
Coin Flipping of Any Constant Bias Implies One-Way Functions

Itay Berman∗§ Iftach Haitner†§ Aris Tentes‡§

June 21, 2015

Abstract

We show that the existence of a coin-flipping protocol safe against any non-trivial constant
bias (e.g., .499) implies the existence of one-way functions. This improves upon a recent result of

Haitner and Omri [FOCS ’11], who proved this implication for protocols with bias
√
2−1
2 −o(1) ≈

.207. Unlike the result of Haitner and Omri, our result also holds for weak coin-flipping protocols.

Keywords: coin-flipping protocols; one-way functions; minimal hardness assumptions

∗MIT Computer Science and Artificial Intelligence Laboratory. E-mail: itayberm@mit.edu. Most of this work
was done while the author was in the School of Computer Science, Tel Aviv University.
†School of Computer Science, Tel Aviv University. E-mail: iftachh@cs.tau.ac.il.
‡E-mail: aristent@gmail.com. Most of this work was done while the author was in the Department of Computer

Science, New York University.
§Research supported by ISF grant 1076/11, the Israeli Centers of Research Excellence (I-CORE) program (Center

No. 4/11), US-Israel BSF grant 2010196 and Check Point Institute for Information Security.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 106 (2015)

Contents

1 Introduction 1
1.1 Our Result . 1
1.2 Related Results . 2
1.3 Our Techniques . 2
1.4 Open Questions . 9

2 Preliminaries 9
2.1 Notations . 9
2.2 Two-Party Protocols . 10
2.3 Coin-Flipping Protocols . 12
2.4 One-Way Functions and Distributional One-Way Functions 13
2.5 Two Inequalities . 15

3 The Biased-Continuation Attack 15
3.1 Basic Observations About A(i) . 17
3.2 Optimal Valid Attacks . 19
3.3 Dominated Measures . 20
3.4 Warmup — Proof Attempt Using a (Single) Dominated Measure 24
3.5 Back to the Proof — Sequence of Alternating Dominated Measures 27
3.6 Improved Analysis Using Alternating Dominated Measures 33
3.7 Proving Lemma 3.25 . 35
3.8 Proving Lemma 3.26 . 46

4 Efficiently Biasing Coin-Flipping Protocols 48
4.1 The Approximated Biased-Continuation Attacker . 49
4.2 Attacking Pruned Protocols . 58
4.3 The Pruning-in-the-Head Attacker . 74
4.4 Main Theorem — Constructing an Efficient Attacker 82

A Missing Proofs 88
A.1 Proving Lemma 2.17 . 88
A.2 Proving Lemma 2.18 . 89

1 Introduction

A central focus of modern cryptography has been to investigate the weakest possible assumptions
under which various cryptographic primitives exist. This direction of research has been quite fruit-
ful, and minimal assumptions are known for a wide variety of primitives. In particular, it has been
shown that one-way functions (i.e., easy to compute but hard to invert) imply pseudorandom gen-
erators, pseudorandom functions, symmetric-key encryption/message authentication, commitment
schemes, and digital signatures [9, 10, 13, 12, 20, 21, 8, 23], where one-way functions were also
shown to be implied by each of these primitives [15].

An important exception to the above successful characterization is that of coin-flipping (-tossing)
protocols. A coin-flipping protocol [3] allows the honest parties to jointly flip an unbiased coin,
where even a cheating (efficient) party cannot bias the outcome of the protocol by very much.
Specifically, a coin-flipping protocol is δ-bias if no efficient cheating party can make the common
output to be 1, or to be 0, with probability greater than 1

2 +δ. While one-way functions are known to
imply negligible-bias coin-flipping protocols [3, 20, 13], the other direction is less clear. Impagliazzo
and Luby [15] showed that Θ (1/

√
m)-bias coin-flipping protocols imply one-way functions, where m

is the number of rounds in the protocol.1 Recently, Maji, Prabhakaran, and Sahai [17] extended the
above for (1

2 − 1/ poly(n))-bias constant-round protocols, where n is the security parameter. More

recently, Haitner and Omri [11] showed that the above implication holds for (
√

2−1
2 −o(1) ≈ 0.207)-

bias coin-flipping protocols (of arbitrary round complexity). No such implications were known for

any other choice of parameters, and in particular for protocols with bias greater than
√

2−1
2 with

super-constant round complexity.

