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Abstract

In the context of language recognition, we demonstrate the superiority of streaming property testers
against streaming algorithms and property testers, when they are not combined. Initiated by Feigenbaum
et al, a streaming property tester is a streaming algorithm recognizing a language under the property
testing approximation: it must distinguish inputs of the language from those that are ε-far from it, while
using the smallest possible memory (rather than limiting its number of input queries).

Our main result is a streaming ε-property tester for visibly pushdown languages (VPL) with one-sided
error using memory space poly((log n)/ε).

This constructions relies on a new (non-streaming) property tester for weighted regular languages
based on a previous tester by Alon et al. We provide a simple application of this tester for streaming
testing special cases of instances of VPL that are already hard for both streaming algorithms and property
testers.

Our main algorithm is a combination of an original simulation of visibly pushdown automata using a
stack with small height but possible items of linear size. In a second step, those items are replaced by
small sketches. Those sketches relies on a notion of suffix-sampling we introduce. This sampling is the
key idea connecting our streaming tester algorithm to property testers.

∗Partially supported by the French ANR projects ANR-12-BS02-005 (RDAM) and ANR-14-CE25-0017 (AGREG)
†nathanael.francois@liafa.univ-paris-diderot.fr
‡frederic.magniez@cnrs.fr
§mdr@liafa.univ-paris-diderot.fr
¶Olivier.Serre@cnrs.fr

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 104 (2015)



1 Introduction
Visibly pushdown languages (VPL) play an important role in formal languages with crucial applications
for databases and program analysis. In the context of structured documents, they are closely related with
regular languages of unranked trees as captured by hedge automata. A well-known result [3] states that, when
the tree is given by its depth-first traversal, such automata correspond to visibly pushdown automata (VPA)
(see e.g. [19] for an overview on automata and logic for unranked trees). In databases, this word encoding of
trees is known as XML encoding, where DTD specifications are examples of often considered subclasses of
VPL. In program analysis, VPA also permit to express natural properties of traces of executions of recursive
finite-state programs, including non-regular ones such as those with pre and post conditions as expressed in
the temporal logic of calls and returns (CaRet) [5, 4].

Historically VPL got several names such as input-driven languages or, more recently, languages of nested
words. Intuitively, a VPA is a pushdown automaton whose actions on stack (push, pop or nothing) are solely
decided by the currently read symbol. As a consequence, symbols can be partitioned in three parts: push, pop
and neutral symbols. The complexity of VPL recognition has been addressed in various computational models.
The first results go back to the design of logarithmic space algorithm [11] as well as NC1-circuits [13]. Later
on, other models motivated by the context of massive data were considered such as streaming algorithms and
property testers (described below).

Streaming algorithms (see e.g. [23]) have only a sequential access to their input, on which they can
perform a unique pass, or sometimes a small number of additional passes. The size of their internal (random
access) memory is the crucial complexity parameter, which should be sublinear in the input size, and
even polylogarithmic if possible. The area of streaming algorithms has experienced tremendous growth
in many applications since the late 1990s. The analysis of Internet traffic [2], in which traffic logs are
queried, was one of their first applications. Nowadays, they have found applications with big data, notably
to test graphs properties, and more recently in language recognition on very large inputs. The streaming
complexity of language recognition has been firstly considered for languages that arise in the context of
memory checking [8, 12], of databases [28, 27], and later on for formal languages [21, 7]. However, even for
simple VPL, any randomized streaming algorithm with p passes requires memory Ω(n/p), where n is the
input size [18].

As opposed to streaming algorithms, (standard) property testers [9, 10, 16] have random access to their
input but in the query model. They must query each piece of the input they need to access. They should
sample only a sublinear fraction of their input, and ideally make a constant number of queries. In order
to make the task of verification possible, decision problems need to be approximated as follows. Given a
distance on words, an ε-tester for a language L distinguishes with high probability the words in L from those
ε-far from L, using as few queries as possible. Property testing of regular languages was first considered for
the Hamming distance [1]. When the distance allows sufficiently modifications of the input, such as moves of
arbitrarily large factors, it has been shown that any context-free languages become testable with a constant
number of queries [20, 15]. However, for more realistic distances, property testers for simple languages
require a large number of queries, especially if they have one-sided error only. For example the complexity
of an ε-tester for well-parenthesized expressions with two types of parentheses is between Ω(n1/11) and
O(n2/3) [25], and it becomes linear, even for one type of parentheses, if we require one-sided error [1]. The
difficulty of testing regular tree languages was also addressed when the tester can directly query the tree
structure [24].

Faced by the intrinsic hardness of VPL in both streaming and property testing, we initiate the complexity
of streaming property testers of formal languages, a model of algorithms combining both approaches. Such
testers were historically introduced for testing a specific notion (groupedness) [14] relevant for network data.
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It was later on studied in the context of testing the insert/extract-sequence of a priority-queue structure [12].
A streaming property tester is a streaming algorithm recognizing a language under the property testing
approximation: it must distinguish inputs of the language from those that are ε-far from it, while using the
smallest possible memory (rather than limiting its number of input queries). Such an algorithm can simulate
any standard non-adaptive property tester. Moreover, we will see that, using its full scan of the input, it can
construct better sketches than in the query model.

In this paper, we consider streaming property testing for a natural notion of distance for VPL, the
balanced-edit distance, which lies between the edit distance and the Hamming distance. It can be interpreted
as the edit distance on trees: any neutral symbol can be deleted/inserted, but any push symbol can only be
deleted/inserted together with its matching pop symbol (the first pop symbol acting at the same height of the
stack than the push symbol). It is not clear for now if our results still apply for the Hamming distance.

In Section 3, we start by the simple case of languages consisting of non-alternating sequences, that is a
sequence u+ of push and neutral symbols followed by a sequence u− of pop and neutral symbols, with the
same number of push and pop symbols. We call peaks those well-balanced expressions. The simplicity of
those instances will let us highlight our first idea. Moreover, they are already expressive enough in order to
demonstrate the superiority of streaming testers against streaming algorithms and property testers, when they
are not combined. We first reduce the problem of streaming testing such instances to the problem of testing
regular languages in the standard model of property testing. Since our reduction induces weights on the letters
of the new input word, we design a new tester for weighted regular languages (Theorem 3.13). This tester
uses some ideas of the original tester of [1], while considering another distance and new notions in order to
take into consideration weights. As a consequence we get a streaming property tester with polylogarithmic
memory for recognizing peak instances of any given VPL (Theorem 3.8), a task already hard for streaming
algorithms and property testers (Fact 3.1).

In Section 4, we construct our main tester for a VPL L given by some VPA. We first design an algorithm
that maintains a small stack but whose items can be of linear size. Items are prefixes of some peaks, that we
call unfinished peaks. They will be later on compressed using a notion of suffix sampling that we introduce for
our purpose. Our algorithm is not the standard simulation of a pushdown automaton which usually has a stack
of potentially linear size but of constant size items. Indeed, our algorithm compresses an unfinished peak
u = u+v− when it is followed by a long enough sequence. More precisely, the compression applies to the
peak v+v− obtained by disregarding part of the prefix of push sequence u+. Those peaks are then inductively
replaced, and therefore compressed, by the state-transition relation they define on the given automaton. The
relation is then considered as a single symbol whose weight is the size of the peak it represents. In addition to
maintain a stack of logarithmic depth, one of the crucial properties of our algorithm (Proposition 4.2) is to
rewrite the input word as a peak formed by potentially a linear number of intermediate peaks, but with only a
logarithmic numbed of nested peaks.

Next, stack items are replaced by small sketches made of a polylogarithmic number of samples. They
are based on a notion of suffix sampling we introduce (Definition 4.4). This sampling consists in a decom-
position of the string in an increasing sequence of suffixes, whose weights increase geometrically. Such a
decomposition can be computed online on a data stream (Lemma 4.6), and one can maintain samples in each
suffix of the decomposition using a standard reservoir sampling. This suffix decomposition will allow us to
simulate an appropriate sampling on the peaks we compress, even if we do not know yet where they start
at first. Our sampling can be used to perform an approximate computation of the compressed relation by
our new property tester of weighted regular languages that we also use for single peaks. We first establish a
result of stability which basically states that we can assume that our algorithm knows in advance where the
peak it will compress starts (Lemma 4.11). Then we prove the robustness of our algorithm, that is words
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that are ε-far from L are rejected with high probability (Lemma 4.14). As a consequence, we get a one-pass
streaming ε-tester for L with one-sided error and memory space O(m523m2

(log n)6/ε4), where m is the
number of states of a VPA recognizing L (Theorem 4.7).

