
Satisfiability Algorithms and Lower Bounds for
Boolean Formulas over Finite Bases

Ruiwen Chen

School of Informatics, University of Edinburgh, Edinburgh, UK;
rchen2@inf.ed.ac.uk

Abstract. We give a #SAT algorithm for boolean formulas over arbi-
trary finite bases. Let Bk be the basis composed of all boolean functions
on at most k inputs. For Bk-formulas on n inputs of size cn, our algo-

rithm runs in time 2n(1−δc,k) for δc,k = c−O(c2k2k). We also show the
average-case hardness of computing affine extractors using linear-size
Bk-formulas.
We also give improved algorithms and lower bounds for formulas over
finite unate bases, i.e., bases of functions which are monotone increasing
or decreasing in each of the input variables.

Keywords: boolean formula, satisfiability algorithm, lower bound, ran-
dom restriction

1 Introduction

The random restriction approach was introduced by Subbotovskaya [15] to prove
lower bounds for boolean formulas. For formulas over a basis B, we define the
shrinkage exponent ΓB to be the least upper bound on γ such that the formula
size shrinks (in expection) by a factor of pγ under random assignments leaving
p fraction of the inputs unfixed. Subbotovskaya [15] showed the shrinkage expo-
nent of de Morgan formulas (formulas over the binary basis {¬,∧,∨}) is at least
1.5, and this implies an Ω(n1.5) lower bound on the formula size for computing
the parity of n variables. Andreev [1] improved this lower bound by construct-
ing an explicit function which requires size Ω(nΓ+1−o(1)) for any formulas with
shrinkage exponent Γ . The shrinkage exponent of de Morgan formulas was im-
proved in [8, 12], and finally, Hastad [6] showed the tight bound Γ = 2 − o(1),
which gives an Ω(n3−o(1)) lower bound for computing Andreev’s function.

Recently, the shrinkage property was strengthened to get both satisfiability
algorithms [13] and average-case lower bounds [9, 10]. Santhanam [13] gave a
simple deterministic #SAT algorithm for de Morgan formulas. The algorithm
recursively restricts the most frequent variables, and the number of branches in
the recursion tree is bounded via the concentrated shrinkage property; that is,
along a random branch of the recursion tree, the formula size shrinks by a factor
of p1.5 with high probability. For cn-size formulas, Santhanam’s algorithm runs
in time 2n(1−Ω(1/c2)). Combining with memoization, similar algorithms running

in time 2n−n
Ω(1)

were given for formula size n2.49 [2] and n2.63 [3].

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 99 (2015)

2 Ruiwen Chen

Seto and Tamaki [14] extended Santhanam’s algorithm to formulas over the
full binary basis {¬,∧,∨,⊕}. Note that, the shrinkage exponent here is trivially
1 since ⊕ is in the basis, and thus Santhanam’s algorithm does not apply directly.
Instead, Seto and Tamaki [14] showed that, for a small-size formula over the full
binary basis, either satisfiability checking is easy by solving systems of linear
equations, or a greedy restriction will shrink the formula non-trivially, which is
as required by Santhanam’s algorithm. In this work, we will further extend Seto
and Tamaki’s approach to formulas over arbitrary finite bases.

On the other hand, Komargodski, Raz, and Tal [9, 10] applied concentrated
shrinkage to prove average-case lower bounds for de Morgan formulas. In par-
ticular, they constructed a generalized Andreev’s function which is computable
in polynomial time, but de Morgan formulas of size n2.99 can compute correctly

on at most 1/2 + 2−n
Ω(1)

fraction of all inputs. The result in [10] also implies

a randomized #SAT algorithm in time 2n−n
Ω(1)

for de Morgan formulas of size
n2.99.

1.1 Our results and proof techniques

In this work, we focus on formulas over arbitrary finite bases, and generalize
previous results on formulas over binary bases [13, 14, 2]. For k > 2, let Bk be
the basis consisting of all boolean functions on at most k variables. We consider
Bk-formulas, i.e., formulas over the basis Bk.

We first give a satisfiability algorithm for Bk-formulas which is significantly
better than brute-force search.

Theorem 1. For n-input Bk-formulas of size cn, there is a deterministic al-
gorithm counting the number of satisfying assignments in time 2n(1−δc,k), where

δc,k = c−O(c2k2k).

The algorithm is based on a structural property of small formulas, similar
to Seto and Tamaki’s approach [14] for B2-formulas. That is, for a small Bk-
formula, either satisfiability checking can be done by solving systems of linear
equations, or a process of greedy restrictions gives non-trivial shrinkage. The
technical difficulty is that, since we have both ⊕ and functions of arity larger
than 2 in Bk, the formula size shrinks trivially even by restricting the most
frequent variables. To get nontrivial shrinkage, we need a formula weight function
which accounts for not only the formula size but also the basis functions used in
the formula, and argue that the weight shrinks nontrivially under certain greedy
restrictions (which aims at optimally reducing the weight rather than the size).
We also require that the formula weight is proportional to the formula size, and
thus, in the end of greedy restrictions, the size also shrinks nontrivially.

The weighting technique was used previously for the shrinkage (in expecta-
tion) of de Morgan formulas [8, 12] and formulas over finite unate bases [4]. We
use weight functions similar as in [4] but with dedicated parameterizations since
the basis contains non-unate functions.

Boolean Formulas over Finite Bases 3

The algorithm implicitly constructs a parity decision tree for the given for-
mula; this implies that any Bk-formula of linear size has a parity decision tree
of size 2n−Ω(n). By the fact that affine extractors are hard to approximate by
parity decision trees, we immediately get the following average-case lower bound.

Theorem 2. There is a polynomial-time computable function fn such that, for
any family of Bk-formulas Fn of size cn for a constant c, on random inputs
x ∈ {0, 1}n,

Pr[Fn(x) = fn(x)] 6 1/2 + 2−Ω(n).

Note that, an average-case lower bound for larger Bk-formulas also follow
from [9, 10]. That is, Bk-formulas of size n1.99 can compute the generalized An-

dreev’s function of [10] correctly on at most 1/2 + 2−n
Ω(1)

fraction of inputs.

For the more restrictive unate bases, we get nontrivial #SAT algorithms
and average-case lower bounds for formulas of super-quadratic size. The results
follow easily by extending the expected shrinkage of Chockler and Zwick [4]
to concentrated shrinkage, and generalizing the previous algorithms and lower
bounds for de Morgan formulas [13, 9, 10, 2].