1.1 Our Result

In this work, we make progress towards answering the question of whether coin-flipping protocols
also imply one-way functions. We show that (even weak) coin-flipping protocols, safe against any
non-trivial bias (e.g., 0.4999), do in fact imply such functions. We note that unlike [11], but like
[15, 17], our result also applies to the so-called weak coin-flipping protocols (see Section 2.3 for the
formal definition of strong and weak coin-flipping protocols). Specifically, we prove the following
theorem.

Theorem 1.1 (informal). For any c > 0, the existence of a (1
2 − c)-bias coin-flipping protocol (of

any round complexity) implies the existence of one-way functions.

Note that 1
2 -bias coin-flipping protocol requires no assumption (i.e., one party flips a coin and

announces the result to the other party). So our result is tight as long as constant biases (i.e.,
independent of the security parameter) are involved.

To prove Theorem 1.1, we observe a connection between the success probability of the best
(valid) attacks in a two-party game (i.e., chess) and the success of the biased-continuation attack of
[11] in winning this game (see more in Section 1.3). The implications of this interesting connection
seem to extend beyond the question at the focus of this paper.

1In [15], only neg(m)-bias was stated. Proving the same implication for Θ (1/
√
m)-bias follows from the proof

outlined in [15] and the result by Cleve and Impagliazzo [6].

1

1.2 Related Results

As mentioned above, Impagliazzo and Luby [15] showed that negligible-bias coin-flipping protocols
imply one-way functions. Maji et al. [17] proved the same for (1

2 − o(1))-bias yet constant-round

protocols. Finally, Haitner and Omri [11] showed that the above implication holds for
√

2−1
2 −o(1) ≈

0.207)-bias (strong) coin-flipping protocols (of arbitrary round complexity). Results of weaker
complexity implications are also known.

Zachos [24] has shown that non-trivial (i.e., (1
2 − o(1))-bias), constant-round coin-flipping pro-

tocols imply that NP * BPP, where Maji et al. [17] proved the same implication for (1
4 −o(1))-bias

coin-flipping protocols of arbitrary round complexity. Finally, it is well known that the existence
of non-trivial coin-flipping protocols implies that PSPACE * BPP. Apart from [11], all the above
results extend to weak coin-flipping protocols. See Table 1 for a summary.

Implication Protocol type Paper

Existence of OWFs (1
2 − c)-bias, for some c > 0 This work

Existence of OWFs (
√

2−1
2 − o(1))-bias Haitner and Omri [11]2

Existence of OWFs (1
2 − o(1))-bias, constant round Maji et al. [17]

Existence of OWFs Negligible bias Impagliazzo and Luby [15]

NP * BPP (1
4 − o(1))-bias Maji et al. [17]

NP * BPP (1
2 − o(1))-bias, constant round Zachos [24]

PSPACE * BPP Non-trivial Common knowledge

Table 1: Results summary.

Information theoretic coin-flipping protocols (i.e., whose security holds against all-powerful
attackers) were shown to exist in the quantum world; Mochon [18] presented an ε-bias quantum

weak coin-flipping protocol for any ε > 0. Chailloux and Kerenidis [4] presented a
(√

2−1
2 − ε

)
-bias

quantum strong coin-flipping protocol for any ε > 0 (this bias was shown in [16] to be tight). A
key step in [4] is a reduction from strong to weak coin-flipping protocols, which holds also in the
classical world.

A related line of work considers fair coin-flipping protocols. In this setting the honest party is
required to always output a bit, whatever the other party does. In particular, a cheating party might
bias the output coin just by aborting. We know that one-way functions imply fair (1/

√
m)-bias

coin-flipping protocols [1, 5], where m is the round complexity of the protocol, and this quantity is
known to be tight for O(m/ logm)-round protocols with fully black-box reductions [7]. Oblivious
transfer, on the other hand, implies fair 1/m-bias protocols [19, 2] (this bias was shown in [5] to be
tight).