2 Definitions and Preliminaries
Let N∗ be the set of positive integers, and for any integer n ∈ N∗, let [n] = {1, 2, . . . , n}. A t-subset of a
set S is any subset of S of size t. For a finite alphabet Σ we denote the set of finite words over Σ by Σ∗.
For a word u = u(1)u(2) · · ·u(n), we call n the length of u, and u(i) the ith letter in u. We write u[i, j] for
the factor u(i)u(i+ 1) · · ·u(j) of u. When we mention letters and factors of u we implicitly also mention
their positions in u. We say that v is a sub-factor of v′, denoted v ≤ v′, if v = u[i, j] and v′ = u[i′, j′] with
[i, j] ⊆ [i′, j′]. Similarly we say that v = v′ if [i, j] = [i′, j′]. If i ≤ i′ ≤ j ≤ j′ we say that the overlap of v
and v′ is u[i′, j]. If v is a sub-factor of v′ then the overlap of v and v′ is v. Given two multisets of factors S
ans S′, we say that S ≤ S′ if for each factor v ∈ S there is a corresponding factor v′ ∈ S′ such that v ≤ v′.
Weighted Words and Sampling. A weight function on a word u with n letters is a function λ : [n]→ N∗
on the letters of u, whose value λ(i) is called the weight of u(i). A weighted word over Σ is a pair (u, λ) where
u ∈ Σ∗ and λ a weight function on u. We define |u(i)| = λ(i) and |u[i, j]| = λ(i) + λ(i+ 1) + . . .+ λ(j).
The length of (u, λ) is the length of u. For simplicity, we will denote by u the weighted word (u, λ). Weighted
letters will be used to substitute factors of same weights. Therefore, restrictions may exist on available
weights for a given letter.

Our algorithms will be based on a sampling of small factors according to their weights. We introduce a
very specific notion adapted to our setting. For a weighted word u, we denote by k-factor sampling on u
the sampling over factors u[i, i+ l] with probability |u(i)|/|u|, where l ≥ 0 is the smallest integer such that
|u[i, i+ l]| ≥ k if it exists, otherwise l is such that i+ l is the last letter of u. More generally we call k-factor
such a factor. For the special case of k = 1, we call this sampling a letter sampling on u. Observe that both
of them can be implemented using a standard reservoir sampling (see Algorithm 1 for letter sampling).

Algorithm 1: Reservoir Sampling
1 Input: Data stream u, Integer parameter t > 1
2 Data structure:
3 σ ← 0 // Current weight of the processed stream
4 S ← empty multiset // Multiset of sampled letters
5 Code:
6 i← 1, a← Next(u), σ ← |a|
7 S ← t copies of a
8 While u not finished
9 i+ +, a← Next(u), σ ← σ + |a|

10 For each b ∈ S
11 Replace b by a with probability |a|/σ
12 Output S

Even if our algorithm will require several samples from a k-factor sampling, we will often only be able
to simulate this sampling by sampling either larger factors, more factors, or both. Let W1 be a sampler
producing a random multiset S1 of factors of some given weighted word u. ThenW2 over samplesW1 if it
produces a random multiset S2 of factors of u such that Pr(W2 samples S2) ≥ Pr(W1 samples S1), where
each probability term refers to random choices of the corresponding sampler.

Finite State Automata and Visibly Pushdown Automata. A finite state automaton is a tuple of the form
A = (Q,Σ, Qin , Qf ,∆) where Q is a finite set of control states, Σ is a finite input alphabet, Qin ⊆ Q is a
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subset of initial states, Qf ⊆ Q is a subset of final states and ∆ ⊆ Q× Σ×Q is a transition relation. We
write p u−→q, to mean that there is a sequence of transitions in A from p to q while processing u, and we call
(p, q) a u-transitions. For Σ′ ⊆ Σ, the Σ′-diameter (or simply diameter when Σ′ = Σ) of A is the maximum
over all possible pairs (p, q) ∈ Q2 of min{|u| : p u−→q and u ∈ Σ′∗}, whenever this minimum is not over an

empty set. We say that A is Σ′-closed, when p u−→q for some u ∈ Σ∗ iff p u′−→q for some u′ ∈ Σ′∗.
A pushdown alphabet is a triple 〈Σ+,Σ-,Σ=〉 that comprises three disjoint finite alphabets: Σ+ is a finite

set of push symbols, Σ- is a finite set of pop symbols, and Σ= is a finite set of neutral symbols. For any
such triple, let Σ = Σ+ ∪ Σ- ∪ Σ=. Intuitively, a visibly pushdown automaton [26] over 〈Σ+,Σ-,Σ=〉 is a
pushdown automaton restricted such that it pushes onto the stack only on reading a push, it pops the stack
only on reading a pop, and it does not modify the stack on reading a neutral symbol. Up to coding, this notion
is similar to the one of input driven pushdown automata [22] and of nested word automata [6].

Definition 2.1 (Visibly pushdown automaton [26]). A visibly pushdown automaton (VPA) over 〈Σ+,Σ-,Σ=〉
is a tuple A = (Q,Σ,Γ, Qin , Qf ,∆) where Q is a finite set of states, Qin ⊆ Q is a set of initial states,
Qf ⊆ Q is a set of final states, Γ is a finite stack alphabet, and ∆ ⊆ (Q× Σ+ ×Q× Γ) ∪ (Q× Σ- × Γ×
Q) ∪ (Q× Σ= ×Q) is the transition relation.

To represent stacks we use a special bottom-of-stack symbol ⊥ that is not in Γ. A configuration of a VPA

A is a pair (σ, q), where q ∈ Q and σ ∈ ⊥ · Γ∗. For a ∈ Σ, there is an a-transition from a configuration
(σ, q) to (σ′, q′), denoted (σ, q)

a−→(σ′, q′), in the following cases:
• If a is a push symbol, then σ′ = σγ for some (q, a, q′, γ) ∈ ∆, and we write q a−→(q′, push(γ)).
• If a is a pop symbol, then σ = σ′γ for some (q, a, γ, q′) ∈ ∆, and we write (q, pop(γ))

a−→q′.
• If a is a neutral symbol, then σ = σ′ and (q, a, q′) ∈ ∆, and we write q a−→q′.

For a finite word u = a1 · · · an ∈ Σ∗, if (σi−1, qi−1)
ai−→(σi, qi) for every 1 ≤ i ≤ n, we also write

(σ0, q0)
u−→(σn, qn). The word u is accepted by a VPA if there is (p, q) ∈ Qin×Qf such that (⊥, p) u−→(⊥, q).

The language L(A) of A is the set of words accepted by A, and we refer to such a language as a visibly
pushdown language (VPL).

At each step, the height of the stack is pre-determined by the prefix of u read so far. The height height(u)
of u ∈ Σ∗ is the difference between the number of its push symbols and of its pop symbols. A word u is
balanced if height(u) = 0 and height(u[1, i]) ≥ 0 for all i. We also say that a push symbol u(i) matches a
pop symbol u(j) if height(u[i, j]) = 0 and height(u[i, k]) > 0 for all i < k < j.

For all balanced words u, the property (σ, p)
u−→(σ, q) does not depend on σ, therefore we simply write

p
u−→q, and say that (p, q) is a u-transition. We also define similarly to finite automata the Σ′-diameter of A

(or simply diameter) on balanced words only.
Our model is inherently restricted to input words having no prefix of negative stack height, and moreover

we have defined acceptance with empty stack. This implies that only balanced words can be accepted. From
now on, we will always assume the input is balanced as verifying this in a streaming context is easy.

Balanced/Standard Edit Distance. The usual distance between words in property testing is the Hamming
distance. In this work, we consider an easier distance to manipulate in property testing but still relevant for
most applications, which is the edit distance, that we adapt for weighted words.

Given any word u, we define two possible edit operations: a deletion of a letter in position i with
corresponding cost |u(i)|, and its converse operation the insertion where we also select a weight, compatible
with the restrictions on λ, for the new u(i). Then the (standard) edit distance dist(u, v) between two weighted
words u and v is simply defined as the minimum total cost of a sequence of edit operations changing u to v.
Note that all letters that have not been inserted or deleted must keep the same weight. For a restricted set of
letters Σ′, we also define distΣ′(u, v) where the insertions are restricted to letters in Σ′.
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We will also consider a restricted version of this distance for balanced words, motivated by our study of
VPL. Similarly, balanced-edit operations can be deletions or insertions of letters, but each deletion of a push
symbol (resp. pop symbol) requires the deletion of the matching pop symbol (resp. push symbol). Similarly
for insertions: if a push (resp. pop) symbol is inserted, then the matching pop (resp. push) symbol must also
be inserted simultaneously. The cost of these operations is the weight of the affected letters, as with the edit
operations. Again, only insertions of letters with weight 1 are allowed. We define the balanced-edit distance
bdist(u, v) between two balanced words as the total cost of a sequence of balanced-edit operations changing
u to v. Similarly to distΣ′(u, v) we define bdistΣ′(u, v).

