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Abstract. We present in this paper some of the recent techniques

and methods for proving best up to now explicit approximation hardness

bounds for metric symmetric and asymmetric Traveling Salesman Problem

(TSP) as well as related problems of Shortest Superstring and Maximum

Compression. We attempt to shed some light on the underlying paradigms

and insights which lead to the recent improvements as well as some inherent

obstacles for further progress on those problems.

1 Introduction

The metric Traveling Salesman Problem (TSP) is one of the best known
and broadly studied combinatorial optimization problems. Nevertheless its
approximation status remained surprisingly elusive and very resistant for
any new insights even after several decades of research. Basically, there were
no improvements of the approximation algorithm of Christofides [C76] for
the general metric TSP, and also a very slow improvement of the explicit
inapproximability bounds for that problem [PY93], [E03], [EK06], [PV06],
[L12], [KS12], [KS13a], [KS13b], [KLS13], [AT15]. The attainable values of
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the explicit inapproximability bounds, and especially the methods for proving
them, could give valuable insights into the algorithmic nature of the problem
at hand. Unfortunately, there is still a huge gap between upper and lower
approximation bounds for TSP. The best upper bound stands at the moment
still firmly at 50% (approximation ratio 1.5). There were however several
improvements of underlying approximation ratios for special cases of metric
TSP like (1, 2)-metric [BK06] and the Graphic TSP [MS11], [SV14]. Also
the corresponding inapproximability bounds for those special instances were
established in [E03], [EK06], [KS13a], [KS13b].

We discuss also some new results on related problems of the Shortest Su-
perstring, Maximum Asymmetric TSP and Maximum Compression Problem
(cf. [KS13a]).

In this paper we introduce an essentially different method from the earlier
work of [PV06] to attack the general problem. This method uses some new
ideas on small occurrence optimization. The inspiration for it came from the
constructions used for restricted cases of TSP in [E03] and [EK06].

2 Underlying Idea

The general idea is to use somehow instances of metric TSP to solve approx-
imately another instance of optimization problems with provable inapprox-
imability bounds. Thus, establishing the possible approximation hardness
barriers for the TSP-solver itself. The reduction must be approximation pre-
serving, i.e. validate goodness of feasible solutions of a given problem and also
validating goodness of a corresponding tour. The direction from the tour to a
feasible solution would be crucial for that method. To give a simple illustra-
tion, we start from that optimization problem and construct an instance of
the TSP. We have to establish now the correspondence between the solutions
of the problem and the tours of TSP. That correspondence must satisfy the
crucial property that the problem has a good solution if and only if TSP has
a short tour. The second direction from TSP to the optimization problem
seems conceptually at the first glance more difficult. That intuition is correct
and the main effort has been devoted to that issue. The suitable optimiza-
tion problem will be a specially tailored bounded occurrence optimization
problem of Sections 4–6.
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3 TSP and Related Problems

We are going to define now main optimization problems of the paper.

• Metric TSP (here TSP for short): Given a metric space (V, d) (usually
given by a complete weighted graph or a connected weighted graph).
Construct a shortest tour visiting every vertex exactly once.

• Asymmetric Metric TSP (ATSP): Given an asymmetric metric space
(V, d), d may be asymmetric. Construct a shortest tour visiting every
vertex exactly once.

• Graphic TSP: Given a connected graph G = (V,E). Construct a short-
est tour in the shortest path metric completion of G or equivalently
construct a smallest Eulerian spanning multi-subgraph of G.

• Shortest Superstring Problem (SSP): Given a finite set of strings S.
Construct a shortest superstring such that every string in S is a sub-
string of it.

• Maximum Compression Problem (MCP): Given a finite set of strings
S. Construct a superstring of S with maximum compression which is
the difference between the sum of the lengths of the strings in S and
the length of the superstring.

• Maximum Asymmetric Traveling Salesman Problem (MAX-ATSP):
Given a complete directed graph with nonnegative weights. Construct
a tour of maximum weight visiting every vertex exactly once.

4 Bounded Occurrence Optimization Problems

We introduce here a notion of bounded occurrence optimization playing im-
portant roles in our construction.

• MAX-E3-LIN2: Given a set of equations mod 2 with exactly 3 vari-
ables per equation. Construct an assignment maximizing the number
of equations satisfied.
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• 3-Occ-MAX-HYBRID-LIN2: Given a set of equations mod 2 with ex-
actly 2 or 3 variables per equation and the number of occurrences of
each variable being bounded by 3.

The approximation hardness of 3-Occ-MAX-HYBRID-LIN2 problem was
proven for the first time by Berman and Karpinski [BK99] (see also [K01],
[BK03]) by randomized reduction f from MAX-E3-LIN2 and the result of
Håstad [H01] on that problem, f : MAX-E3-LIN2 → 3-Occ-MAX-HYBRID-
LIN2.