1.3 Our Techniques

The following is a rather elaborate, high-level description of the ideas underlying our proof.
That the existence of a given (cryptographic) primitive implies the existence of one-way func-

tions is typically proven by looking at the primitive core function — an efficiently computable

1Only holds for strong coin-flipping protocols.

2

function (not necessarily unique) whose inversion on uniformly chosen outputs implies breaking the
security of the primitive.3 For private-key encryption, for instance, a possible core function is the
mapping from the inputs of the encryption algorithm (i.e., message, secret key, and randomness)
into the ciphertexts. Assuming that one has defined such a core function for a given primitive,
then, by definition, this function should be one-way. So it all boils down to finding, or proving
the existence of, such a core function for the primitive under consideration. For a non-interactive
primitive, finding such a core function is typically easy. In contrast, for an interactive primitive,
finding such a core function, or functions is, at least in many settings, a much more involved task.
The reason is that in order to break an interactive primitive, the attacker typically has to invert
a given function on many different outputs, where these outputs are chosen adaptively by the at-
tacker, after seeing the answers to the previous queries. As a result, it is very challenging to find
a single function, or even finitely many functions, whose output distribution (on uniformly chosen
input) matches the distribution of the attacker’s queries.4

The only plausible candidate to serve as the core function of a coin-flipping protocol would seem
to be its transcript function: the function that maps the parties’ randomness into the resulting pro-
tocol transcript (i.e., the transcript produced by executing the protocol with this randomness). In
order to bias the output of an m-round coin-flipping protocol by more than O(1√

m
), a super-constant

number of adaptive inversions of the transcript function seems necessary. Yet we managed to prove
that the transcript function is the core function of any (constant-bias) coin-flipping protocol. This
is done by designing an adaptive attacker for any such protocol whose query distribution is “not
too far” from the output distribution of the transcript function (when invoked on uniform inputs).
Since our attacker, described below, is not only adaptive, but also defined in a recursive manner,
proving that it possesses the aforementioned property was one of the major challenges we faced.

In what follows, we give a high-level overview of our attacker that ignores computational issues
(i.e., assumes it has a perfect inverter for any function). We then explain how to adjust this attacker
to work with the inverter of the protocol’s transcript function.

1.3.1 Optimal Valid Attacks and The Biased-Continuation Attack

The crux of our approach lies in an interesting connection between the optimal attack on a coin-
flipping protocol and the more feasible, recursive biased-continuation attack. The latter attack
recursively applies the biased-continuation attack used by Haitner and Omri [11] to achieve their
constant-bias attack (called there, the random-continuation attack) and is the basis of our efficient
attack (assuming one-way functions do not exist) on coin-flipping protocols. The results outlining
the aforementioned connection, informally stated in this section and formally stated and proven in
Section 3, hold for any two-player full information game with binary common outcome.

Let Π = (A,B) be a coin-flipping protocol (i.e., the common output of the honest parties is
a uniformly chosen bit). In this discussion we restrict ourselves to analyzing attacks that, when
carried out by the left-hand party, i.e., A, are used to bias the outcome towards one, and when

3For the sake of this informal discussion, inverting a function on a given value means returning a uniformly chosen
preimage of this value.

4If the attacker makes a constant number of queries, one can overcome the above difficulty by defining a set of
core functions f1, . . . , fk, where f1 is the function defined by the primitive, f2 is the function defined by the attacker
after making the first inversion call, and so on. Since the evaluation time of fi+1 is polynomial in the evaluation
time of fi (since evaluating fi+1 requires a call to an inverter of fi), this approach fails miserably for attackers of
super-constant query complexity.

