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Abstract

We give an 5·nlog30 5 upper bund on the complexity of the communication game introduced
by G. Gilmer, M. Koucký and M. Saks [3] to study the Sensitivity Conjecture [4], improving

on their
√

999
1000

√
n bound. We also determine the exact complexity of the game up to n ≤ 9.

1 The O(n0.4732) upper bound

The GKS communication game, defined by G. Gilmer, M. Koucký and M. Saks [3] is played
by two cooperating players, Alice and Bob, against an all-powerful adversary, Merlin. The game
has a single parameter n. Merlin has a permutation π = π1π2 . . . πn of [n] and a bit b. Alice has
a strategy S : {partial permutations on [n]} → {0, 1} and Bob has a strategy T : {0, 1}n → 2[n].

In Phase 1. Alice assigns zeroes and ones to all but one entries of an array A[1..n] and Merlin
sets the remaining entry to 0 or 1 according to the Alice-Merlin protocol described below. In
Phase 2 Bob has to guess which entry was set by Merlin by merely looking at Afinal, where Afinal

is the setting of A when Phase 1 is finished. Bob’s guess, T (Afinal) ⊆ [n], is a subset of entries of
A that must include the entry Merlin has set. This has to hold for every strategy π, b of Merlin.

Alice-Merlin protocol: For 1 ≤ i ≤ n− 1 Alice sets

A[πi] = S(π1 . . . πi)

In the end Merlin sets A[πn] = b.

Definition 1. A (k, n) strategy for the GKS game with parameter n is a pair S, T as above
such that in addition |T (σ)| ≤ k for every σ ∈ {0, 1}n.

k(n) = min
k

There is a (k, n) strategy for the GKS game with parameter n

The relevance of the GKS communication game is that k(n) gives a lower bound on the
sensitivity, s(f) = maxx |{i | f(x ⊕ ei) 6= f(x)}| for any Boolean function f : {0, 1}n → {0, 1}
with Fourier degree deg(f) = n. See [3]. See [5, 1, 2] for more background. In turn, any
lower bound k(n) ∈ Ω(nα) for some α > 0 would positively resolve the long-standing Sensitivity
Conjecture [4] which says that the sensitivity and the Fourier degree are polynomially related.
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Example 1. There exists a (2, 4) strategy for the GKS game as follows: Alice (mentally)
decomposes {1, 2, 3, 4} into blocks, {1, 2} and {3, 4}. When Merlin gives a position in a yet
untouched block, Alice answers with 0, and the second time a block is touched she answers with
1 (unless it is the last entry overall and so Merlin’s turn). Assume now that what Bob sees is
A = [1, 0, 0, 1]. Then he knows that the last bit had to be at position 1 or at 4 (at 2 or 3 it
could not be, since in that case the first position touched in that block is 1, contrary to Alice’s
strategy). If A = [0, 0, 1, 0] or A = [1, 1, 1, 0], the last bit had to be at position either 1 or 2,
since Bob can deduce that Merlin had to interfere in the first block (in both final results) for
the situation to arise. These are the only possible cases up to a permutation that respects the
blocks.

Lemma 1. If (k, n) and (k′, n′) strategies exist, then there is also a (kk′, nn′) strategy.

Proof. Let S, T be a (k, n) strategy and S′, T ′ be a (k′, n′) strategy. We design a (kk′, nn′)
strategy as follows: Decompose the nn′ elements into n′ blocks of size n, e.g. in the fashion

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {10, 11, 12} (n = 3, n′ = 4)

Alice’s strategy:

1. Until the last element of any given block is reached, Alice follows strategy S restricted to
that block. She does this independently for all blocks.

2. When the last element of a block i is reached, Alice decides at the value of the corresponding
bit in such a way that the sum of the bits modulo two in the block agrees with the bit that
strategy S′ would give to the single entry, i, in a corresponding situation. More precisely:

Alice mentally runs strategy S′ on an array A′[1..n′] with indices corresponding to the
blocks of the compound game. Every time when a block i in the compound game is about
to be completed, she computes the entry i of A′, by strategy S′. At the same time she
gives an assignment to the last entry of block i in the compound game in such a way that
with the new bit the mod 2 entry-sum of block i equals to A′[i]. However, if block i is
the very last one to be completed, it is Merlin’s turn to assign the last bit. The mod 2
entry-sum of block i now gives some arbitrary evaluation of A′[i], which is fine, since the
last entry of A′ is Merlin’s move in the S′, T ′ game as well.

