m = 2k − 2 log(1/ε)− O(1) output bits. A
central open problem in pseudorandomness is to match this existential proof with an explicit
construction having comparable parameters. Unfortunately, even after almost 30 years, little
progress has been made.

Already in their paper, Chor and Goldreich gave an explicit construction of a two-source
extractor for entropy 0.51n, which is very far from what is obtained by the existential ar-
gument. Nevertheless, it took almost 20 years before any improvement was made. Bour-
gain [Bou05] constructed a two-source extractor for entropies (1/2 − α) · n, where α > 0
is some small universal constant. An incomparable result was obtained by Raz [Raz05],
who required one source to have min-entropy 0.51n but the other source can have entropy
O(log n).

In this paper we construct a pseudorandom object that is stronger than a two-source
zero-error disperser, yet is weaker than a two-source extractor. Informally speaking, this is
a function with the following property. In any two independent weak-sources, there exist
two independent weak-sources with comparable amount of entropy to the original sources,
restricted to which, the function acts as a two-source extractor. To give the formal definition
we first recall the definition of a subsource, introduced in [BKS+10].

Definition 1.8 (Subsource). Given random variables X and X ′ on {0, 1}n, we say that X ′

is a deficiency d subsource of X and write X ′ ⊂ X if there exists a set A ⊆ {0, 1}n such that
(X | A) = X ′ and Pr[X ∈ A] ≥ 2−d. More precisely, for every a ∈ A, Pr[X ′ = a] is defined
by Pr[X = a | X ∈ A] and for a 6∈ A, Pr[X ′ = a] = 0.

3



It is instructive to think of a weak-source X as a random variable that is uniformly
distributed over some set S(X). In this case, X ′ is a subsource of X is the same as saying
that S(X ′) is a subset of S(X). The deficiency determines the density of S(X ′) in S(X).

Definition 1.9 (Two-source sub-extractors). A function

SubExt : {0, 1}n × {0, 1}n → {0, 1}m

is called a two-source sub-extractor for outer-entropy kout and inner-entropy kin, with error
ε, if the following holds. For any independent (n, kout)-sources X, Y , there exist min-entropy
kin subsources X ′ ⊂ X, Y ′ ⊂ Y , such that SubExt(X ′, Y ′) is ε-close to uniform.

Although we are not aware of the definition of two-source sub-extractors made explicit in
previous works, we note that the two-source disperser constructed by Barak et al. [BKS+10]
is in fact a two-source sub-extractor. More precisely, for any constant δ > 0, the authors
construct a two-source sub-extractor for outer-entropy δn and inner-entropy poly(δ)n. On
the other hand, the state of the art two-source disperser by Barak et al. [BRSW12] does
not seem to be a sub-extractor.

The main theorem proved in this paper is the following.

Theorem 1.10 (Two-source sub-extractors). There exists an explicit two-source sub-extractor

for outer-entropy kout = polylog(n) and inner-entropy kin = k
Ω(1)
out , with m = k

Ω(1)
out output

bits and error ε = 2−k
Ω(1)
out .

We note that a sub-extractor for outer-entropy kout with m output bits and error ε is a
zero-error disperser for entropy kout with min(m, log(1/ε)) output bits (the dependence in the
inner-entropy kin is due to the fact that m ≤ kin). Indeed, one can simply truncate the output
of the sub-extractor to be short enough so that the error will be small enough to guarantee
that any possible output is obtained. In particular, a sub-extractor for outer-entropy kout

and inner-entropy kin = 1, with error ε < 1/2, induces a bipartite 2kout-Ramsey-graph. Thus,
Theorem 1.10 readily implies Theorem 1.2 and Theorem 1.6.

We further remark that the constants in Theorem 1.10 depend on each other and so
we made no attempt to optimize them. It is worth mentioning though that one can take
kin = k1−δ

out for any constant δ > 0, and even kin = kout/polylog(n) and still supporting
outer-entropy kout = polylog(n).

We hope that two-source sub-extractors can be of use in some cases where two-source
extractors are required. Further, we believe that the techniques used for constructing sub-
extractors are of value in future constructions of two-source extractors.

1.2 Organization of this paper

In Section 2 we give an informal overview of the challenge-response mechanism. Section 3
contains a comprehensive and detailed overview of our construction and analysis. These two
sections are meant only for building up intuition. The reader may freely skip these sections
at any point as we make no use of the results that appear in them.
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In Section 4 we give some preliminary definitions and results that we need. Section 5
contains the formal description of the challenge-response mechanism. In Section 6 we present
the notions of entropy-trees and tree-structured sources. Then, in Section 7 we give the
formal construction of our sub-extractor, and analyze it in Section 8. Finally, in Section 9
we list some open problems.

2 Overview of the Challenge-Response Mechanism

Our construction of sub-extractors is based on the challenge-response mechanism that was
introduced in [BKS+10] and refined by [BRSW12]. As we are aiming for a self-contained pa-
per, in this section we explain how this powerful mechanism works. The challenge-response
mechanism is delicate and fairly challenging to grasp. Thus, to illustrate the way the mech-
anism works, we give a toy example in Section 2.4.

2.1 Motivating the challenge-response mechanism

We start by recalling the notation of a block-source.

Definition 2.1. A random variable X on n-bit strings is called an (n, k)-block-source, or
simply a k-block-source, if the following holds:

• H∞(left(X)) ≥ k, where left(X) is the length n/2 prefix of X.

• For any x ∈ supp(left(X)) it holds that H∞(right(X) | left(X) = x) ≥ k, where right(X)
is the length n/2 suffix of X.

In a recent breakthrough, Li [Li15] gave a construction of an extractor BExt for two n-bit
sources, where the first source is a polylog(n)-block-source and the second is a weak-source
with min-entropy polylog(n) (see Theorem 4.1). Since our goal is to construct a two-source
sub-extractor for outer-entropy polylog(n), a first attempt would be to show that any source
X with entropy polylog(n) has a subsource X ′ that is a polylog(n)-block-source. If this
assertion were to be true then BExt would have been a two-source sub-extractor.

This however is clearly not the case. Consider, for example, a source X that all of its
entropy is concentrated in its right-block right(X). Namely, left(X) is fixed to some constant
and right(X) has min-entropy k. Clearly, H∞(X) ≥ k, yet no subsource of X is even a
1-block-source.

This example holds only when the entropy is no larger than n/2. Indeed, one cannot
squeeze, say, 0.6n entropy to the n/2 bits of right(X). Restricting ourselves, for the moment,
to the very high entropy regime, we ask whether this example is the only problematic exam-
ple. In particular, is it true that any source with min-entropy 0.6n is a block-source? The
answer to this question is still no. Nevertheless, one can show that a 0.6n-weak-source on
n-bits has a low-deficiency subsource that is a 0.1n-block-source. This observation will be
important for us later on.
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Note that by this observation, BExt is a sub-extractor for two sources with min-entropy
0.6n, polylog(n). However, by the example above, BExt by itself is not a sub-extractor for
two sources with min-entropy less than 0.5n. Nevertheless, as we will see, BExt is a central
component in our construction.

Going back to the example, if only there were a magical algorithm that given a single
sample x ∼ X, would have been able to determine correctly whether or not left(X) is fixed
to a constant, then we would have been in a better shape as we would have known to
concentrate our efforts on right(X). Such an algorithm, however, is too much to hope for.
Indeed, given just one sample x ∼ X, one simply cannot tell whether the left block of X
is fixed or not. Still, the powerful challenge-response mechanism allows one to accomplish
almost this task. In the next section we present a slightly informal version of the challenge-
response mechanism. The actual mechanism is described in Section 5. Our presentation is
somewhat more abstract than the one used in [BKS+10, BRSW12].

2.2 The challenge-response mechanism

We start by presenting a dream-version of the challenge-response mechanism.

The challenge-response mechanism – dream version

For integers ` < n, a dream version of the challenge-response mechanism would be a poly(n)-
time computable function

DreamResp : {0, 1}n × {0, 1}n × {0, 1}` → {fixed, hasEntropy}

with the following property. For any two independent (n, polylog(n))-sources X, Y , and for
any function Challenge : {0, 1}n × {0, 1}n → {0, 1}`, the following holds:

• If Challenge(X, Y ) is fixed to a constant then

Pr
(x,y)∼(X,Y )

[DreamResp (x, y,Challenge(x, y)) = fixed] = 1.

• If H∞(Challenge(X, Y )) is sufficiently large then

Pr
(x,y)∼(X,Y )

[DreamResp (x, y,Challenge(x, y)) = hasEntropy] = 1.

Note that for any function Challenge, DreamResp distinguishes between the case that
Challenge(X, Y ) is fixed and the case that Challenge(X, Y ) has enough entropy. Unfortu-
nately, DreamResp will remain a dream. The actual challenge-response mechanism requires
more from the inputs and has a weaker guarantee on the output. The difference between
the dream version and the actual challenge-response mechanism contributes to why our sub-
extractor is defined the way it does, and so already in this section we present the actual
challenge-response mechanism (in a slightly informal manner).
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The actual challenge-response mechanism

For integers k < ` < n, the challenge-response mechanism is a poly(n)-time computable
function

Resp : {0, 1}n × {0, 1}n × {0, 1}` → {fixed, hasEntropy}
with the following property. For any two independent (n, polylog(n))-sources X, Y , and for
any function Challenge : {0, 1}n × {0, 1}n → {0, 1}`, the following holds:

• If Challenge(X, Y ) is fixed to a constant then there exist deficiency ` subsources X ′ ⊂
X, Y ′ ⊂ Y , such that

Pr
(x,y)∼(X′,Y ′)

[Resp(x, y,Challenge(x, y)) = fixed] = 1.

• If for any deficiency ` subsources X̂ ⊂ X, Ŷ ⊂ Y it holds that H∞(Challenge(X̂, Ŷ )) ≥
k, then

Pr
(x,y)∼(X,Y )

[Resp(x, y,Challenge(x, y)) = hasEntropy] ≥ 1− 2−k.

We emphasize the differences between the dream-version and the actual challenge-response
mechanism. First, even if Challenge(X, Y ) is fixed to a constant, it is not guaranteed that
Resp will correctly identify this on any sample from (X, Y ). In fact, it is not even guaran-
teed that Resp will identify this correctly with high probability over the sample. The actual
guarantee is that there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y , such that on any
sample (x, y) ∼ (X ′, Y ′), Resp will correctly output fixed. As our goal is to construct a
sub-extractor, this is good enough for us, as we can “imagine” that we are given samples
from X ′, Y ′ rather than from X, Y for the rest of the analysis (we do have to be careful when
dealing with error terms when moving to subsources, but we will ignore this issue for now).

The second thing to notice is that for the challenge-response mechanism to identify the
fact that Challenge(X, Y ) has entropy, a stronger assumption is made. Namely, it is not
enough that Challenge(X, Y ) has a sufficient amount of entropy, but rather we need that
Challenge(X̂, Ŷ ) has enough entropy for all low-deficiency subsources X̂ ⊂ X, Ŷ ⊂ Y . So,
informally speaking, for the challenge-response mechanism to identify entropy, this entropy
must be robust in the sense that the entropy exists even in all low-deficiency subsources.
Further, note that unlike the first case, in the second case Resp introduces a small error.

2.3 The three-types lemma

The challenge-response mechanism is indeed very impressive. However, the mechanism only
distinguishes between two extreme cases – no entropy versus high entropy. It is much more
desired to be able to distinguish between low entropy versus high entropy. Indeed, what if
the entropy in the left block of a source is too low to work with, yet the block is not constant
and so the challenge-response mechanism is inapplicable?

The next lemma shows that if we are willing to work with subsources then this is a non-
issue. Namely, every source has a low-deficiency subsource with a structure suitable for the
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challenge-response mechanism. We present here a slightly informal version of this lemma.
The reader is referred to Lemma 6.5 for a formal statement.

Lemma 2.2 (The three-types lemma). For any (n, k)-source X and an integer b < k, there
exists a deficiency 1 subsource X ′ ⊂ X such that (at least) one of the following holds:

• X ′ is a b-block-source.

• H∞(left(X ′)) ≥ k − b.

• left(X ′) is fixed to a constant and H∞(right(X ′)) ≥ k − b.