1.2 Related work

This work, or the general task of finding better-than exhaustive search satisfi-
ability algorithms, is largely motivated by the connection between satisfiability
algorithms and circuit lower bounds [18]. Williams [16, 17] showed that nontriv-
ial satisfiability algorithms (running in time 2n/nω(1)) for various circuit classes
would imply circuit lower bounds. This raises the question of which circuit classes
have nontrivial satisfiability algorithms. In this work, we show such an algorithm
for linear-size formulas over arbitrary finite bases. Our algorithm is also an ex-
ample of the other direction in the connection (following the works [13, 14, 2,
3]); that is, proof techniques for circuit lower bounds (shrinkage under random
restrictions) can be used to design nontrivial satisfiability algorithms.

Shrinkage (in expection) under restrictions was a successful technique for
proving formula size lower bounds [15, 8, 12, 6, 4]. Recently, this property was
generalized to concentrated shrinkage in several works in order to get nontrivial
satisfiability algorithms [13, 14, 3], average-case lower bounds [9, 10], and pseu-
dorandom generators [7].

The weighting and shrinkage technique we use, following from [8, 12, 4, 13],
is also related to the measure-and-conquer approach [5], which gives improved
exact algorithms for graph problems such as maximum independent set. Both
approaches wish to bound the recursion branches via a better measure (weight)
on problem instances. A major difference might be that, the usual measure-
and-conquer approach reduces the measure additively in each recursion (linear
recurrences), whereas the shrinkage approach reduces the measure by a multi-
plicative factor (non-linear recurrences).

4 Ruiwen Chen

2 Preliminaries

A basis is a collection of boolean functions. A formula over a basis B, which
we call a B-formula, is a tree where each internal node is labeled by a function
in B, and each leaf is labeled by a literal (a variable x or its negation x) or a
constant (0 or 1). We call each internal node a gate, and require the fan-in of a
gate matches with the inputs of the labeling function.

For k > 2, let Bk be the basis composed of all boolean functions on at most
k variables.

We say a function f(x1, . . . , xk) is positive (negative) unate in xi if, for all
aj ∈ {0, 1} where j 6= i,

f(a1, . . . , ai−1, 0, ai+1, . . . , ak) 6 (>) f(a1, . . . , ai−1, 1, ai+1, . . . , ak).

We say f is unate if it is either positive unate or negative unate in each of its
input variables. For k > 2, let Uk be the basis consisting of all unate functions
on at most k variables.

For convenience, we assume all gates have fan-in at least two; that is, all
negations are eliminated by merging to their inputs. We also assume all binary
gates are labeled by either ∨,∧ or ⊕; the other binary gates can be represented
by adding necessary negations, e.g., replacing x ≡ y by x ⊕ y. When we write
∨,∧ or ⊕, we assume they are binary.

We define the size L(F) of a formula F to be the number of non-constant
leaves in F . Let G⊕(F) be the number of ⊕ gates in F , let G2(F) be the number
of ∨ and ∧ gates, and let Gi(F) be the number of i-ary gates, for 3 6 i 6 k. Then

obviously, for non-constant F , we have L(F) = 1 +G⊕(F) +
∑k
i=2(i− 1)Gi(F).

We define the weight of F to be

W (F) = L(F) + α⊕G⊕(F) +

k∑
i=2

αiGi(F),

where α⊕, α2, . . . , αk is a sequence of positive weights associated with gates of
the corresponding types. As we will explain later, we require that αi−1 + α⊕ 6
αi 6 (i− 1)α⊕ for i > 3.

3 Shrinkage under restrictions

In this section, we will characterize the shrinkage of formula weights under ran-
dom restrictions. We first present formula simplification rules which will help
removing redundancy and transforming the formula into a normalized represen-
tation.

3.1 Formula simplification

For i > 3, we say an i-ary gate g(x1, . . . , xi) has a linear representation in one of
its input variables, say x1, if g(x1, . . . , xi) = x1⊕h(x2, . . . , xi) for some (i−1)-ary
gate h. We will replace a gate by its linear representation whenever possible.

Boolean Formulas over Finite Bases 5

We recall some definitions from [14]. A node in the formula tree is called
linear if (1) it is a leaf, or (2) it is labeled by ⊕ and both of its children are
linear. We say a linear node is maximal if its parent is not linear. Let Fv denote
the subformula rooted at a linear node v. Denote by var(Fv) the set of variables
appearing in Fv.

Two maximal linear nodes u and v are mergeable if they are connected by
a path where every node in between is labeled by ⊕. They can be merged into
one maximal linear node in the following way. Let s be the parent of u, and u′

be the sibling of u; let t be the parent of v, and v′ be the sibling of v; that is,
Fs = Fu⊕Fu′ and Ft = Fv⊕Fv′ . (Note that the parents of both u and v must be
⊕ since otherwise they would not be mergeable.) To merge u and v, we replace
Fu by Fu ⊕ Fv, and replace Ft by Fv′ .

The following are the formula simplification rules, which include the rules
in [6, 13, 14] as special cases.

Formula simplification rules:
1. Constant elimination:

(a) Eliminate constants feeding into binary gates by the following:
1∨x = 1, 1∧x = x, 0∧x = 0, 0∨x = x, 1⊕x = x, 0⊕x = x.

(b) For 3 6 i 6 k, if an i-ary gate is fed by a constant, replace it by
an equivalent (i− 1)-ary gate.

2. Redundant sibling elimination:
(a) If an ∧ or ∨ gate is fed by a literal x and a subformula G,

eliminate x and x from G (if possible) by the following: x∨G =
x ∨G|x=0, x ∧G = x ∧G|x=1.

(b) For 3 6 i 6 k, if an i-ary gate does not depend on one of its
input, replace it an equivalent (i− 1)-ary gate.

(c) If an i-ary gate is fed by two literals over the same variable,
replace it by an equivalent (i− 1)-ary gate.

3. Linear node transformation:
(a) If an i-ary gate has a linear representation in one of its inputs,

replace it by ⊕ over that input and a new (i− 1)-ary gate.
(b) If a variable appears more than once under a linear node, elimi-

nate unnecessary leaves by the commutativity of ⊕ and the fol-
lowing: x⊕ x = 0, x⊕ x = 1.

(c) Merge any mergeable pairs of maximal linear nodes.

We call a formula simplified if none of the rules above is applicable. It is
easy to check that, given a formula F , one can compute an equivalent simplified
formula F ′ in polynomial time, and it holds that L(F ′) 6 L(F).