When dealing with a visibly pushdown language, we will always use the balanced-edit distance, whereas
we will use the standard-edit distance for regular languages. We also say that u is (ε,Σ′)-far from v if
distΣ′(u, v) > ε|u|, or bdistΣ′(u, v) > ε|u|, depending on the context. We omit Σ′ when Σ′ = Σ.

Streaming Property Testers. An ε-tester for a language L accepts all inputs which belong to L with
probability 1 and rejects with high probability all inputs which are ε-far from L, i.e. that are ε-far from any
element of L. Two-sided error testers have also been studied but in this paper we stay with the notion of
one-sided testers, that we adapt in the context of streaming algorithm as in [14].

Definition 2.2 (Streaming property tester). Let ε > 0 and let L be a language. A streaming ε-tester for L
with one-sided error η and memory s(n) is a randomized algorithm A such that, for any input x of length n
given as a data stream:
• If u ∈ L, then A accepts with probability 1;
• If u is ε-far from L, then A rejects with probability at least 1− η;
• A processes u within a single sequential pass while maintaining a memory space of O(s(n)) bits.

3 Simple case
3.1 Non-Alternating Sequences
We first consider restricted instances consisting only of a peak, that is sequences of push symbols followed
by a sequence of pop symbols, with possibly intermediate neutral symbols, that is elements of the language
Λ =

⋃
j≥0((Σ=)∗ · Σ+)j · (Σ=)∗ · (Σ- · (Σ=)∗)j .

Those instances are already hard for both streaming algorithms and property testing algorithms. Indeed,
consider the language Disj ⊆ Λ over alphabet Σ = {0, 1, 0, 1, a} and defined by the union of all languages
a∗ · x(1) · a∗ · . . . · x(j) · a∗ · y(j) · a∗ · . . . · y(1) · a∗, where j ≥ 1, x, y ∈ {0, 1}j , and x(i)y(i) 6= 1 for all i.

Then Disj can be recognized by a VPA with 3 states, Σ+ = {0, 1}, Σ- = {0, 1} and Σ= = {a}. However,
the following fact states its hardness for both models. The hardness for streaming algorithms (without any
notion of approximation) comes from a standard reduction to a communication complexity problem known
as Set-Disjointness, and remains valid for p-pass streaming algorithms, that is streaming algorithms that are
allowed to make up to p sequential passes (in any direction) on the input stream. The hardness for property
testing algorithms (that have only access to the input via queries) comes from a similar result due to [25] for
parenthesis languages with two types of parenthesis, and for the Hamming distance. The result remains valid
for both our language and the balanced-edit distance.

Fact 3.1. Any randomized p-pass streaming algorithm for Disj requires memory space Ω(n/p), where n
is the input length. Moreover, any (non-streaming) (2−6)-tester for Disj requires to query Ω(n1/11/ log n)
letters of the input word.

Surprisingly, for every ε > 0, such languages (actually any language of the form L ∩ Λ where L is a
VPL) become easy to ε-test by streaming algorithms. This is mainly because, given their full access to the
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input, streaming algorithms can perform an input sampling which makes the property testing task easy, using
only a single pass and few memory.

We first show that, for every VPL L, one can construct a regular language L̂ such that testing whether
u ∈ L ∩ Λ is equivalent to test whether some other word û belongs to L̂. For this, let I be a special symbol
not in Σ=. Consider a word u =

(∏j
i=1 vi · ai

)
· vj+1 ·

(∏1
i=j bi · wi

)
, where ai ∈ Σ+, bi ∈ Σ-, and

vi, wi ∈ (Σ=)∗. Define the slicing of u (see Figure 1) as the word û over the alphabet Σ̂ = (Σ+×Σ-)∪(Σ=×
{I}) ∪ ({I} × Σ=) defined by û =

(∏j
i=1(vi(1), I) · · · (vi(|vi|), I) · (I, wi(1)) . . . (I, wi(|wi|)) · (ai, bi)

)
·

(vj+1(1), I) · · · (vj+1(|vj+1|), I).

Definition 3.2. Let A = (Q,Σ,Γ, Qin , Qf ,∆) be a VPA. The slicing of A is the finite automaton
Â = (Q̂, Σ̂, Q̂in , Q̂f , ∆̂) where Q̂ = Q × Q, Q̂in = Qin × Qf , Q̂f = {(p, p) : p ∈ Q}, and the
transitions ∆̂ are:

1. (p, q)
(a,b)−→(p′, q′) when p a−→(p′, push(γ)) and (q′, pop(γ))

b−→q are both transitions of ∆.

2. (p, q)
(c,I)−→(p′, q), resp. (p, q)

(I,c)−→(p, q′), when p c−→p′, resp. q c−→q′, is a transition of ∆.

u = v1 w1a1 · · · aivi vi+1 · · · ahvh+1 b1· · ·bi wiwi+1· · ·bh

•

•

•

•

•

•

•

•

•

•

•

p

p′ q′

q

qin qf

r

p a
i
−→

(p ′, push(γ)) (q
′ , p
op

(γ
))
b i

−→
q

Run in the VPA A on u

•(r, r)

•(qin, qf )

•(p, q)

•(p′, q′)

(a
i
,b

i
)

(v
1
(1
),
I
)
··
·

··
·(
a
h
,b

h
)

û
=

Run in the slicing automaton Â on û

Figure 1: Slicing of a word u ∈ Λ and evolution of the stack height for u.

Lemma 3.3. If A is a VPA accepting L, then Â is a finite automaton accepting L̂ = {û : u ∈ L ∩ Λ}.

Proof. Because transitions on push symbols do not depend on the top of the stack, transitions in ∆̂ correspond
to slices that are valid for ∆ (see Figure 1). Finally, Q̂in ensures that a run for L must start in Qin and end in
Qf , and Q̂f that a state at the top of the peak is consistent from both sides.

Regular languages are known to be ε-testable for the Hamming distance with O((log 1/ε)/ε) non-
adaptative queries on the input word [1], that is queries that can be all made simultaneously. Since Hamming
distance is larger than the edit distance, those testers are also valid for the later distance. Observe also that,
for u, v ∈ Λ, we have bdist(u, v) ≤ 2dist(û, v̂). Those samples can be understood as a random sketch. To
adapt this to a streaming algorithm for testing whether u ∈ L ∩ Λ, we need to build an appropriate sampling
procedure on u. We first do it for the simple case where Σ= = ∅.
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Corollary 3.4. Let A be a VPA for L with Σ= = ∅ and let ε > 0. There is a streaming ε-tester for L ∩ Λ
with constant one-sided error with memory space O((c log n)(log 1/ε)/ε), where n is the input length and
c > 0 depends only on A.

Proof. The tester of [1] samples uniformly at random several factors of the input word of several given
lengths and it is still correct if it takes an over-sampling. Those samples on û can be done in two steps. We
describe it for a single factor of length k. Let u+ be the prefix of u before its first pop symbol, and let u− be
the remaining suffix including the first pop symbol. First we sample uniformly a random position in u+ and
remember its position, which requires O(log n) memory, and the following k letters in u+. This sampling
can be done without knowing the length of u+ in advance, using standard reservoir sampling techniques.
Second, we complete the factor while reading u−. That way, we simply have more letters than needed in the
sampled factor.

We could directly generalize the previous algorithm when Σ= 6= ∅ by slightly modifying our sampling
procedure. However, we prefer to take a different approach enlightening the main idea of our general
algorithm in Section 4. Given any maximal factor v ∈ (Σ=)∗ (for the sub-factor relation ≤) of the input
stream, we will consider it as a single letter of weight |v|. More precisely, fix a VPA A recognizing L. Then,
we compress v by its corresponding relation Rv = {(p, q) : p

v−→q}, and we see the subset Rv ⊆ Q×Q as a
new letter, call it R, and the possible weights for R correspond to the weights of words v such that R = Rv.
We augment Σ= by those new letters, and call this new (finite) alphabet Σ0.

We also extend the automaton A and the language L with Σ0. Doing so, we have compressed u ∈ Λ to a
weighted word of Λ1 =

⋃
j≥1(Σ0 · Σ+)j · Σ0 · (Σ- · Σ0)j . Since there is a correspondence between letters

R ∈ Σ0 and words v ∈ (Σ=)∗ with |v| = |R| and R = Rv, we can arbitrarily reason on either the old or the
new alphabet. Moreover, the corresponding slicing automaton Â still has diameter at most 2m2.