Assume for instance that blocks 3, 4 are completed (in this order) and now Alice is to
evaluate the single remaining bit of block 2 to Merlin’s order. Then she finds out the
bit that strategy S′ gives to A′[2] in the situation when A′[3] and A′[4] were set in this
order. If at this point the assignment (in the composed game) is (∗ ∗ 0)(∗10)(001)(101),
and strategy S′ says that with the 342 permutation-start Alice’s evaluation of position 2 is
0 = S′(342), Alice must evaluate the last entry of block 2 as 1, because this makes the mod
2 sum of the second block 0 = S′(342). Thus the new assignment is (∗∗0)(110)(001)(101).

Bob’s strategy:

Bob computes the mod 2 sum for each block of the array of the compound game to get an array
A′

final of length n′. Then he computes T ′(A′
final). This gives him at most k′ indices. The crucial



last entry of the compound game must come from a block indexed from T ′(A′
final). By applying

T on each of these blocks separately, Bob gets at most k′k entries total, and it is easy to see
that they are the only candidates for the last entry.

G. Gilmer, M. Koucký and M. Saks have proven the existence of a
(⌈√
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⌉
, n
)

strategy

[3]. We describe a modification of the construction in [3], which together with our first lemma
will give the 5 · nlog30 5 upper bund.

Lemma 2. There is a (5, 30) strategy for the GKS game.

Proof. We first describe Alice’s strategy. Before the game she mentally decomposes the entries
of A into 5 blocks, each of length 6, in the fashion

{1, 2, . . . , 6}, {7, 8, . . . , 12}, {13, 14, . . . , 18}, {19, 20, . . . , 24}, {25, 26, . . . , 30}

For each block j (0 ≤ j ≤ 4) Alice performs the following (identical) protocol, independently:
When Merlin tells Alice to access the block for the first time, and the first requested element
from the block has index 6j + i, Alice looks up wi from

w1 = 0 0 0 0 0 0
w2 = 1 0 0 1 1 0
w3 = 0 1 0 1 0 1
w4 = 0 0 1 0 1 1
w5 = 1 1 1 0 0 0
w6 = 1 1 1 1 1 1

When she evaluates any element with index 6j + i′, except the last one from the block, she sets
A[6j + i′] to wi[i

′]. She sets the last entry from the block to 1− wi[i′].
Notice that the Hamming distance between any wi′ , wi′′ (i′ 6= i′′) is at least three. This gives
Bob the following recovery strategy: Regardless whether Merlin or Alice has set the last bit of
block j, Bob can decode i = i(j) for that block, because the Hamming distance of the block
from wi(j) is at most one in both cases. If the last remaining bit of block j was controlled by
Alice, it must be the only i′ with

A[6j + i′] = 1− wi[i′] (1)

If this equation fails to hold for all 1 ≤ i′ ≤ 6 for some block j0, Bob knows that the last bit of that
block was set by Merlin. In this case Bob’s output is the set {6j0 + i′ | 1 ≤ i′ ≤ 6 ∧ i′ 6= i(j0)}.
He could exclude i′ = i(j0), since he knows that 6j0 + i(j0) was the first (and so not the last)
requested element of that block to evaluate. If there is no such block j0 (if there is, it must be
unique), Bob outputs the unique i′ for each 0 ≤ j ≤ 4 for which Equation (1) holds. Either
ways the set he outputs has size five.

Putting Lemmas 1 and 2 together we get:

Lemma 3. There is a (5`, 30`) strategy for the GKS game for ` = 1, 2, . . ..

Corollary 1. k(n) < 5 · nlog30 5



2 Further directions

The strategy in Lemma 2 generalizes as follows.

Definition 2. A (k, kA, n) strategy is a usual (k, n) strategy equipped with an additional “Alice-
mode.” In this Alice evaluates the last position as well (but otherwise she makes the exact same
steps as in the usual mode). Bob does not know if the game is in Alice-mode or not. We denote
the set of outcomes that may arise when the game runs in Alice mode by OA. The size of the
set that Bob sends as an answer to any evaluation of A that is in OA has to be at most kA.