3

carried out by the right-hand party, i.e., B, are used to bias the outcome towards zero. Analogous
statements hold for opposite attacks (i.e., attacks carried out by A and used to bias towards zero,
and attacks carried out by B and used to bias towards one). The optimal valid attacker A carries
out the best attack A can employ (using unbounded power) to bias the protocol towards one,
while sending valid messages — ones that could have been sent by the honest party. The optimal
valid attacker B, carrying out the best attack B can employ to bias the protocol towards zero, is
analogously defined. Since, without loss of generality, the optimal valid attackers are deterministic,
the expected outcome of (A,B) is either zero or one. As a first step, we give a lower bound on
the success probability of the recursive biased-continuation attack carried out by the party winning
the aforementioned game. As this lower bound might not be sufficient for our goal (it might be
less than constant) — and this is a crucial point in the description below — our analysis takes
additional steps to give an arbitrarily-close-to-one lower bound on the success probability of the
recursive biased-continuation attack carried out by some party, which may or may not be the same
party winning the aforementioned game.5

Assume that A is the winning party when playing against B. Since A sends only valid messages,
it follows that the expected outcome of (A,B), i.e., honest A against the optimal attacker for B, is
larger than zero (since A might send the optimal messages “by mistake”). Let OPTA (Π) be the
expected outcome of the protocol (A,B) and let OPTB (Π) be 1 minus the expected outcome of the
protocol (A,B). The above observation yields that OPTA (Π) = 1, while OPTB (Π) = 1 − α < 1.
This gives rise to the following question: what gives A an advantage over B?

We show that if OPTB (Π) = 1 − α, then there exists an α-dense set SA of 1-transcripts, full
transcripts in which the parties’ common output is 1,6 that are “dominated by A”. The A-dominated
set has an important property — its density is “immune” to any action B might take, even if B is
employing its optimal attack; specifically, the following holds:

Pr〈A,B〉

[
SA
]

= Pr〈A,B〉

[
SA
]

= α, (1)

where 〈Π′〉 samples a random full transcript of protocol Π′. It is easy to see that the above holds
if A controls the root of the tree and has a 1-transcript as a direct descendant; see Figure 1 for a
concrete example. The proof of the general case can be found in Section 3. Since the A-dominated
set is B-immune, a possible attack for A is to go towards this set. Hence, what seems like a feasible
adversarial attack for A is to mimic A’s attack by hitting the A-dominated set with high probability.
It turns out that the biased-continuation attack of [11] does exactly that.

The biased-continuation attacker A(1), taking the role of A in Π and trying to bias the output
of Π towards one, is defined as follows: given that the partial transcript is trans, algorithm A(1)

samples a pair of random coins (rA, rB) that is consistent with trans and leads to a 1-transcript, and
then acts as the honest A on the random coins rA, given the transcript trans. In other words, A(1)

takes the first step of a random continuation of (A,B) leading to a 1-transcript. (The attacker B(1),
taking the role of B and trying to bias the outcome towards zero, is analogously defined.) Haitner
and Omri [11] showed that for any coin-flipping protocol, if either A or B carries out the biased-

continuation attack towards one, the outcome of the protocol will be biased towards one by
√

2−1
2

5That the identity of the winner in (A,B) cannot be determined by the recursive biased-continuation attack is
crucial. Since we show that the latter attack can be efficiently approximated assuming one-way functions do not
exist, the consequences of giving up this information would be profound. It would mean that we can estimate the
optimal attack (which is implemented in PSPACE) using only the assumption that one-way functions do not exist.

6Throughout, we assume without loss of generality that the protocol’s transcript determines the common output
of the parties.

4

(when interacting with the honest party).7 Our basic attack employs the above biased-continuation
attack recursively. Specifically, for i > 1 we consider the attacker A(i) that takes the first step of a
random continuation of (A(i−1),B) leading to a 1-transcript, letting A(0) ≡ A. The attacker B(i) is
analogously defined. Our analysis takes a different route from that of [11], whose approach is only

applicable for handling bias up to
√

2−1
2 and cannot be applied to weak coin-flipping protocols.8

Instead, we analyze the probability of the biased-continuation attacker to hit the dominated set we
introduced above.

