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Abstract

In 1986, Saks and Wigderson conjectured that the largest separation between determin-
istic and zero-error randomized query complexity for a total boolean function is given by
the function f on n = 2k bits defined by a complete binary tree of NAND gates of depth k,
which achieves R0(f) = O(D(f)0.7537...). We show this is false by giving an example of a to-
tal boolean function f on n bits whose deterministic query complexity is Ω(n/ log(n)) while

its zero-error randomized query complexity is Õ(
√
n). We further show that the quantum

query complexity of the same function is Õ(n1/4), giving the first example of a total function
with a super-quadratic gap between its quantum and deterministic query complexities.

We also construct a total boolean function g on n variables that has zero-error randomized
query complexity Ω(n/ log(n)) and bounded-error randomized query complexity R(g) =

Õ(
√
n). This is the first super-linear separation between these two complexity measures.

The exact quantum query complexity of the same function is QE(g) = Õ(
√
n).

These two functions show that the relations D(f) = O(R1(f)2) and R0(f) = Õ(R(f)2)
are optimal, up to poly-logarithmic factors. Further variations of these functions give ad-
ditional separations between other query complexity measures: a cubic separation between
Q and R0, a 3/2-power separation between QE and R, and a 4th power separation between
approximate degree and bounded-error randomized query complexity.

All of these examples are variants of a function recently introduced by Göös, Pitassi,
and Watson which they used to separate the unambiguous 1-certificate complexity from
deterministic query complexity and to resolve the famous Clique versus Independent Set
problem in communication complexity.
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1 Introduction

Query complexity has been very useful for understanding the power of different computational
models. In the standard version of the query model, we want to compute a boolean function
f : {0, 1}n → {0, 1} on an initially unknown input x ∈ {0, 1}n that can only be accessed by asking
queries of the form xi =?. The advantage of query complexity is that we can often prove tight
lower bounds and have provable separations between different computational models. This is in
contrast to the Turing machine world where lower bounds and separations between complexity
classes often have to rely on unproven assumptions. At the same time, the model of query
complexity is simple and captures the essence of quite a few natural computational processes.

We use D(f), R(f) and Q(f) to denote the minimum number of queries in deterministic,
randomized and quantum query algorithms1 that compute f . It is easy to see that Q(f) ≤
R(f) ≤ D(f) for any function f . For partial functions (that is, functions whose domain is a
strict subset of {0, 1}n), huge separations are known between all these measures. For example,
a randomized algorithm can tell if an n-bit boolean string has 0 ones or at least n/2 ones with
a constant number of queries, while any deterministic algorithm requires Ω(n) queries to do
this. Similarly, Aaronson and Ambainis [1] recently constructed a partial boolean function f
on n variables that can be evaluated using one quantum query but requires Ω(

√
n) queries for

randomized algorithms.
The situation is quite different for total functions.2 Here it is known that D(f), R(f), and

Q(f) are all polynomially related. In fact, D(f) = O(R(f)3) [18] and D(f) = O(Q(f)6) [3].
A popular variant of randomized algorithms is the zero-error (Las Vegas) model in which a
randomized algorithm always has to output the correct answer, but the number of queries after
which it stops can depend on the algorithm’s coin flips. The complexity R0(f) is defined as the
expected number of queries, over the randomness of the algorithm, for the worst case input x.
A tighter relation D(f) ≤ R0(f)2 is known for Las Vegas algorithms (this was independently
observed by several authors [13, 5, 23]). Nisan has even shown D(f) = O(R1(f)2) [18], where
R1(f) is the one-sided error randomized complexity of f . Recently, Kulkarni and Tal [14],
basing on a result by Midrijānis [16], showed that R0(f) = Õ(R(f)2), where the Õ notation
hides poly-logarithmic factors.

While it has been widely conjectured that these relations are not tight, little progress has
been made in the past 20 years on improving these upper bounds or exhibiting functions with
separations approaching them. Between D(f) and R0(f), the best separation known for a total
function is the function NANDk on n = 2k variables defined by a complete binary NAND tree of
depth k. This function satisfies R0(NANDk) = O(D(NANDk)0.7537...) [22]. Saks and Wigderson
showed that this upper bound is optimal for NANDk, and conjectured that this is the largest
gap possible between R0(f) and D(f) [20]. This function also provides the largest known gap
between R(f) and D(f), and satisfies R(NANDk) = Ω(R0(NANDk)) [21]. This situation points
to the broader fact that, as far as we are aware, no super-linear gap is known between R(f) and
R0(f) for a total function f . Between Q(f) and D(f), the largest known separation is quadratic,
given by the OR function on n bits, which satisfies Q(f) = O(

√
n) [12] and D(f) = Ω(n).

1.1 Our results

We improve the best known separations between all of these measures. In particular, we show
that

1By default, we use R(f) and Q(f) to refer to bounded-error algorithms (i.e., algorithms that compute f(x)
correctly on every input x with probability at least 9/10).

2In the rest of the paper we will exclusively talk about total functions. Hence, we sometimes drop this
qualification.
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• There is a function f with R0(f) = Õ(D(f)1/2). This refutes the nearly 30 year old
conjecture of Saks and Wigderson [20], and shows that the upper bounds D(f) ≤ R0(f)2

and D(f) = O(R1(f)2) are tight, up to poly-logarithmic factors.

• There is a function f with R1(f) = Õ(R0(f)1/2). This is also nearly optimal due to Nisan’s
result D(f) = O(R1(f)2), as well as the upper bound R0(f) = Õ(R(f)2) by Kulkarni and
Tal. Previously, no super-linear separation was known even between R(f) and R0(f).

• There is a function f with Q(f) = Õ(D(f)1/4). This is the first improvement in nearly
20 years to the quadratic separation given by Grover’s search algorithm [12].

• Let QE(f) be the exact quantum query complexity, the minimal number of queries needed
by a quantum algorithm that stops after a fixed number of steps and outputs f(x) with
probability 1. We exhibit functions f1, f2 for which QE(f1) = Õ(R0(f1)1/2) and QE(f2) =
Õ(R(f2)2/3). This improves the best known separation of Ambainis from 2011 [2] giving
an f for which Q(f) = O(R(f)0.867...). Prior to the work of Ambainis, no super-linear
separation was known, the largest known separation being a factor of 2, attained for the
PARITY function [9].

A full list of our results are given in the following table. Subsequent to our work, Ben-David
[4] has additionally given a super-quadratic separation between Q(f) and R(f), exhibiting a
function with Q(f) = Õ(R(f)2/5).

lower bound for all f previous separation this paper function result

R0(f) Ω(D(f)1/2) [13, 5, 23] O(D(f)0.753...) [22] Õ(D(f)1/2) f2n,n Corollary 7

Q(f) Ω(D(f)1/6) [3] O(D(f)1/2) [12] Õ(D(f)1/4) f2n,n Corollary 7

R1(f) Ω(R0(f)1/2)[18] O(R0(f)) Õ(R0(f)1/2) gn,n Corollary 14

QE(f) Ω(R0(f)1/3)[15] O(R0(f)0.867...)[2] Õ(R0(f)1/2) gn,n Corollary 14

Q(f) Ω(R0(f)1/6)[3] O(R0(f)1/2) [12] Õ(R0(f)1/3) hn,n,n2 Corollary 19

QE(f) Ω(R(f)1/3) [15] O(R(f)0.867...) [2] Õ(R(f)2/3) h1,n,n2 Corollary 21

d̃eg(f) Ω(D(f)1/6) [3] O(R(f)1/2) [19] Õ(R(f)1/4) h1,n,n2 Corollary 23

Other separations can be obtained from this table using relations between complexities in
Figure 2.