Take for example b =
√
k. Lemma 2.2, which is a variant of the two-types lemma by

Barak et al. [BRSW12], states a fairly surprising fact about weak-sources. Any source X
has a deficiency 1 subsource X ′ with a useful structure. If X ′ is not a block-source then
either essentially all of the entropy already appears in left(X ′), or otherwise left(X ′) is fixed
to a constant (great news for users of the challenge-response mechanism) and right(X ′) has
essentially all the entropy of X.

2.4 Playing with the challenge-response mechanism

Lemma 2.2 is an important supplement to the challenge-response mechanism. However, it
is still not even clear how the two together can be used to break the “0.5 barrier” discussed
in Section 2.1. For example, how they together can be used to give a sub-extractor for
outer-entropies 0.4n, polylog(n).

Lets try to see what can be said. Say X is an (n, 0.4n)-source. By Lemma 2.2, applied
with b =

√
n, there exists a deficiency 1 subsource X ′ of X, such that one of the following

holds:

• X ′ is a
√
n-block-source.

• H∞(left(X ′)) ≥ 0.4n−
√
n ≥ 0.3n.

• left(X ′) is fixed to a constant and H∞(right(X ′)) ≥ 0.4n−
√
n ≥ 0.3n.

Note that in the second case, left(X ′) has entropy-rate 0.6. Thus, it has a deficiency 1
subsource that is a block-source. Similarly, in the third case, right(X ′) has a deficiency 1
subsource that is a block-source. Thus, any (n, 0.4n)-source has a deficiency 2 subsource
X ′′ ⊂ X such that at least one of X ′′, left(X ′′), right(X ′′) is a

√
n-block-source.

Given this, even without resorting to the challenge-response mechanism, we know that
at least one of BExt(X ′′, Y ),BExt(left(X ′′), Y ),BExt(right(X ′′), Y ) is close to uniform. The
challenge-response mechanism allows us to obtain something stronger. Although we will not
be able to get a sub-extractor for outer-entropies 0.4n, polylog(n) this way, it is instructive
to see the technique being used. Set BExt to output ` = o(k) bits, where k = polylog(n) is
the outer-entropy of the second source. Consider the following algorithm.
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The toy algorithm.

On input x, y ∈ {0, 1}n

• Compute z(x, y) = Resp(x, y,BExt(left(x), y)).

• If z = fixed declare that BExt(right(x), y) is uniform.

• Otherwise, declare that one of BExt(x, y), BExt(left(x), y) is uniform.

The above algorithm does not look very impressive. Essentially, it only cuts down our
lack of knowledge a bit. Instead of declaring that one of three strings is close to uniform, it is
able to declare that one of at most two strings is close to uniform. Nevertheless, as mentioned
above, it is instructive to see the proof technique on this simple toy example. Moreover, as
we will see in Section 3.2, this algorithm is a special case of an algorithm by [BRSW12] that
will be important to our construction. We now prove that the algorithm’s declaration is
correct. More precisely, we prove the following.

Claim 2.3. Let X be an (n, 0.4n)-source, and let Y be an independent (n, polylog(n))-source.
Then, there exist deficiency O(`)-subsources X ′ ⊂ X, Y ′ ⊂ Y , such that with probability 1
over (x, y) ∼ (X ′, Y ′) the declaration of the algorithm is correct.

The proof of Claim 2.3 showcases the following three facts about low-deficiency sub-
sources. Non of these facts is very surprising, but we make extensive use of them throughout
the paper, and it is beneficial to see these facts in action on a simple example. Here we
give slightly informal statements. For the formal statements see Fact 4.3, Fact 4.4, and
Lemma 4.5.

Fact 2.4. If H∞(X) ≥ k and X ′ is a deficiency d subsource of X then H∞(X ′) ≥ k − d.

Fact 2.5. Let X be a random variable on n-bit strings. Let f : {0, 1}n → {0, 1}` be an
arbitrary function. Then, there exists a ∈ {0, 1}` and a deficiency ` subsource X ′ of X such
that f(x) = a for every x ∈ supp(X ′).

Lemma 2.6. Let X be a k-block-source, and let X ′ be a deficiency d subsource of X. Then,
X ′ is a k − d block-source.

Proof. We start by applying the three-types lemma as discussed above so to obtain a defi-
ciency 2 subsource of X with the properties lists above. For ease of notation, we denote this
source by X.

Assume first that left(X) is fixed. Note that in this case BExt(left(X), Y ) is a deterministic
function of Y . Since the output length of BExt is `, Fact 2.5 implies that there exists a
deficiency ` subsource Y ′ ⊂ Y such that BExt(left(X), Y ′) is fixed to a constant. We are
now in a position to apply the challenge-response mechanism so to conclude that there exist
deficiency ` subsources X ′ ⊂ X, Y ′′ ⊂ Y ′ such that

Pr [z(X ′, Y ′′) = fixed] = 1. (2.1)
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Note that in this case, H∞(right(X)) ≥ 0.3n. Therefore, by Fact 2.4, H∞(right(X ′)) ≥
0.3n − ` ≥ 0.29n. Since right(X ′) has length n/2, we have that right(X ′) has entropy-
rate 0.58, and so by Lemma 2.2, there exists a deficiency 1 subsource X ′′ of X ′ such that
X ′′ is an Ω(n)-block-source. Similarly, since H∞(Y ) = k = ω(`), Fact 2.4 implies that
H∞(Y ′′) = k − 2` = polylog(n). Thus, BExt(right(X ′′), Y ′′) is close to uniform.

To summarize, in the case that left(X) is fixed, there exist deficiency O(`)-subsources
X ′′ ⊂ X, Y ′′ ⊂ Y on which the algorithm correctly declares that BExt(right(X ′′), Y ′′) is
uniformly distributed.

Consider now the case that left(X) is not fixed. By Lemma 2.2, either X is a
√
n-block-

source, or otherwise H∞(left(X)) ≥ 0.3n, and so left(X) has a deficiency 1 subsource that
is a
√
n-block-source. Therefore, the algorithm’s declaration in this case is correct even on

deficiency O(1) subsources.

In this section we gained some familiarity with the challenge-response mechanism and
with the three-types lemma (Lemma 2.2), which is an important supplement for the mech-
anism. Hopefully, this experience will assist the reader in the sequel.

3 Overview of the Construction and Analysis

In this section, we present our construction of sub-extractors and give a comprehensive and
detailed overview of the proof, though we allow ourselves to be somewhat imprecise whenever
this contributes to the presentation. The formal proof, which can easily be recovered by the
content of this section, appears in Section 8. In Section 3.1, we introduce the notions of
entropy-trees and tree-structured sources. A variant of this notion was used by [BRSW12].
Then, in Section 3.2, we overview the approach taken by [BRSW12] for their construction of
two-source dispersers. Once the results needed from [BRSW12] are in place, in Section 3.3
we give an overview for the rest of our construction. In the following sections of this overview
we give further details.

3.1 Entropy-trees and tree-structured sources

Motivating the notion of an entropy-tree

We already saw that a source with entropy-rate 0.6 has a deficiency 1 subsource that is a
block-source. By applying the three-types lemma (Lemma 2.2), we saw that any source X
with entropy-rate 0.4 has a deficiency 2 subsource that is either a block-source, or otherwise
one of left(X), right(X) is a block-source. We, however, are interested in sources X with only
polylog(n) entropy. Is it true that there is a block-source “lying somewhere” in X (or in a
low-deficiency subsource of X)? Yes it is, though we have to dig deeper.

Say X has min-entropy k. Lemma 2.2, set with b =
√
k, implies that there exists

a deficiency 1 subsource X ′ of X that is either a
√
k-block-source, or otherwise one of

left(X ′), right(X ′) has almost all the entropy of X. In other words, if X ′ is not a block-
source then the entropy-rate of one of left(X ′), right(X ′) has almost doubled.
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Assume that X ′ is not a block-source, and that left(X ′) has entropy k −
√
k. By

Lemma 2.2, set again with b =
√
k, there exists a deficiency 1 subsource X ′′ ⊂ X ′ such

that either left(X ′′) is a
√
k-block-source, or otherwise one of left(left(X ′′)), right(left(X ′′))

has min-entropy k−2
√
k. That is, if also left(X ′′) is not a

√
k-block-source then the entropy-

rate of one of left(left(X ′′)), right(left(X ′′)) is almost four-times the original entropy-rate of
X.

At some point we are bound to find a block-source. Indeed, if we failed to find a block-
source in the first r iterations then there is a deficiency r subsource X(r) of X and a length
n · 2−r block of X(r) that has entropy k− r

√
k. Thus, if k− r

√
k > 0.6n · 2−r then this block

has a deficiency 1 subsource that is a block-source. In particular, if k = ω(log2 n) then a
block-source will be found in the first log(n/k) +O(1) iterations.

As we apply Lemma 2.2 at most log n times and since in each application we move to a
deficiency 1 subsource, we conclude that every (n, k)-source has a deficiency log n subsource
that contains a block-source. This block-source can be found by following a certain “path of
entropy” that determines which of the two halves of the current block of the source contains
essentially all the entropy.

Entropy-trees

The above discussion naturally leads to what we call an entropy-tree and sources that have
a tree-structure. An entropy-tree is a complete rooted binary tree T where some of its nodes
are labeled by one of the following labels: H,B,F, stand for high entropy, block-source, and
fixed, respectively. The nodes of an entropy-tree are labeled according to rules that capture
any possible entropy structure of a subsource obtained by the process described above. The
rules are:

Figure 1: An example of an entropy-tree. Unlabeled nodes and edges to them do not appear
in the figure.

• The root of T , denoted by root(T ), is labeled by either H or B, expressing the fact that
we assume the source itself has high entropy, and may even be a block-source.

• There is exactly one node in T that is labeled by B, denoted by vB(T ). This expresses
the fact we proved, namely, if one digs deep enough, a block-source will be found. The
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uniqueness of the node labeled by B captures the fact that we terminate the process
once a block-source is found.

• If v is a non-leaf that has no label, or otherwise labeled by F or B, then its sons have
no label. This rule captures the fact that a node has no label if we are not interested
in the block of the source that is associated with the node. Thus, if a block is fixed we
do not try to look for a block-source inside it. Similarly, if the node is a block-source
we stop the search.

• If v is a non-leaf that is labeled by H then the sons of v can only be labeled according
to the following rules:

– If leftSon(v) is labeled by F then rightSon(v) is labeled by either H or B.

– If leftSon(v) is labeled by either H or B then rightSon(v) has no label.

Note that these rules capture the guarantee of Lemma 2.2.

The entropy-path. With every entropy-tree T we associate a path that we call the
entropy-path of T . This is the unique path from root(T ) to vB(T ). We say that a path
in T contains the entropy-path if it starts at root(T ) and goes through vB(T ) (note that we
allow an entropy-tree to have nodes that are descendants of vB(T ). We just do not allow
these nodes to be labeled).

Tree-structured sources

Now that we have defined entropy-trees, we can say what does it mean for a source to have
a T -structure, for some entropy-tree T . To this end we need to introduce some notations.
Let n be an integer that is a power of 2. With a string x ∈ {0, 1}n, we associate a depth
log n complete rooted binary tree, where with each node v of T we associate a substring xv
of x in the following natural way. xroot(T ) = x, and for v 6= root(T ), if v is the left son of its
parent, then xv = left(xparent(v)); otherwise, xv = right(xparent(v)).

Let T be a depth log n entropy-tree. An n-bit source X is said to have a T -structure
with parameter k if for any node v in T the following holds:

• If v is labeled by F then Xv is fixed to a constant.

• If v is labeled by H then H∞(Xv) ≥ k.

• If v is labeled by B then Xv is a
√
k-block-source.

With the notions of entropy-trees and tree-structured sources, we can summarize the
discussion of this section by saying that any (n, k)-source, with k = ω(log2 n), has a deficiency
log n-subsource that has a T -structure with parameter Ω(k) for some entropy-tree T (that
depends on the underlying distribution of X). Therefore, for the purpose of constructing sub-
extractors, we may assume that we are given two independent samples from tree-structured
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sources rather than from general weak-sources. Further, by Fact 2.4 and by Lemma 2.6 it
follows that if X ′ is a deficiency d subsource of a source having a T -structure with parameter
k = ω(d), then X ′ has a T -structure with parameter Ω(k). In particular, we can move
to o(k)-deficiency subsources throughout the analysis and still maintain the original tree-
structure of the source.