Let trans be a 1-transcript of Π in which all messages are sent by A. Since A(1) picks a random
1-transcript, and B cannot force A(1) to diverge from this transcript, the probability to produce
trans under an execution of (A(1),B) is doubled with respect to this probability under an execution
of (A,B) (assuming the expected outcome of (A,B) is 1/2). The above property, that B cannot
force A(1) to diverge from a transcript, is in fact the B-immune property of the A-dominated set.
A key step we take is to generalize the above argument to show that for the α-dense A-dominated
set SA (which exists assuming that OPTB (Π) = 1− α < 1), it holds that:

Pr〈A(1),B〉
[
SA
]
≥ α

val(Π)
, (2)

where val(Π′) is the expected outcome of Π′. Namely, in (A(1),B) the probability of hitting the set
SA of 1-transcripts is larger by a factor of at least 1

val(Π) than the probability of hitting this set in
the original protocol Π. Again, it is easy to see that the above holds if A controls the root of the
tree and has a 1-transcript as a direct descendant; see Figure 1 for a concrete example. The proof
of the general case can be found in Section 3.

Consider now the protocol (A(1),B). In this protocol, the probability of hitting the set SA is at
least α

val(Π) , and clearly the set SA remains B-immune. Hence, we can apply Equation (2) again, to
deduce that

Pr〈A(2),B〉
[
SA
]

= Pr〈(A(1))(1),B〉
[
SA
]
≥

Pr〈A(1),B〉
[
SA
]

val(A(1),B)
≥ α

val(Π) · val(A(1),B)
. (3)

Continuing it for κ iterations yields that

val(A(κ),B) ≥ Pr〈A(κ),B〉
[
SA
]
≥ α∏κ−1

i=0 val(A(i),B)
. (4)

So, modulo some cheating,9 it seems that we are in good shape. Taking, for example, κ =
log(1

α)/ log(1
0.9), Equation (4) yields that val(A(κ),B) > 0.9. Namely, if we assume that A has

an advantage over B, then by recursively applying the biased-continuation attack for A enough

7They show that the same holds for the analogous attackers carrying out the biased-continuation attack towards
zero.

8A key step in the analysis of Haitner and Omri [11] is to consider the “all-cheating protocol” (A(1),1,B(1),1), where
A(1),1 plays against B(1),1 and they both carry out the biased-continuation attack trying to bias the outcome towards
one. Since, and this is easy to verify, the expected outcome of (A(1),1,B(1),1) is one, using symmetry one can show
that the expected outcome of either (A(1),1,B) or (A,B(1),1) is at least 1√

2
, yielding a bias of 1√

2
− 1

2
. As mentioned

in [11], symmetry cannot be used to prove a bias larger than 1√
2
− 1

2
.

9The actual argument is somewhat more complicated than the one given above. To ensure the above argument
holds we need to consider measures over the 1-transcripts (and not sets). In addition, while (the measure variant of)
Equation (3) is correct, deriving it from Equation (2) takes some additional steps.

5

A

1

α1

B

0

β1

A

1

α2

0

1− α2

1− β1

1− α1

Figure 1: Coin-flipping protocol Π. The label of an internal node (i.e., partial transcript) denotes
the name of the party controlling it (i.e., the party that sends the next message given this partial
transcript), and that of a leaf (i.e., full transcript) denotes its value — the parties’ common output
once reaching this leaf. Finally, the label on an edge leaving a node u to node u′ denotes the
probability that a random execution of Π visits u′ once in u.
Note that OPTA (Π) = 1 and OPTB (Π) = 1− α1. The A-dominated set SA in this case consists of
the single 1-leaf to the left of the root. The conditional protocol Π′ is the protocol rooted in the
node to the right of the root (of Π), and the B′-dominated set SB consists of the single 0-leaf to
the left of the root of Π′.

times, we arbitrarily bias the expected output of the protocol towards one. Unfortunately, if this
advantage (i.e., α = (1 − OPTB (Π))) is very small, which is the case in typical examples, the
number of recursions required might be linear in the protocol depth (or even larger). Given the
recursive nature of the above attack, the running time of the described attacker is exponential. To
overcome this obstacle, we consider not only the dominated set, but additional sets that are “close
to” being dominated. Informally, we can say that a 1-transcript belongs to the A-dominated set
if it can be generated by an execution of (A,B). In other words, the probability, over B’s coins,
that a transcript generated by a random execution of (A,B) belongs to the A-dominated set is
one. We define a set of 1-transcripts that does not belong to the A-dominated set to be “close to”
A-dominated if there is an (unbounded) attacker Â, such that the probability, over B’s coins, that
a transcript generated by a random execution of (Â,B) belongs to the set is close to one. These
sets are formally defined via the notion of conditional protocols, discussed next.