1.2 Göös-Pitassi-Watson function

All of our separations are based on an amazing function recently introduced by Göös, Pitassi,
and Watson [11] to resolve the deterministic communication complexity of the Clique vs. Inde-
pendent set problem, thus solving a long-standing open problem in communication complexity.
They solved this problem by first solving a coresponding question in the query complexity
model and then showing a general “lifting theorem” that lifts the hardness of a function in
the deterministic query model to the hardness of a derived function in the model of determin-
istic communication complexity. In the query complexity model, their goal was to exhibit a
total boolean function f that has large deterministic query complexity and small unambiguous
1-certificate complexity.3

3A subcube is the set of strings consistent with a partial assignment xi1 = b1, . . . , xis = bs. Its length is s, the
number of assigned variables. The unambiguous 1-certificate complexity is the smallest s such that f−1(1) can
be partitioned into subcubes of length s (whose corresponding partial assignments are consequently 1-certificates
of f). See Section 2 for full definitions.
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The starting point of their construction is the boolean function f : {0, 1}M → {0, 1} with the
input variables xi,j arranged in a rectangular grid M = [n]× [m]. The value of the function is 1
if and only if there exists a unique all-1 column. The deterministic complexity of this function
is Ω(nm), since it is hard to distinguish an input with precisely one zero in each column from
the input in which one of the zeroes is flipped to one. It is also easy to construct a 1-certificate
of length n + m− 1: Take the all-1 column and one zero from each of the remaining columns.
This certificate is not always unique, however, as there can be multiple zeroes in a column and
any of them can be chosen in a certificate. Indeed, it is impossible to partition the set of all
positive inputs into subcubes of small length.

Göös et al. added a surprisingly simple ingredient that solves this problem: pointers to cells
in M . One can specify which zero to take from each column by requiring that there is a path
of pointers that starts in the all-1 column and visits exactly one zero in all other columns, see
Figure 1. Thus, the set of positive inputs breaks apart into a disjoint union of subcubes of small
length. Since the pointers provide great flexibility in the positioning of zeroes, this function is
still hard for a deterministic algorithm.
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Figure 1: An example of a 1-certificate for the Göös-Pitassi-Watson function. The center of a
cell xi,j shows val(xi,j) and the top right corner shows point(xi,j)

Formally, the definition of the Göös-Pitassi-Watson function is as follows. Let n and m be
positive integers, and M = [n]× [m] be a grid with n rows and m columns. Let M̃ = M ∪ {⊥}.
Elements in M̃ are considered as pointers to the cells of M , where ⊥ stands for the null pointer.

The function gn,m : ({0, 1} × M̃)M → {0, 1} is defined as follows. We think of each tuple

v = (b, p) ∈ {0, 1}× M̃ in the following way. The element b ∈ {0, 1} of the pair is the value and

the second element p ∈ M̃ is the pointer. We will use the notation val(v) = b and point(v) = p.
Although gn,m is not a boolean function, it can be converted into an associated boolean

function by encoding the elements of the input alphabet Σ = {0, 1} × M̃ using dlog |Σ|e bits.
An input (xi,j)(i,j)∈M evaluates to 1 if and only if the following three conditions are satisfied

(see Figure 1 for an illustration):

1. There is exactly one column b such that val(xi,b) = 1 for all i ∈ [n]. We call this the
marked column.

2. In the marked column, there exists a unique cell a such that xa 6= (1,⊥). We call a the
special element.
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3. For the special element a, by following the pointers inductively defined as p1 = point(xa)
and ps+1 = point(xps) for s = 1, . . . ,m − 2 we visit every column except the marked
column, and val(xps) = 0 for each s = 1, . . . ,m − 1. We call p1, . . . , pm−1 the highlighted
zeroes.

For each positive input x, the all-1 column satisfying items (1) and (2) of the definition, and
the highlighted zeroes from (3) give a unique minimal 1-certificate of x. Thus, the unambiguous
1-certificate complexity of this function is n + m − 1. Göös et al. showed that this function
has deterministic query complexity mn, giving a quadratic separation between the two when
n = m.

1.3 Our technique and pointer functions

As described in the previous section, Göös et al. showed how pointers can make certificates
unambiguous without substantially increasing their size. This technique turns out to be quite
powerful for other applications as well.

Using the Göös-Pitassi-Watson function, it is already possible to give a larger separation
between randomized and deterministic query complexity than previously known. For instance,
Mukhopadhyay and Sanyal [17], independently from our work, obtained separations R(f) =
Õ(
√
D(f)) and R0(f) = Õ(D(f)3/4). However, these algorithms are rather complicated, and it

is not known whether this function can realize an optimal separation between R0(f) and D(f).
We instead modify the Göös-Pitassi-Watson function in various ways. For the separation

between R0 and D the key new idea we add is the use of back pointers; for the separation
between Q and D, in addition to back pointers, we further replace the path of zeroes in the
Göös-Pitassi-Watson function with a balanced tree whose leaves are the highlighted zeroes;
finally, we consider a modification of the Göös-Pitassi-Watson function where there are multiple
marked columns for the separation between Q and R0. We now describe our modifications in
more detail.

Back pointers A back pointer points either to a cell in M or to a column in [m]. For instance,
in order to get a quadratic separation between R0(f) and D(f), we require that each highlighted
zero points back to the marked (all-1) column. It turns out that this function is still hard for
a deterministic algorithm. A randomized algorithm, on the other hand, can take advantage of
the back pointers to quickly find the all-1 column, if it exists. The algorithm begins by querying
all elements in a column. Let Z be the set of zeroes in this column and B(Z) be the set of
columns pointed to by the back pointers in Z. If the value of function is 1, B(Z) must contain
the marked column. However, B(Z) may also contain pointers to non-marked columns. We
estimate the number of zeroes in each column of B(Z) by sampling. If we find a zero in every
column of B(Z), then we can reject the input. On the other hand, we can tune the sampling
so that if no zero is found in a column c ∈ B(Z), then, with high probability, c has at most
|Z|/2 many zeroes. We then move to this column c and repeat the process. Even if c is not
marked, we have made progress by halving the number of zeroes, and, in a logarithmic number
of repetitions, we either find the marked column or reject.

In this way, back pointers to the marked column from the highlighted zeroes make the
function easy for an R0 algorithm, but hard for a deterministic one. Similarly, if we only
require that at least half of the highlighted zeroes point back to the special element a from
condition (2), the function becomes hard for R0, but easy for R1.

Making partial functions total From another vantage point, the pointer technique can
essentially turn a partial function into a total one. This is beneficial as it is easy to prove
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separations for a partial function. Let us describe our separation between Monte Carlo and Las
Vegas query complexities as an indicative example.

It is easy to provide a separation between R(f) and R0(f) for partial functions. For example,
consider the following partial boolean function f on m variables. For x ∈ {0, 1}m, the value of
f(x) is 1 if the Hamming weight |x| ≥ m/2, and f(x) = 0 if |x| = 0. Otherwise, the function
is not defined. The Monte Carlo query complexity of this function is O(1), but its Las Vegas
complexity is m/2 + 1, since it takes that many queries to reject the all-0 string.

How can we obtain a total function with the same property that there are either exactly
0 or at least m/2 marked elements? We define a variant of the Göös-Pitassi-Watson function,
where we require that, in a positive input, at least m/2 of the highlighted zeroes point back to
the special element a of condition (2). Consider an auxiliary function f on the columns of the
grid M . For a column j ∈ [m], f(j) = 1 if and only if the value of the original function is 1,
and the highlighted zero in column j points back to a. Thus, by definition, either f(j) = 0 for
all j, or f(j) = 1 for at least half of all j ∈ [m]. Given a column j, we can find a by analyzing
the back pointers contained in column j. When a is found, it is easy to test whether the value
of the function is 1 and the highlighted zero in column j points to a. Moreover, this procedure
can be made deterministic and uses only Õ(n+m) queries.

Subsequent to our work, Ben-David [4] devised a different way of converting a partial func-
tion into a total one, and applied it to the forrelation problem [1] to give a function f with
Q(f) = Õ(R(f)2/5), the first super-quadratic separation between these measures.

Use of a balanced tree Instead of a path through the highlighted zeroes as in condition (3)
of the Göös-Pitassi-Watson function, we use a balanced binary tree with the zeroes being the
leaves of the tree. This serves at least three purposes.

First, this allows for even greater flexibility in placing the zeroes. As they are the leaves of
the tree, they are not required to point to other nodes. This helps in proving Las Vegas lower
bounds.

Second, the tree allows “random access” to the highlighted zeroes. This is especially helpful
for quantum algorithms. After the algorithm finds the marked column, it should check the
highlighted zeroes. The last element of the path can be only accessed in m queries. But if we
arrange the zeroes in a binary tree, each zero can be accessed in only a logarithmic number of
queries, hence, they can be tested in Õ(

√
m) queries using Grover’s search.