3.2 Weight reduction under restrictions

In the following, we analyze weight reductions when a single leaf is randomly
fixed. Given a simplified formula F , a variable x, and b ∈ {0, 1}, we define the
weight reduction from x = b as σx=b(F) = W (F) − W (F |x=b), where F |x=b
is the simplified formula obtained from F under the restriction x = b. We also
define σx(F) = (σx=0(F) + σx=1(F))/2.

6 Ruiwen Chen

Lemma 1. Suppose that αi−1 + α⊕ 6 αi 6 (i − 1)α⊕ for i > 3. Let F =
g(x,G1, . . . , Gi−1) be a simplified formula where the root gate g has arity i > 2

and its first input is a literal x. Let βb = σx=b(F)−
∑i−1
j=1 σx=b(Gj).

– If g is ∨ or ∧, then min{β0, β1} > 1 + α2, and max{β0, β1} > 2 + α2.
– If g is ⊕, then βb > 1 + α⊕ for b ∈ {0, 1}.
– If g is i-ary for i > 3, then min{β0, β1} > 1+αi−(i−2)α⊕, and max{β0, β1} >

1 + αi − αi−1.

Note that, βb measures the weight reduction from restricting a single leaf.

Proof. If g is ∨ or ∧, then x or x does not appear in G1 by the simplification rule
2(a), which means σx=b(G1) = 0. For both assignments of x, we can eliminate
x and g, reducing the weight by 1 + α2; in one of the assignments, we can also
eliminate G1, which has size at least 1.

If g is ⊕, then, for both assignments of x, we can eliminate x and g, reducing
the weight by 1 + α⊕. This will not affect the weight reduction in G1, since G1

cannot be a single literal x or x by the simplification rule 3(b).
If g is an i-ary gate, for i > 3, then none of Gi’s is a literal x or x by the

simplification rule 2(c), and g does not have any linear representation by the
simplification rule 3(a). We restrict x = b in two steps. First restrict x = b on
all Gi’s, and let F ′ = g(x,G1|x=b, . . . , Gi−1|x=b), which has weight W (F ′) 6
W (F) −

∑i−1
j=1 σx=b(Gj); note that F ′ may not be simplified on the top gate g

(however, each Gi|x=b is simplified). Then restrict x = b on the first input of
g, and simplify the formula. Next we compute the weight reduction W (F ′) −
W (F ′|x=b).

This weight reduction is upper bounded by the weight reduction from re-
stricting x = b on g(x, y1, . . . , yi−1) where x, y1, . . . , yi−1 are distinct variables.
The rest of the proof follows from the next Claim.

Claim. Let G = g(x, y1, . . . , yi−1) where x, y1, . . . , yi−1 are distinct variables,
and g does not have any linear representation. Then minb∈{0,1} σx=b(G) > 1 +
αi − (i− 2)α⊕, and maxb∈{0,1} σx=b(G) > 1 + αi − αi−1.

Proof. We consider how g simplifies when x is fixed. Let gb := g(b, y1, . . . , yi−1)
be an (i − 1)-ary gate on inputs y1, . . . , yi−1. Note that gb could have linear
representations. In general, each of g0 and g1 could be an (i − 1)-ary gate, or
eventually replaced by an (i − 1 − j)-ary gate together with j of ⊕ gates, for
1 6 j 6 i− 2; when j = i− 2, this is just i− 2 of ⊕ gates.

However, we argue that, g0 and g1 cannot have linear representations in the
same input. For the sake of contradiction, suppose both g0 and g1 have linear
representations in the same input y, then we get g0 = y⊕h0 and g1 = y⊕h1, for
some (i− 2)-ary gates h0 and h1. But this implies g = y ⊕ ((x ∧ h0) ∨ (x ∧ h1)),
which contradicts the assumption that g does not have any linear representation.

Suppose g0 does not have any linear representation, then the smallest weight
reduction for x = 1 is obtained when g1 is replaced by i − 2 of ⊕ gates. The
weight reduction is 1 + αi − αi−1 for x = 0, and 1 + αi − (i− 2)α⊕ for x = 1.

Boolean Formulas over Finite Bases 7

If g0 is replaced by (i− 2) of ⊕ gates, then g1 cannot have any linear repre-
sentation; this is the same as the previous case.

If g0 is replaced by an (i − 1 − j)-ary gate together with j of ⊕ gates, for
1 6 j < i − 2, then g1 cannot be completely replaced by i − 2 of ⊕ gates. For
both x = 0 and x = 1, the weight reduction is at least 1 + αi − αi−1, since
αi−1−j + jα⊕ 6 αi−1. ut

ut

3.3 Upper bounds on formula weights

Random restrictions will only affect gates fed by leaves, but the weight function
is defined by attaching weights to all gates of the formula. In order to characterize
the weight reduction in terms of the total weight, we give an upper bound on
the total weight expressed by the numbers of leaves feeding into different types
of gates.

Let F be a simplified formula of size L and weight W . Let L2 be the number
of leaves feeding into ∨ or ∧ gates, let L⊕ be the number of leaves feeding into ⊕
gates, and let Li be the number of leaves feeding into i-ary gates, for 3 6 i 6 k.
Then we have L = L⊕ +

∑k
i=2 Li = G⊕(F) +

∑k
i=2(i− 1)Gi(F) + 1.

The next lemma gives an upper bound of the formula weight. It is similar
to the bound by Chockler and Zwick [4] for formulas over unate bases. We need
the following parameters:

γ⊕ = 1 +
α⊕
2

+
αk

2(k − 1)
,

γi = 1 +
αi
i

+
αk

i(k − 1)
, 2 6 i 6 k.

Lemma 2 ([4]). Suppose that αk/(k−1) > α⊕ and αk/(k−1) > αi/(i−1) for

2 6 i 6 k. Then the formula weight W 6 γ⊕L⊕ +
∑k
i=2 γiLi.

The proof is almost the same as the proof in [4] for Uk-formulas. For complete-
ness, we provide the proof in Appendix A.

3.4 Choice of weight parameters

We next choose suitable weight parameters. To get nontrivial shrinkage, we re-
quire that if a leaf feeding into ⊕ is restricted, then the weight reduces propor-
tionally; for a leaf feeding into other types of gates, the weight should reduce
by a factor strictly larger than 1. Also, since we will use greedy restrictions in
our algorithm instead of completely random restrictions as in [4], we require an
upper bound γ for both γ⊕ and γi’s; that is γ does not depend on the gate type.
This will give an upper bound of the weight W 6 γL.