Proposition 3.5. Let v ∈ Λ1 be s.t. (p, q)
v̂−→(p′, q′). There is w ∈ Λ1 s.t. |w| ≤ 2m2 and (p, q)

ŵ−→(p′, q′).

We are now ready to build a tester for L ∩ Λ using the same idea as in Corollary 3.4: to test a word u
we use a tester for û against L̂, which is now a language of weighted words. More precisely, the weight of
a letter in û is defined by |(a+, a−)| = 1 and |(I, R)| = |(R, I)| = |R|. In Section 3.2 we construct such a
tester. The remaining difficulty is to provide to this tester an appropriate sampling on û while processing u.

Our tester for weighted regular languages is based on k-factor sampling on û that we will simulate by an
over-sampling built from a letter sampling on u, that is according to the weights of the letters of u only. This
new sampling can be easily performed given a stream of u using a standard reservoir sampling.

Definition 3.6. For a weighted word u ∈ Λ, denote byWk(u) the sampling over factors of û constructed as
follows: (1) sample a letter u(i) of u with probability |u(i)|/|u|; (2) if u(i) is in a push sequence, extends it
to the factor u[i, i+ l + 1] where u[i, i+ l] is a k-factor, and complete it with its matching pop sequence.

Lemma 3.7. Let u be a weighted word, and let k be such that 4k ≤ |u|. Then 4k independent copies of
Wk(u) over samples the k-factor sampling on û.

Proof. Denote by Ŵ the k-factor sampling on û, and byW some 4k independent copies ofWk(u). For any
k-factor v of û, we will show that the probability that v is sampled by Ŵ is at most the probability that v is a
factor of an element sampled byW . For that, we distinguish the following three cases:

• v is a single letter. Then, if v = (R, I) the probability that it is sampled by Ŵ equals the probability
that Wk(u) samples the factor v augmented by one letter; if v = (I,R) the probability that it is
sampled byW again equals the probability thatWk(u) samples it. Hence, the probability that v is
sampled by Ŵ is at most the probability that v is a factor of an element sampled byW .
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• v is not a single letter and starts by a letter in Σ+ × Σ− or by a letter in Σ0 × {I}. Then the
probability that it is sampled by Ŵ equals at most twice the probability thatWk(u) samples the factor
v augmented by one letter, as a (push,pop) pair in û has weight 2 when a push has weight 1 in u.
Hence, the probability that v is sampled by Ŵ is at most the probability that v is a factor of an element
sampled byW .
• v is not a single letter and starts by a letter in Σ0 × {I}. Since |û| ≥ |u|/2, we get

Pr(Wk(u) samples the factor (a, b) · v) = 1/|u| and Pr(Ŵ samples v)≤k/|û| ≤ 2k/|u|.

Thus the probability that one of the 4k samples of W has the factor (a, b) · v is 1 − (1 − 1/|u|)4k.
As 1− (1− 1/|u|)4k ≥ 1− 1

1+4k/|u| = 4k
|u|+4k ≥ 2k/|u| when |u| ≥ 4k, we conclude again that the

probability that v is sampled by Ŵ is at most the probability that v is a factor of an element sampled
byW .

Theorem 3.8. Let A be a VPA for L with m ≥ 2 states, and let ε, η > 0. Then there is a streaming ε-tester
for L ∩ Λ with one-sided error η and memory space O(m8(log 1/η)/ε2), where n is the input length.

Proof. The proof uses Theorem 3.13 for weighted regular languages. Observe that bdist(u, v) ≤ 2dist(û, v̂),
and moreover the slicing automaton has diameter d at most 2m2. Given a word u as a data stream, we simulate
a data stream on its compression u1, which is a weighted word in Λ1, and then obtain with Lemma 3.7 an
over-sampling of t k-factor samplings on û1, with t = 4d4dm3(log 1/η)/εe and k = d4dm/εe.

3.2 Testing Weighted Regular Languages
We first design a non-adaptative property tester for weighted regular languages that will serve as a basic
routine of our more general algorithm. Property testing of regular languages was first considered in [1] for
the Hamming distance and we adapt this tester to weighted words for the simple case of edit distance. In
particular following [1] we consider the graph of components of the automaton and focus on paths in this
graph; however note that we introduce a new criterion, κ-saturation (for some parameter 0 < κ ≤ 1), that
permits to significantly simplify the correctness proof of the tester compared to the one in [1].

For the rest of this section, fix a regular language L recognized by some finite state automaton A on Σ
with a set of states Q of size m ≥ 2, and a diameter d ≥ 2. Define the directed graph GA on vertex set Q
whose edges are pairs (p, q) when p a−→q for some a ∈ Σ.

A component C of GA is a maximal subset (w.r.t. inclusion) of vertices of GA such that for every p1, p2

in C one has a path in GA from p1 to p2. The graph of components GA of GA describes the transition relation
of A on components of GA: its vertices are the components and there is a directed edge (C1, C2) if there is
an edge of GA from a vertex in C1 toward a vertex in C2.

Definition 3.9. Let C be a component of GA, let Π = (C1, . . . , Cl) be a path in GA.
• A word u is C-compatible if there are states p, q ∈ C such that p u−→q.
• A word u is Π-compatible if u can be partitioned into u = v1a1v2 . . . al−1vl such that pi

vi−→qi and
qi

ai−→pi+1, where vi is a factor, ai a letter, and pi, qi ∈ Ci.
• A sequence of factors (v1, . . . , vt) of a word u is Π-compatible if they are factors of another Π-

compatible word with the same relative order and same overlap.
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Note that the above properties are easy to check. Indeed, C-compatibility is a reachability property while
the two others easily follow from C-compatibility checking.

We now give a criterion that characterizes those words u that are ε-far to every Π-compatible word. Note
that it will not be used in the tester that we design in Theorem 3.13 for weighted regular languages, but only
in Lemma 3.11 which is the key tool to prove its correctness.

For a component C and a C-incompatible word v, let v1 · a be the shortest C-incompatible prefix of v.
We define and denote the C-cut of v as v = v1 · a · v2. When v1 is not the empty word, we say that v1 is a
C-factor and a is a C-separator for v1, otherwise we say that a is a strong C-separator.

Fix a path Π = (C1, . . . , Cl) in GA, a parameter 0 < κ ≤ 1, and consider a weighted word u. We
define a natural partition of u according to Π, that we call the Π-partition of u. For this, start with the first
component C = C1, and consider the C1-cut u1 · a · u2 of u. Next, we inductively continue this process with
either the suffix a · u2 if a is a C1-separator, or the suffix u2 if a is a strong C1-separator. Based on some
criterion defined below we will move from the current component Ci to a next component Cj of Π, where
most often j = i + 1, until the full word u is processed. If we reach j = l + 1, we say that u κ-saturates
Π and the process stops. We now explain how we move on in Π. We stay within Ci as long as both the
number of Ci-factors and the total weight of strong Ci-separators are at most κ|u| each. Then, we continue
the decomposition with some fresh counting and using a new component Cj selected as follows. One sets
j = i+ 1 except when the transition is the consequence of a strong Ci-separator a of weight greater than
κ|u|, that we call a heavy strong separator. In that case only, one lets j ≥ i+ 1, if exists, to be the minimal
integer such that q a−→q′ with q ∈ Cj−1 ∪ Cj and q′ ∈ Cj , and j = l + 1 otherwise.

Proposition 3.10. Let 0 < κ ≤ ε/(2dl). If u is ε-far to every Π-compatible word, then u κ-saturates Π.

Proof. The proof is by contraposition. For this we assume that u does not κ-saturate Π and we correct u to a
Π-compatible word as follows.

First, we delete each strong separator of weight less that κ|u|. Their total weight is at most 2lκ|u|.
Because u does not saturate, each strong separator of weight larger than κ|u| fits in the Π-partition, and does
not need to be deleted.

We now have a sequence of consecutive Ci-factors and of heavy strong Ci-separators, for some 1 ≤ i ≤ l,
in an order compatible with Π. However, the word is not yet compatible with Π since each factor may
end with a state different than the first state of the next factor. However, for each such pair there is a path
connecting them. We can therefore bridge all factors by inserting a factor of weight at most d, the diameter
of A.

The resulting word is then Π-compatible by construction, and the total cost of the edit operations is at
most (2l + dl)κ|u| ≤ ε|u|, since d ≥ 2.

For a weighted word u, we remind that the k-factor sampling on u is defined in Section 2. The following
lemma is the key lemma for the tester for weighted regular languages.