3.2 Identifying the entropy-path

Tree-structured sources certainly seem nicer to work with than general weak-sources. How-
ever, it is still not clear what good is this structure for if we do not have any information
regarding the entropy-path.

Remarkably, by applying the challenge-response mechanism in a carefully chosen manner,
Barak et al. [BRSW12] were able to identify the entropy-path of the entropy-tree T given
just one sample from x ∼ X, where X is a T -structured source, and one sample from y ∼ Y ,
where Y is a general weak-source that is independent of X. We now turn to describe the
algorithm used by [BRSW12]. Before we do so, it is worth mentioning that Barak et al.
proved something somewhat different. Indeed, they considered a variant of entropy-trees
and had to prove something a bit stronger than what we need. Nevertheless, their proof
can be adapted in a straightforward manner to obtain the result we describe next. For
completeness, we reprove what is needed for our construction in Section 8.1.

What does it mean to identify the entropy-path?

What do we mean by saying that an algorithm identifies the entropy-path of an entropy-
tree T? This is an algorithm that on input x, y ∈ {0, 1}n, outputs a depth log n rooted
complete binary tree and a marked root-to-leaf path on that tree, denoted by pobserved(x, y)
– the observed entropy-path. Ideally, the guarantee of the algorithm would have been the
following. If x is sampled from a T -structured source X and y is sampled independently
from a weak-source Y , then pobserved(X, Y ) contains the entropy-path of T with probability 1.
That is, for any (x, y) ∈ supp((X, Y )), if we draw the path pobserved(x, y) on the entropy-tree
T then this path starts at root(T ) and goes through vB(T ).

Note that the path pobserved(x, y) is allowed to continue arbitrarily after visiting vB(T ).
Requiring that pobserved(x, y) will stop at vB(T ) is a very strong requirement. In particular,
it will conclude the construction of the sub-extractor. Indeed, once the block-source XvB(T )

is found, one can simply output BExt(XvB(T ), Y ).
This was an ideal version of what we mean by identifying an entropy-path. For our

needs, we will be satisfied with a weaker guarantee. Following [BRSW12], we will show that
there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y , such that with high probability over
(x, y) ∼ (X ′, Y ′) it holds that pobserved(x, y) contains the entropy-path of T .

The fact that we only have a guarantee on low-deficiency subsources is good enough
for us as we are aiming for a sub-extractor. The fact that there is an error (that did not
appear in the analysis of [BRSW12]) should be handled with some care. Indeed, note that
by moving to a deficiency d subsource, an ε error in the original source can grow to at most
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2d · ε restricted to the subsource. We will make sure that the error is negligible compared
to the deficiency we consider in the rest of the analysis. Thus, from here on we will forget
about the error introduced in this step of identifying the entropy-path.

The algorithm of [BRSW12] for identifying the entropy-path

We now describe the algorithm used by [BRSW12] for identifying the entropy-path of an
entropy-tree T . The basic idea was depicted already in the toy algorithm from Section 2.4.
In fact, what the toy algorithm was actually managed to do was to find the entropy-path in
depth 2 tree-structured sources.

We first note that if root(T ) = vB(T ) then any observed entropy-path will contain vB(T ).
So, we may assume that this is not the case. Let v be the parent of vB(T ) in T . As a first
step, we want to determine which of the two sons of v is vB(T ). To this end, we will use the
toy algorithm from Section 2.4. More precisely, node v declares that its left son is vB(T ) if
and only if

Response
(
xv, y,BExt

(
xleftSon(v), y

))
= hasEntropy. (3.1)

Lets pause for a moment to introduce some notations. If Equation (3.1) holds, we say
that the node v (x, y)-favors its left-son; otherwise, we say that v (x, y)-favors its right son.
Moreover, we define the good son of v to be vB(T ). More generally, for a node u 6= vB(T )
that is an ancestor of vB(T ), we define the good son of u to be its unique son that is an
ancestor of vB(T ). Note that by following the good sons from root(T ) to vB(T ) one recovers
the entropy-path of T . Thus, to recover the entropy-path of T it is enough that any ancestor
of vB(T ) on the entropy-path of T favors its good son.

By following the proof of Claim 2.3, one can see that if XleftSon(v) is fixed then Equa-
tion (3.1) holds with probability 0 on some low-deficiency subsources of X, Y . Further, by
the challenge-response mechanism together with Fact 2.4 and Lemma 2.6, one can show that
if leftSon(v) = vB(T ) then with high probability over (X, Y ), Equation (3.1) holds. Observe
that by the definition of an entropy-tree, these are the only two possible cases.

We showed how vB(T ) can convince its parent v that it is its good son. The trick was
to use the block-source-ness of XvB(T ) so to generate a proper challenge. Considering one
step further, we ask the following. If u is the parent of v, how can v convince u that it is
its good son? After all, v is not a block-source. The elegant solution of Barak et al. is as
follows. Given x, y ∈ {0, 1}n, the challenge of v will contain not only BExt(xv, y) but also
BExt(xw, y), where w is v’s favored son. Thus, if v’s favored son happens to be its good son
vB(T ), then the challenge posed by v will not be responded by u.

More generally, node v decides which of its two sons it (x, y)-favors not according to
Equation (3.1) but rather according to wether or not

Response
(
xv, y,Challenge

(
xleftSon(v), y

))
= hasEntropy, (3.2)

where Challenge(xleftSon(v), y) is a matrix with at most log n rows (according to the depth
of the tree) that contains BExt(xleftSon(v), y) as row, as well as BExt(xw, y), where w is the
(x, y)-favored son of leftSon(v), and also BExt(xr, y), where r is the (x, y)-favored son of w,
etc.
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The strategy of [BRSW12] for determining the output

Having found the entropy-path of T , we are in a much better shape. We know that one of
the nodes on the path is a block-source. The trouble is that we still do not know which one.
We conclude this section by saying only a few words about the strategy taken by [BRSW12]
as at this point our strategy deviates from theirs. It is worth mentioning that the strategy
taken by Barak et al. for determining the output is one place in the construction that poses
a bottleneck for supporting entropy o(2

√
logn). It is also the reason why the number of output

bits in their construction is at most O(log log n) and why the construction can only be a
disperser rather than a sub-extractor.

In order to output a non-constant bit, as required by a 1 output bit disperser, Barak et al.
assumed that the source X has some more structure. Not only X should have a T -structure,
but it is also required that left(XvB(T )) has its own tree-structure. In particular, somewhere in
the left block of XvB(T ) there should be a second block-source. Note that this extra structure
required from X can be assumed with almost no cost in parameters. Indeed, after applying
the process from Section 3.1 to X so to obtain a deficiency log n subsource X ′ of X that has
a tree-structure, one can simply apply the process again, this time to left(X ′vB(T )), so to find
a deficiency 2 log n subsource of X with the desired structure.

Having this “double-block-source” structure, Barak et al. were able to carefully tune the
parameters of the challenge-response mechanism so that with some probability vB(T ) will
be convinced that XleftSon(vB(T )) contains a block-source, yet with some probability it will fail
to notice this. With some more delicate work, the fact that vB(T )’s decision is not constant
can be carried upwards all the way to root(T ) and in turn, can be translated to an output
bit that is non-constant.

3.3 The strategy for the rest of our construction

To carry the analysis of our sub-extractor, we require even more structure from our sources
than the structure required by [BRSW12]. First, we require both X and Y to have a tree-
structure. In previous works [BKS+10, BRSW12], the second source Y was used mainly
to “locate the entropy” of the source X, and the only assumption on Y was that it has a
sufficient amount of entropy. We however will make use of the structure of Y as well.

Second, we will need X to have a “triple-block-source” structure. That is, we assume
that X has a TX-structure with a node vtop(TX) corresponding to the block-source Xvtop(TX).
We then assume that left(Xvtop(TX)) has its own tree-structure with a node vmid(TX) corre-
sponding to a second block-source Xvmid(TX). Finally, we require that left(Xvmid(TX)) has its
own tree-structure with a node vbot(TX) that corresponds to a third block-source Xvbot(TX).

As for Y , our analysis only requires a “double-block-source” structure. Though, to keep
the notation cleaner we will assume that Y also has a triple-block-source structure. In
particular, the entropy-tree of Y , denoted by TY , has nodes that we denote by utop(TY ),
umid(TY ), and ubot(TY ) analogous to vtop(TX), vmid(TX), and vbot(TX) in TX .

In fact, we allow ourselves to change the definition of an entropy-tree given in the previous
section so that it will capture this “triple-block-source” structure, but the reader should not
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Figure 2: The “triple-block-source” structure of an entropy-tree.

worry about these details at this point. For the formal definition see Section 6.
Given this structure of the sources, we are ready to give a high-level overview of our

construction. In the subsequent sections of the overview, we give further details. Let X be
a TX-structured source and let Y be a TY -structured source, for some entropy-trees TX , TY .
At the first step, the sub-extractor identifies the entropy-path of TX and the entropy-path
of TY using the algorithm of [BRSW12]. More precisely, given the samples x, y, we compute
two paths denoted by

pobserved(x, y) = v0(x, y), v1(x, y), . . . , vlog(n)−1(x, y),

qobserved(x, y) = u0(x, y), u1(x, y), . . . , ulog(n)−1(x, y).

This step must be done with some care. From technical reasons, we cannot use x, y to first
find the entropy-path of TX and then to find the entropy-path of TY . Thus, in some sense,
the two paths must be computed simultaneously.

At this point we have that there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y , such
that for any (x, y) ∈ supp((X ′, Y ′)) it holds that pobserved(x, y) (resp. qobserved(x, y)) contains
the entropy-path of TX (resp. TY ). In particular, we have that vdepth(vtop(TX))(X

′, Y ′) is fixed
to vtop(TX), and the same holds for vmid(TX), vbot(TX), as well as for utop(TY ), umid(TY ), and
ubot(TY ). To keep the notation clean, we write X, Y for X ′, Y ′ in this proof overview. That
is, we assume that the entropy-paths are correctly identified on the tree-structured sources.

At the second step of the algorithm we identify vmid(TX) with high probability over
subsources X ′ ⊂ X, Y ′ ⊂ Y . This sounds fantastic – having found vmid(TX), we can
simply output BExt(X ′vmid(TX), Y

′). Unfortunately, however, the only way we know how to

find vmid(TX) requires us to fix left(X ′vmid(TX)). That is, once found, X ′vmid(TX) is no longer a

block-source. Moreover, to find vmid(TX) we also have to fix left(Y ′umid(TY )).

We elaborate on how to find vmid(TX) in Section 3.4. Then in Section 3.5, we show how to
determine the output of the sub-extractor even after loosing the block-structure of Xvmid(TX).
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3.4 Finding vmid(TX)

The node-path challenge and vobservedmid (x, y)

Given x, y ∈ {0, 1}n, the key idea we use for identifying vmid(TX) on pobserved(x, y) lies in the
design of a challenge that we call the node-path challenge. Let v be a node in TX , and let
q = w0, . . . , wlog(n)−1 be a root-to-leaf path in TY . We define the challenge NodePathCh(xv, yq)
to be the log(n)-rows Boolean matrix such that for i = 0, 1, . . . , log(n)− 1,

NodePathCh(xv, yq)i = BExt (ywi , xv) .

We define vobserved
mid (x, y) to be the node v on pobserved(x, y) with the largest depth such that

Response
(
x, y,NodePathCh

(
xv, yqobserved(x,y)

))
= hasEntropy. (3.3)

Figure 3: The node-path challenge.

Ideally, we would want to prove that vobserved
mid (x, y) = vmid(TX) for any (x, y) ∈ supp((X, Y )).