Finally, it can make the function hard even for a Monte Carlo algorithm (if no back pointers
are present). In the original Göös-Pitassi-Watson function, when a randomized algorithm finds
a highlighted zero, it can follow the path starting from that cell. As the zeroes are arranged in
a path, the algorithm can thus eliminate half of the potential marked columns on average. This
fact is exploited by the algorithm of Mukhopadhyay and Sanyal [17].

Similarly, when an algorithm finds a node of the tree it can also explore the corresponding
subtree. The difference is that the expected size of a subtree rooted in a node of the tree is
only logarithmic. Thus, even if the algorithm finds this node, it does not learn much, and we
are able to prove an Ω(nm/ logm) lower bound for a Monte Carlo algorithm.

In principle, all of the above problems can be solved by adding direct pointers from the
special element (a in condition (2)) to a zero in each non-marked column (that is, using an
(m − 1)-ary tree of depth 1 instead of a binary tree of depth O(logm)). The problem with
this solution is that the size of the alphabet becomes exponential, rendering this construction
useless for boolean functions.

Choice of separating functions We have outlined above three ingredients that can be
added to the original Göös-Pitassi-Watson function: using various back pointers, identifying
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unmarked columns by a tree of pointers, and increasing the number of marked columns. These
ingredients can be added in various combinations to produce different effects. In order to reduce
the number of functions introduced, in this paper we stick to three variations:

• a function fn,m with back pointers to the marked column from each of the highlighted
zeroes.

• a function gn,m with back pointers to the special element from half of the highlighted
zeroes, and

• a function hk,n,m with k marked columns and no back pointers.

All three functions use a balanced binary tree.
This does not mean that a given separation cannot be proven with a different combination

of ingredients. For example, as outlined above, the R0 vs D separation can be proven for the
original Göös-Pitassi-Watson function by equipping each highlighted zero with a back pointer
to the marked column and not using the binary tree.

2 Preliminaries

We let [n] = {1, 2, . . . , n}. We use f(n) = Õ(g(n)) to mean that there exists constants c, k and
an integer N such that |f(n)| ≤ c|g(n)| logk(n) for all n > N .

In the remaining part of this section, we define the notion of query complexity for various
models of computation. For more detail on this topic, the reader may refer to the survey [8].
Relations between various models are depicted in Figure 2.

d̃eg

deg

Q

R R1 R0

QE

D

Figure 2: Relations between various complexities. An arrow means that complexity on the left
is at most the complexity on the right.

Deterministic query complexity Let Σ be a finite set. A decision tree T on n variables
and the input alphabet Σ is a rooted tree, where

• internal nodes are labeled by elements of [n];

• every internal node v has degree |Σ| and there is a bijection between the edges from v to
its children and the elements of Σ;

• leaves are labeled from {0, 1}.

The output of the decision tree T on input x ∈ Σn, denoted T (x), is determined as follows.
Start at the root. If this is a leaf, then output its label. Otherwise, if the label of the root is
i ∈ [n], then follow the edge labeled by xi (this is called a query) and recursively evaluate the
corresponding subtree. We say that T computes the function f : Σn → {0, 1} if T (x) = f(x)
on every input x. The cost of T on input x, denoted C(T, x), is the number of internal nodes
visited by T on x. The deterministic query complexity D(f) of f is the minimum over all
decision trees T computing f of the maximum over all x of C(T, x).
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Randomized query complexity We follow the definitions for randomized query complexity
given in [24, 18]. A randomized decision tree Tµ is defined by a probability distribution µ over
deterministic decision trees. On input x, a randomized decision tree first selects a deterministic
decision tree T according to µ, and then outputs T (x). The expected cost of Tµ on input x is
the expectation of C(T, x) when T is picked according to µ. The worst-case expected cost of
Tµ is the maximum over inputs x of the expected cost of Tµ on input x.

There are three models of randomized decision trees that differ in the definition of “com-
puting” a function f .

• Zero-error (Las Vegas): It is required that the algorithm gives the correct output with
probability 1 for every input x, that is, every deterministic decision tree T in the support
of µ computes f .

• One-sided error: It is required that negative inputs are rejected with probability 1, and
positive inputs are accepted with probability at least 1/2.

• Two-sided error (Monte Carlo): It is required that the algorithm gives the correct output
with probability at least 9/10 for every input x.

The error probability in the one-sided and two-sided cases can be reduced to ε by repeating
the algorithm O(log 1

ε ) times.
We define randomized query complexities R0(f), R1(f), and R(f) as the minimum worst-

case expected cost of a randomized decision tree to compute f in the zero, one-sided, and
bounded-error sense, respectively.

Distributional query complexity A common way to show lower bounds on randomized
complexity, and the way we will do it in this paper, is to consider distributional complexity [24].
The cost of a deterministic decision tree T with respect to a distribution ν, denoted C(T, ν), is
Ex←ν [C(T, x)]. The decision tree T computes a function f with distributional error at most δ
if Prx←ν [T (x) = f(x)] ≥ 1− δ. Finally, the δ-error distributional complexity of T with respect
to ν, denoted ∆δ,ν(f), is the minimum of C(T, ν) over all T that compute f with distributional
error at most δ.

Yao has shown the following:

Theorem 1 (Yao [24]). For any distribution ν and a function f , R0(f) ≥ ∆0,ν(f) and R(f) ≥
1
2∆2/10,ν(f).

In general, Yao shows that the δ-error randomized complexity of a function f is at least
1
2∆2δ,ν(f), for any distribution ν. We obtain the constant 2

10 on the right hand side as we have
defined R(f) for algorithms that err with probability at most 1

10 .

Quantum query complexity The main novelty in a quantum query algorithm is that queries
can be made in superposition. For this exposition we assume Σ = [|Σ|] (this identification can be
made in an arbitrary way). The memory of a quantum query algorithm contains two registers,
the query register HQ which holds two integers j ∈ [n] and p ∈ Σ and the workspace HW

which holds an arbitrary value. A query on input x is encoded as a unitary operation Ox in the
following way. On input x and an arbitrary basis state |j, p〉 |w〉 ∈ HQ ⊗HW ,

Ox |j, p〉 |w〉 = |j, p+ xj mod |Σ|〉 |w〉 .

A quantum query algorithm begins in the initial state |0, 0〉 |0〉 and on input x proceeds by
interleaving arbitrary unitary operations independent of x and the operations Ox. The cost of
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the algorithm is the number of applications of Ox. The outcome of the algorithm is determined
by a two-outcome measurement, specified by a complete set of projectors {Π0,Π1}. If |Ψx〉
is the final state of the algorithm on input x, the probability that the algorithm outputs 1 is
‖Π1|Ψx〉‖2. The exact quantum query complexity of the function f , denoted QE(f), is the
minimum cost of a quantum query algorithm that outputs f(x) with probability 1 for every
input x. The bounded-error quantum query complexity of the function f , denoted Q(f), is the
minimum cost of a quantum query algorithm that outputs f(x) with probability at least 9/10
for every input x.

We will describe our quantum algorithms as classical algorithms which use the following
well-known quantum algorithms as subroutines. Let Ox be a quantum oracle encoding a string
x ∈ {0, 1}n.

• Grover’s search [12, 6]: Assume it is known that |x| ≥ t. There is a quantum algorithm
using O(

√
n/t) queries to Ox that finds an i such that xi = 1 with probability at least

9/10.

• Exact Grover’s search [6]. Assume it is known that |x| = t. There is a quantum algorithm
using O(

√
n/t) queries to Ox that finds an i such that xi = 1 with certainty. The case

t = n/2 is essentially the Deutsch-Jozsa problem [10].

• Approximate counting [7]: Let t = |x|. There is a quantum algorithm making O(
√
n)

queries to Ox that outputs a number t̃ satisfying |t̃ − t| ≤ t
10 with probability at least

9/10.

• Amplitude amplification [6]: Assume a quantum algorithm A prepares a state |ψ〉 =
α0 |0〉 |ψ0〉 + α1 |1〉 |ψ1〉, where ψ, ψ0 and ψ1 are unit vectors, and α0 and α1 are real
numbers. Thus, the success probability of A, i.e., probability of obtaining 1 in the first
register after measuring |ψ〉, is α2

1.

Assume a lower bound p is known on α2
1. There exists a quantum algorithm that makes

O(1/
√
p) calls toA, and either fails, or generates the state |1〉 |ψ1〉. The success probability

of the algorithm is at least 9/10.