Lemma 3.11. Let u be a weighted word, let Π = C1 . . . Cl be a path in GA. Let 0 < κ ≤ ε/(2dl) and letW
denote the d2/κe-factor sampling on u. Then for every 0 < η < 1 and t ≥ 2l(log 1/η)/κ, the probability
P (u,Π) = Pr(v1,...,vt)∼W⊗t [(v1, . . . , vt) is Π-compatible] satisfies P (u,Π) = 1 when u is Π-compatible,
and P (u,Π) ≤ η when u is ε-far for from being Π-compatible.

Proof. The first part of the theorem is immediate. For the second part, assume that u is ε-far from any
Π-compatible word. For simplicity we assume that 2/κ and κ|u|/2 are integers. We first partition u according
to Π and κ. Then, Proposition 3.10 tells us that u κ-saturates Π. For each Ci, we have three possible cases.
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1. There are κ|u| disjoint Ci-factors in u. Since they have total weight at most |u|, there are at least
κ|u|/2 of them whose weight is at most 2/κ each. Since each letter has weight at least 1, the total
weight of the first letters of each of those factors is at least κ|u|/2. Therefore one of them together
with its Ci-separator is a sub-factor of some sampled factor vj with probability at least 1− (1− κ/2)t.

2. The total weight of strong Ci-separators of u is at least κ|u|. Therefore one of them is the first letter of
some sampled factor vj with probability at least 1− (1− κ)t.

3. There is not any Ci-factor and any Ci-separator of u, because of a strong Ci′-separator of weight
greater than κ|u|, for some i′ < i. This separator is the first letter of some sampled factor vj with
probability at least 1− (1− κ)t.

By union bound, the probability that one of the above mentioned samples fails to occurs is at most
l(1− κ)t ≤ η. We assume now that they all occur, and we show that they form a Π-incompatible sequence.
For each i, let wi be the above described sub-factors of those samples. Each wi appears in u after wi−1 or,
in the case of a strong separator of heavy weight, wi = wi−1. Moreover each factor wi which is distinct
from wi−1 forces next factors to start from some component Ci′ with i′ > i. As a result (w1, . . . , wl) is not
Π-compatible, and as a consequence (v1, . . . , vt) neither, so the result.

Lemma 3.11 permits to design a non-adaptative tester for L and also to approximate the action of u on A
as follows.

Definition 3.12. Let Σ′ ⊆ Σ and R ⊆ Q × Q. Then R (ε,Σ′)-approximates a word u on A (or simply
ε-approximates when Σ′ = Σ), if for all p, q ∈ Q: (1) (p, q) ∈ R when p u−→q; (2) u is (ε,Σ′)-close to some
word v satisfying p v−→q when (p, q) ∈ R.

Theorem 3.13. Let A be an automaton with m ≥ 2 states and diameter d ≥ 2. There is an algorithm that:
1. Takes as input ε > 0, η > 0 and t factors of v1, . . . , vt of some weighted word u, such that
t ≥ 2d2dm3(log 1/η)/εe;

2. Outputs a set R ⊆ Q ×Q that ε-approximates u on A with one-sided error η, when each factor vi
comes from an independent k-factor sampling on u with k ≥ d2dm/εe.

This is still true with any combination of the following generalization:
• The algorithm is given an over-sampling of each of factors vi instead.
• When A is Σ′-closed, and d is the Σ′-diameter of A, then R also (ε,Σ′)-approximates u on A.

Proof. The algorithm is very simple:

1. Set R = ∅
2. For all states p, q ∈ Q

(a) Check if factors v1, . . . , vt could come from a word v such that p v−→q
// Step (a) is done using the graph GA of connected components of A

(b) If yes, then add (p, q) to R

3. Return R

It is clear that this R contains every (p, q) such that p u−→q. Now for the converse, we will show that,
with bounded error η, the output set R only contains pairs (p, q) such that there exists a path Π = C1, . . . , Cl

on GA such that p ∈ C1, q ∈ Cl, and u is Π-compatible. In that case, there is an ε-close word v satisfying
p

v−→q.
Indeed, using l ≤ m and Lemma 3.11 with t, κ = ε/(2dm) and η′ = η/2m, the samples satisfy

P (u,Π) ≤ η/2m, when u is not Π-compatible. Therefore, we can conclude using a union bound argument
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on all possible paths on GA, which have cardinality at most 2m, that, with probability at least 1− η, there is
no Π such that the samples are Π-compatible but u is not Π-compatible.

The structure of the tester is such that it has only more chances to reject a word that is not Π-compatible
given an over-sampling as input instead. Words u such that p u−→q will always be accepted no matter the
amount and length of samples. Therefore the theorem still holds with an over sampling.

Last, A being Σ′-closed ensures that the notions of compatibility and saturations remain unchanged.
Using the Σ′-diameter in Lemma 3.11 (and therefore in Proposition 3.10) let us use bridges in Σ′∗ instead of
Σ∗ with weight at most d.

4 General case
4.1 Exact Algorithm
Fix a VPA A recognizing some VPL L. A general balanced input instance u will have more than one peak
v ∈ Λ and we cannot easily interpret u as an element of a regular language. However, we will recursively
replace each factor v ∈ Λ by Rv = {(p, q) : p

v−→q} with weight |v|. The alphabet Σ= of neutral symbols
will increase as follows. We start with Σ0 encoding all possible relations Rv for v ∈ Σ∗=. Then Λh+1 is
simply Λ over an alphabet Σ= = Σh, and Σh encodes all possible relations Rv for words v ∈ (Λh)∗. As
before, we naturally augment the automaton A and the language L with these new sets. However we keep the
notation Σ as Σ+ ∪ Σ− ∪ Σ=.

Since there is a finite set of possible relations, this construction has smallest fixed points Σ∞ and Λ∞.
Denote by Prefix(Λ∞) the language of prefixes of words in Λ∞. For Σ′ = (Σ+ ∪ Σ− ∪ Σ∞), the Σ̂′-
diameter of the slicing automaton Â is simply the Σ-diameter of A, that we bound as follows. For simpler
languages, as those coming from DTD, this bound can be lowered to m.

Fact 4.1. Let A be a VPA with m states. Then the Σ-diameter of A is at most 2m
2
.

Proof. A similar statement is well known for any context-free grammar given in Chomsky normal form. Let
N be the number of non-terminal symbols used in the grammar. If the grammar produces one balanced word
from some non-terminal symbol, then it can also produce one whose length is at most 2N from the same
non-terminal symbol. This is proved using a pumping argument on the derivation tree. We refer the reader to
the textbook [17].

Now, in the setting of visibly pushdown languages one needs to transform A into a context-free grammar
in Chomsky normal form. For that, consider first an intermediate grammar whose non-terminal symbols are
all the Xpq where p and q are states from A: such a non-terminal symbol will produce exactly those words u
such that p u−→q, hence our initial symbol will be those of the form Xq0qf where q0 is an initial state and qf
is a final state. The rewriting rules are the following ones:

• Xpp → ε
• Xpq → XprXrq for any state r
• Xpq → aXp′q′b whenever one has in the automaton p a−→(p′, push(γ)) and (q′, pop(γ))

a−→q for some
push symbol a, pop symbol b and stack letter γ.
• Xpq → aXp′q whenever one has in the automaton p a−→p′ for some neutral symbol a.
• Xpq → Xpq′a whenever one has in the automaton q′ a−→q for some neutral symbol a.

Obviously, this grammar generates language L(A).
As we are here interested only in the length of the balanced words produced by the grammar, we can

replace any terminal symbol by a dummy symbol ]. Now, once this is done we can put the grammar into
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Algorithm 2: Exact Tester for a VPL
1 Data structure:
2 Stack ← empty stack // Stack of items v with v ∈ Prefix(Λ∞)
3 u0 ← ∅ // u0 ∈ Prefix(Λ∞) is a suffix of the processed part u[1, i] of u
4 // with possibly some factors v ∈ Λ∞ replaced by Rv

5 Rtemp ← {(p, p)}p∈Q // Set of transitions for the maximal prefix of u[1, i] in Λ∞
6 Define u • v as the usual concatenation u · v where the last letter ul of u
7 and the first letter vf of v are replaced by Rulvf when ul, vf ∈ Σ∞
8 // For the analysis only, define dynamically Depth on each letter and factor
9 // by Depth(a) = 0 when a ∈ Σ, Depth(Rv) = Depth(v) + 1 where Depth(v) = maxi Depth(v(i))

10 Code:
11 While u not finished
12 a← Next(u) //Read and process a new symbol a
13 If a ∈ Σ+ and u0 has a letter in Σ- // u0 · a 6∈ Prefix(Λk)
14 Push u0 on Stack, u0 ← a
15 Else u0 ← u0 • a
16 If u0 is well-balanced // u0 ∈ Λ∞: compression
17 Compute Ru0 the sent of u0-transitions
18 If Stack = ∅, then Rtemp ← Rtemp •Ru0

, u0 ← ∅
19 Else Pop v from Stack, u0 ← v •Ru0

20 Let (v1 · v2) = top(Stack) s.t. v2 is maximal and well-balanced // v2 ∈ Λ∞
21 If |u0| ≥ |v2|/2 // u0 is big enough and v2 can be replaced by Rv2

22 Compute Rv2 the set of v2-transitions, Pop v from Stack, u0 ← v1 · (Rv2 · u0)
23 If (Qin ×Qf ) ∩Rtemp 6= ∅, Accept; Else Reject // u = u0 and Rtemp = Ru

Chomsky normal form by using an extra non-terminal symbol (call it X] as it is used to produce the ]
terminal). As we have m2 + 1 non-terminal in the resulting grammar we are almost done. To get to the tight
bound announced in the statement, one simply removes the extra non-terminal symbol X] and reasons on the
length of the derivation directly.