By now we know that this is too much to ask for, and in any case, it suffices to prove that
there exist low-deficiency subsources X ′ ⊂ X, Y ′ ⊂ Y such that with high probability over
(x, y) ∼ (X ′, Y ′) it holds that vobserved

mid (x, y) = vmid(TX). Unfortunately, we will not be able
to prove that either. What we will be able to show is that there exist strings α, β such that
the following holds. Define

Xα = X |
(
XleftSon(vmid(TX)) = α

)
,

Yβ = Y |
(
YleftSon(umid(TY )) = β

)
,
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and let imid(TX) denote the depth of vmid(TX).
The way we choose α, β is with respect to the error that we constantly ignore throughout

this overview. Thus, assume that α, β are chosen in such a way that allows us to continue
ignoring the error. No further requirement is posed on α, β.

Proposition 3.1. There exist low-deficiency subsources Xα,β ⊂ Xα, Yα,β ⊂ Yβ, such that
with high probability over (x, y) ∼ (Xα,β, Yα,β), it holds that

∀i > imid(TX) Response
(
x, y,NodePathCh

(
xvi(x,y), yqobserved(x,y)

))
= fixed,

Response
(
x, y,NodePathCh

(
xvmid(TX), yqobserved(x,y)

))
= hasEntropy.

Note that by the way we defined vobserved
mid (x, y), Proposition 3.1 yields that vobserved

mid (x, y) =
vmid(TX) with high probability over (x, y) ∼ (Xα,β, Yα,β). In particular, this gives us an
algorithm for computing vmid(TX) – simply go up the computed path pobserved(x, y) until
a node v is found for which Equation (3.3) holds. In the rest of this section we prove
Proposition 3.1.

The challenges of descendants of vmid(TX) on pobserved(x, y) are properly responded

Proposition 3.1 has two parts. First, it states that the node-path challenges associated with
nodes below vmid(TX) on the path pobserved(x, y) are responded with high probability over
the samples from some low-deficiency subsources of Xα, Yβ. Second, Proposition 3.1 argues
that the node-path challenge associated with vmid(TX) is unresponded with high probability
over the samples.

Lets first consider the nodes below vmid(TX) on pobserved(x, y). Naturally, we want to
use the challenge-response mechanism. For that we must find low-deficiency subsources
X ′α ⊂ Xα, Y ′β ⊂ Yβ such that for all i > imid(TX), the challenge

NodePathCh
(

(X ′α)vi(X′α,Y ′β), (Y
′
β)qobserved(X′α,Y

′
β)

)
(3.4)

is fixed to a constant. As was done in the analysis of the toy algorithm from Section 2.4, to
this end it is enough that the random variable

NodePathCh
(
(X ′α)vi(X′α,Yβ), (Yβ)qobserved(X′α,Yβ)

)
is a deterministic function of Yβ. Indeed, in such case and since the challenge consists of
a relatively small number of bits, we can apply Fact 2.5 to find a low-deficiency subsource
Y ′β ⊂ Yβ such that Equation (3.4) is fixed to a constant.

For i > imid(TX), our starting point is the random variable

NodePathCh
(
(Xα)vi(Xα,Yβ), (Yβ)qobserved(Xα,Yβ)

)
.

To make sure that this random variable depends solely on Yβ, we need to show that the
dependence in all three syntactical appearances of Xα can be removed. We start with
qobserved(Xα, Yβ).
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Claim 3.2. There exists a deficiency log n subsource X ′α of Xα such that qobserved(X
′
α, Yβ) is

fixed to a constant.

Proof. Let ibot(TY ) denote the depth of ubot(TY ). To prove the claim, we first recall that the
path qobserved(Xα, Yβ) contains the entropy-path of TY . In particular, we have that the nodes
u0(Xα, Yβ), . . . , uibot(TY )(Xα, Yβ) are fixed. It is left to argue that there is a low-deficiency
subsource X ′α ⊂ Xα such that the remaining nodes uibot(TY )+1(X ′α, Yβ), . . . , ulog(n)−1(X ′α, Yβ)
are fixed as well.

Let us first consider the node uibot(TY )+1(Xα, Yβ) that is the son of uibot(TY )(Xα, Yβ) =
ubot(TY ). According to Equation (3.2), node ubot(TY ) decides which of its two sons will be
on qobserved(Xα, Yβ) according to whether or not

Response
(
(Yβ)ubot(TY ), Xα,Challenge((Yβ)leftSon(ubot(TY )), Xα)

)
= hasEntropy. (3.5)

By the definition of an entropy-tree, ubot(TY ) is a descendant of leftSon(umid(TY )). Further,
by definition, (Yβ)leftSon(umid(TY )) is fixed to β. Thus, also (Yβ)ubot(TY ) and (Yβ)leftSon(ubot(TY ))

are fixed to some constants. Therefore, the Boolean expression in Equation (3.5) is a deter-
ministic function of Xα. By applying Fact 2.5, we obtain a deficiency 1 subsource X ′ of Xα

such that the Boolean expression in Equation (3.5) is fixed. In particular, uibot(TY )+1(X ′, Yβ)
is fixed to a constant.

At this point we can apply the same argument to ibot(TY ) + 2. Indeed, uibot(TY )+1(X ′, Yβ)
is fixed to a constant and all appearances of Yβ in the Boolean expression that is analogous to
Equation (3.5) are again fixed to constants for the same reason as before. Since this process
terminates after at most log n steps and since in each iteration we move to a deficiency 1
subsource of the previous obtained subsource, the claim follows.

Given Claim 3.2, we turn to show that for any i > imid(TX),

NodePathCh
(
(X ′α)vi(X′α,Yβ), (Yβ)qobserved(X′α,Yβ)

)
(3.6)

is a deterministic function of Yβ. By the discussion above, this will prove the first part of
Proposition 3.1.

By Claim 3.2, we already know that qobserved(X ′α, Yβ) is fixed to a constant. Thus, it
suffices to show that (X ′α)vi(X′α,Yβ) is a deterministic function of Yβ for all i > imid(TX). By
an argument similar to the one used in the proof of Claim 3.2, one can show that for any
such i, vi(X

′
α, Yβ) is a deterministic function of Yβ. Note further that, by the definition

of an entropy-tree, since i > imid(TX) we have that vi(X
′
α, Yβ) is always (that is, for every

(x, y) ∈ supp((X ′α, Yβ))) a descendant of leftSon(vmid(TX)). Since (X ′α)leftSon(vmid(TX)) is fixed
to a constant we conclude that (X ′α)vi(X′α,Yβ) is a deterministic function of Yβ.

By the discussion above, we are now in a position to apply Fact 2.5 so to obtain a
low-deficiency subsource Y ′β ⊂ Yβ such that

NodePathCh
(

(X ′α)vi(X′α,Y ′β), (Y
′
β)qobserved(X′α,Y

′
β)

)
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is fixed to a constant. We can then apply the challenge-response mechanism to show that
there exist low-deficiency subsources Xα,β ⊂ X ′α, Yα,β ⊂ Y ′β such that for any (x, y) ∈
supp((Xα,β, Yα,β)) it holds that

∀i > imid(TX) Response
(
x, y,NodePathCh

(
xvi(x,y), yqobserved(x,y)

))
= fixed.

The challenge of vmid(TX) is unresponded

To prove Proposition 3.1, it is left to show that the node-path challenge associated with
vmid(TX) is unresponded. More precisely, it suffices to show that with high probability over
(x, y) ∼ (Xα,β, Yα,β), it holds that

Response
(
x, y,NodePathCh

(
xvmid(TX), yqobserved(x,y)

))
= hasEntropy.

Since utop(TY ) is on the path qobserved(Xα,β, Yα,β), the matrix

NodePathCh
(
(Xα,β)vmid(TX), (Yα,β)qobserved(Xα,β ,Yα,β)

)
contains the row

BExt
(
(Yα,β)utop(TY ), (Xα,β)vmid(TX)

)
. (3.7)

Since Xvmid(TX) is a block-source, (Xα)vmid(TX) has a significant amount of entropy. Indeed,
Xα is obtained from X by fixing XleftSon(vmid(TX)) = left(Xvmid(TX)). Therefore, by Fact 2.5,
(Xα,β)vmid(TX) also has a significant amount of entropy.

We now observe that (Yα,β)utop(TY ) is a block-source. Indeed, Yutop(TY ) is a block-source and
Yβ is obtained from Y by fixing YleftSon(umid(TY )). Since Yumid(TY ) is a block-source, this fixing
leaves some entropy in (Yβ)umid(TY ). Recall further that (Yβ)umid(TY ) lies inside left((Yβ)utop(TY ))
as umid(TY ) is a descendant of leftSon(utop(TY )). Thus, we see that (Yα,β)utop(TY ) is a block-
source.

Consider now any low-deficiency subsources X̂ ⊂ Xα,β, Ŷ ⊂ Yα,β. By Fact 2.5 and by

Lemma 2.6 we have that X̂vmid(TX) has a significant amount of entropy and that Ŷutop(TY )

is a block-source (with some deterioration in parameters). Thus, for any low-deficiency
subsources X̂, Ŷ of Xα,β, Yα,β, respectively, we have that the challenge matrix associated
with vmid(TX) contains a row that is close to uniform. In particular this matrix is close
to having high entropy. Thus, by the challenge-response mechanism, we have that the
node-path challenge associated with vmid(TX) is unresponded with high probability over
(x, y) ∼ (Xα,β, Yα,β), as desired.

3.5 Determining the output

At the last step of the algorithm we compute the output of the sub-extractor. The output
of the sub-extractor is defined as

SubExt(x, y) = BExt
(
xvobserved

mid (x,y) ◦ x, y
)
,
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where by xvobserved
mid (x,y) ◦ x we denote the block-source with first block xvobserved

mid (x,y) and second
block that equals x. Technically, we need to append the first block with zeros so that both
blocks will have the same length, and also append y with zeros.

There are two potential problems with applying BExt the way we do above. First, we see
that the block-source fed to BExt depends on the sample y, which is problematic since y is
used as a sample from the weak-source as well. This, however, is a non-issue. Indeed, recall
that with high probability over (x, y) ∼ (Xα,β, Yα,β) it holds that vobserved

mid (x, y) = vmid(TX),
and so ignoring a small error, the computation of the extractor BExt above is the same as

BExt
(
xvmid(TX) ◦ x, y

)
.

Now that we have shown that there are no dependencies between the two samples fed to
BExt, we only need to make sure that the first sample is indeed coming from a block-source
when sampling (x, y) ∼ (Xα,β, Yα,β).

Too see why this is true, recall that vmid(TX) is a descendant of leftSon(vtop(TX)) and
that Xvtop(TX) is a block-source. Since Xα,β is obtained from X by fixing X leftSon(vmid(TX))

(and by moving to low-deficiency subsources) and since Xvmid(TX) is a block-source, we have
that (Xα,β)vtop(TX) is also a block-source. Therefore, (Xα,β)vmid(TX) ◦ Xα,β is also a block-
source. This shows that the application of BExt above is valid, and that the output is close
to uniform with high probability over (Xα,β, Yα,β).

4 Preliminaries

4.1 Standard (and less standard) notations and definitions

The logarithm in this paper is always taken base 2. For every natural number n ≥ 1, define
[n] = {1, 2, . . . , n}.

Strings and matrices. Let n be an integer that is a power of 2, namely n = 2m for
some non-negative integer m. Let x ∈ {0, 1}n. For i ∈ [n], we let xi denote the i’th bit
of x. For ∅ 6= I ⊆ [n], we let XI denote the projection of X to the coordinates in I. We
denote by left(x) the n/2 leftmost bits of x and by right(x) the n/2 rightmost bits of x. That
is, left(x) = x1 · · ·xn/2 and right(x) = x(n/2)+1 · · ·xn. We denote the concatenation of two
strings x, y by x ◦ y. Given an r × n matrix x, for i = 0, 1, . . . , r − 1, we let xi denote row i
of x.

Trees. Let T be a complete rooted binary tree. We denote the root of T by root(T ).
Throughout the paper we consider trees where some of the nodes are labeled by labels from
a ground set L. If v is a labeled node in a tree T , we denote its label by label(v). If v is a
non-leaf in T , we denote the left and right sons of v by leftSon(v), rightSon(v), respectively.
If v is not the root of T , parent(v) denotes the parent of v. The depth of T is denoted by
depth(T ). The depth of a node v in T , denoted by depth(v), is the distance in edges from
root(T ) to v. Note that depth(root(T )) = 0.
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Random variables and distributions. We sometimes abuse notation and syntactically
treat random variables and their distribution as equal. Let X, Y be two random variables.
We say that Y is a deterministic function of X if the value of X determines the value of Y .
Namely, there exists a function f such that Y = f(X).