8 Ruiwen Chen

We choose the following:

αi = i− 1− 1

2i−1
, i = 2, . . . , k,

α⊕ =
αk
k − 1

= 1− 1

(k − 1) · 2k−1
,

γ = 2− 1

(k − 1) · 2k−1
.

It is easy to check that αi−1 + α⊕ 6 αi 6 (i− 1)α⊕ for i > 3. We also have
γi < γk = γ⊕ = γ for 2 6 i < k, and, by Lemma 2, W 6 γL.

Let β⊕ (β2, βi for i > 3) be the average weight reduction from restricting a
leaf which feeds into an ⊕ gate (∨ or ∧ gate, i-ary gate). Then, by Lemma 1,

β⊕ = 1 + α⊕ = γ,

β2 = 1.5 + α2 = 2,

βi = 1 + αi −
1

2
[αi−1 + (i− 2)α⊕]

= 1 +

(
i− 1− 1

2i−1

)
− 1

2

[(
i− 2− 1

2i−2

)
+ (i− 2) ·

(
1− 1

(k − 1) · 2k−1

)]
= 2 +

i− 2

(k − 1) · 2k
> 2, for 3 6 i 6 k,

βmin = min{1 + α2, 1 + αi − (i− 2)α⊕} = 1.5,

βmax = max{2 + α2, 1 + αi − αi−1} = 2.5.

Note that, we have β⊕/γ = 1, and βi/γ > 2/γ = 1 + 1
(k−1)·2k−1 > 1, for

2 6 i 6 k. This means when a leaf feeding into ⊕ is restricted, the weight
reduces by γ, and when a leaf feeding into other types of gates is restricted, the
weight reduces nontrivially (by γ(1 + 1

(k−1)·2k−1) on average).

4 A satisfiability algorithm

Seto and Tamaki [14] observed that, for a linear-size formula over B2, either sat-
isfiability checking is easy by solving systems of linear equations, or one can re-
strict a constant number of variables such that the formula shrinks non-trivially.
This non-trivial shrinkage property leads to a satisfiability algorithm similar to
Santhanam’s algorithm [13]. The next lemma generalizes this property to Bk-
formulas. The proof is essentially the same as the proof for B2-formulas in [14].
We provide the proof in Appendix B.

Lemma 3 (Seto and Tamaki [14]). Let F be a simplified n-input Bk-formula
of size cn for c > 0. Then one of the following cases must be true:

1. The total number of maximal linear nodes is at most 3n/4.
2. There exists a variable appearing at least c+ 1

8c times.

Boolean Formulas over Finite Bases 9

3. There exists a maximal linear node v such that (1) the parent of v is not ⊕,
(2) there are at most 8c variables under v, and (3) each variable under v
appears at least c times in F .

Theorem 3 (Theorem 1 restated). For n-input Bk-formulas of size cn, there
is a deterministic algorithm counting the number of satisfying assignments in

time 2n(1−δc,k), where δc,k = c−O(c2k2k).

Proof. The algorithm first simplifies the given formula, and then runs recursively.
At each recursive step, suppose we have a simplified formula F with n free
variables and size cn. Consider the following cases as in Lemma 3:

1. If there are at most 3n/4 maximal linear nodes, we enumerate all possible
assignments to the maximal linear nodes, which will generate at most 23n/4

branches; for each branch, solve a system of linear equations using Gaussian
elimination.

2. If a variable x appears at least c+ 1/8c times, build two branches for x = 0
and x = 1; for each branch, simplify the restricted formula and recurse.

3. Otherwise, find the smallest maximal linear node, say v, such that it has
a non-⊕ parent and at most 8c variables in var(Fv), and each variable in
var(Fv) appears at least c times in F . We also find all maximal linear nodes
{vj} which are over exactly the same set of variables as v, that is, var(Fvj) =
var(Fv).

(a) If all vj ’s are feeding into different gates, we choose all variables in
var(Fv).

(b) If there are two vj ’s feeding into the same gate, we choose all but one
(arbitrary) variable in var(Fv).

Enumerate all assignments to the chosen variables; for each assignment, re-
strict the formula, and recurse.

Each branch ends when the restricted formula becomes a constant. For each
branch, we count the number of assignments consisting with the restrictions
along the branch. The final answer is the summation of the counts for all branches
where the restricted formula becomes 1. In the rest of the proof, we bound the
number of branches, and thus the running time of the algorithm.

In cases 2, 3(a) and 3(b), we wish to restrict a constant number of vari-
ables such that the formula weight/size reduces non-trivially. (A trivial weight
reduction from restricting one variable is cγ, where c is the average number of
appearances and γ is the smallest average weight reduction for each leaf.)

In case 2, we get non-trivial reduction since the selected variable appears
more than the average.

In case 3, suppose there are d variables in var(Fv), and we restrict these
variables one by one. For case 3(a), when we restrict each of the first d − 1
variables, we always eliminate leaves feeding to ⊕ gates; this is guaranteed by
the minimality of v. For the last variable, we eliminate at least one leaf feeding
into a non-⊕ gate. The average weight reduction together is at least (d− 1)cγ+
(c− 1)γ + 2 = dcγ + 2− γ.

10 Ruiwen Chen

For case 3(b), whenever two vj ’s feed into the same gate, the gate cannot
be ⊕ since vj ’s are maximal linear nodes. Similar to case 3(a), for each variable
restricted, we always eliminate leaves feeding to ⊕ gates. At the end, the un-
restricted variable in var(Fv) will appear twice as literals feeding into a non-⊕
gate; then at least one leaf can be eliminated. The average weight reduction will
be at least (d− 1)cγ + 1.

Consider a partial branch in the recursion tree up to depth n − l, for l to
be specified later. If case 1 occurs along the branch, then all extensions of this
branch will have depth at most n− l/4. We next assume case 1 does not occur.
We will argue that most branches at depth n−l have formulas of size at most l/2,
although there are still l variables unrestricted; then extensions of such branches
will have depth at most n− l/2.

In the following, we claim that the formula weight shrinks with high proba-
bility. Intuitively this is because we restrict a small number of variables in each
of the cases 2, 3(a) and 3(b) and this gives non-trivial weight reductions. We
provide a proof of this claim in Appendix C. A similar result for B2-formulas
was shown in [14].

Claim. Let F be a simplified Uk-formula of size cn and weight W . Let W ′ be
the weight of the formula obtained after restricting n− l variables (according to
cases 2, 3(a) and 3(b)). Then for large enough l,

Pr

[
W ′ > 2W

(
l

n

)Γ]
< 2−l/bc

2

,

for Γ = 1 +Ω(1/c2k2k) and a constant b > 0.