We start by a simple algorithm maintaining a stack of small height, but whose elements can be of linear
size. We will later explain how to replace the stack elements by appropriated small sketchs. While having
processed the prefix u[1, i] of the data stream u, Algorithm 2 maintains a suffix u0 ∈ Prefix(Λ∞) of u[1, i],
that is an unfinished peak, with some simplifications of factors v in Λ∞ by their corresponding relation Rv.
Therefore u0 consists of a sequence of push symbols and neutral symbols possibly followed by a sequence of
pop symbols and neutral symbols. The algorithm also maintains a subset Rtemp ⊆ Q×Q that is the set of
transitions for the maximal prefix of u[1, i] in Λ∞. When the stream is over, the set Rtemp is used to decide
whether u ∈ L or not.

When a push symbol a comes after the pop sequence, u0 is no longer in Prefix(Λ∞), and Algorithm 2
puts it on a stack of unfinished peaks (see lines 13 to 14 and Figure 2a) and u0 is reset to a. In other situations,
one adds a to u0. In case u0 becomes a word of Λ∞ (see lines 16 to 19 and Figure 2b), Algorithm 2 computes
the set of u0-transitions Ru0 ∈ Σ∞, and adds Ru0 to the previous unfinished peak, which is found on top
of the stack and now becomes the current unfinished peak; in the special case where the stack is empty one
simply updates the set Rtemp by taking its composition with Ru0 .

In order to bound the size of the stack, Algorithm 2 considers the maximal well-balanced suffix v2 of the
topmost element v1 · v2 of the stack and, when |u0| ≥ |v2|/2, it computes the relation Rv2 and continues with
a bigger current peak starting with v1 (see lines 20 to 22 and Figure 2c). A consequence of this compression
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is that the elements in the stack have geometrically decreasing weight and therefore the height of the stack
used by Algorithm 2 is logarithmic in the length of the input stream.

The following proposition comes from a direct inspection of Algorithm 2.

Proposition 4.2. Algorithm 2 accepts exactly words u ∈ L, while maintaining a stack of at most log n items
of types v with v ∈ Prefix(ΛDepth(v)), and a variable u0 with u0 ∈ Prefix(ΛDepth(u0)).

We state that Algorithm 2 considers at most O(log n) nested picks, that is Depth(u) = O(log n), where
Depth is dynamically defined in each letter and factor inside Algorithm 2.

Lemma 4.3. Let v be the factor used to compute Rv at line either 17 or 22 of Algorithm 2. Then |v(i)| ≤
2|v|/3, for all i. In particular, it holds that Depth(u) = O(log n).

Proof. One only has to consider letters in Σ∞. Hence, let Rw belongs to v for some w: either w was
simplified into Rw at line 17 or at line 22 of Algorithm 2.

Let us first assume that it was done at line 22. Therefore, there is some v′ ∈ Prefix(Λ∞) to the right of w
with total weight greater than |w|/2 = |Rw|/2. This factor v′ is entirely contained within v: indeed, when
Rw is computed v includes v′. Therefore |Rw| ≤ 2|v|/3.

If Rw comes from line 17, then w = u0 and this u0 is well-balanced and compressed. We claim that at
the previous round the test in line 21 failed, that is |u0| − 1 ≤ |v2|/2 where v2 is the maximal well-balanced
suffix of top(Stack). Indeed, when performing the sequence of actions following a positive test in line 21,
the number of unmatched push symbols in the new u0 is augmented at least by 1 from the previous u0: hence,
it cannot be equal to 1 as the elements in the stack have pending call symbols and therefore in the next round
u0 cannot be well-balanced. Therefore one has |u0| − 1 ≤ |v2|/2. Now when Rw = Ru0 is created, it is
contains in a factor that also contains v2 and at least one pending call before v2. Hence, |Rw| ≤ 2|v|/3.

Finally, the fact that Depth(u) = O(log n) is a direct consequence of the definition of Depth and of the
fact that the weight decreases at least geometrically with nesting.

4.2 Sketching using Suffix Sampling
We now describe the sketches our algorithm uses. They are based on a notion of suffix samplings, which
ensures a good letter sampling on each suffix of some data stream. Recall that the letter sampling on a
weighted word u samples a random letter u(i) (with its position) with probability |u(i)|/|u|.

Definition 4.4. Let u be a weighted word and let α > 1. An α-suffix decomposition of u of size s is a
sequence of suffixes (ul)1≤l≤s of u such that: u1 = u, us is the last letter of u, and for all l, ul+1 is a strict
suffix of ul and if |ul| > α|ul+1| then ul = a · ul+1 where a is a single letter.

An (α, t)-suffix sampling on u of size s is an α-suffix decomposition of u of size s with t letter samplings
on each suffix of the decomposition.

An (α, t)-suffix sampling can be either concatenated to another one, or compressed as stated below.

Proposition 4.5. Given as input an (α, t)-suffix sampling Su on u of size su and another one Sv on v of size
sv, there is an algorithm computing an (α, t)-suffix sampling on the concatenated word u · v of size at most
su + sv in time O(su). There is also an algorithm computing an (α, t)-suffix sampling on u of size at most
2dlog |u|/ logαe in time O(su).

Proof. For the first algorithm, it suffices to do the following. For each suffix ul of Su: (1) replace ul by ul ·v;
and (2) replace the i-th sampling of ul by the i-th sampling of v with probability |v|/|u|, for i = 1, . . . , t.
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Rest of Stack Top of Stack u0 a

→

Rest of Stack Top of
Stack

u0

(a) Illustration of lines 13 to 14 from Algorithm 2

Rest of Stack Top of Stack u0

→

Stack new u0

Rformer u0

(b) Illustration of lines 16 to 19 from Algorithm 2

Rest of Stack Top of Stack u0

v2v1

→

Stack new u0

Rv2v1 former u0

(c) Illustration of lines 20 to 22 from Algorithm 2

Figure 2: Illustration of Algorithm 2
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For the second algorithm, do the following. For each suffix ul of Su (from l = su, the smallest one, to
l = 1, the largest one): (1) replace all suffixes ul−1, ul−2, . . . , um by the um the largest suffix um such that
|um| ≤ α|ul|; and (2) suppress all samples from deleted suffixes.

Using this proposition, one can easily design a streaming algorithm (see Algorithm 3) constructing online
a suffix decomposition of small size. Then one can slightly modify Algorithm 3 so that within each suffix
of the decomposition it simulates t letter samplings in order to construct an (α, t)-suffix sampling. Letter
sampling can be implemented using a standard reservoir sampling as in Algorithm 1.

Algorithm 3: α-Suffix Decomposition
1 Input: Data stream u, Real parameter α > 1
2 Data structure:
3 i← 0 // Current letter position in the stream
4 S ← empty stack // Stack of current suffixes of the decomposition
5 // Each suffix is encoded by its current weight and its starting position
6 Code:
7 While u not finished
8 i+ +, a← Next(u)
9 For each (σ, j) ∈ S

10 Replace (σ, j) by (σ + |a|, j)
11 Push (|a|, i) at the top of S
12 For each (σ, j) ∈ S from top to bottom
13 T ← set of elements (τ, j′) ∈ S below (σ, j) with τ ≤ ασ
14 Replace T in S by the bottom most element of T
15 Output S

Lemma 4.6. Given a weighted word u as a data stream and a parameter α > 1, Algorithm 3 constructs an
α-suffix decomposition on u of size at most 1 + 2dlog |u|/ logαe.

4.3 Algorithm with sketches
We first describe a data structure that can be used to encode each unfinished peak v of the stack and u0. Then,
we explain how the operations of Algorithm 2 can be performed using our data structure. As a result our final
algorithm is simply Algorithm 2 with the new data structure.