In all of these quantum subroutines, the error probability can be reduced to ε by repeating
the algorithm O(log 1

ε ) times.

Polynomial degree Every boolean function f : {0, 1}n → {0, 1} has a unique expansion as a
multilinear polynomial p =

∑
S⊆[n] αs

∏
i∈S xi. The degree of f , denoted deg(f), is the size of

a largest monomial xS in p with nonzero coefficient αS . The approximate degree of f , denoted
d̃eg(f), is

d̃eg(f) = min
{

deg(g)
∣∣ |g(x)− f(x)| ≤ 1

10 for all x ∈ {0, 1}n
}
.

For any quantum algorithm that uses T queries to the quantum oracle Ox, its acceptance
probability is a polynomial of degree at most 2T [3]. Therefore, deg(f) ≤ 2QE(f) and d̃eg(f) ≤
2Q(f).

Certificate complexity A partial assignment in Σn is a string in a ∈ (Σ∪{?})n. The length
of a partial assignment is the number of non-star values. A string x ∈ Σn is consistent with
an assignment a if xi = ai whenever ai 6= ?. Every partial assignment defines a subcube, which
is the set of all strings consistent with that assignment. For every subcube there is a unique
partial assignment that defines it, and we define the length of a subcube as the length of this
assignment.

9



For b ∈ {0, 1}, a b-certificate for a function f : Σn → {0, 1} is a partial assignment such that
the value of f is b for all inputs in the associated subcube. The b-certificate complexity of f is
the smallest number k such that the set f−1(b) can be written as a union of subcubes of length
at most k. The unambiguous b-certificate complexity of f is the smallest number k such that
the set f−1(b) can be written as a disjoint union of subcubes of length at most k.

Booleanizing a function While we define functions over a nonboolean alphabet Σ, it is more
typical in query complexity to discuss boolean functions. Fix a surjection b : {0, 1}dlog |Σ|e → Σ.
For a function f : Σn → {0, 1}, we define the associated boolean function f̃ : {0, 1}ndlog |Σ|e →
{0, 1} by f̃(x) = f(b(x)). A lower bound on f in the model where a query returns an element
of Σ will also apply to f̃ in the model where a query returns a boolean value. Also, if f can
be computed with t queries then we can convert this into an algorithm for computing f̃ with
t dlog |Σ|e queries by querying all the bits of the desired element. We will state our theorems
for nonboolean functions where a query returns an element of Σ and the alphabet size |Σ| will
always be polynomial in the input length. By the remarks above, such separations can be
converted into separations for the associated boolean function with a logarithmic loss.

3 Separations against deterministic complexity

Let n, m, M , M̃ be as in the definition of the Göös-Pitassi-Watson function. Let also C̃ =
[m] ∪ {⊥} be the set of pointers to the columns of M . The input alphabet of our function is

Σ = {0, 1} × M̃ × M̃ × C̃. For v ∈ Σ, we call the elements of the quadruple the value, the
left pointer, the right pointer and the back pointer of v, respectively. We use notation val(v),
lpoint(v), rpoint(v), and bpoint(v) for them in this order.

87654321

1110987

654321

Figure 3: A completely balanced tree on 8 leaves, and a balanced tree on 11 leaves.

Let T be a fixed balanced oriented binary tree with m leaves and m − 1 internal vertices.
For instance, we can make the following canonical choice. If m = 2k is a power of two, we use
the completely balanced binary tree on m leaves as depicted in Figure 3 on the left. Each leaf is
at distance k from the root. Otherwise, assume 2k < m < 2k+1. Take the completely balanced
tree on 2k leaves, and add a pair of children to each of its m− 2k leftmost leaves. An example
is in Figure 3 on the right.

We have the following labels in T . The outgoing arcs from each node are labeled by ‘left’
and ‘right’. The leaves of the tree are labeled by the elements of [m] from left to right, with
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each label used exactly once. For each leaf j ∈ [m] of the tree, the path from the root to the
leaf defines a sequence of ‘left’ and ‘right’ of length O(logm), which we denote T (j).

The function fn,m : ΣM → {0, 1} is defined as follows. For an input x = (xi,j), we have
fn,m(x) = 1 if and only if the following conditions are satisfied (for an illustration refer to
Figure 4):

1. There is exactly one column b ∈ [m] such that val(xi,b) = 1 for all i ∈ [n]. We refer to it
as the marked column.

2. In the marked column, there exists a unique cell a such that xa 6= (1,⊥,⊥,⊥). We call a
the special element.

3. For each non-marked column j ∈ [m]\{b}, let `j be the end of the path which starts at the
special element a and follows the pointers lpoint and rpoint as specified by the sequence
T (j). We require that `j exists (no pointer on the path is ⊥), `j is in the jth column, and
val
(
x`j
)

= 0. We call `j the leaves of the tree.

4. Finally, for each non-marked column j ∈ [m] \ {b}, we require that bpoint
(
x`j
)

= b.

1

1

1

1

1

1

1

1

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥

0

0

0 0 0

0

0

Figure 4: An example of a 1-certificate for the function f8,8. The tree T is like in Figure 3
on the left. The center of a cell xi,j shows val(xi,j), the bottom of the cell shows bpoint(xi,j)
and the bottom left and right sides show lpoint(xi,j) and rpoint(xi,j), respectively. Values and
pointers that are not shown can be chosen arbitrarily.

Theorem 2. If n = 2m and m is sufficiently large, the deterministic query complexity D(fn,m) ≥
m2.

Proof. We describe an adversary strategy that ensures that the value of the function is unde-
termined after m2 queries, provided m ≥ 4. Assume a deterministic query algorithm queries a
cell (i, j). Let k be the number of queried cells in column j, including the cell (i, j). If k ≤ m,
the adversary replies with (1,⊥,⊥,⊥). Otherwise, the response is (0,⊥,⊥, k −m).

Note that, after all the cells are queried in some column, it contains m cells with (1,⊥,⊥,⊥)
and one cell with (0,⊥,⊥, b) for each b ∈ [m].

Claim 3. If there is a column b ∈ [m] with at most m queried cells and there are at least 4m
unqueried cells in total, then the function value is undetermined.

11



Proof. First, the adversarial strategy is such that no all-one column can ever be constructed,
hence, by answering all remaining queries with value 0, the adversary can make the function
evaluate to 0.

Now we show that the function value can also be set to 1. For each column j 6= b, define `j
as follows. If column j contains an unqueried cell (i, j), let `j = (i, j), and assign the quadruple
(0,⊥,⊥, b) to this cell. If all elements in column j were queried, then, by the adversary strategy,
it contains a cell with quadruple (0,⊥,⊥, b). Let `j be this cell.

Next, the queried cells in column b only contain (1,⊥,⊥,⊥). Assign the quadruple (1,⊥,⊥,⊥)
to the remaining cells in column b except for one special cell a. Using the cell a as the root
construct a tree of pointers isomorphic to T using as internal vertices some of the remaining
unqueried cells, and such that the jth leaf is `j . Finally, assign the quadruple (1,⊥,⊥,⊥) to
every other cell.

To carry out the construction above, we need m− 2 unqueried cells outside of column b and
the set of `js to place the internal vertices of the tree. Since there are 2m cells in column b and
m− 1 cells are used by `js, it suffices to have 4m unqueried cells to do this.

It takes more than m2 queries to ensure that each column contains more than m queried
cells. As 2m2 − 4m ≥ m2 when m ≥ 4, we obtain the required lower bound.

Algorithm 1 A Las Vegas randomized algorithm for the function fn,m

VerifyColumn(j) tests whether column j is marked

1. If column j does not satisfy condition (2) of the definition of fn,m, then reject. Otherwise,
let a be the special element.

2. Following the left and right pointers from a and querying the elements along the way,
check that the tree rooted at a satisfies conditions (3) and (4) of the definition of fn,m. If
it does, accept. Otherwise, reject.

TestColumn(c, k) always returns ‘True’ if column c has no zeroes. If it has more than k/2
zeroes, returns ‘False’ with probability ≥ 1 − 1/(nm)2. Returns anything in the intermediate
cases.

1. Query O(nk log(nm)) random elements from column c. If no zero was found, return ‘True’.
Otherwise, return ‘False’.

Main procedure of the algorithm

1. Let j be an arbitrary column in [m], and k ← n.

2. Repeat the following actions:

(a) Query all the elements of column j. If all of them have value 1, VerifyColumn(j).