We choose l = pn for p = (8c)−1/(Γ−1). Then after restricting n− l variables,

there are 2n−l branches, but 1−2−l/bc
2

fraction of the branches end with formulas
of size

L′ 6W ′ 6 2W

(
l

n

)Γ
6 2 · γcn · pΓ = 2γcpΓ−1 · l < l

2
.

These “small” formulas depend on at most l/2 variables, although there are
still l variables unrestricted. Completing such branches will get to depth at most
n − l/2. The total number of complete branches will be at most 2n−l · 2l/2 =
2n−l/2.

For 2−l/bc
2

fraction of branches having “large” formulas, although they may
extend to depth n, the total number of such complete branches will be at most
2n−l/bc

2

.
Therefore, the algorithm generates at most 2n−Ω(l/c2) branches; the running

time is bounded by 2n(1−δ), for δ = c−O(c2k2k). ut

5 Average-case lower bounds

The algorithm in Theorem 1 essentially constructs a parity decision tree, where
at each node of the tree, we can either restrict a variable or a parity function
(maximal linear node). The next corollary follows directly.

Boolean Formulas over Finite Bases 11

Corollary 1. An n-input Bk-formula of size cn has a parity decision tree of

size 2(1−δc,k)n, where δc,k = c−O(c2k2k).

An average-case lower bound (also called correlation bound) is a lower bound
on the minimal formula size for approximating an explicit function. Santhanam [13]
showed that linear-size de Morgan formulas compute the parity function cor-
rectly on at most 1/2 + 2−Ω(n) fraction of the inputs. Seto and Tamaki [14]
extended this to B2-formulas by showing that linear-size B2-formulas can com-
pute affine extractors correctly on at most 1/2 + 2−Ω(n) fraction of the inputs.
We next generalize this result for Bk-formulas.

Let F2 be the finite field with elements {0, 1}. A function E : Fn2 → F2 is a
(k, ε)-affine extractor if for any uniform distribution X over some k-dimensional
affine subspace of Fn2 , it holds that |Pr[E(X) = 1]− 1/2| 6 ε. We will need the
following known construction of affine extractors.

Theorem 4 ([19, 11]). For any δ > 0 there exists a polynomial-time com-
putable (k, ε)-affine extractor Eδ : {0, 1}n → {0, 1} with k = δn and ε = 2−Ω(n).

By Corollary 1, any Bk-formulas size cn has a parity decision tree of size
2n−Ω(n). Since most branches of the tree have depth n − Ω(n) (defining affine
subspaces of dimension Ω(n)), by the definition of Eδ, the tree has exponentially
small correlation with Eδ. Thus Theorem 2 follows immediately. The proof is
similar to the proof for B2-formulas in [14]; we provide a proof in Appendix D.

6 Formulas over unate bases

Chockler and Zwick [4] showed that Uk-formulas have shrinkage exponent Γk > 1
under random restrictions. This implies that Parity requires Uk-formula size nΓk

and Andreev’s function [1] requires size n1+Γk−o(1). In this section, we strengthen
this result to concentrated shrinkage, which directly gives #SAT algorithms and
average-case lower bounds for Uk-formulas of super-quadratic size, similar to the
results for de Morgan formulas [13, 9, 10, 2].

6.1 Shrinkage under restrictions

We modify the simplification rules in Section 3.1 as follows. Rules 3(a)-(c) are
not necessary since unate functions do not have linear representations. To ensure
unateness, we change rule 2(c) to the following:

2.(c’) If a ternary gate is fed by two literals of the same variable, replace
it by a binary gate. If an i-ary gate, for i > 4, is fed by more than two
literals of the same variable, replace it by a smaller gate.

If f(x1, x2, x3) is unate, then g(x, y) := f(x, x, y) must be unate, since g is
positive or negative unate in y, whereas the only non-unate binary functions
(x⊕ y and x⊕ y⊕ 1) do not have this property. Similarly, for i > 4, unnecessary
inputs can be eliminated.

12 Ruiwen Chen

Let F be a Uk-formula with size L and weight W . Let αi be the weight
attached to an i-ary gate, for 2 6 i 6 k. The average weight reductions from
restricting a single leaf change to the following:

β2 = 1.5 + α2,

β3 = 1 + α3 − α2,

βi = 1 + min{αi − αi−1,
1

2
(αi − αi−2)}, 4 6 i 6 k.

Let Li be the number of leaves feeding into i-ary gates. As shown in [4]

(following Lemma 2), we get the upper bound W 6
∑k
i=2 γiLi, where γi =

1 + αi
i + αk

i(k−1) , for 2 6 i 6 k.

We choose αi = (i − 2)/2, and γ = γk = 1 + k−2
2(k−1) . This gives W 6 γL,

and βi > 1.5 for 2 6 i 6 k. Let Γk = 1.5/γ = 1 + 1
3k−4 . Let F ′ be the

formula obtained by randomly fixing the most frequent variable in F . Then
E[W (F ′)] 6W − 1.5L/n 6W (1− Γk/n) 6W (1− 1/n)Γk . One can repeat this
process and show that the weight shrinks with high probability, following the
approach of [13, 2].

6.2 #SAT algorithms and average-case lower bounds

Based on concentrated shrinkage, the algorithms for de Morgan formulas in [13,
2] can be easily generalized for Uk-formulas.

Theorem 5. There are deterministic algorithms counting satisfying assignments
for n-input Uk-formulas of

– size cn in time 2n(1−Ω(1/c3k−4));

– size n2+
1

3k−4−ε in time 2n−n
Ω(1)

, for any constant ε > 0.

We provide a proof in Appendex E. Similar to [13, 2], the algorithms also give
non-trivial decision tree size for small Uk-formulas, and an average-case lower
bound for computing Parity.

Corollary 2. An n-input Uk-formula of size cn has a decision tree of size

2n(1−Ω(1/c3k−4)).

Corollary 3. Any family of Uk-formulas of size cn cannot compute Parity cor-

rectly on more than 1/2 + 2−Ω(n/c3k−4) fraction of inputs.

The best known average-case lower bound for de Morgan formulas is n2.99

by Komargodski, Raz and Tal [10], which was shown for a generalized Andreev’s
function [1]. A similar hard function was also given in [2], which works for re-
strictions where each variable is selected deterministically. It is easy to see that
this function is also hard for small Uk-formulas.