Associating strings with trees. Let n be a power of 2 and let x ∈ {0, 1}n. The tree
that is associated with x, denoted by Tx, is a depth log n complete rooted binary tree, where
with each node v of Tx we associate a substring xv of x as follows:

• xroot(T ) = x.

• For v 6= root(T ), if v is the left son of its parent, then xv = left(xparent(v)); otherwise,
xv = right(xparent(v)).

Statistical distance. The statistical distance between two distributions X, Y on a com-
mon domain D is defined by

SD (X, Y ) = max
A⊆D
{|Pr[X ∈ A]−Pr[Y ∈ A] |} .

If SD(X, Y ) ≤ ε we say that X is ε-close to Y .

Min-entropy. The min-entropy of a random variable X is defined by

H∞(X) = min
x∈supp(X)

log2

(
1

Pr[X = x]

)
.

If X is supported on {0, 1}n, we define the min-entropy rate of X by H∞(X)/n. In such
case, if X has min-entropy k or more, we say that X is an (n, k)-weak-source.

4.2 Li’s block-source–weak-source extractor

Let X be a random variable on n bit strings, and assume n is even. We say that X is an
(n, k)-block-source if the following holds:

• H∞(left(X)) ≥ k.

• For any x ∈ supp(left(X)) it holds that H∞(right(X) | left(X) = x) ≥ k.

We sometimes omit the length n of X and say that X is a k-block-source.
In a recent breakthrough, Li [Li15] gave a construction of an extractor for two n-bit

sources, where the first source is a polylog(n)-block-source and the second is a weak-source
with min-entropy polylog(n). Our construction heavily relies on Li’s extractor.

22



Theorem 4.1 ([Li15]). There exists a universal constant γ > 0 such that the following holds.
For all integers n, k with k ≥ log12 n, there is a poly(n)-time computable function

BExt : {0, 1}n × {0, 1}n → {0, 1}m

such that if X is a k-block-source, where each block is on n/2 bits, and Y is an independent
(n, k)-source, then

SD ((BExt(X, Y ), Y ), (Um, Y )) ≤ ε,

and
SD ((BExt(X, Y ), X), (Um, X)) ≤ ε,

where m = 0.9k and ε = 2−k
γ
.

Let t < n be even integers. We sometimes apply BExt on strings x ∈ {0, 1}t and
y ∈ {0, 1}n and write BExt(x, y). Formally, we actually compute BExt(x′, y) where x′ is
obtained by appending (n− t)/2 zeros before and after x. This way of padding x preserves
the block-structure of x.

4.3 Subsources

The notion of a subsource was first explicitly introduced and studied by Barak et al. [BKS+10].
We start by giving the definition of a subsource and then collect some facts about subsources.

Definition 4.2 (Subsource). Given random variables X and X ′ on {0, 1}n, we say that X ′

is a deficiency d subsource of X and write X ′ ⊂ X if there exists a set A ⊆ {0, 1}n such that
(X | A) = X ′ and Pr[X ∈ A] ≥ 2−d. More precisely, for every a ∈ A, Pr[X ′ = a] is defined
by Pr[X = a | X ∈ A] and for a 6∈ A, Pr[X ′ = a] = 0.

Fact 4.3 ([BRSW12], Fact 3.11). If X is an (n, k)-source and X ′ is a deficiency d subsource
of X then X ′ is an (n, k − d)-source.

Fact 4.4 ([BRSW12], Fact 3.13). Let X be a random variable on n-bit strings. Let f : {0, 1}n →
{0, 1}m be a function. Then, there exists a ∈ {0, 1}m and a deficiency m subsource X ′ of X
such that f(x) = a for every x ∈ supp(X ′).

Lemma 4.5 ([BRSW12], Corollary 3.19). Let X be a k-block-source, and let X ′ be a defi-
ciency d subsource of X. Then, X ′ is ε-close to being a k − d− log(1/ε)− 1 block-source.

5 The Challenge-Response Mechanism

In this section we further abstract the challenge-response mechanism that was introduced
in [BKS+10] and refined by [BRSW12]. This abstraction will make it easier for us to apply the
mechanism in our proofs. The reader is referred to Section 2 for an intuitive-level overview
of the mechanism.
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Theorem 5.1. For integers ` < n, there exists a poly(n)-time computable function

Resp : {0, 1}n × {0, 1}n × {0, 1}` → {fixed, hasEntropy}

with the following property. For any two independent (n, k)-sources X, Y with k > log10 n
and for any function Challenge : {0, 1}n × {0, 1}n → {0, 1}`, the following holds:

• If Challenge(X, Y ) is fixed to a constant then there exist deficiency 2` subsources X ′ ⊂
X, Y ′ ⊂ Y , such that

Pr
(x,y)∼(X′,Y ′)

[Resp (x, y,Challenge(x, y)) = fixed] = 1.

• If for any deficiency 20` subsources X̂ ⊂ X, Ŷ ⊂ Y it holds that Challenge(X̂, Ŷ ) is
ε-close to having min-entropy k, then

Pr
(x,y)∼(X,Y )

[Resp (x, y,Challenge(x, y)) = fixed] ≤ (2−k + ε) · poly(n).

The proof of Theorem 5.1 readily follows from the following theorem.

Theorem 5.2 (Theorem 4.3, [BRSW12]). There exist universal constants γ, c such that for
any integer n, there exists a poly(n)-time computable function

SE : {0, 1}n × {0, 1}n →
(
{0, 1}`

)r
,

with ` = γk and r = nc, such that the following holds. For any (n, k)-independent sources
X, Y , with k > log10 n, it holds that:

• Let a be any fixed ` bit string. Then, there are subsources Xa ⊂2` X, Ya ⊂2` Y and an
index i ∈ [r] such that Pr [SE(Xa, Ya)i = a] = 1.

• Given any particular row index i ∈ [r], (X, Y ) is 2−10`-close to a convex combination
of subsources such that for every (X̂, Ŷ ) in the combination,

– X̂ is a deficiency 20` subsource of X.

– Ŷ is a deficiency 20` subsource of Y .

– X̂, Ŷ are independent.

– SE(X̂, Ŷ )i is fixed to a constant.

Proof of Theorem 5.1. We first describe the algorithm for computing the response function
Response(x, y,Challenge(x, y)) on input x, y ∈ {0, 1}n. The algorithm computes SE(x, y),
where the output length of SE is set to `. The algorithm then checks whether or not
Challenge(x, y) appears as a row in SE(x, y). If so the algorithm outputs fixed; otherwise
it outputs hasEntropy.
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We turn to the analysis. Assume first that Challenge(X, Y ) is fixed. By Theorem 5.2,
there exist deficiency 2` subsources X ′ ⊂ X, Y ′ ⊂ Y and an index i ∈ [r] such that with
probability 1 over (x, y) ∼ (X ′, Y ′) it holds that SE(x, y) = Challenge(x, y), thus proving the
first part of the theorem.

Assume now that for any deficiency 20` subsources X̂ ⊂ X, Ŷ ⊂ Y , it holds that
Challenge(X̂, Ŷ ) is ε-close to having min-entropy k. Consider any fixed i ∈ [r]. By Theo-
rem 5.2, (X, Y ) is 2−10`-close to a convex combination of subsources such that every (X̂, Ŷ )
in the combination has the four listed properties. Since Challenge(X̂, Ŷ ) is ε-close to having
min-entropy k, we have that

Pr
(x,y)∼(X̂,Ŷ )

[Challenge(x, y) = SE(x, y)i] ≤ 2−k + ε.

Accounting for the distance from (X, Y ) to the convex combination,

Pr
(x,y)∼(X,Y )

[Challenge(x, y) = SE(x, y)i] ≤ 2−k + ε+ 2−10`.

Therefore, by the union bound over all i ∈ [r],

Pr
(x,y)∼(X,Y )

[∃i ∈ [r] Challenge(x, y) = SE(x, y)i] ≤ (2−k + ε+ 2−10`)r.

As r = poly(n) and since k ≤ ` ≤ 10`, the proof follows.

6 Entropy-Trees and Tree-Structured Sources

Definition 6.1. An entropy-tree T is a complete rooted binary tree where some of the nodes
of the tree are labeled by one of the following labels: F,H,Btop,Bmid,Bbot, according to the
following set of rules:

• label(root(T )) ∈ {H,Btop}.

• There is exactly one node in T that is labeled by Btop, one node that is labeled by Bmid,
and one node labeled by Bbot, denoted by vtop(T ), vmid(T ) and vbot(T ), respectively.
Further, vmid(T ) is a descendant of leftSon(vtop(T )), and vbot(T ) is a descendant of
leftSon(vmid(T )). We denote itop(T ) = depth(vtop(T )), imid(T ) = depth(vmid(T )), and
ibot(T ) = depth(vbot(T )).

• If v is a non-leaf that has no label or otherwise is labeled by F or Bbot then both its sons
have no label.

• If v is a non-leaf labeled by H,Btop or Bmid then leftSon(v) has a label. Further,

– If label(leftSon(v)) = F then rightSon(v) has a label and label(rightSon(v)) 6= F.

– If label(leftSon(v)) 6= F then the right son of v has no label.
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In our proofs we consider two sources, each having its own tree-structure. In such cases,
we use v to denote a node in one entropy-tree and u to denote a node in the other entropy-
tree. So, for example, we will use vtop(TX) to denote the node in the first entropy-tree labeled
by Btop, whereas we use utop(TY ) to denote the node in the second entropy-tree labeled by
Btop.

Definition 6.2 (Entropy-path). Let T be an entropy-tree. The entropy-path of T is the path
that starts at root(T ) and ends at vbot(T ). We denote the nodes on this path by root(T ) =
v0(T ), . . . , vibot(T )(T ) = vbot(T ). We say that a path p in T contains the entropy-path of T if
p starts at root(T ) and goes through vbot(T ).

Definition 6.3 (Good son). Let T be an entropy-tree and let v 6= vbot(T ) be an ancestor of
vbot(T ). The good son of v is defined to be the unique son of v that is an ancestor of vbot(T ).

Definition 6.4. Let T be an entropy-tree. We say that an n-bit random variable X has a
T -structure with parameters (k, ε) if the following holds. For any node v in T :

• If label(v) = F then Xv is fixed to a constant.

• If label(v) = Btop then Xv is ε-close to a k1/2-block-source.

• If label(v) = Bmid then Xv is ε-close to a k1/4-block-source.

• If label(v) = Bbot then Xv is ε-close to a k1/8-block-source.

• If label(v) = H then the following holds:

– If v is an ancestor of vtop(T ) then H∞(Xv) ≥ k.

– If v is a descendant of vtop(T ) and an ancestor of vmid(T ) then H∞(Xv) ≥ k1/2.

– If v is a descendant of vmid(T ) then H∞(Xv) ≥ k1/4.

We further make use of the following lemma, which is analogous to the two-types lemma
of Barak et al. (see [BRSW12], Lemma 6.8).

Lemma 6.5 (Three-types lemma). For any (n, k)-source X there exists a deficiency 1 sub-
source X ′ ⊂ X such that (at least) one of the following holds:

• H∞(left(X ′)) ≥ k −
√
k − 1.

• X ′ is a
√
k-block-source.

• left(X ′) is fixed to a constant and H∞(right(X ′)) ≥ k −
√
k − 1.

For the proof of Lemma 6.5, we make use of the following “fixing entropies” lemma
by Barak et al. [BRSW12]. We state the lemma for a special case (and with slightly
stronger parameters, which are easily achievable for that specific case by following the proof
of [BRSW12]).
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Lemma 6.6 ([BRSW12], Lemma 3.20). Let X be an (n, k)-source. Let 0 < τ1 < τ2 < n be
any two numbers. Set τ0 = 0 and τ3 = n. Then, there exist a deficiency 1 subsource X ′ ⊂ X
and an index i ∈ {0, 1, 2} such that the following holds:

• For any fixing of left(X ′), H∞(right(X ′)) ∈ [τi, τi+1].

• H∞(left(X ′)) + τi+1 ≥ k − 1.