(b) If column j contains more than k zeroes, then query all the elements of M and output
the value of the function.

(c) Else, let C be the set of nonnull back pointers stored in the zero elements of column
j. For each c ∈ C, TestColumn(c, k). If ‘False’ is obtained for all the columns, reject.
Otherwise, let j be any column with outcome ‘True’.

(d) If k = 0, reject. Otherwise, let k ← bk/2c, and repeat the loop.

Theorem 4. The Las Vegas randomized complexity R0(fn,m) = Õ(n+m).

12



Proof. For the description, see Algorithm 1. With each iteration of the loop in step 2, k gets
reduced by half until it becomes zero, hence, after O(log n) iterations of the loop, the algorithm
terminates.

Let us check the correctness of the algorithm. The algorithm only accepts from the procedure
VerifyColumn which verifies the existence of a 1-certificate. Thus, the algorithm never accepts
a negative input.

To see the algorithm always accepts a positive input, let the input x be positive with marked
column b. Consider one iteration of the loop in step 2. If j = b, then the algorithm accepts in
VerifyColumn(j) on step 2(a). Now assume j 6= b. Then, column j contains a zero with a back
pointer to b, hence, the algorithm does not reject on step 2(c). The algorithm also does not
reject on step 2(d) since, when k = 0, the condition in 2(b) applies.

Let us now estimate the expected number of queries made by the algorithm. Condition
in step 2(b) is obviously not satisfied on the first iteration of the loop. On a specific later
iteration, the probability this condition is satisfied is at most 1/(nm)2 by our definition of
TestColumn(c, k). Since the loop is repeated O(log n) times, the contribution of step 2(b) to
the complexity of the algorithm is o(1).

If step 2(b) is not invoked, we have the following complexity estimates. VerifyColumn
uses O(m) queries, and it is called at most once. Apart from VerifyColumn, Step 2(a) uses n
queries. Since |C| ≤ k on step 2(c), the number of queries in this step is Õ(n). Since there
is only a logarithmic number of iterations of the loop in step 2, the total number of queries is
Õ(n+m).

Theorem 5. The quantum query complexity Q(fn,m) = Õ(
√
n+
√
m).

Proof. The algorithm, Algorithm 2, is a quantum counterpart of Algorithm 1. We assume
that every elementary quantum subroutine of the algorithm (e.g. Grover’s search or quantum
counting) is repeated sufficient number of times to reduce its error probability to at most
1/(nm)2. This requires a logarithmic number of repetitions, which can be absorbed into the Õ
factor. Since the algorithm makes less than O(n+m) queries, we may further assume that all
the elementary quantum subroutines are performed perfectly.

The analysis is similar to Theorem 4. Again, the algorithm only accepts from VerifyColumn,
which is called at most once. The three steps of VerifyColumn correspond to the three conditions
defining a 1-input. Any negative input violates one of these conditions, and thus will fail one
of these tests.

Now suppose we have a positive input x with marked column b. In this case, each non-
marked column contains a zero with a back pointer to the marked column b. We want to argue
that the algorithm accepts x with high probability. The following claim is the cornerstone of
our analysis.

Claim 6. If the input x is positive and column j contains at most 11
10k zeroes, then step 2(b) of

the algorithm finds a column c containing at most k/2 zeroes with high probability.

Proof. We first claim that FindGoodBackPointer(j, k) returns ‘True’ with probability at least
1/2k. Indeed, we assumed that the probability Grover’s search on step 1 fails is negligible.
Thus, with high probability, before execution of step 2, v is chosen uniformly at random from
the at most 11

10k zeroes in column j. One of these zeroes has a back pointer to the marked
column b. If it is chosen, step 3 returns ‘True’ with certainty, which proves our first claim.

Thus, amplitude amplification in step 2(b) of the main procedure will generate the ‘True’-
portion of the final state of the FindGoodBackPointer subroutine. Again, since we assume that
the error probability of Grover’s search on step 3 of FindGoodBackPointer is negligible, we may
assume this portion of the state only contains columns c with at most k/2 zeroes.
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Algorithm 2 A quantum algorithm for the function fn,m

VerifyColumn(j) tests whether column j is marked

1. Use Grover’s search to find an element a in column j with nonnull left or right pointer.
If no element found, reject. If val(xa) = 0, reject.

2. Use Grover’s search to verify that all elements in column j except a are equal to
(1,⊥,⊥,⊥). If not, reject.

3. Use Grover’s search (over all j ∈ [m]\{b}) to check that conditions (3) and (4) of the
definition of fn,m are satisfied. If they are, accept. Otherwise, reject.

FindGoodBackPointer(j, k) if column j has ≤ 11
10k zeroes and one of them has a back pointer

to an all-1 column, finds a column containing ≤ k/2 zeroes with probability ≥ 1/2k.

1. Use Grover’s search to find a zero v in column j.

2. If bpoint(xv) = ⊥, return ‘False’. Otherwise c← bpoint(xv).

3. Execute Grover’s search for a zero in column c, assuming there are ≥ k/2 of them. Return
‘False’ if Grover’s search finds a zero, and ’True’ otherwise.

Main procedure of the algorithm

1. Let j be an arbitrary column in [m].

2. Repeat the following actions. If the loop does not finish after 10 log n iterations, reject.

(a) Use quantum counting to estimate the number of zeroes in column j with relative
accuracy 1/10. Let k be the estimate. If k = 0, VerifyColumn(j).

(b) Execute quantum amplitude amplification on the FindGoodBackPointer(j, k) sub-
routine amplifying for the output ‘True’ of the subroutine and assuming its success
probability is at least 1/2k. Let c be the corresponding value of the subroutine after
amplification.

(c) Set j ← c. Repeat the loop.

Consider the loop in step 2. We may assume quantum counting is correct in step 2(a).
If j = b, then VerifyColumn(j) is called in step 2(a), and the algorithm accepts with high
probability. So, consider the case j 6= b. Column j contains a zero, hence, with high probability,
VerifyColumn is not executed on step 2(a). Thus, by Claim 6, the number of zeroes in column
j gets reduced by a factor of 1.1/2. Therefore, after 10 log n iterations, the number of zeroes in
column j becomes zero, which means j = b, and the algorithm accepts with high probability.

We now estimate the complexity of the algorithm. Steps (1) and (2) of VerifyColumn take
Õ(
√
n) queries. For step (3) of VerifyColumn, we have to check that the tree of pointers

rooted from xa satisfies conditions (3) and (4) from the definition of fn,m. We can check the
correctness of a single path from the root to a leaf with O(logm) (classical) queries. Since there
are m many paths, checking them all with Grover’s search takes Õ(

√
m) many queries. Overall,

VerifyColumn takes Õ(
√
n+
√
m) queries.

Grover’s search in FindGoodBackPointer(j, k) uses Õ(
√
n/k) queries. Since the success

probability of FindGoodBackPointer(j, k) is at least 1/2k, amplitude amplification repeats
FindGoodBackPointer(j, k) Õ(

√
k) times and the complexity of step 2(b) is Õ(

√
n). Quan-

tum counting in step 2(a) also uses Õ(
√
n) queries.

Since we run the main loop at most O(log n) many times, the total complexity of the
algorithm is Õ(

√
n+
√
m).
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Corollary 7. There is a total boolean function f with R0(f) = Õ(D(f)1/2) and Q(f) =
Õ(D(f)1/4).

Proof. We first obtain these separations for a non-boolean function. Take fn,m with n =

2m. Then the zero-error randomized query complexity is Õ(n) by Theorem 4, the quantum
query complexity is Õ(

√
n) by Theorem 5, and the deterministic query complexity is Ω(n2) by

Theorem 2. Since the size of the alphabet Σ is polynomial, this also gives the separations for
the associated boolean function f̃2m,m.

4 Separations against Las Vegas complexity

In this section, we define a variant of the fn,m function from the last section. Let n, m, M , M̃ ,

T and T (j) be as previously. The input alphabet is Σ = {0, 1} × M̃ × M̃ × M̃ , where we keep
the names and notation of left, right and back pointers. Note that the back pointers now point
to a cell of M , not a column.

Let m be even. The function gn,m : ΣM → {0, 1} is defined like the function fn,m in Section 3
with condition 4 replaced by the following condition

4′ The set G =
{
j ∈ [m] \ {b}

∣∣ bpoint
(
x`j
)

= a
}

is of size exactly m/2.