Let H : {0, 1}n → {0, 1} be the generalized Andreev’s function in [2].

Theorem 6. For any family of Uk-formulas Fn of size n2+
1

3k−4−ε where ε > 0,

Pr[Fn(x) = H(x)] 6 1/2 + 2−n
Ω(1)

.

Boolean Formulas over Finite Bases 13

7 Open questions

For Bk-formulas of size cn, we give a #SAT algorithm improving over exhaustive

search by a factor of 2δn, for δ = c−O(c2k2k). An open question is whether we can
improve δ to be polynomially small in c, as for Uk-formulas. Another question is
whether we have nontrivial satisfiability algorithms for Uk-formulas of size larger
than nΓk+1, where Γk is the shrinkage exponent. The satisfiability algorithms
we have for Uk-formulas of super-linear size use exponential space; it would be
interesting to have polynomial-space algorithms.

References

1. A.E. Andreev. On a method of obtaining more than quadratic effective lower
bounds for the complexity of π-schemes. Vestnik Moskovskogo Universiteta.
Matematika, 42(1):70–73, 1987. English translation in Moscow University Mathe-
matics Bulletin.

2. R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining
circuit lower bound proofs for meta-algorithms. In Proceedings of the 29th Annual
IEEE Conference on Computational Complexity, CCC ’14, 2014.

3. R. Chen, V. Kabanets, and N. Saurabh. An improved deterministic #sat algorithm
for small de morgan formulas. In Proceedings of Mathematical Foundations of
Computer Science 2014 - 39th International Symposium, MFCS 2014, Part II,
pages 165–176, 2014.

4. H. Chockler and U. Zwick. Which bases admit non-trivial shrinkage of formulae?
Computational Complexity, 10(1):28–40, 2001.

5. F. Fomin, F. Grandoni, and D. Kratsch. A measure & conquer approach for the
analysis of exact algorithms. J. ACM, 56(5):25:1–25:32, August 2009.

6. J. H̊astad. The shrinkage exponent of de Morgan formulae is 2. SIAM Journal on
Computing, 27:48–64, 1998.

7. R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrink-
age. In Proceedings of the Fifty-Third Annual IEEE Symposium on Foundations
of Computer Science, pages 111–119, 2012.

8. R. Impagliazzo and N. Nisan. The effect of random restrictions on formula size.
Random Structures and Algorithms, 4(2):121–134, 1993.

9. I. Komargodski and R. Raz. Average-case lower bounds for formula size. In
Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
pages 171–180, 2013.

10. I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for de-
morgan formula size. In Proceedings of the Fifty-Fourth Annual IEEE Symposium
on Foundations of Computer Science, pages 588–597, 2013.

11. X. Li. A new approach to affine extractors and dispersers. In IEEE Conference on
Computational Complexity, pages 137–147, 2011.

12. M. Paterson and U. Zwick. Shrinkage of de Morgan formulae under restriction.
Random Structures and Algorithms, 4(2):135–150, 1993.

13. R. Santhanam. Fighting perebor: New and improved algorithms for formula and
qbf satisfiability. In Proceedings of the Fifty-First Annual IEEE Symposium on
Foundations of Computer Science, pages 183–192, 2010.

14 Ruiwen Chen

14. K. Seto and S. Tamaki. A satisfiability algorithm and average-case hardness for
formulas over the full binary basis. In Proceedings of the Twenty-Seventh Annual
IEEE Conference on Computational Complexity, pages 107–116, 2012.

15. B.A. Subbotovskaya. Realizations of linear functions by formulas using and, or,
not. Soviet Math. Doklady, 2:110–112, 1961.

16. R. Williams. Improving exhaustive search implies superpolynomial lower bounds.
In Proceedings of the Forty-Second Annual ACM Symposium on Theory of Com-
puting, 2010.

17. R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the
Twenty-Sixth Annual IEEE Conference on Computational Complexity, pages 115–
125, 2011.

18. R. Williams. Algorithms for circuits and circuits for algorithms. In IEEE 29th
Conference on Computational Complexity, CCC 2014, Vancouver, BC, Canada,
June 11-13, 2014, pages 248–261, 2014.

19. A. Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256,
2011.

A Proof of Lemma 2

Lemma 4 (Lemma 2 restated [4]). Suppose that αk/(k − 1) > α⊕ and
αk/(k − 1) > αi/(i − 1) for 2 6 i 6 k. Then the formula weight W 6 γ⊕L⊕ +∑k
i=2 γiLi.

Proof. The upper bound of W is given by the following linear program:

max L+ α⊕G⊕ +

k∑
i=2

αiGi

where G⊕ +

k∑
i=2

(i− 1)Gi = L− 1

G⊕ > L⊕/2,

Gi > Li/i, 2 6 i 6 k.

Note that, we view L,L⊕, Li’s as fixed constants, and G⊕, Gi’s as variables
of the linear program. The condition αk/(k − 1) > {α⊕, αi/(i − 1)} guarantees
that the optimal value is obtained when there are only the minimum required
number of ⊕ and i-ary gates for i < k, and all the rest are k-ary gates. That is,
when G⊕ = L⊕/2, Gi = Li/i for 2 6 i < k, and

Gk =
1

k − 1

(
L− 1−G⊕ +

k−1∑
i=2

(i− 1)Gi

)
.

Since

Gk <
1

k − 1

(
L− L⊕

2
−
k−1∑
i=2

i− 1

i
Li

)
=

1

k − 1

(
Lk +

L⊕
2

+

k−1∑
i=2

Li
i

)
,

Boolean Formulas over Finite Bases 15

we have

W = L+ α⊕G⊕ +

k∑
i=2

αiGi 6 γ⊕L⊕ +

k∑
i=2

γiLi

ut

B Proof of Lemma 3

Lemma 5 (Lemma 3 restated). Let F be a simplified n-input Bk-formula of
size cn for c > 0. Then one of the following cases must be true:

1. The total number of maximal linear nodes is at most 3n/4.
2. There exists a variable appearing at least c+ 1

8c times.
3. There exists a maximal linear node v such that (1) the parent of v is not ⊕,

(2) there are at most 8c variables under v, and (3) each variable under v
appears at least c times in F .

Proof. Suppose that neither case 1 nor case 2 is true, and we wish to prove case
3. We need the following claims.

Claim. The number of maximal linear nodes with non-⊕ parents is more than
those with ⊕ parents.

Proof. We first replace each maximal linear node by a single leaf; this will not
change the number of maximal linear nodes or their parents. Obviously, the result
holds when there are at most 2 internal nodes. We next prove by induction on
the tree size.