Proof of Lemma 6.5. Set τ1 =
√
k, τ2 = k −

√
k − 1 and apply Lemma 6.6 to obtain a

deficiency 1 subsource X ′′ ⊂ X and i ∈ {0, 1, 2}. We consider three cases, according to the
value of i.

• If i = 0 then by the second item of Lemma 6.6, H∞(left(X ′′)) + τ1 ≥ k − 1. Thus,
H∞(left(X ′′)) ≥ k −

√
k − 1. We then take X ′ = X ′′.

• If i = 1 then for any fixing of left(X ′′), we have that H∞(right(X ′′)) ∈ [τ1, τ2] =
[
√
k, k−

√
k− 1]. By the second item of Lemma 6.6, H∞(left(X ′′)) ≥ k− 1− τ2 =

√
k.

Therefore, X ′′ is a
√
k-block-source, and we take X ′ = X ′′.

• If i = 2 then for any fixing of left(X ′′), we have that H∞(right(X ′′)) ≥ τ2 = k−
√
k−1.

We take X ′ be a subsource of X ′′ conditioned on an arbitrary fixing of left(X ′′).

The following fact follows by applying Lemma 6.5 iteratively as was described in Sec-
tion 3.1 (see also Lemma 6.10 of [BRSW12], which proves essentially the same result).

Fact 6.7. Let X be an (n, k)-source with k = ω(log8 n). Then, there exist an entropy-
tree T and a deficiency log n subsource XT ⊂ X that has a T -structure with parameters
(k/2, 2−Ω(k1/10)).

7 The Two-Source Sub-Extractor

In this section we describe our two-source sub-extractor. Let n be a power of 2, and let ` be
a parameter. On input x, y ∈ {0, 1}n, the computation of the sub-extractor is done in three
steps.

Step 1 – Identify the entropy-paths

Setting the challenges. With each node v of Tx, we associate a log(n)×` Boolean matrix,
denoted by Challenge(xv, y), computed from leaves to root, recursively as follows. All entries
in rows 0, . . . , depth(v)−1 of Challenge(xv, y) are fixed to 0. Row depth(v) of Challenge(xv, y)
contains BExt(xv, y), where BExt is the extractor from Theorem 4.1 set to output ` bits.
If v is a non-leaf, rows depth(v) + 1, . . . , log(n) − 1 are copied from the respective rows of
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Challenge(xleftSon(v), y) or from the respective rows of Challenge(xrightSon(v), y) according to the
following rule. If

Resp
(
xv, y,Challenge

(
xleftSon(v), y

))
= fixed

then the remaining rows are taken from the corresponding rows of Challenge(xrightSon(v), y).
Otherwise, the rows are taken from the corresponding rows of Challenge(xleftSon(v), y). In the
first case we say that v (x, y)-favors its right son, and in the second case we say that v
(x, y)-favors its left son.

Analogously, with each node u of Ty we associate a log(n) × ` Boolean matrix, denoted
by Challenge(yu, x), defined recursively as follows. All entries in rows 0, . . . , depth(u) − 1
of Challenge(yu, x) are fixed to 0. Row depth(u) of Challenge(yu, x) contains BExt(yu, x). If
u is a non-leaf, rows depth(u) + 1, . . . , log(n) − 1 are copied from the respective rows of
Challenge(yleftSon(u), x) or from the respective rows of Challenge(yrightSon(u), x) according to the
following rule. If

Resp
(
yu, x,Challenge

(
yleftSon(u), x

))
= fixed

then the remaining rows are taken from the corresponding rows of Challenge(yrightSon(u), x).
Otherwise, the rows are taken from the corresponding rows of Challenge(yleftSon(u), x). In the
first case we say that u (x, y)-favors its right son, and in the second case we say that u
(x, y)-favors its left son.

Computing the entropy-paths. Let v0(x, y), v1(x, y), . . . , vlog(n)−1(x, y) be the root-to-
leaf path in Tx defined by the property that vi(x, y) (x, y)-favors vi+1(x, y) for all i =
0, 1, . . . , log(n)−2. Similarly, let u0(x, y), u1(x, y), . . . , ulog(n)−1(x, y) be the root-to-leaf path
in Ty defined by the property that ui(x, y) (x, y)-favors ui+1(x, y) for all i = 0, 1, . . . , log(n)−
2. We denote v0(x, y), . . . , vlog(n)−1(x, y) by pobserved(x, y) and call this path the observed
entropy-path of Tx. Similarly, we denote u0(x, y), . . . , ulog(n)−1(x, y) by qobserved(x, y) and call
this path the observed entropy-path of Ty.

The computation done in Step 1. Given x, y ∈ {0, 1}n, at step 1 the sub-extractor
computes pobserved(x, y) and qobserved(x, y). Clearly, this computation can be done in poly(n)-
time.

Step 2 – Identify vmid(TX)

Given x, y, pobserved(x, y), and qobserved(x, y), at the second step the algorithm computes
vobserved

mid (x, y) as follows.

Setting the node-path challenges. Set `′ = `/ log3 n. Let v be a node in Tx and let
p = w0, . . . , wlog(n)−1 be a root-to-leaf path in Ty. The node-path challenge associated with
(v, p), denoted by NodePathCh(xv, yp), is a log(n) × `′ Boolean matrix, defined as follows.
For j = 0, . . . , log(n)− 1,

NodePathCh(xv, yp)j = BExt(ywj , xv),
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where BExt is the extractor from Theorem 4.1 set to output `′ bits.

Computing vobservedmid (x, y). We define vobserved
mid (x, y) to be the node v in pobserved(x, y) with

the largest depth such that

Response
(
x, y,NodePathCh

(
xv, yqobserved(x,y)

))
= hasEntropy.

If no such node exists we define v, arbitrarily, as root(TX). Note that computing vobserved
mid (x, y)

can be done in time poly(n).

Step 3 – Determine the output

Given x, y and vobserved
mid (x, y) computed in the previous step, he output of the sub-extractor

is defined by

SubExt(x, y) = BExt
(
xvobserved

mid (x,y) ◦ x, y
)
,

where by xvobserved
mid (x,y) ◦ x we mean the block-source with first block xvobserved

mid (x,y) and second
block that contains x. Technically, we need to append xvobserved

mid (x,y) with zeros so to obtain a
length n string. Similarly, we append y with n zeros so to obtain a 2n bit string.

Recap

We end this section by recapping the three steps in the computation of the sub-extractor.
On input x, y ∈ {0, 1}n

1. Compute pobserved(x, y) and qobserved(x, y).

2. Compute vobserved
mid (x, y).

3. Output BExt
(
xvobserved

mid (x,y) ◦ x, y
)

.

8 Analysis of the Construction

In this section we prove Theorem 1.10 by analyzing the algorithm described in Section 7.
The proof is done in three steps, following the three steps of the construction. By Fact 6.7,
we may assume that X has a TX-structure and that Y has a TY -structure for some entropy-
trees TX , TY , both with parameters (k/2, 2−Ω(k1/10)). This costs only log n in deficiency and

introduce a small error of 2−Ω(k1/10). Throughout the analysis we only consider subsources
with deficiency o(k1/10) and so this error can be ignored.
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8.1 Analysis of Step 1

We start this section by proving the following claim.

Claim 8.1. There exist deficiency ` log2 n subsources XF ⊂ X, YF ⊂ Y with the following
property. For every node v in TX that is labeled by F, it holds that Challenge((XF)v, YF)
is fixed to a constant. Further, for every node u of TY that is labeled by F, it holds that
Challenge((YF)u, XF) is fixed to a constant.

Proof. Let v be a node in TX that is labeled by F. Since X has a TX-structure, Xv is fixed to
a constant, and so Challenge(Xv, Y ) is a deterministic function of Y . Since Challenge(Xv, Y )
consists of ` log n bits, Fact 4.4 implies that there exists a deficiency ` log n-subsource Y ′ ⊂ Y
such that Challenge(Xv, Y

′) is fixed to a constant. Repeating this argument for every v ∈ TX
that is labeled by F, we get a subsource YF ⊂ Y such that Challenge(Xv, YF) is fixed to a
constant for every v in TX that is labeled by F. By the definition of an entropy-tree, there
is at most one node labeled by F in each level of TX and since depth(TX) = log n, we have
that YF is a deficiency ` log2 n subsource of Y .

Since YF is a subsource of Y , for every node u in TY that is labeled by F it holds that (YF)v
is fixed to a constant. We now perform the analogous process on TY to obtain a deficiency
` log2 n subsource XF ⊂ X such that for every node u in TY that is labeled by F it holds that
Challenge((YF)u, XF) is fixed to a constant. Note that since XF is a subsource of X, it also
holds that Challenge((XF)v, YF) is fixed to a constant for every v in TX that is labeled by F.
Thus, informally speaking, by performing the analogous process to TY we do not “ruin” the
desired property we obtained first for TX .

Next we show that there exist low-deficiency subsources XFI ⊂ XF, YFI ⊂ YF (FI stands
for “fixed identified”), restricted to which, SubExt correctly identifies the nodes in TX , TY
that are labeled by F.

Claim 8.2. There exist deficiency O(` log2 n) subsources XFI ⊂ XF, YFI ⊂ YF with the
following property. For every node v of TX that is labeled by F and for every node u of TY
that is labeled by F, it holds that

Pr [parent(v) (XFI, YFI)-favors v] = 0,

Pr [parent(u) (XFI, YFI)-favors u] = 0.

Proof. Let v be a node in TX that is labeled by F. We first note that by the definition of
an entropy-tree, root(TX) cannot be labeled by F, and so it is valid to refer to parent(v).
Further, by the definition of an entropy-tree, if a node is labeled by F then it must be the
left son of its parent. Thus, parent(v) (x, y)-favors v if and only if

Response
(
xparent(v), y,Challenge

(
xleftSon(parent(v)), y

))
= hasEntropy. (8.1)

By Claim 8.1, Challenge((XF)v, YF) is fixed to a constant. Thus, to apply the challenge-
response mechanism, we only need to show that both (XF)parent(v) and YF have a sufficient
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amount of entropy. By the definition of an entropy-tree, since label(v) = F, label(parent(v)) ∈
{H,Btop,Bmid} and so Xparent(v) is 2−k

Ω(1)
-close to having min-entropy Ω(k1/4). Since XF is

a deficiency O(` log2 n) subsource of X, Fact 4.3 implies that (XF)parent(v) is 2−k
Ω(1)

-close to

having min-entropy Ω(k1/4)−O(` log2 n) = Ω(k1/4). By a similar argument, YF is 2−k
Ω(1)

-close
to having min-entropy Ω(k). Since k1/4 = ω(log10 n), Theorem 5.1 implies that there exist
deficiency 2` log n subsources X ′ ⊂ XF, Y ′ ⊂ YF such that for any (x, y) ∈ supp((X ′, Y ′)),
Equation (8.1) fails to hold. Thus, for any such x, y it holds that parent(v) does not (x, y)-
favor v.

We repeat this argument for every node v in TX that is labeled by F and obtain deficiency
2` log2 n subsources X ′′ ⊂ XF, Y ′′ ⊂ YF with the property that for every v in TX that is
labeled by F it holds that

Pr [parent(v) (X ′′, Y ′′)-favors v] = 0.

This is possible since the entropy of Y and the entropies of Xv for v labeled by one of
{H,Btop,Bmid} remain large enough throughout the process.

We now apply the same argument for every node u in TY that is labeled by F. Since X ′′

and Y ′′ are deficiency O(` log2 n) subsources of XF, YF, respectively, we can obtain deficiency
O(` log2 n) subsources XFI ⊂ XF, YFI ⊂ YF, such that for any node u in TY that is labeled by
F it holds that

Pr [parent(u) (XFI, YFI)-favors u] = 0.

We note that since XFI and YFI are subsources of X ′′, Y ′′, it also holds that for every node v
in TX that is labeled by F,

Pr [parent(v) (XFI, YFI)-favors v] = 0.

That is, we have not “ruined” the desired property we obtained first in TX when working on
TY . This concludes the proof of the claim.