For an illustration refer to Figure 5.

1

1

1

1

1

1

1

1

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥ ⊥⊥

⊥

0

0

0 0 0

0

0

⊥

Figure 5: An example of a 1-certificate for the function g8,8. The tree T is like in Figure 3
on the left. The center of a cell xi,j shows val(xi,j), the bottom of the cell shows bpoint(xi,j)
and the bottom left and right sides show lpoint(xi,j) and rpoint(xi,j), respectively. Values and
pointers that are not shown can be chosen arbitrarily. It is crucial that m/2 leaves point to the
root a of the tree, and m/2− 1 leaves point to something different.

Theorem 8. If n and m are sufficiently large, the Las Vegas randomized query complexity
R0(gn,m) = Ω(nm).

Proof. We construct a hard probability distribution on negative inputs such that any Las Vegas
randomized algorithm has to make Ω(nm) queries in expectation to reject an input sampled
from it. Each input x = (xi,j) in the hard distribution is specified by a function `x : [m]→ [n].
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The function specifies the positions of the leaves of the tree T in a possible positive instance.
The definition of x is as follows

xi,j =

{
(0,⊥,⊥,⊥), if i = `x(j);

(1,⊥,⊥,⊥), otherwise.
(1)

The hard distribution is formed in this way from the uniform distribution on all functions `x.
Thus, all pointers are null pointers, and each column contains exactly one zero element in a
random position. The theorem obviously follows from the following two results.

Claim 9. Any Las Vegas algorithm for the function gn,m can reject an input x from the hard
distribution (1) only if it has found at least m/2 zeroes or it has queried more than n(m−1)−2m
elements.

Lemma 10. Assume a Las Vegas algorithm can reject an input x from the hard distribution (1)
only if it has found Ω(m) zeroes or it has queried Ω(nm) elements. Then, the query complexity
of the algorithm is Ω(nm).

Proof of Claim 9. Assume these conditions are not met. Then, we can construct a positive
input y that is consistent with the answers to the queries obtained by the algorithm so far.

Let B ⊆ [m] be the set of columns where no zero was found. By assumption, |B| ≥ m/2+1.
Choose an element b ∈ B and a subset G ⊆ B \ {b} of size m/2. Define a = (`x(b), b), set the
value of ya to 1 and its back pointer to ⊥. For each column j ∈ G, define y`x(j),j = (0,⊥,⊥, a).
Finally, for the remaining columns j ∈ B \ (G ∪ {b}), define y`x(j),j = (0,⊥,⊥,⊥).

Remove from the tree T the leaf with label b. Let the resulting graph be T ′. Put the
root of T ′ into a, and, for each j 6= b, put the leaf of T ′ with label j into (`x(j), j). Put the
remaining nodes of T ′ into the still unqueried cells of M preserving the structure of the graph.
Set their values to 0 and their back pointers to ⊥. Set all the remaining cells to (1,⊥,⊥,⊥).
The resulting input y is positive and consistent with the answers to the queries obtained by the
algorithm.

Proof of Lemma 10. By Theorem 1 it suffices to show that any deterministic algorithm D makes
an expected Ω(nm) number of queries to find Ω(m) zeroes in an input from the hard distribution.

Consider a node S of the decision tree D. Call a column j ∈ [m] compromised in S if either
a zero was found in it, or more than n/2 of its elements were queried. For an input x, let At(x)
be the number of compromised columns on input x after t queries. Similarly, let Bt(x) be the
number of queries made outside the compromised columns. Let us define

It(x) = At(x) +
2

n
Bt(x).

Note that At(x) can only increase as t increases, whereas Bt(x) can increase or decrease.

Claim 11. For a non-negative integer t, we have

Ex
[
It+1(x)

]
− Ex

[
It(x)

]
≤ 4

n
, (2)

where the expectation is over the inputs in the hard distribution.

Proof. Fix t. We say two inputs x and y are equivalent if they get to the same vertex of the
decision tree after t queries. We prove that (2) holds with the expectation taken over each of
the equivalency classes. Fix an equivalence class, let x be an input in the class, and (i, j) be the
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variable queried by D on the (t+ 1)st query on the input x. Note that (i, j), At(x) and Bt(x)
do not depend on the choice of x.

Consider the following cases, where each case excludes the preceding ones. All expectations
and probabilities are over the uniform choice of an input in the equivalence class.

• The jth column is compromised. Then It+1(x) = It(x), and we are done.

• After the cell (i, j) is queried, more than half of the cells in the jth column have been
queried. Then, At(x) increases by 1, and Bt(x) drops by bn/2c. Hence, Ex

[
It+1(x)

]
≤

Ex
[
It(x)

]
+ 1/n.

• Consider the remaining case. We have Prx[i = `x(j)] ≤ 2/n. If i = `x(j), then At(x)
grows by 1, and Bt(x) can only decrease. If i 6= `x(j), then At(x) does not change, and
Bt(x) grows by 1. Thus, Ex

[
It+1(x)

]
− Ex

[
It(x)

]
≤ 2

n + 2
n = 4

n .

Now we finish the proof of Lemma 10. Assume the algorithm can reject an input x only if
it has found c1m zeroes or it has queried c2nm elements for some constants c1, c2 > 0.

Let t = bc1nm/8c. Clearly, Ex[I0(x)] = 0 for all x. Claim 11 implies Ex[It(x)] ≤ c1m/2.
By Markov’s inequality, Prx

[
It(x) ≥ c1m

]
≤ 1/2. By our assumption, the probability the

algorithm D has not rejected x after t′ = min{t, c2nm} queries is at least 1/2. Hence, the
expected number of queries made by the algorithm is at least t′/2 = Ω(nm).

Theorem 12. For one-sided error randomized and exact quantum query complexity, we have
R1(gn,m) = Õ(n+m) and QE(gn,m) = Õ(n+m).

Proof. For a positive input x, we call a column j ∈ [m] good iff it belongs to the set G from
Condition 4′ on Page 15. Thus, a positive input has exactly m/2 good columns, whereas a
negative one has none. Theorem 12 follows immediately from the following lemma.

Lemma 13. There exists a deterministic subroutine that, given an index j ∈ [m], accepts iff
the column j is good in Õ(n+m) queries.

Indeed, given a string y ∈ {0, 1}m, it takes O(1) queries for either an R1 or a QE algorithm to
distinguish the case y = 0m from the case when y has exactly m/2 ones. Using the subroutine
from Lemma 13 as the input to this algorithm, we evaluate the function gn,m in Õ(n + m)
queries.

For example, for an algorithm with one-sided error, we choose an index j ∈ [m] uniformly
at random, and execute the subroutine of Lemma 13. If the input is negative, we always reject.
If the input is positive, we accept with probability exactly 1/2. The exact quantum algorithm
is obtained similarly, using the Deutsch-Jozsa algorithm.

Proof of Lemma 13. The subroutine is described in Algorithm 3. In the subroutine, I stores
the set of (the first indices) of the cells in column j that can potentially contain the element `j
back pointing to the special element a. The set B contains potentially marked columns.

As ensured by step 4, the subroutine only accepts if the input is positive (column b passes
the verification), and the column j is good. Hence, we get no false positives. On the other hand,
assume the input is positive with the marked column b, column j is good, and `j = (i, j). In
this case, i cannot get removed from I due to goodness of column j and Condition 3 on Page 11,
and b never gets eliminated from B as it contains no zeroes. Thus, the only possibility to exit
the loop on step 2 is to have B = {b}. In this case, b passes the verification, and the algorithm
accepts since column j is good. Hence, we get no false negatives as well.

The query complexity of each iteration of the loop in step 2 is O(logm). Also, with each
iteration, either I or B get reduced by one element. Hence, the total number of iterations of
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Algorithm 3 A deterministic subroutine testing whether a column j is good

1. Let I ← [n] and B ← [m].

2. While I 6= ∅ and |B| ≥ 2, repeat the following:

(a) Let i be the smallest element of I. Let a← bpoint(xi,j). If a = ⊥, remove i from I,
and continue with the next iteration of the loop.

(b) Let j be the smallest number of a column in B that does not contain a. Follow the
pointers from a as specified by the sequence T (j). Let `j be the endpoint.

(c) If `j exists, is located in column j and its value is 0, remove j from B. Otherwise,
remove i from I.