There must be one internal node labeled by non-⊕ which is completely fed
by leaves. We denote this node by u, and let v be its parent. If v is labeled by
non-⊕, then we can replace u by one of its children; this removes at least one
maximal linear node with non-⊕ parent (the other children of u), but does not
change those with ⊕-parents. If v is labeled by ⊕, then we can replace v by the
sibling of u; this removes at least two maximal linear nodes with non-⊕ parents
(the children of u), but removes at most one maximal linear node with ⊕-parent.
Then the result holds by induction on smaller tree size. ut

Claim. There are at most n/8 maximal linear nodes which have a variable
appearing less than c times in F .

Proof. By assumption, all variables appear less than c+1/8c times. By averaging,
the largest number of times a variable appears must be an integer c′ ∈ [c, c +
1/8c). This implies there are at most n/8c variables appearing less than c (at
most c′ − 1) times. The number of leaves labeled by these variables is at most
n/8. ut

(Proof of the lemma continued.) By Claim B, the number of maximal linear
node with non-⊕ parents is at least (3n/4)/2 > 3n/8. By the averaging argu-
ment, the number of maximal linear nodes with 8c leaves is at most n/8. Then
following from Claim B, there are at least n/8 maximal linear nodes as required
in case 3. ut

16 Ruiwen Chen

C Proof of Claim 4

A sequence of random variables X0, X1, . . . , Xn is called a supermartingale with
respect to a sequence of random variables R1, . . . , Rn if E[Xi | Ri−1, . . . , R1] 6
Xi−1, for 1 6 i 6 n.

Lemma 6 (Azuma-Hoeffding Inequality). If {Xi}ni=0 is a supermartingale
such that, for each i, |Xi −Xi−1| 6 ci, then, for any λ > 0,

Pr[Xn −X0 > λ] 6 exp

(
− λ2

2
∑n
i=1 c

2
i

)
.

Claim (Claim 4 restated). Let F be a simplified Uk-formula of size cn and weight
W . Let W ′ be the weight of the formula obtained after restricting n− l variables
(according to cases 2, 3(a) and 3(b)). Then for l = Ω(n),

Pr

[
W ′ > 2W

(
l

n

)Γ]
< 2−l/bc

2

,

for Γ = 1 +Ω(1/c2k2k) and a constant b > 0.

Proof. The recursive procedure can be viewed as building up a decision tree,
where at each step, we pick a variable from the formula, build two branches
by restricting the variable. For cases 3(a) and 3(b) where multiple variables are
chosen, we can restrict each variable one by one. We label each node of this
decision tree by the restricted formula, with the root labeled by F . We will
consider this decision tree built up to depth n− l.

Let F0 := F , and let Fi be the formula we obtained after restricting i vari-
ables, where i = 1, . . . , n− l. Let Li = L(Fi) and Wi = W (Fi).

We wish to use the Azuma-Hoeffding inequality to get concentrated weight
reduction. However, the “bounded differences” condition required in the Azuma-
Hoeffding inequality does not hold for {Wi}, since the formula may be simplified
dramatically under restrictions. Therefore, we will introduce a new sequence
{W ′i} that captures only the necessary weight reductions. We wish to have W ′i >
Wi, and the extra weight reductions W ′i −Wi is a non-negative sequence which
will be disregarded.

We call restrictions according to cases 2, 3(a), 3(b) as a super-step. In each
super-step, we restrict 1 6 d 6 8c variables altogether.

We first define ∆W below to be the necessary weight reduction from a super-
step; it will account only the weight reductions from eliminating the restricted
leaf, the gate fed by the leaf, and, for ∨,∧ gates, one sibling leaf if it is eliminated.
In other words, ∆W is the smallest possible weight reduction from restricting
leaves (with respect to all possible formula structure). Suppose at the beginning
of a super-step, we have a formula on n variables with size L = cn and weight
W . Note that 1.5L 6W 6 γL. Let W ′0 = W0 = W , and we will define W ′i below.

Boolean Formulas over Finite Bases 17

– Case 2: If a variable appears at least c+ 1/8c times, let ∆W be the weight
reduction from restricting exactly c+ 1/8c leaves. This gives 1.5(c+ 1/8c) =
βmin(c + 1/8c) 6 ∆W 6 βmax(c + 1/8c) = 2.5(c + 1/8c), and E[∆W] >
γ(c+ 1/8c).
Let W ′1 = W −∆W . Then

E[W ′1] 6W

(
1−

1 + 1
8c2

n

)
6W (1− 1/n)1+

1
8c2 (1)

W

(
1−

2.5
1.5 (1 + 1

8c2)

n

)
6W ′1 6W

(
1−

1.5
γ (1 + 1

8c2)

n

)
(2)

– Case 3(a): If we are restricting all d variables in a maximal linear node, then
let ∆W be the weight reduction from restricting exactly c leaves of each
variable, and, for the last variable, we include its appearance as a leaf feeding
into a non-⊕ gate. For each of the first d− 1 variables, the weight reduction
is cγ, since they all feed into ⊕. For the last variable, the weight reduction is
between 1.5c and 2.5c, and (c− 1)γ + 2 on average. Then (d− 1)γc+ 1.5c 6
∆W 6 (d− 1)γc+ 2.5c and E[∆W] > dγc+ 2− γ.
Let W ′d = W −∆W . Then

E[W ′d] 6W

(
1−

d+ 2−γ
γc

n

)
6W (1− d/n)

1+ 2−γ
8c2γ (3)

W

(
1− (d− 1)γ/1.5 + 2.5/1.5

n

)
6W ′d 6W

(
1− (d− 1) + 1.5/γ

n

)
(4)

For 1 6 i 6 d− 1, simply let W ′i = W (1− i
n)

1+ 2−γ
8c2γ .

– Case 3(b): If we are restricting all but one variable in a maximal linear
node, then, let ∆W be the weight reduction from restricting exactly c leaves
for each variable, and we also add the reduction from eliminating one leaf
labeled by the unrestricted variable. Suppose there are d+ 1 variables in the
maximal linear node. We have ∆W = cdγ + 1.
Let W ′d = W −∆W . Then

E[W ′d] 6W

(
1−

d+ 1
γc

n

)
6W (1− d/n)

1+ 1
8c2γ (5)

W

(
1− (dγ + 1/c)/1.5

n

)
6W ′d 6W

(
1− d+ 1/γc

n

)
(6)

For 1 6 i 6 d− 1, simply let W ′i = W (1− i
n)

1+ 1
8c2γ .