Example 2. Consider the trivial strategy, where Alice evaluates all (non-final) entries of A to
0. In Alice-mode she also evaluates the final entry, to which she always gives the value 1. Bob’s
strategy is the following: his output set includes all n entries of A when he sees only zeroes, but
when he sees a 1, his set contains only that entry (he cannot see two ones regardless whether
the game has run in Alice-mode or not). It is easy to see that this is an (n, 1, n) strategy.

The above refined parametrization of strategies are useful for the following reason:

Lemma 4. Assume there is a (b, a, n) strategy. Then there is also a (b, b bac × n) strategy.

Proof. Assume that OA is set of possible final settings of the array in Alice-mode. Alice plays
the (b, a, n) strategy on b bac disjoint blocks, each of size n, independently, in such a way that in
all blocks except in the final one she plays in Alice-mode. Bob looks at the blocks individually. If
there is a block where the final setting is not in OA, Bob outputs only the output set associated
with that block. Otherwise he outputs the union of the output sets for all blocks. In the former
case the output size is at most b, in the latter it is at most b bac × a ≤ b.

The above lemma and a (5, 1, 6) strategy (described in the previous page) yields the proof of
Lemma 2. In general, it is worthwhile to design (k, 1, n) strategies even when k is close to n. We
suspect that there is a (11, 1, 15) strategy. In this Alice exploits a 1-1 correspondence τ between
the set of all four-element subsets of {1, . . . , 15} and an appropriate

(
15
4

)
= 1365 size subset of

the 1-error correcting Hamming code with length 15 and dimension 11. What is missing (but
is very likely true) is that τ can be designed so that for every H ⊆ [15], |H| = 4, and for
x = τ(H) ∈ {0, 1}15 it holds that xH = 1111, i.e. x restricted to any coordinate in H is 1.
This type of construction goes back to [3]. The strategy: Alice’s first four answers are always 1,
and her other answers make the final vector (when in Alice-mode) to be τ({i1, i2, i3, i4}), where
i1, . . . , i4 are the first four entries that Merlin requests Alice to evaluate. If a (11, 1, 15) strategy
exists, by Lemma 4 it should give a (11, 165) strategy and by Lemma 1 an O(n0.47) upper bound
on the GKS game.

Even better parameters could result from the 1-error correcting, non-linear code of length 9 that
has 40 code words (see [6]). Here a map, similar to τ would yield a (7, 1, 9) strategy. We remark
that the problem of finding τ is a bipartite matching problem, thus it can potentially be done
with a computer, but in the case of the Hamming code there are also more direct ways to try.

Problem 1. For given n > 0 compute or estimate the minimal k such that a (k, 1, n) strategy
exists.

Problem 2. Is there a (O(
√
n), n) strategy in which Alice always answers with zero in the first

n−O(
√
n) steps?
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Figure 1: The minimum (2, 2) subgraph.

3 Exact bounds for dimensions up to 9

The GKS game also has a more combinatorial form [3]:

Lemma 5. There is a (k, n) strategy for the GKS game if and only if there is a subgraph G
with maximum degree at most k, of the n dimensional hypercube, K�n

2 , such that in the Game
below, the Chooser has a winning strategy.
Game [3]: The game is played by the Divider and the Chooser on {0, 1}n. At each step the
Divider picks a coordinate i ∈ [n] not picked before and the Chooser decides whether to delete
nodes x with xi = 0, or with xi = 1 from the current set of nodes. The game lasts n− 1 rounds
and the Chooser wins if the remaining two vertices form an edge of G.

Let us call a subgraph of K�n
2 as above with maximum degree k a (k, n) subgraph.

Lemma 6. The structure of the best strategies up to n = 4 is characterized by:

1. Any (1, 1) subgraph is an edge.

2. Any (2, 2) subgraph must contain a subgraph that is by an automorphism of the square
equivalent to {*0, 0*} (Figure 1).

3. Any (2, 3) subgraph must contain a subgraph that is by an automorphism of the cube equiv-
alent to {10*, *00, 0*0, 01*}. This is a (particular) path with four edges (Figure 2).