For each such unfinished peak v, our algorithm maintains the following sketch:

1. Its weight |v|, first letter v(1) (with its height and weight), and whether v contains or not a pop symbol.
2. A (1 + ε′)-suffix decomposition w1, . . . , wiv of v with ε′ = ε/(6 log n) and, for each of the wi:

(a) A low (resp. high) estimate of its weight |wi|low (resp. |wi|high).
(b) T independent copies of letter sampling Swi on wi (with their height and weight).
(c) If a letter Swi is in a push sequence, we append to it the k-factor starting at Swi augmented by

one letter (with their height and weight), as well as the corresponding matching pop sequence.

When the algorithm computes some Rv2 at line 22 (resp. Ru0 at line 17), it uses as a subroutine the
algorithm of Corollary 4.13 in Section 4.4 (a variant of Theorem 3.8) on Swi with wi the largest suffix of
the decomposition inside v2 (resp. on Sw1 = Su0). The test at line 21 is performed using the exact value of
|u0| and the value of |wi|low, where wi is similarly defined. We now explain how the sketch is updated when
running Algorithm 2 (note that 2.(c) is immediate).

1. Easy to maintain. Observe that v(1) is never affected by a compression unless the whole unfinished
peak is being compressed, in which case we still know its exact weight.
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2. The suffix decomposition is maintained using Algorithm 3 with parameter α = 1+ε′ and the following
modifications: (i) low and high estimates (σlow, σhigh) replace respective suffix weights σ, and (ii)
line 13 is modified such that T is now the set of ((τlow, τhigh), j

′) ∈ S below ((σlow, σhigh), j) with
τhigh ≤ (1 + ε′)σlow.

2.(a) Estimates of the weight of the decomposition are maintained exactly (i.e. |wi|high = |wi|low) whenever
possible. When a new suffix has to be created because some Rv2 is computed at line 22, consider
the largest suffix wi in the decomposition of v that is contained within v2 (such a wi always exists
because v2 has at least one letter, and can easily be identified by the height of its starting element).
By definition wi−1 is the smallest suffix in the decomposition of v strictly containing v2. If wi−1 and
wi differ by exactly one letter, then wi = v2. In this case, we have |Rv2 · u0|high = |v2|high + |u0|
and |Rv2 · u0|low = |v2|low + |u0|. Otherwise, we define |Rv2 · u0|high = |wi−1|high + |u0| and
|Rv2 · u0|low = |wi|low + |u0|. In all other instances, the estimates |w|high and |w|low will increase by
the weight of the letter that is added.

2.(b) The sampling are obtained by a reservoir sampling on each of the Swi using probability |a|/|wi|high
instead of |a|/|wi| of replacing the current Swi with a. New suffixes need to be created when two
unfinished peaks (u0 and v from the top of the stack) are merged. However, in this case, suffixes from v
can be naturally extended to suffixes of v · u0 that still satisfy the condition of the suffix decomposition.

2.(a)&2.(b) When two unfinished peaks merge after some Rv2 (resp. Ru0) has been computed at line 22
(resp. line 19), we replace each existing sample Swi by one sample Su0 (resp. by Ru0 , since u0 is
compressed) with probability |u0|/|wi · u0|high. This will ensure that the updated samples are roughly
distributed according to a letter sampling on wi augmented by u0 (resp. Ru0). The algorithm also
easily deals with the case of merging letters with the • operation, as it knows the first and last letter of
each unfinished peak.

In the next section, we show that the samplings Swi are close enough to an (1 + ε′)-suffix sampling
on the wi. This lets us build an over sampling of an (1 + ε′)-suffix sampling. We also show that it only
require a polylogarithmic number of samples. Then, we explain how to recursively apply an adaptation of
Theorem 3.13 (with ε′) in order to obtain the compressions at line 17 and 22 while keeping a cumulative
error below ε. We now state our main result whose proof uses results from the following section.

Theorem 4.7. Let A be a VPA for L with m ≥ 2 states, and let ε, η > 0. Then there is an ε-streaming
algorithm for L with one-sided error η and memory space O(m523m2

(log6 n)(log 1/η)/ε4), where n is the
input length.

Proof. We use Algorithm 2 with the tester from Corollary 4.13 for the compressions at lines 17 and 22.
We know from Lemma 4.14 and Lemma 3.7 that it is enough to choose ε′ = ε/(6 log n), η′ = η/n, and
Fact 4.1 gives us d = 2m

2
. Therefore we need T = 2304m422m2

(log2 n)(log 1/η)/ε2 independent k-factor
samplings of u augmented by one, with k = 24m2m

2
(log n)/ε. Lemma 4.11 tells us that using twice more

samples from our algorithm, that is for each Swi , is enough in order to over-sample them.
Because of the sampling variant we use, the size of each decomposition is at most 96(log2 n)/ε+O(log n)

by Lemma 4.11. The samplings in each element of the decomposition use memory space k, and there are 2T
of them. Furthermore, each element of the stack has its own sketch, and the stack is of height at most log n.
Multiplying all those together gives us the upper bound on the memory space used by Algorithm 2.

4.4 Final analysis
As our final algorithm may fail at various steps, the relations it considers may not correspond to any word.
But still, it will produces relations R such that for any (p, q) ∈ R, there is a balanced word u ∈ Σ∗, such that
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p
u−→q. We therefore consider the alphabet extension by any such relations R with any weight. We define

ΣQ to be the alphabet Σ= augmented by all such relations R, and we again extend the automaton and the
language. Then, ΛQ is simply Λ1 with Σ= = ΣQ.

Proposition 4.8. Each relation R that Algorithm 2 with sketches produces is in ΣQ.

Still the resulting automaton is Σ̂′-closed with Σ′ = (Σ+ ∪ Σ− ∪ Σ∞), and we remind that Fact 4.1
bounds the Σ̂′-diameter of Â by 2m

2
.

Proposition 4.9. The slicing automaton Â (defined over ̂(Σ+ ∪ Σ− ∪ ΣQ)) is Σ̂′-closed with Σ′ = (Σ+ ∪
Σ− ∪ Σ∞).

Stability. We want to show that the decomposition, weights and sampling we maintain are close enough to
an (1 + ε′)-suffix sampling with correct weights. Recall that ε′ = ε/(6 log n).

Proposition 4.10. Let v be an unfinished peak, and let w1, . . . , wiv be the suffix decomposition maintained
by the algorithm. The following is true:
(1) w1, . . . , wiv is a valid (1 + ε′)-suffix decomposition of v.
(2) For each letter a of every wi, and for every sample s, Pr[Swi = a] ≥ |a|/|wi|high.
(3) Each wi, satisfies |wi|high − |wi|low ≤ 2ε′|wi|low/3.

Proof. Property (1) is guaranteed by the modification of Algorithm 3, which preserves even more suffixes
than the original algorithm.

Properties (2) and (3) are proven by induction on the current symbol being read. Both are true when no
symbol has been read yet.

We start with property (2). Let us first consider the case where no relation is computed when the current
symbol a (of weight 1) is processed. Assume also that u0 • a = u0 · a. Then for all wi, Swi becomes a with
probability 1/|wi|high. Otherwise, Swi remains unchanged and by induction Swi = b with probability at least
(1− 1/|wi|high)|b|/(|wi|high − 1) = |b|/|wi|high, for each other letter b of wi. If a ∈ Σ= and u0 ends with
some R ∈ ΣQ, any sample that would be either R or a is replaced by R • a.

If instead, reading the current symbol causes Ru0 to be computed at line 17, the argument is as above by
replacing a with Ru0 .

Finally, if some Rv2 is computed at line 22, then for each suffix wi from v containing v2 we proceed
in the same way, replacing Swi with Su0 with probability |u0|/|wi|high, and changing it to Rv2 only if it
would otherwise be in v2. For the new wi = Rv2 · u0, we choose Rv2 as a sample for wi with probability
(|wi|high − |u0|)/|wi|high ≥ |R|/|wi|high and with the remaining probability |u0|/|wi|high we pick the
sample Su0 . If a has probability at least |a|/|u0| = |a|/|u0|high to be selected in u0, it has probability at least
|a|/|wi|high to be selected now.

We now prove property (3). If wi has just been created, it contains only one letter of weight 1, and
obviously |wi|low = |wi|high = |wi|. In addition, if R is not some Rv2 computed at line 22 when the last
letter was read, then |wi| is only augmented by 1 compared to the previous step. Therefore the difference
|wi|high − |wi|low does not change, and by induction it remains smaller than 2ε′|wi|low/3 which can only
increase. Now consider Rv2 computed at line 22 and wi = Rv2 · u0. Let w′j be the largest suffix in the
decomposition of v1 · v2 that is contained within v2. Then w′j−1 is the suffix immediately preceding w′j in
that decomposition.