Let γ′ = 1 + min{1/8c2, (2− γ)/8c2γ, 1/8c2γ} = 1+(2−γ)/8c2γ. Then we
have, for 1 6 i 6 d,

E[W ′i] 6W (1− i/n)γ
′
. (7)

18 Ruiwen Chen

Let R1, R2, . . . be the random bits assigned to variables. Note that, given
R1, . . . , Ri, the formula Fi and then Wi are fixed. Suppose for Fi, a super-
step starts and it will restrict d variables; we can define W ′i+1, . . . ,W

′
i+d as

above, based on Fi and the value of Wi. Note that, Fi was produced from the
previous super-step, and W ′i was defined by the previous super-step; we also
have W ′i >Wi.

Let wi = log(Wi). and w′i = log(W ′i). Conditioning on R1, . . . , Ri−1, if the
i-th variable restricted is the first variable in a super-step, let

Zi = w′i − wi−1 − γ′ log

(
1− 1

n− (i− 1)

)
,

otherwise,

Zi = w′i − w′i−1 − γ′ log

(
1− 1

n− (i− 1)

)
.

Given R1, . . . , Ri−1, if the i-th variable restricted is not the last variable in
a super-step, then Zi 6 0. Otherwise, by (7) and E[w′i] 6 log E[W ′i], we have
E[Zi | R1, . . . , Ri−1] 6 0.

By (2), (4) and (6), following from the Taylor series for the ln function, and
that 1.5 6 γ < 2, c > 3/4, and l = Ω(n), there is some large enough constant

b = Ω(c) > 0 such that |Zi| < ci := −b log
(

1− 1
n−(i−1)

)
= b log

(
1 + 1

n−i

)
6

b
n−i .

Let X0 = 0 and Xi =
∑i
j=1 Zi; then the sequence {Xi} is a supermartingale

with respect to {Ri}.
Let i = n− l; we have

i∑
j=1

c2j 6 b2
i∑

j=1

(
1

n− j

)2

6 b2
i∑

j=1

(
1

n− j
− 1

n− (j − 1)

)
6 b2

1

n− i
=
b2

l
.

By the Azuma-Hoeffding inequality (Lemma 6), for any λ > 0,

Pr [Xi −X0 > λ] 6 exp

(
− λ2

2
∑i
j=1 c

2
j

)
6 e−λ

2l/b2 .

We have

Xi −X0 =

i∑
j=1

Zj

> w′i − w0 − γ′ log(l/n).

Therefore, for λ = ln 2,

Pr

[
W ′n−l > 2W

(
l

n

)γ′]
< 2−l/3b

2

.

Boolean Formulas over Finite Bases 19

We can find l′ < l + 8c such that Pr

[
Wn−l′ > 2W

(
l′

n

)γ′]
< 2−l

′/c2b′ , for

some constant b′ > 0.
ut

D Proof of Theorem 2

Theorem 7 (Theorem 2 restated). For any family of Bk-formulas Fn of size
cn for a constant c > 0, there is δ > 0 such that

Pr[Fn(x) = Eδ(x)] 6 1/2 + 2−Ω(n).

Proof. As proved in Theorem 1, we can construct a parity decision tree for Fn
such that, at depth n− l′ for l′ = l/4 = Ω(n), a fraction 1− 2−l

′
of the branches

have restricted formulas becoming constants. Restrictions along any such branch
define an affine subspace of dimension at least l′; by Theorem 4, Fn can compute
Eδ correctly on at most 1/2 + 2−Ω(n) fraction of inputs from the subspace.

On the other hand, there are at most 2−l
′

fraction of the branches with larger
depth; even when Fn computes Eδ correctly for all these branches, the fraction
of inputs is at most 2−l

′
= 2−Ω(n).

Therefore, the fraction of inputs where Fn computes Eδ correctly is at most
1/2 + 2−Ω(n).

ut

E Proof of Theorem 5

Theorem 8 (Theorem 5 restated). There are deterministic algorithms count-
ing satisfying assignments for n-input Uk-formulas of

– size cn in time 2n(1−Ω(1/c3k−4));

– size n2+
1

3k−4−ε in time 2n−n
Ω(1)

, for any constant ε > 0.

Proof. Let F be a Uk-formula on n inputs of size L and weight W . Let Γ =
1 + 1

3k−4 . The algorithms starts by simplifying F , and then runs recursively. At
each recursive step, we find the most frequent variable, say x, build two branches
by restricting x = 0 and x = 1, and, for each branch, recurse on the simplified
formula.

Let F1 be the formula obtained after restricting one variable. Since the most
frequent variable appears L/n times, we have E[W (F1)] 6W −1.5L/n = W (1−
1.5L/nW) 6W (1− (1.5/γ)/n) 6W (1− 1/n)Γ . We repeat this for n− l steps,
for l to fixed later; let F ′ be the formula we get after restricting n− l variables.
Using a similar proof as in [13, 2], or a simplified version of Claim 4, one can
show that the weight shrinks with high probability:

Pr[W (F ′) > 2W · (l/n)Γ] 6 2−l/4.

20 Ruiwen Chen

If L(F) = cn, we choose l = pn for p = (8c)−1/(Γ−1). Then, for all but 2−l/4

fraction of the 2n−l branches, the restricted formulas have small size L(F ′) 6
W (F ′) 6 l/2. We use brute-force search; all small formulas (size at most l/2)
take time 2n−l · 2l/2, and all large formulas take time at most 2n−l · 2−l/4 · 2l.
The total running time is bounded by 2n−Ω(l) = 2n(1−Ω(c−1/(Γ−1))).

If L(F) = n1+Γ−ε, we choose l = nα for α = ε/2. Then, all but 2−l/4 fraction
of the 2n−l branches have restricted formulas of size L(F ′) < 4n1−ε+Γα < nδ for
0 < δ < 1.

For formulas of size at most nδ, we use memoization. We first count satisfying
assignments for all possible formulas of size at most nδ, and store the results into
a lookup table. Then whenever we encounter a formula of size at most nδ (on at
most nα variables) in the recursion, we can simply look up the stored answer.

The running time for building the lookup table is at most 2n
δ logn ·2nα ·poly(n) =

2n
Ω(1)

. The running time for solving all small formulas is at most 2n−l · poly(n).
For formulas of size larger than nδ, there are only few of them; we use brute-

force search. The total running time is bounded by 2n−n
Ω(1)

. ut

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