4. Any (2, 4) subgraph must contain a subgraph that is by an automorphism of the 4-hypercube
equivalent to

{*000, 0*00, 01*0, 011*, 0*11, *011, 101*, 10*0 }

This is a (particular) cycle of length 8 (Figure 2).

Proof. We give a sketch of the proof. Items 1.-3. are easy. Proving 4. seems to require
a case separation. Consider a minimum (2, 4) subgraph G (which must be a vertex-disjoint
union of cycles and paths). After the Chooser leaves out half of the vertices, the graph reduces
to a (2, 3) subgraph, so by item 3, without loss of generality we can assume that G contains
{10*0, *000, 0*00, 01*0}. We show that the only extension of this edge set to any minimal (2, 4)
subgraph is the one drawn in Figure 2.

Towards this goal we further exploit the structure that item 3. gives. For 1 ≤ i ≤ 4, if we delete
all edges in direction i from G, the remaining graph must still contain a path Pi of the shape
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001 101

010 110

000 100

0111 1111

0110 1110 0011 1011

0010 1010 0101 1101

0100 1100 0001 1001

0000 1000

Figure 2: The minimum (2, 3) and (2, 4) subgraphs.

0111 1111

0110 1110 0011 1011

0010 1010 0101 1101

0100 1100 0001 1001

0000 1000

Figure 3: A six-edge configuration that is ruled out.

described in 3. By the minimality of G we have G = P1 ∪ P2 ∪ P3 ∪ P4. These Pis may share
nodes and/or edges. We first rule out:

Case. Node 0010 occurs in the middle of one of Pi (1 ≤ i ≤ 3).

In this case G must either contain the subgraph in Figure 3 or its mirror-symmetric version
where the 0*10 edge is replaced with the *010 edge. Without loss of generality let us assume
the first. Then the path that contains 0010 in the middle can be either

(A) P1 = {01*0, 0*10, 001*, 00*1} or

(B) P1 = {0*10, 001*, 00*1, 0*01} or

(C) P3 = {01*0, 0*10, 001*, 00*1}

We first show the impossibility of case (A), i.e. if G contains the pattern:



0111 1111

0110 1110 0011 1011

0010 1010 0101 1101

0100 1100 0001 1001

0000 1000

The undoing of (A) is that we cannot accommodate P3. To see this, imagine that we take out
all of the vertical edges and look for P3 either in the upper half (x3 = 1) or in the lower half
(x3 = 0). In the upper half we have four free nodes and the node 1010, which has degree one.
The latter should be a starting node of P3 (it is one of the only five nodes we can use, so P3

must use it). For adjacent edge only 101* or 1*10 come into question. The other final edge
of P3 then would be 011* or 0*11, respectively, each resulting in nodes of degree three. In the
lower half we face a similar problem. Since node 1100 must be used in P3 as an end point with
adjacent edge 110*, the other final edge of P3 must be 000*, creating not even only one, but two
nodes with degree three (0000 and 0001). Case (B) is subsumed by (A), since it gives a strictly
larger P4 ∪ P1.

Similar argument rules out case (C):

0111 1111

0110 1110 0011 1011

0010 1010 0101 1101

0100 1100 0001 1001

0000 1000

We try to accommodate P1. Accommodating P1 in the half x1 = 0 is entirely out of question,
since there are only three vertices available. The picture below shows the existing edges and
degrees in the x1 = 1 half (the x4 direction is changed to horizontal) and the only way to
accommodate P1 (dotted line) in that half:
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1 2
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0 1

1 2

0 0
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In the large picture:

0111 1111

0110 1110 0011 1011

0010 1010 0101 1101

0100 1100 0001 1001

0000 1000

But then P2 cannot be accommodated.

This does not only finish the impossibility of the Case, but it gives the general statement that
the pattern

∗ ∗

∗ ∗
Forbidden pattern

should not occur in G. The reason is that the above pattern in a minimal G occurs if and only
if the shape in Figure 3 occurs in G. The argument supporting this goes that in a minimal
G the above pattern must be covered by a union of two Pis. The one that contains two of
the highlighted edges (at least one of the Pis must be such) without loss of generality can be
identified P4 where the identification also has the property that the two edges in question are
0*00 and 01*0. The other Pi′ must then contain 0010 as a middle point, referring us to Case.