If |w′j−1|high > (1 + ε′)|w′j |low, then from the modified Algorithm 3, the difference between those two
suffixes cannot be more than one letter, and then wi = v2. Therefore, we have |Rv2 ·u0|high = |v2|high + |u0|
and |Rv2 · u0|low = |v2|low + |u0|. We conclude by induction on |v2|.
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We end with the case |w′j−1|high ≤ (1 + ε′)|w′j |low. By definition, |Rv2 · u0|high = |w′j−1|high + |u0|
and |Rv2 · u0|low = |w′j |low + |u0|. Therefore the difference |wi|high− |wi|low is at most ε′|w′j |low. Since the
test at line 21 was satisfied, we know that |w′j |low ≤ 2|u0|, and finally ε′|w′j |low ≤ 2ε′(|w′j |low + |u0|)/3 ≤
2ε′|wi|low/3, as requested.

From this we prove that the Swi can actually generate a (1 + ε′)-suffix sampling on the suffix decomposi-
tion, and that this decomposition is not too large so it will fit in our polylogarithmic memory.

Lemma 4.11. Let v,W be an unfinished peak with a suffix sampling maintained by the algorithm. ThenW⊗2

over-samples an (1 + ε′)-suffix sampling on v, andW has size at most 144(log |v|)(log n)/ε+ O(log n).

Proof. The first property is a direct consequence of property (1) and (2) in Proposition 4.10 as in the proof of
Lemma 3.7.

The second is a consequence of the modified Algorithm 3: We remove all but one sample in the set of
elements ((τlow, τhigh), j

′) ∈ S below ((σlow, σhigh), j) such that τhigh ≤ (1+ε′)σlow. Hence, it follows that
|wi−2|high > (1 + ε′)|wi|low. Now, from property (3) of Proposition 4.10 we have that |wi|low ≥ |wi|high −
2ε′|wi|low/3 ≥ (1− 2ε′/3)|wi|high. Therefore we have that |wi−2|high > (1 + ε′)(1− 2ε′/3)|wi|high

By successive applications, we obtain that |wi−6|high > (1+ε′)3(1−2ε′/3)3|wi|high. Now, as |wi|high >
|wi| and as |wi| ≥ |wi|low ≥ (1− 2ε′/3)|wi|high we have: |wi−6|/(1− 2ε′/3) > (1 + ε′)3(1− 2ε′/3)3|wi|,
equivalently |wi−6| > (1 + ε′)3(1− 2ε′/3)4|wi|

Thus, the size of the suffix decomposition is at most 6 log(1+ε′)3(1−2ε′/3)4 |v| ≤ 6 log |v|/ log(1 + ε′/3 +

O(ε′2)) ≤ 144(log |v|)(log n)/ε+ O(log(n)).

Robustness. We first extend the notion of ε-approximation of words for a finite automaton (Definition 3.12)
to any VPA when words are in ΛQ.

Definition 4.12. Let R ⊆ Q2. Then R (ε,Σ)-approximates a balanced word u ∈ (Σ+ ∪Σ- ∪ΣQ)∗ on A, if
for all p, q ∈ Q: (1) (p, q) ∈ R when p u−→q; (2) u is (ε,Σ)-close to some word v satisfying p v−→q when
(p, q) ∈ R.

Then, we state an analogue of Theorem 3.8 for words in ΛQ instead of Λ1. We present the result as an
algorithm with an output R as in Theorem 3.13. We also need to adapt it to the sampling we have, where the
suffixes do not exactly match the peaks we want to compress.

Corollary 4.13. Let A be a VPA with m ≥ 2 states and Σ-diameter d ≥ 2. There is an algorithm that:
1. Take as input ε′, η > 0 and T k-factors of w1, . . . , wT of some weighted word v ∈ ΛQ, such that
T = 4kt, t = 2d4dm3(log 1/η)/ε′e and k = d4dm/ε′e;

2. Output a set R ⊆ Q×Q that (ε′,Σ)-approximates v on A with bounded error η, when each factor wi

come from an independent k-factor sampling on v̂.
Let v′ be obtained from v by at most ε′|v| balanced deletions. Then, the conclusion is still true if the
algorithm is given an independent k-factor sampling on v̂′ for each wi instead, except that R now provides a
(3ε′,Σ)-approximation. Last, each sampling can be replaced also by an over-sampling.

Proof. The argument is similar to the one of Theorem 3.8, and we use again as a subroutine the algorithm of
Theorem 3.13 for Â with restricted alphabet Σ̂′, where Σ′ = (Σ+ ∪ Σ− ∪ Σ∞). Remind that A is Σ′-closed
and its Σ′-diameter is the Σ-diameter of A.

For the case when we do not have exact k-factor sampling on v however, we need to compensate for the
prefix of v of size ε′|v| that may not be included in the sampling. This introduces potentially an additional
error of weight 2ε′|v| on the approximation R.
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Rfinal

R
R′

Figure 3: Constructing the words u0, u1 and u2 as in Lemma 4.14 where Depth(Rfinal) = 2

We are now ready to state the robustness of our algorithm. For u ∈ Σn, we apply all compressions from
lines 17 and 22 of Algorithm 2 using the tester from Corollary 4.13 with ε′ = ε/(6 log n) and η′ = η/n.
This leads to a final Rtemp ∈ ΣQ.

Lemma 4.14. Let A a VPA recognizing L and let u ∈ Σn. Let Rfinal the final value of Rtemp in the
Algorithm 2 with sketches. If u ∈ L, then Rfinal ∈ L; and if Rfinal ∈ L, then bdistΣ(u, L) ≤ εn with
probability at least 1− η.

Proof. One way is easy. A direct inspection reveals that each substitution of a factor w by a relation R
enlarges the set of possible w-transitions.Therefore Rfinal ∈ L when u ∈ L.

For the other way, consider some word u such that Rfinal ∈ L. Since the tester of Corollary 4.13 has
bounded error η′ = η/n and was called at most than n times, none of the calls fails with probability at least
1− η. From now on we assume that we are in this situation.

Let h = Depth(Rfinal). We will inductively construct sequences u0 = u, . . . , uh = Rfinal and
vh = Rfinal, . . . , v0 such that for every 0 ≤ l ≤ h, ul, vl ∈ (Σ+∪Σ−∪ΣQ)∗, bdistΣ(ul, vl) ≤ 3(h−l)ε′|ul|
and vl ∈ L. Furthermore, each word ul will be the word u with some substitutions of factors by relations
R computed by the tester. Therefore, Depth(ul) is well defined and will satisfy Depth(ul) = l. This will
conclude the proof using that Depth(u) ≤ log3/2 n from Lemma 4.3. Indeed, since h ≤ Depth(u), it will
give us bdistΣ(u, v0) ≤ 6ε′n log n ≤ εn.

We first define the sequence (ul)l (see Figure 3 for an illustration). Starting from u0 = u, let ul+1 be the
word ul where some factors in ΛQ have been replaced by a (3ε′,Σ)-approximation in ΣQ. These correspond
to all the approximations eventually performed by the algorithm that did not involve a symbol already in
ΣQ. Some approximations are eventually collapsed together into a single symbol by the • operation (in
the example in Figure 3 this is the case for R′ for instance). Observe that after this collapse, the symbol is
still a (3ε′,Σ)-approximation. In particular, uh = Rfinal, ul ∈ (Σ+ ∪ Σ− ∪ ΣQ)∗ and Depth(ul) = l by
construction.

We now define the sequence (vl)l such that vl ∈ L. Each letter of vl will be annotated by an accepting run
of states forA. Set vh = Rfinal with an accepting run from pin to qf for some (pin , qf ) ∈ Rfinal∩(Qin×Qf ).
Consider now some level l < h. Then vl is simply vl+1 where some letters R ∈ ΣQ in common with ul+1

are replaced by some factors in w ∈ (ΛQ)∗ as explained in the next paragraph. Those letters are the ones that
are present in ul but not ul+1, and are still present in vl+1 (i.e. they have not been further approximated down
the chain from ul+1 to uh, or deleted by edit operations moving up from vh to vl+1).
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Let w ∈ (ΛQ)∗ be one of those factors and R ∈ ΣQ its respective (3ε′,Σ)-approximation. By hypothesis
R is still in vl+1 and corresponds to a transition (p, q) of the accepting run of vl+1. We replace R by a factor

w′ such that p w′−→q and bdistΣ(w,w′) ≤ 3ε′|w|, and annotate w′ accordingly. By construction, the resulting
word vl satisfies vl ∈ L and bdistΣ(ul, vl) ≤ 3(h− l)ε′|ul|.
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