Conditional Protocols. Let Π = (A,B) be a coin-flipping protocol in which there exists an
A-dominated set SA of density α > 0. Consider the “conditional” protocol Π′ = (A′,B′), resulting
from conditioning on not hitting the set SA. Namely, the message distribution of Π′ is that induced
by a random execution of Π that does not generate transcripts in SA. See Figure 1 for a concrete
example. We note that the protocol Π′ might not be efficiently computable (even if Π is), but this
does not bother us, since we only use it as a thought experiment.

We have effectively removed all the 1-transcripts dominated by A (the set SA must contain all
such transcripts; otherwise OPTB (Π) would be smaller than 1 − α). Thus, the expected outcome
of (A′,B′) is zero. Therefore, OPTB′ (Π

′) = 1 and OPTA′ (Π
′) = 1 − β < 1. It follows from this

crucial observation that there exists a B′-dominated SB of density β, over the 0-transcripts of Π′.
Applying a similar argument to that used for Equation (4) yields that for large enough κ, the

6

biased-continuation attacker B′(κ), playing the role of B′, succeeds in biasing the outcome of Π′

toward zero, where κ is proportional to log(1
β). Moreover, if α is small, the above yields that B(κ)

does almost equally well in the original protocol Π. If β is also small, we can now consider the
conditional protocol Π′′, obtained by conditioning Π′ on not hitting the B′-dominated set, and so
on.

By iterating the above process enough times, the A-dominated sets cover all the 1-transcripts,
and the B-dominated sets cover all the 0-transcripts.10 Assume that in the above iterated process,
the density of the A-dominated sets is the first to go beyond ε > 0. It can be shown — and this a key
technical contribution of this paper — that it is almost as good as if the density of the initial set SA
was ε.11 We conclude that for any ε > 0, there exists a constant κ such that val(A(κ),B) > 1− ε.12

1.3.2 Using the Transcript Inverter

We have seen above that for any constant ε, by recursively applying the biased-continuation attack
for constantly many times, we get an attack that biases the outcome of the protocol by 1

2 − ε.
The next thing is to implement the above attack efficiently, under the assumption that one-way
functions do not exist. Given a partial transcript u of protocol Π, we wish to return a uniformly
chosen full transcript of Π that is consistent with u and the common outcome it induces is one.
Biased continuation can be reduced to the task of finding honest continuation: returning a uniformly
chosen full transcript of Π that is consistent with u. Assuming honest continuation can be found
for the protocol, biased-continuation can also be found by calling the honest continuation many
times, until a transcript whose output is one is obtained. The latter can be done efficiently, as long
as the value of the partial transcript u — the expected outcome of the protocol conditioned on u,
is not too low. (If it is too low, too much time might pass before a full transcript leading to one
is obtained.) Ignoring this low value problem, and noting that honest continuation of a protocol
can be reduced to inverting the protocol’s transcript function, all we need to do to implement A(i)

is to invert the transcript functions of the protocols (A,B), (A(1),B), . . . , (A(i−1),B). Furthermore,
noting that the attackers A(1), . . . ,A(i−1) are stateless, it suffices to have the ability to invert only
the transcript function of (A,B).