Up to this point, we found low-deficiency subsources XFI ⊂ X and YFI ⊂ Y such that the
nodes labeled by F in TX , TY are correctly identified by the challenge-response mechanism
when applied to samples from XFI, YFI. Next we prove that with high probability over
(XFI, YFI), the entropy-paths in TX , TY are identified correctly by the sub-extractor in the
sense that the observed entropy-paths contain the entropy-paths of the respective entropy-
trees.

Claim 8.3. Except with probability 2−Ω(`) over (x, y) ∼ (XFI, YFI), it holds that

∀i ∈ {0, . . . , ibot(TX)} vi(x, y) = vi(TX),

∀i ∈ {0, . . . , ibot(TY )} ui(x, y) = ui(TY ).

Proof. We prove the first equation in the statement of the claim. The proof of the second
equation is similar, and then the proof of the claim follows by the union bound. We first
observe that by the definition of an entropy-tree, for any ancestor v 6= vbot(TX) of vbot(TX)
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it holds that label(leftSon(v)) = F if and only if rightSon(v) is the good son of v. Indeed,
on one hand, if leftSon(v) is labeled by F then leftSon(v) cannot be an ancestor of vbot(TX)
as all of leftSon(v)’s descendants have no label. On the other hand, since v has a label and
its label can only be one of H,Btop,Bmid, if its left son is not labeled by F then rightSon(v)
has no label, and so rightSon(v) cannot be an ancestor of v as all of its descendants have no
label.

Ideally, given this observation, we would have liked to prove by a backward induction on
i = ibot(TX)− 1, . . . , 1, 0 that

Pr
(x,y)∼(XFI,YFI)

[∀j ∈ {i, . . . , ibot(TX)− 1} vj(TX) (x, y)-favors its good son ] ≥ 1− 2−Ω(`).

Indeed, note that the claim will then follow by considering i = 0. However, we need to prove
a stronger statement so to have a stronger induction hypothesis, as otherwise we will not be
able to carry the induction step. More precisely, set t = 20` log n. Let εibot(TX)−1 = 2−Ω(`).
For i = ibot(TX)− 2, . . . , 1, 0, define εi = (2−Ω(`) + εi+1) · poly(n). We prove by a backward
induction on i = ibot(TX) − 1, . . . , 1, 0 that for any deficiency it subsources X ′ ⊂ XFI,
Y ′ ⊂ YFI, it holds that

Pr
(x,y)∼(X′,Y ′)

[∀j ∈ {i, . . . , ibot(TX)− 1} vj(TX) (x, y)-favors its good son ] ≥ 1− εi.

We note that the claim follows by considering i = 0 as ε0 = 2−Ω(`) · 2O(log2 n) = 2−Ω(`).
We start with the base of the induction i = ibot(TX) − 1. Let X ′ ⊂ XFI, Y

′ ⊂ YFI
be deficiency (ibot(TX) − 1)t subsources. Consider two cases according to the label of
leftSon(vibot(TX)−1). If label(leftSon(vibot(TX)−1)) = F then by Claim 8.2,

Pr
(x,y)∼(XFI,YFI)

[
vibot(TX)−1 (x, y)-favors leftSon

(
vibot(TX)−1

)]
= 0.

Since X ′, Y ′ are subsources of XFI, YFI, respectively, the same holds for (x, y) ∼ (X ′, Y ′).
Moreover, as rightSon(vibot(TX)−1) is the good son of vibot(TX)−1, the basis of the induction for
this case is proven.

Consider now the case label(leftSon(vibot(TX)−1)) 6= F. By the observation above, in this
case, the good son of vibot(TX)−1 is its left son and so leftSon(vibot(TX)−1) = vbot(TX). Thus,
vibot(TX)−1 (x, y)-favors its good son if and only if

Response
(
xvibot(TX )−1

, y,Challenge
(
xvbot(TX), y

))
= hasEntropy. (8.2)

Thus, to conclude the proof of the base case, it is enough to show that Equation (8.2)
holds with probability 1 − 2−Ω(`) over (x, y) ∼ (X ′, Y ′). To this end, first note that
Challenge(xvbot(TX), y) contains BExt(xvbot(TX), y) as a row. By Theorem 5.1, it is enough

to show that for all deficiency t subsources X̂ ⊂ X ′, Ŷ ⊂ Y ′, it holds that BExt(X̂vbot(TX), Ŷ )
is close to uniform.

Since X̂ is a deficiency O(ibott+` log2 n) = O(` log2 n) subsource of X and since Xvbot(TX)

is 2−k
Ω(1)

-close to an Ω(k1/8)-block-source, X̂vbot(TX) is also 2−k
Ω(1)

-close to an Ω(k1/8)-block-

source. Further, since Ŷ is a deficiency O(` log2 n) subsource of Y , and since H∞(Y ) ≥ k,
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H∞(Ŷ ) = Ω(k). Since k1/8 = ω(log12 n), Theorem 4.1 implies that BExt(X̂vbot(TX), Ŷ ) is

2−k
Ω(1)

-close to a uniform string on ` bits. Thus, by Theorem 5.1, Equation (8.2) holds with
probability at least 1− 2−Ω(`).

We now proceed to the induction step. Let 0 ≤ i < ibot(TX)− 1. Let X ′ ⊂ XFI, Y
′ ⊂ YFI

be deficiency it subsources. We want to show that

Pr
(x,y)∼(X′,Y ′)

[∀j ∈ {i, . . . , ibot(TX)− 1} vj(TX) favors its good son ] ≥ 1− εi.

By the induction hypothesis, for any deficiency (i + 1)t subsources X ′′ ⊂ XFI, Y
′′ ⊂ YFI, it

holds that

Pr
(x,y)∼(X′′,Y ′′)

[∀j ∈ {i+ 1, . . . , ibot(TX)− 1} vj(TX) favors its good son ] ≥ 1− εi+1.

As was done in the basis of the induction, we consider two cases. If label(leftSon(vi(TX))) = F
then by Claim 8.2,

Pr
(x,y)∼(XFI,YFI)

[vi(TX) (x, y)-favors its good son] = 1.

Since X ′ ⊂ XFI and Y ′ ⊂ YFI, the same holds for (x, y) ∼ (X ′, Y ′). Thus, by the induction
hypothesis

Pr
(x,y)∼(X′,Y ′)

[∀j ∈ {i, . . . , ibot(TX)− 1} vj(TX) favors its good son ] ≥ 1− εi+1 ≥ 1− εi.

Consider now the case label(leftSon(vi(TX))) 6= F. By the observation made at the beginning
of the proof, in this case the good son of vi(TX) is its left son. Thus, vi(TX) (x, y)-favors its
good son if and only if

Response
(
xvi(TX), y,Challenge

(
xleftSon(vi(TX)), y

))
= hasEntropy. (8.3)

By Theorem 5.1, it is enough to show that for any deficiency t subsources X̂ ⊂ X ′,
Ŷ ⊂ Y ′, it holds that Challenge(X̂leftSon(vi(TX)), Ŷ ) is 2−k

Ω(1)
-close to having min-entropy `.

Since X̂ is a deficiency t subsource of X ′, and since X ′ is a deficiency it subsource of XFI,
we have that X̂ is a deficiency (i+ 1)t subsource of XFI. Similarly, Ŷ is a deficiency (i+ 1)t
subsource of YFI. Thus, by the induction hypothesis,

Pr
(x,y)∼(X̂,Ŷ )

[∀j ∈ {i+ 1, . . . , ibot(TX)− 1} vj(TX) favors its good son ] ≥ 1− εi+1.

By the above equation and by the definition of Challenge, except with probability εi+1 over
(x, y) ∼ (X̂, Ŷ ), it holds that BExt(xvbot(TX), y) appears as a row in Challenge(xvi+1(TX), y).

Since X̂ is a deficiency O((i + 1)t + ` log2 n) = O(` log2 n) subsource of X and since

Xvbot(TX) is 2−k
Ω(1)

-close to an Ω(k1/8)-block-source, X̂vbot(TX) is also 2−k
Ω(1)

-close to an

Ω(k1/8)-block-source. Further, since Ŷ is a deficiency O(` log2 n) subsource of Y and since
H∞(Y ) ≥ k, H∞(Ŷ ) = Ω(k). As we assume k1/8 = ω(log12 n), Theorem 4.1 implies that

BExt(X̂vbot(TX), Ŷ ) is 2−k
Ω(1)

-close to uniform. Thus, except with probability εi+1 + 2−k
Ω(1)

,

Challenge(X̂leftSon(vi(TX)), Ŷ ) has min-entropy `. Thus, by Theorem 5.1, Equation (8.3) holds
except with probability 1− (2−Ω(`) + εi+1) · poly(n) = 1− εi. This concludes the proof of the
claim.

33



8.2 Analysis of Step 2

Informally speaking, in this section we prove that the sub-extractor correctly identifies
vmid(TX) in some carefully chosen subsources of XFI, YFI. More precisely, we would have
wanted to prove a statement of the following form:

A wishful claim. There exist low-deficiency subsources X ′ ⊂ XFI, Y
′ ⊂ YFI such that

with high probability over (x, y) ∼ (X ′, Y ′), vobserved
mid (x, y) = vmid(TX).

Unfortunately, we will not be able to prove this statement. We will, however, be able to
prove the same statement for X ′, Y ′ that have high-deficiency in XFI, YFI. Still, X ′, Y ′ will
have enough entropy and structure so to carry out the rest of the analysis. Furthermore,
the error term that we are carrying will not cause any harm even after moving to these
high-deficiency subsources.

For α ∈ supp((XFI)leftSon(vmid(TX))) and β ∈ supp((YFI)leftSon(umid(TY ))), we define

Xα = XFI | ((XFI)leftSon(vmid(TX)) = α),

Yβ = YFI | ((YFI)leftSon(umid(TY )) = β).

Let B be the set of all (x, y) ∈ supp((XFI, YFI)) such that

∃i ∈ {0, . . . , ibot(TX)} vi(x, y) 6= vi(TX) ∨
∃i ∈ {0, . . . , ibot(TY )} ui(x, y) 6= ui(TY ). (8.4)

By Claim 8.3,
Pr[(XFI, YFI) ∈ B] ≤ 2−Ω(`).

Thus, by averaging, there exist α, β such that

Pr[(Xα, Yβ) ∈ B] ≤ 2−Ω(`).

These are the subsources Xα ⊂ XFI, Yβ ⊂ YFI that we will work with. We think of (x, y) ∈ B
as an “error” and ignore this event for now. We later accumulate the error coming from
this event while making sure to treat the error correctly when moving into subsources of
(Xα, Yβ). More precisely, recall that by moving to deficiency d subsource, an error of ε in
the source can “grow” to at most 2d · ε restricted to the subsource. Since the error term
is 2−Ω(`) and since we will move to deficiency o(`)-subsources, the error will remain 2−Ω(`)

in the subsources that we will restrict to. Thus, we assume that Equation (8.4) holds. In
particular, we assume that vitop(TX)(Xα, Yβ) = vtop(TX), vimid(TX)(Xα, Yβ) = vmid(TX), etc.

Recall that vobserved
mid (x, y) is defined to be the node v in pobserved(x, y), with the largest

depth such that

Response
(
x, y,NodePathCh

(
xv, yqobserved(x,y)

))
= hasEntropy. (8.5)

Thus, to show that vmid(TX) is correctly identified on low-deficiency subsources of (Xα, Yβ),
we first show that there exist low-deficiency subsources Xα,β ⊂ Xα, Yα,β ⊂ Yβ such that with
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high probability over (x, y) ∼ (Xα,β, Yα,β), Equation (8.5) does not hold with v = vi(x, y)
for all i > imid(TX). This is the content of the following claim. Afterwards, in Claim 8.7,
we show that with high probability over (x, y) ∼ (Xα,β, Yα,β), Equation (8.5) holds with
v = vimid(TX)(x, y) = vmid(TX).

Claim 8.4. There exist deficiency O(`′ log2 n)-subsources Xα,β ⊂ Xα, Yα,β ⊂ Yβ such that
with probability 1− 2−Ω(`) over (x, y) ∼ (Xα,β, Yα,β), it holds that

∀i > imid(TX) Response
(
x, y,NodePathCh

(
xvi(x,y), yqobserved(x,y)

))
= fixed. (8.6)

Towards proving Claim 8.4, we start by proving the following two claims.