3. If |B| ≥ 2, reject. Otherwise, let b be the only element of B. Verify column b using a
procedure similar to that in Algorithm 1.

4. If column b passes the verification, and j belongs to the set G from Condition 4′ on
Page 15, accept. Otherwise, reject.

the loop does not exceed n + m. Finally, the verification in step 3 requires O(n + m) queries.
Thus, the query complexity of the algorithm is Õ(n+m).

Corollary 14. There is a total boolean function f with R1(f) = Õ(R0(f)1/2) and QE(f) =
Õ(R0(f)1/2).

Proof. We first obtain this separation for a non-boolean function. Take gn,m with n = m. The

one-sided error randomized and exact quantum query complexity is Õ(n) by Theorem 12, and
the Las Vegas query complexity is Ω(n2) by Theorem 8. Since the size of the alphabet Σ is
polynomial, this also gives the separations for the associated boolean function g̃n,n.

5 Other separations against randomized complexity

In this section we define another modification of the function used in Section 3. Let n, m,
M , M̃ and T be as in Section 3, and let k : 1 ≤ k < m be an integer. The new function
hk,n,m : ΣM → {0, 1} is defined as follows. The input alphabet is Σ = {0, 1} × M̃ × M̃ × M̃ .
For v ∈ Σ, we call the elements of the quadruple the value, the left pointer, the right pointer
and the internal pointer of xi,j , respectively. We use notation val(v), lpoint(v), rpoint(v), and
ipoint(v) for them in this order.

For an input x = (xi,j), we have hk,n,m(x) = 1 if an only if the following conditions are
satisfied (for an illustration refer to Figure 6):

1. There are exactly k columns b1, . . . , bk such that val(xi,bs) = 1 for all i ∈ [n] and each
s ∈ [k]. We refer to these as the marked columns.

2. Each marked column bs contains a unique cell as such that xas 6= (1,⊥,⊥,⊥). We call as
a special element.

3. We have ipoint(xas) = as+1 for all s ∈ [k − 1], and ipoint(xak) = a1. Also, lpoint(xas) =
lpoint(xat) and rpoint(xas) = rpoint(xat) for all s, t ∈ [k].

4. For each non-marked column j ∈ [m] \ {b1, . . . , bk}, let `j be the end of the path which
starts at a special element as (whose choice is irrelevant) and follows the pointers lpoint
and rpoint as specified by the sequence T (j). We require that `j exists (no pointer on the
path is ⊥), `j is in the jth column, and val(x`j ) = 0.
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Figure 6: An example of a 1-certificate for the h3,8,8 function. The tree T is like in Figure 3 on
the left. The center of a cell xi,j shows val(xi,j), the top of the cell shows ipoint(xi,j) and the
left and right sides show lpoint(xi,j) and rpoint(xi,j), respectively. Values and pointers that are
not shown can be chosen arbitrarily.

We use this function in two different modes. The first one is the k = 1 case. Then, h1,n,m

is essentially the fn,m function from Section 3 with the back pointers removed, i.e., it need not
satisfy condition (4). In this mode, the function is hard for a Monte Carlo algorithm, but still
has low approximate polynomial degree.

The second mode is the general k case. In this mode, the function is hard for a Las Vegas
algorithm, but feasible for quantum algorithms. The proof of the lower bound is similar to
Section 4. We need a different function because Algorithm 3 in Theorem 12 cannot be efficiently
quantized.

Theorem 15. If n and m are sufficiently large, the Las Vegas randomized query complexity
R0(hk,n,m) = Ω(nm) for any k < m/2.

Proof. The proof is similar to the proof of Theorem 8. We define the hard distribution (1) in
exactly the same way. The theorem follows from Lemma 10 and the following claim.

Claim 16. Any Las Vegas algorithm for the function hk,n,m can reject an input x from the hard
distribution (1) only if it has found m−k+ 1 zeroes or it has queried more than n(m−k)− 2m
elements.

Proof. Assume these conditions are not met. Then, we can construct a positive input y that is
consistent with the answers to the queries obtained by the algorithm so far.

Indeed, choose a set B = {b1, . . . , bk} of columns where no zero was found. Define as =(
`x(bs), bs

)
for each s ∈ [k]. These elements have not been queried yet. Define val(yas) = 1 for

all s, as well as ipoint(yas) = as+1 for all s ∈ [k − 1], and ipoint(yak) = a1.
Remove from the tree T the leaves with labels in B and the root. Let the resulting graph

be T ′. For each j /∈ B, put the leaf of T ′ with label j into (`x(j), j), set its value to 0 and
all pointers to ⊥. Put the remaining nodes of T ′ into the still unqueried cells of M preserving
the structure of the graph. Set their value to 0 and their internal pointers to ⊥. Let u and
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v be the cells where the left and the right child of the root of T went. For each s ∈ [k], set
lpoint(yas) = u and rpoint(yas) = v. Set all the remaining cells to (1,⊥,⊥,⊥). The resulting
input is positive, and consistent with the answers to the queries obtained by the algorithm.

Theorem 17. If n and m are sufficiently large, the randomized query complexity R(h1,n,m) =
Ω
(
nm

logm

)
.

Note that Theorem 17 only considers the case k = 1. It is proven in a similar fashion to
Theorem 15 using the additional fact that the expected size of a subtree rooted in a node of a
balanced tree is logarithmic. The proof is given in Section 6.

5.1 Quantum versus Las Vegas

Theorem 18. The quantum query complexity Q(hk,n,m) = Õ
(√

nm/k +
√
kn+ k +

√
m
)
.

Proof. We search for a column consisting only of ones using Grover’s search. Testing one column
takes O(

√
n) queries. Also, in the positive case, there are k such columns, so we will find one

after O(
√
nm/k) queries with high probability. If we do not find such a column, we reject.

In case we find a marked column j, we use Grover’s search to check that it satisfies condition
(2) of the definition of hk,n,m. This requires O(

√
n) queries. Let a be the corresponding special

element. We follow the internal pointer from a to find all the special elements and to check that
condition (3) of the definition of hk,n,m is satisfied. This requires k queries. We use Grover’s
search to check that all the remaining elements of the marked columns are equal to (1,⊥,⊥,⊥).
This requires O(

√
kn) queries.

After that, we check condition (4) of the definition of hk,n,m. Since there are less than m
elements `j to check and each one can be tested in O(logm) queries, Grover’s search can check

this condition in Õ(
√
m) queries.

Corollary 19. There is a total boolean function f with Q(f) = Õ(R0(f)1/3).

Proof. We first obtain the separation for a non-boolean function. Take hk,n,m with k = n and

m = n2. Then the quantum complexity is Õ(n) by Theorem 18, and the Las Vegas randomized
complexity is Ω(n3) by Theorem 15. Since the size of the alphabet Σ is polynomial, we obtain
the required separations for the associated boolean function.

5.2 Exact Quantum versus Monte Carlo

Theorem 20. The exact quantum query complexity QE(hk,n,m) = O(n
√
m/k + kn+m).

Proof. We use the exact version of Grover’s search to find a column consisting only of ones. In
the positive case, there are exactly k such columns, and testing each column takes n queries.
Thus, the complexity of this step is O(n

√
m/k).

If we find a marked column j, we query all xi,j for i ∈ [n] to check that it satisfies condition (2)
of the definition of hk,n,m. Let a be the corresponding special element. We follow the internal
pointer from a to check that condition (3) is also satisfied and to find all the marked columns.
We then check condition (2) on them as well. All this requires kn queries.

After that, we follow the left and right pointers from a, and check that condition (4) of the
definition of hk,n,m is satisfied. This requires O(m) queries.

Corollary 21. There exists a total boolean function f with QE(f) = Õ(R(f)2/3).
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Proof. Take h1,n,m with m = n2. Then the exact quantum query complexity is O(n2) by

Theorem 20 and the Monte Carlo randomized query complexity is Ω̃(n3) by Theorem 17. Since
the size of the alphabet Σ is polynomial, this also gives the separation for the associated boolean
function h̃1,n,m.

5.3 Approximate Polynomial Degree versus Monte Carlo

Theorem 22. Let h̃1,n,m : {0, 1}nmdlog |Σ|e → {0, 1} be the boolean function associated to h1,n,m.