Theorem 1 ([BK99]). For every 0 < ε < 1

2
, it is NP-hard to decide whether

an instance of f(MAX-E3-LIN2 ) ∈ 3-Occ-MAX-HYBRID-LIN2 with 60n
equations with exactly two variables and 2n equations with exactly three vari-
ables has its optimum value above (62− ε)n or below (61 + ε)n.

The above result will be used in the simulational approximation reduction
g : 3-Occ-MAX-HYBRID-LIN2 → TSP to the instances of the metric TSP.

5 Bi-wheel Amplifier Graphs

We shortly describe here one of the main concepts of our construction and
proofs, that is a concept of a bi-wheel amplifier introduced in [KLS13].

The construction extends the notion of a wheel amplifier of [BK99],
[BK01] (we refer to [BK99] for the notions of contact and checker vertices).

A bi-wheel amplifier with 2n contact vertices is constructed in the fol-
lowing way. First we construct two disjoint cycles with each 7n vertices and
we number the vertices by 0, 1, . . . 7n− 1. The contacts will be the vertices
with the numbers being a multiple of 7, while the remaining vertices will
be checkers. We complete the construction by selecting at random a perfect
matching from the checkers of one cycle to the checkers of the other cycle
(see Figure 1).

We use a bi-wheel amplifier in a similar way to the standard wheel am-
plifier. The crucial difference is that the cycle edges will correspond to the
equality constraints, and matching edges will correspond to inequality con-
straints. The contacts of one cycle will represent the positive appearance of
the original variable, and the contacts of the others the negative ones. The
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Figure 1: A bi-wheel amplifier with n = 2. The vertices denote checkers
and the vertices denote contacts.

main reason is that encoding inequality constraints will be more efficient then
encoding equalities with TSP gadgets.

We can prove the following crucial result on bi-wheels.

Lemma 1 ([KLS13]). With high probability, a bi-wheel is a 3-regular ampli-
fier.

We are going to apply Lemma 1 in the next section.

6 Preparation Lemma

We need the following preparation lemma to simplify our constructions.

We will call in the sequel the problem 3-Occ-MAX-HYBRID-LIN2 simply
the HYBRID problem. Lemma 1 will be used now to prove the following
lemma.

Lemma 2 ([KLS13]). For any constant ε > 0 and b ∈ {0, 1}, there exists an
instance I of the HYBRID problem with all variables occurring exactly three
times and having 21m equations of the form x⊕ y = 0, 9m equations of the
form x ⊕ y = 1 and m equations of the form x ⊕ y ⊕ z = b, such that it is
NP-hard to decide whether there is an assignment to variables which leaves
at most ε · m equations unsatisfied, or every assignment to variables leaves
at least (0.5− ε)m equations unsatisfied.

Because of the above lemma we can assume, among other things, that
equations with three variables in I are of the form, say, x ⊕ y ⊕ z = 0. For
explicit constructions of simulating gadgets especially the bi-wheel amplifiers
and improved gadgets for size-three equations we refer to [KLS13].
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7 Instances of Metric TSP

We describe first an underlying idea of the construction of g. We start
with instances of the HYBRID problem by constructing a graph with special
gadgets structures representing equations. Here we use a new tool of bi-wheel
amplifier graphs [KLS13], sketched shortly in Section 5.

Given an instance I of the HYBRID problem. Let us denote the corre-
sponding graph by GS. We analyse first the process of constructing a tour
in GS for a given assignment a to the variables of a HYBRID instance I.

Lemma 3 ([KLS13]). If there is an assignment to the variables of an instance
I of the HYBRID problem with 31m equations and ν bi-wheels which makes
k equations unsatisfied, then there exists a tour in GS which costs at most
61m+ 2ν + k + 2.

We have to prove also corresponding bounds for the opposite direction.
Given a tour in GS, we construct an assignment to the variables of the
associated instance of the HYBRID problem.

Lemma 4 ([KLS13]). If there exists a tour in GS with cost 61m+k−2, then
there exists an assignment to the variables of the corresponding instance of
the HYBRID problem which makes at most k equations unsatisfied.

Lemma 3 and Lemma 4 entail now straightforwardly our main result.

Theorem 2 ([KLS13]). The TSP problem is NP-hard to approximate to
within any approximation ratio less than 123/122.

On the upper approximation bound of this problem, the best approxi-
mation algorithm after more than three decades research is still Christofides
[C76] algorithm with approximation ratio 1.50. This leaves a curious huge
gap between upper bound 50% and lower bound of about 1% wide open.

8 Instances of Asymmetric TSP (ATSP)

We consider now asymmetric metric instances of TSP. There is no polyno-
mial time constant approximation ratio algorithm known for that problem.
The best known approximation algorithm achieves an approximation ratio
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O(logn/ log logn) [AGM+10]. It motivates a strong interest on inapproxima-
bility bounds for this problem. We establish here the best-of-now explicit
inapproximability bounds, still constant and very far from the best upper
approximation bound.

The plan of our attack is similar to the case of symmetric TSP. We con-
struct here for an instance I of the HYBRID problem a directed, for this case,
graph GA using the constructions of bi-directed edges. The corresponding
lemmas describe the opposite directions of the reductions: assignment to tour
and tour to assignment.