We now develop a new representation for the shape of a path: we go through the path from one
end-edge to the other and list the directions in which the edges go. In the case of a cycle we
pick an arbitrary starting edge. When the cycle is a connected component of G (this is the case
we are interested in), we can always start at the start of a Pi. By further exploiting symmetries
we set the start (whether a path or a cycle) to 3123 (of curse, only when we are searching
for shapes of single connected components of G). In our new representation for instance the



path and cycle in Figure 2 have shapes 3123 and 31234214, respectively. We now build a tree
representing the shapes of all potential path- or cycle- components of G (up to isomorphism)
taking into consideration that a.) the path must be simple or a cycle b.) the forbidden pattern
”aba” should not occur, and c.) the path (or cycle) must be a union of some Pis:

3123

1

2X

4

4

1

2

. . . . . .

We get that any path or cycle that starts with 3123 and which can occur in G must be one of:

Type 1: 3123 contains P4; 5 nodes path
Type 2: 31231421 contains P4 and P3; 9 nodes path
Type 3: 3123143 contains P4 and P2; 8 nodes path
Type 4: 31234124 contains P4 and P3; 8 nodes cycle
Type 5: 3123413 contains P4 and P2; 8 nodes path
Type 6: 312342 contains P4 and P1; 7 nodes path
Type 7: 31234214 contains P1, P2, P3, P4; 8 nodes cycle

The shapes of all components of G must be equivalent to one of these types, where on equivalence
we mean that we allow to permute {1, 2, 3, 4}. From now on, on a shape we mean the entire
equivalence class. A cycle of Type 7 satisfies the criteria for G, and our goal is to show that
there is no other solution. To look for a further (minimal) solution we can omit Type 7 from
our list. By counting nodes we obtain that the connected components of G cannot be all of
Type 1. A single Type 1- component and a single other one from types 2-6 contain only three
of the Pis. On the other hand, a three or more component G with any other than Type 1
components would have too many nodes. So we can eliminate Type 1 components altogether
from our consideration. Perhaps the simplest way to proceed from here is just to look at each
type from 2 to 6 and check if we can accommodate all Pis. As an example we show how to
exclude Type 6, which may seem the most economic of all the types among 2-6:

0111 1111

0110 1110 0011 1011

0010 1010 0101 1101

0100 1100 0001 1001

0000 1000 Type 6



The solid line is now a whole connected component (of Type 6), so P2 and P3, the remaining
missing Pis cannot share any vertex with this path. We argue that it is impossible to accom-
modate P3. The x3 = 1 half has only four free nodes, thus we have to accommodate P3 in
the x3 = 0 half. The latter has 5 free nodes, but the starting point of P3 has to be 1100 with
attached edge 110*. But then P3 would also have to contain the edge 000*, which collides with
our component. In fact, the above argument almost without any change works for types 2-5
as well: we cannot accommodate P3 on the x3 = 1 and x3 = 0 halves for the very same (or in
some cases even simpler) reasons. We are done, since we have excluded all types of components
except Type 7. We can also observe (in order to prove the exact statement promised in the
beginning), that there is a unique Type 7 cycle that contains our initial P4, the one drawn in
Figure 2.

Lemma 7. There is no (2, 5) strategy.

Proof. Assume on the contrary that there is a (2, 5) subgraph G (corresponding to a (2, 5)
strategy). When the Divider picks xi, and the Chooser picks a side (either xi = 0 or xi = 1),
the remaining subgraph must be a (2, 4) subgraph, hence it must contain a cycle Ci of length
8 of the shape described in Lemma 6. Moreover, the cycle Ci contains edges in all directions
except in direction i. Because the maximum degree of G is at most two, any two cycles in G
must either coincide or must be disjoint. For the above two reasons for 1 ≤ i 6= j ≤ 5 the cycles
Ci and Cj have to be disjoint. But 5× 8 = 40 > 32, a contradiction.

Since it is known that there is a (3, 9) strategy (in general, (k, k2) strategy), we have:

n 1 2 3 4 5 6 7 8 9 10
best k 1 2 2 2 3 3 3 3 3 ?
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