The approximate polynomial degree d̃eg(h̃1,n,m) = Õ(
√
n+
√
m)

Proof. For j ∈ [m], let gj : {0, 1}nmdlog |Σ|e → {0, 1} be defined as follows. The value gj(x) is 1
if h̃1,n,m(x) = 1, and j is the marked column. Otherwise, gj(x) = 0.

For each j ∈ [m], the function gj(x) can be evaluated in Õ(
√
n+
√
m) quantum queries using

a variant of the VerifyColumn procedure in Algorithm 2. Repeating this quantum algorithm
O(logm) times, we may assume that its error probability is at most 1/(10m). We then use
the connection between quantum query algorithms and polynomial degree of [3] to construct a
polynomial pj(x) of degree 2T (where T is the number of queries) that is equal to the acceptance

probability of this algorithm. The polynomial pj(x) is of degree Õ(
√
n +
√
m) and satisfies

0 ≤ pj(x) ≤ 1/(10m) if gj(x) = 0, and 1− 1/(10m) ≤ pj(x) ≤ 1 otherwise.
We then define a polynomial p(x) =

∑
j pj(x). If h1,n,m(x) = 0, then all gj(x) = 0 and

0 ≤ p(x) ≤ 1/10. Otherwise, there is unique b ∈ [m] such that gb(x) = 1, and all other gj(x) = 0.
In this case, 1− 1/(10m) ≤ p(x) ≤ 11/10. Thus, p(x) is an approximating polynomial to h1,n,m

and its degree is Õ(
√
n+
√
m).

Corollary 23. There is a total boolean function f with d̃eg(f) = Õ(R(f)1/4).

Proof. Take h̃1,n,m from Theorem 22 with m = n. Then the approximate degree is Õ(
√
n), and

the Monte Carlo randomized query complexity is Ω(n2) by Theorem 17.

6 Proof of Theorem 17

Lemma 24. Assume T is a balanced binary tree with m leaves, and at least a 1/4 fraction of
its nodes are marked. Let u be sampled from all the marked nodes of T uniformly at random.
The expected size of the subtree rooted at u does not exceed C0 logm for some constant C0.

Proof. Let us first consider the case when T is a complete balanced binary tree with 2k − 1
nodes and all its nodes are marked. Then, the expected size of the subtree is (where i is the
height of the node u)

k∑
i=1

2k−i

2k − 1
· (2i − 1) ≤ k. (3)

In the general case, T can be embedded into a complete balanced binary tree T ′ with 2k− 1
nodes, where k = dlogme+1. Mark in T ′ all the nodes marked in T . Again, an Ω(1) fraction of
the nodes is marked. Hence, for each node u, a probability that u is sampled from the marked
nodes of T ′ is at most a constant times its probability to be sampled from all the nodes of T ′.
Thus, the expected size of the subtree is at most a constant times the value in (3).

By Theorem 1, it suffices to construct a hard distribution on inputs and show that any
deterministic decision tree that computes h1,n,m with distributional error less than 2/10 on the
hard distribution makes an Ω(nm/ logm) expected number of queries. By Markov’s inequality,
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it suffices to show that any deterministic decision tree that performs this task with error 3/8
has depth Ω(nm/ logm). We now define the hard distribution.

Let T be the balanced binary tree from the definition of h1,n,m. Denote by r the root of the
tree, and by TN the set of internal nodes of T . The latter has cardinality m− 1.

An input x = (xi,j) is defined by a quadruple (vx, πx, `
L
x, `

N
x), where

• vx ∈ {0, 1}, it will be the value of the function h1,n,m on x;

• πx : TN → [m] is an injection, it specifies to which columns the internal nodes of T will
go; and

• `Lx : [m] → [n] and `Nx : [m] → [n] are functions satisfying `Lx(j) 6= `Nx(j) for each j ∈ [m].
They specify the rows where the leaves and the internal nodes of the tree T land in column
j.

The definition is as follows. Remove the leaf with the label πx(r) from T . For each column
j 6= πx(r), put the leaf j into the cell

(
`Lx(j), j

)
, set all its pointers to ⊥ and its value to 0.

Then, for each internal node u of the tree, put it at
(
`Nx(πx(u)), πx(u)

)
, set its left and right

pointers so that the structure of the tree is preserved. If u 6= r, assign its internal pointer to ⊥,
and set its value to 0. Otherwise, if u = r, assign its internal pointer to itself, and set its value
to vx. Assign the quadruple (1,⊥,⊥,⊥) to all other cells. It is easy to see that the value of the
function h1,n,m on this input is vx.

The hard distribution is defined as the uniform distribution over the quadruples (vx, πx, `
L
x, `

N
x)

subject to the constraint `Lx(j) 6= `Nx(j) for each j ∈ [m].

Let D be a deterministic decision tree of depth

D =
nm

64C0 logm
.

We will prove that D errs on x, sampled from the hard distribution, with probability at least
3/8.

Let x be an input from the hard distribution, and consider the vertex S of D after t queries
to x. We say that a column j ∈ [m] and the corresponding tree element π−1

x (j) (if it exists) are
compromised on the input x after t queries if at least one of the following three conditions is
satisfied:

• one of the cells (`Lx(j), j) and (`Nx(j), j) has been queried;

• more than a half of the cells in the jth column have been queried; or

• in the tree T there exists an ancestor u of π−1
x (j) such that one of the above two conditions

is satisfied for πx(u).

Let At(x) denote the number of compromised columns, and Bt(x) denote the number of
cells queried outside the compromised columns, both after t queries. Consider the following
quantity

It(x) = min

{
At(x) +

4C0 logm

n
Bt(x),

m

2

}
.

Note that At(x) can only increase as t increases, whereas Bt(x) can increase or decrease.

Claim 25. For a non-negative integer t, we have

Ex
[
It+1(x)

]
− Ex

[
It(x)

]
≤ 8C0 logm

n
, (4)

where the expectation is over the inputs in the hard distribution.
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We will prove Claim 25 a bit later. Now let us show how it implies the theorem. Clearly,
I0(x) = 0 for all x. Claim 25 implies that Ex[ID(x)] ≤ m/8. By Markov’s inequality, the
probability that ID(x) ≥ m/2 is at most 1/4.

Let x be an input satisfying ID(x) < m/2. Thus, x has less than m/2 compromised columns
after D queries. In particular, the variable a =

(
`Nx(πx(r)), πx(r)

)
, corresponding to the root of

T , has not been queried. Let y be the input given by (1− vx, πx, `Lx, `Nx). They only differ in a,
and h1,n,m(x) 6= h1,n,m(y). Hence, the decision tree D errs on exactly one of them.

This means that D errs on x sampled from the hard distribution with probability at least
3/8.

Proof of Claim 25. We divide the inputs of the hard distribution into equivalence classes, and
prove that (4) holds with the expectation over each of the classes. We say that two inputs x
and y are equivalent if the following three conditions hold:

• after t queries, the decision tree D gets to the same vertex on x and y;

• the set C of compromised columns is the same in x and y;

• for all j ∈ C, π−1
x (j) = π−1

y (j).

Fix an equivalence class, let x be an input in the class, and (i, j) be the variable queried by D
on the (t+1)st query on the input x. Note that (i, j), as well as At(x) and Bt(x) do not depend
on the choice of x. Consider the following cases, where each case excludes the preceding ones.
All expectations and probabilities are over the uniform choice of an input in the equivalence
class.

• We have It(x) = m/2. Then, It+1(x) ≤ m/2, and we are done.

• The jth column is compromised. Then It+1(x) = It(x), and we are done.

• After the cell (i, j) is queried, more than half of the cells in the jth column have been
queried. As It(x) < m/2, less than half of the columns are compromised. By Lemma 24
with non-compromised nodes marked, the expected growth of At(x) is at most C0 logm.
On the other hand, the drop in Bt(x) is at least bn/2c. Hence, Ex

[
It+1(x)

]
≤ Ex

[
It(x)

]
.

• Consider the remaining case. We have Prx
[
i ∈
{
`Lx(j), `Nx(j)

}]
≤ 4/n.

– If i is one of `Lx(j) or `Nx(j), then, as in the previous case, the expected growth of
At(x) is at most C0 logm, and Bt(x) can only decrease.

– If i 6= ax(j), then At(x) does not change, and Bt(x) grows by 1.

Thus,

Ex
[
It+1(x)

]
− Ex

[
It(x)

]
≤ 4

n
· C0 logm+

4C0 logm

n
=

8C0 logm

n
.
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