Claim 8.5. There exists a deficiency log n-subsource X ′α ⊂ Xα such that qobserved(X
′
α, Yβ) is

fixed to a constant.

Proof. Recall that qobserved(Xα, Yβ) is the path

u0(Xα, Yβ), . . . , uibot(TY )(Xα, Yβ), uibot(TY )+1(Xα, Yβ), . . . , ulog(n)−1(Xα, Yβ).

By Equation (8.4), for i ≤ ibot(TY ) it holds that ui(Xα, Yβ) = ui(TY ), and so for such i,
ui(Xα, Yβ) is fixed to a constant. We now consider the case i > ibot(TY ). Consider first
the case i = ibot(TY ) + 1. In this case, ui(Xα, Yβ) determines which of the two sons of
uibot(TY )(x, y) = ubot(TY ) is on the observed entropy-path qobserved(Xα, Yβ). Recall that this
decision is based on whether or not

Response
(
(Yβ)ubot(TY ), Xα,Challenge

(
(Yβ)leftSon(ubot(TY )), Xα

))
= hasEntropy. (8.7)

Since ubot(TY ) and leftSon(ubot(TY )) are descendants of leftSon(umid(TY )), as follows by the
definition of an entropy-tree, and since (Yβ)leftSon(umid(TY )) is fixed to β, it also holds that
(Yβ)ubot(TY ) and (Yβ)leftSon(ubot(TY )) are fixed to constants. Thus, Equation (8.7) is determined
only by Xα. Since Equation (8.7) gives one bit of information on Xα, by Fact 4.4, there
exists a deficiency 1 subsource X ′ ⊂ Xα such that ui(X

′, Yβ) is fixed to a constant.
We now repeat this argument for i = ibot(TY ) + 2, . . . , log(n) − 1. In each iteration we

make sure that the next descendant of ubot(TY ) is fixed to a constant on a low-deficiency
subsource of Xα with Yβ. Since we repeat this process for at most log n iterations, we will
eventually obtain a deficiency log n-subsource X ′α ⊂ Xα such that qobserved(X ′α, Yβ) is fixed to
a constant, as desired. Accounting back for the error, note that since ` = ω(log n), it holds
that Pr[(X ′α, Yβ) ∈ B] ≤ 2−Ω(`).

Claim 8.5 allows us to set the ground for the challenge-response mechanism:

Claim 8.6. For any i > imid(TX),

NodePathCh
(
(X ′α)vi(X′α,Yβ), (Yβ)qobserved(X′α,Yβ)

)
is a deterministic function of Yβ.
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Proof. By Claim 8.5 we have that qobserved(X ′α, Yβ) is fixed to a constant. Thus, it suffices to
show that (X ′α)vi(X′α,Yβ) is a deterministic function of Yβ.

We start by considering the case i = imid(TX) + 1. In this case, vi(X
′
α, Yβ) is fixed to

a constant. Indeed, since i = imid(TX) + 1 ≤ ibot(TX), it holds by Equation (8.4) that
vi(Xα, Yβ) = vi(TX) and so, since X ′α is a subsource of Xα, vi(X

′
α, Yβ) = vi(TX).

The case i > imid(TX) + 1 follows by a different logic, similar to that used in the proof
of Claim 8.5. Lets first consider the case i = imid(TX) + 2. Recall that (Xα)leftSon(vmid(TX)) is
fixed to a constant. Thus, also (X ′α)leftSon(vmid(TX)) is fixed to a constant. Now, vi(X

′
α, Yβ) is

defined to be one of the two sons of leftSon(vmid(TX)) according to the Boolean value of the
expression

Response
(
(X ′α)leftSon(vmid(TX)), Yβ,Challenge

(
(X ′α)leftSon(leftSon(vmid(TX))), Yβ

))
= hasEntropy.

Since (X ′α)leftSon(vmid(TX)) is fixed to a constant, the above equation is determined only by Yβ.
This shows that vi(X

′
α, Yβ) is a deterministic function of Yβ for i = imid(TX) + 2. A similar

argument can be used to show that the same holds for any i > imid(TX) + 1.
To conclude the proof of the claim, we need to show that (X ′α)vi(X′α,Yβ) is a deterministic

function of Yβ for i > imid(TX). Recall that for any such i, vi(X
′
α, Yβ) is a descendant of

leftSon(vmid(TX)) determined only by Yβ. The claim then follows as (X ′α)leftSon(vmid(TX)) is
fixed to a constant.

We are now ready to prove Claim 8.4.

Proof of Claim 8.4. By Claim 8.6,

NodePathCh((X ′α)vi(X′α,Yβ), (Yβ)qobserved(X′α,Yβ))

is a deterministic function of Yβ for all i > imid(TX). Thus, there exists a deficiency
O(`′ log2 n) = o(`) subsource Y ′β ⊂ Yβ such that for all i > imid(TX),

NodePathCh((X ′α)vi(X′α,Y ′β), (Y
′
β)qobserved(X′α,Y

′
β))

is fixed to a constant. By Theorem 5.1, and accounting for the error, there exist deficiency
2`′ log2 n = o(`) subsources Xα,β ⊂ X ′α, Y ′α,β ⊂ Y ′β, such that with probability 1− 2−Ω(`) over
(x, y) ∼ (Xα,β, Yα,β) Equation (8.6) holds.

We note that this application of Theorem 5.1 is valid as both Xα,β, Yα,β are 2−k
Ω(1)

-
close to having min-entropy Ω(log10 n). Indeed, Xα,β is a deficiency O(`′ log2 n)-subsource
of Xα = XFI | ((XFI)leftSon(vmid(TX)) = α). Since XFI is a deficiency O(` log2 n)-subsource of

X and since Xvmid(TX) is 2−k
Ω(1)

-close to an Ω(k1/4)-block-source, it holds that (XFI)vmid(TX)

is also 2−k
Ω(1)

-close to an Ω(k1/4)-block-source. Thus, Xα is 2−k
Ω(1)

-close to having min-

entropy Ω(k1/4). Therefore, Xα,β is 2−k
Ω(1)

-close to having min-entropy Ω(log10 n). A similar
argument can be used for Yα,β.

Claim 8.7. With probability 1− 2−Ω(`′) over (x, y) ∼ (Xα,β, Yα,β), it holds that

Response
(
x, y,NodePathCh

(
xvimid(TX )(x,y), yqobserved(x,y)

))
= hasEntropy. (8.8)
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Proof. Let B be the event defined in Equation (8.4). As usual, we consider (x, y) ∈ B as
an “error” and ignore it for now. In particular, vimid(TX)(x, y) = vmid(TX) and the path

qobserved(x, y) is assumed to contain utop(TY ). Thus, NodePathCh
(
xvimid(TX )(x,y), yqobserved(x,y)

)
contains BExt

(
yutop(TY ), xvmid(TX)

)
as a row.

Recall that (Y )utop(TY ) is 2−Ω(k1/10)-close to an Ω(k1/2)-block-source. Since YFI is a defi-

ciency O(` log2 n)-subsource of Y , and since ` log2 n = o(k1/10), (YFI)utop(TY ) is also 2−Ω(k1/10)-

close to an Ω(k1/2)-block-source. By a similar argument, (YFI)umid(TY ) is 2−Ω(k1/10)-close to

an Ω(k1/4)-block-source. Thus, (Yβ)umid(TY ) is 2−Ω(k1/10)-close to having min-entropy Ω(k1/4),

and so (Yβ)utop(TY ) is 2−Ω(k1/10)-close to an Ω(k1/4)-block-source. Therefore, (Yα,β)utop(TY )

2−Ω(k1/10)-close to an Ω(k1/4)-block-source.

Recall that Xvmid(TX) is 2−Ω(k1/10)-close to an Ω(k1/4)-block-source. Since XFI is a defi-

ciency O(` log2 n)-subsource of X, (XFI)vmid(TX) is 2−Ω(k1/10)-close to an Ω(k1/4)-block-source.

Thus, (Xα)vmid(TX) is 2−Ω(k1/10)-close to having min-entropy Ω(k1/4). Therefore, (Xα,β)vmid(TX)

is 2−Ω(k1/10)-close to having min-entropy Ω(k1/4).
Let X̂ ⊂ Xα,β, Ŷ ⊂ Yα,β be any deficiency 20`′ log n subsources. We have that Ŷutop(TY ) is

2−Ω(k1/10)-close to an Ω(k1/4)-block-source and that X̂vmid(TX) is 2−Ω(k1/10)-close to having min-

entropy Ω(k1/4). Thus, BExt(Ŷutop(TY ), X̂vmid(TX)) is 2−k
Ω(1)

-close to a uniform string on `′ bits.

In particular, NodePathCh(X̂vmid(TX), Ŷqobserved(X̂,Ŷ )) is 2−k
Ω(1)

-close to having min-entropy `′.

Theorem 5.1 then implies that Equation (8.8) holds with probability at least 1− (2−`
′
+

2−k
Ω(1)

) = 1− 2−Ω(`′) over (x, y) ∼ (Xα,β, Yα,β). This concludes the proof of the claim.

8.3 Analysis of Step 3

Recall that the output of the sub-extractor is defined as

SubExt(x, y) = BExt
(
xvobserved

mid (x,y) ◦ x, y
)
.

By Claim 8.4 and Claim 8.7, we have that except with probability 2−Ω(`′) over (x, y) ∼
(Xα,β, Yα,β) it holds that vobserved

mid (x, y) = vmid(TX). Recall that vmid(TX) is a descen-

dant of leftSon(vtop(TX)). Further, recall that (Xα,β)vmid(TX) is 2−k
Ω(1)

-close to having min-

entropy Ω(k1/4). Since Xvtop(TX) is 2−Ω(k1/10)-close to a Ω(k1/2)-block-source, we have that

(Xα,β)vtop(TX) is 2−Ω(k1/10)-close to an Ω(k1/4)-block-source. In particular, this implies that

(Xα,β)vmid(TX) ◦Xα,β is 2−k
Ω(1)

-close to an Ω(k1/4)-block-source.

Recall also that Yα,β is 2−Ω(k1/10)-close to having min-entropy Ω(k). Thus, by Theorem 4.1
we conclude that

SubExt(Xα,β, Yα,β) = BExt
(

(Xα,β)vobserved
mid (Xα,β ,Yα,β) ◦Xα,β, Yα,β

)
is 2−k

Ω(1)
-close to uniform.
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9 Conclusion and Open Problems

The next quantitative natural goal. In this paper, we gave a construction of a 2poly(log logn)-
Ramsey graph, or equivalently, a two-source disperser for entropy polylog(n). Erdös set the
goal at constructing O(log n)-Ramsey graphs, which translates to the difficult problem of
constructing two-source dispersers for entropy log(n) + O(1). We set the next goal towards
Erdös challenge at constructing a polylog(n) = 2O(log logn)-Ramsey graph, which is equivalent
to a two-source disperser for entropy O(log n).

A weakly-explicit construction. Our construction of Ramsey graphs is strongly-explicit,
namely, one can query each pair of vertices of the n-vertices graph to check whether there
is an edge connecting them, in time polylog(n). In the setting of two-source dispersers, a
strongly-explicit construction is the natural definition. However, we believe it is interesting
to obtain better weakly-explicit Ramsey graphs, where by weakly-explicit we mean that the
entire graph can be computed in time poly(n). Barak et al. [BKS+10] have a simple con-
struction of a polylog(n)-Ramsey graph, however, its running-time is 2polylogn. Other than
that, we are not aware of any result in this direction.

Improved sub-extractors. The two-source sub-extractor that we construct has inner-
entropy k

Ω(1)
out or even kout/polylog(n), where kout is the outer-entropy. We pose the problem

of constructing a sub-extractor with inner-entropy kin = Ω(kout) or even kin = kout− o(kout),
for kout = polylog(n). We believe that this is a natural goal towards constructing two-source
extractors for polylogarithmic entropy.

Affine dispersers. Shaltiel [Sha11] adjusted the challenge-response mechanism so to work
with a single affine-source, rather than with two weak-sources. This allowed him to construct
affine-dispersers for entropy 2(logn)0.9

. Can one obtain affine-dispersers for polylogarithmic
entropy given recent advances?
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