Lemma 5 ([KLS13]). Given an assignment to the variables of an instance
I of the HYBRID problem with ν bi-wheels which makes k equations of I
unsatisfied, then there exists a tour in GA which costs at most 37m + 5ν +
2mλ+ 2νλ+ k for a fixed constant λ > 0.

Lemma 6 ([KLS13]). If there exists a tour in GA with cost 37m+ k+2λm,
then there exists an assignment to the variables of the corresponding instance
of the HYBRID problem which leaves at most k equations unsatisfied.

Lemmas 5 and 6 entail now our main result of this section.

Theorem 3 ([KLS13]). The ATSP problem is NP-hard to approximate to
within any approximation ratio less than 75/74.

9 A Role of Weights

A natural question arises about the role of the magnitudes of weights nec-
essary to carry good approximation reductions from the HYBRID problem.
The bounded metric situations were studied for the first time in [EK06]. We
define (1, B)-TSP ((1, B)-ATSP) as the TSP (ATSP) problem taking values
from the set of integers {1, . . . , B}. The case of (1, 2)-TSP is important for
its connection to the Graphic TSP. Using a specialization of the methods of
Section 7 and 8 we obtain the following explicit inapproximability bounds.

Theorem 4 ([KS12]). It is NP-hard to approximate

(1). the (1, 2)-TSP to within any factor less than 535/534;

(2). the (1, 4)-TSP to within any factor less than 337/336;
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(3). the (1, 2)-ATSP to within any factor less than 207/206;

(4). the (1, 4)-ATSP to within any factor less than 141/140.

For the most restrictive case of (1, 2)-TSP, there are better algorithms
known [BK06] than the Christofides algorithm.

10 Graphic TSP

We consider now another restricted case of TSP called the Graphic TSP and
an interesting for generic reasons case of Graphic TSP on cubic graphs. There
was a significant progress recently in designing improved approximation al-
gorithms for the above problems, cf. [MS11], [SV14]. Taking an inspiration
from the technique on bounded metric TSP, we prove the following

Theorem 5 ([KS13b]). The Graphic TSP is NP-hard to approximate to
within any factor less than 535/534.

Theorem 6 ([KS13b]). The Graphic TSP on cubic graphs is NP-hard to
approximate to within any factor less than 1153/1152.

The result of Theorem 6 is also the first inapproximability result for the
cubic graph instances (cf. [BSS+11]).

11 Some Applications

As a further application of our method, we prove new explicit inapproxima-
bility bounds for the Shortest Superstring Problem (SSP) and Maximum
Compression Problem (MCP) improving the previous bounds by an order of
magnitude [KS13a].

Theorem 7 ([KS13a]). The SSP is NP-hard to approximate to within any
factor less than 333/332.

Theorem 8 ([KS13a]). The MCP is NP-hard to approximate to within any
factor less than 204/203.
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The best approximation algorithm for MCP reduces that problem to
MAX-ATSP (cf., e.g. [KLS+05]). On the other hand, MCP can be seen
as a restricted version of the MAX-ATSP. This entails the NP-hardness of
approximating MAX-ATSP to within any factor less than 204/203.

12 Summary of Main Results

We summarize here the best known explicit inapproximability results on the
TSP problems (Table 1) and the applications (Table 2).

Table 1: Inapproximability results on the TSP problems

Problem Approximation Hardness Bound

TSP 123/122 [KLS13]

Asymmetric TSP 75/74 [KLS13]

Graphic TSP 535/534 [KS13b]

Graphic TSP on cubic graphs 1153/1152 [KS13b]

(1, 2)-TSP 535/534 [KS12]

(1, 4)-TSP 337/336 [KS12]

(1, 2)-ATSP 207/206 [KS12]

(1, 4)-ATSP 141/140 [KS12]

13 Further Research

We presented a method for improving the best known explicit inapproxima-
bility bounds for TSP and some related problems. The method depends
essentially on a new construction of bounded degree amplifiers. It is still
a sensible direction to go for improving design of our new amplifiers and
perhaps discovering new proof methods. Also, improving an explicit lower
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Table 2: Inapproximability results on the related problems

Problem Approximation Hardness Bound

SSP 333/332 [KS13a]

MCP 204/203 [KS13a]

MAX-ATSP 204/203 [KS13a]

bound for the HYBRID problem would have immediate consequences toward
inapproximability bound of the TSP. Here again the best upper approxima-
tion bounds are much higher (but within a couple of percentage points) from
the currently provable lower approximation bounds. The TSP problem lacks
good definability properties and is definitionally globally dependent on all its
variables. Our methods used in the proofs were however local in that sense.

In order to get essentially better lower approximation bounds (if such
are in fact possible) one should perhaps try to design some more global and
perhaps some more weight dependent methods. One possible way would be
perhaps to design directly a new global PCP construction for the TSP. This
seems for the moment to be a very difficult undertaking because of the before
mentioned definability properties of the problem.
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