So attacking a coin-flipping protocol Π boils down to inverting the transcript function fΠ of Π,
and making sure we are not doing that on low value transcripts. Assuming one-way functions do not
exist, there exists an efficient inverter Inv for fΠ that is guaranteed to work well when invoked on
random outputs of fΠ (i.e., when fΠ is invoked on the uniform distribution; nothing is guaranteed
for distributions far from uniform). By the above discussion, algorithm Inv implies an efficient
approximation of A(i), as long as the partial transcripts attacked by A(i) are neither low-value nor
unbalanced (by low-value transcript we mean that the expected outcome of the protocol conditioned
on the transcript is low; by unbalanced transcript we mean that its density with respect to (A(i),B)
is not too far from its density with respect to (A,B)). Whereas the authors of [11] proved that
the queries of A(1) obey the two conditions with sufficiently high probability, we were unable to
prove this (and believe it is untrue) for the queries of A(i), for i > 1. Thus, we simply cannot argue

10When considering measures and not sets, as done in the actual proof, this covering property is not trivial.
11More accurately, let S̃A be the union of these 1-transcript sets and let α̃ be the density of S̃A in Π. Then

val(A(κ),B) ≥ Pr〈A(κ),B〉
[
S̃A
]
≥ α̃∏κ−1

i=0 val(A(i),B)
.

12The assumption that the density of the A-dominated sets is the first to go beyond ε > 0 is independent of the
assumption that A wins in the zero-sum game (A,B). Specifically, the fact that A(κ) succeeds in biasing the protocol
does not guarantee that A is the winner of (A,B).

7

that A(i) has an efficient approximation, assuming one-way functions do not exist. Fortunately, we
managed to prove the above for the “pruned” variant of A(i), defined below.

Unbalanced and low-value transcripts. Before defining our final attacker, we relate the prob-
lem of unbalanced transcripts to that of low-value transcripts. We say that a (partial) transcript u
is γ-unbalanced if the probability that u is visited with respect to a random execution of (A(1),B)
is at least γ times larger than with respect to a random execution of (A,B). Furthermore, we say
that a (partial) transcript u is δ-small if the expected outcome of (A,B), conditioned on visiting
u, is at most δ. We prove (a variant of) the following statement. For any δ > 0 and γ > 1, there
exists c that depends on δ, such that

Pr`←〈A(1),B〉 [` has a γ-unbalanced prefix but no δ-small prefix] ≤ 1

γc
. (5)

Namely, as long as (A(1),B) does not visit low-value transcript, it is only at low risk to signif-
icantly deviate (in a multiplicative sense) from the distribution induced by (A,B). Equation (5)
naturally extends to recursive biased-continuation attacks. It also has an equivalent form for the
attacker B(1), trying to bias the protocol towards zero, with respect to δ-high transcripts — the
expected outcome of Π, conditioned on visiting the transcript, is at least 1− δ.

The pruning attacker. At last we are ready to define our final attacker. To this end, for protocol
Π = (A,B) we define its δ-pruned variant Πδ = (Aδ,Bδ), where δ ∈ (0, 1

2), as follows. As long as
the execution does not visit a δ-low or δ-high transcript, the parties act as in Π. Once a δ-low
transcript is visited, only the party B sends messages, and it does so according to the distribution
induced by Π. If a δ-high transcript is visited (and has no δ-low prefix), only the party A sends
messages, and again it does so according to the distribution induced by Π.

Since the transcript distribution induced by Πδ is the same as of Π, protocol Πδ is also a coin-
flipping protocol. We also note that Πδ can be implemented efficiently assuming one-way functions
do not exist (simply use the inverter of Π’s transcript function to estimate the value of a given

transcript). Finally, by Equation (5), A
(i)
δ (i.e., recursive biased-continuation attacks for Πδ) can

be efficiently implemented, since there are no low-value transcripts where A needs to send the next

message. (Similarly, B
(i)
δ can be efficiently implemented since there are no high-value transcripts

where B needs to send the next message.)
It follows that for any constant ε > 0, there exists constant κ such that either the expected

outcome of (A
(κ)
δ ,Bδ) is a least 1 − ε, or the expected outcome of (Aδ,B

(κ)
δ) is at most ε. Assume

for concreteness that it is the former case. We define our pruning attacker A(κ,δ) as follows. When

playing against B, the attacker A(κ,δ) acts like A
(κ)
δ would when playing against Bδ. Namely, the

attacker pretends that it is in the δ-pruned protocol Πδ. But once a low- or high-value transcript
is reached, A(κ,δ) acts honestly in the rest of the execution (like A would).

It follows that until a low- or high-value transcript has been reached for the first time, the

distribution of (A(κ,δ),B) is the same as that of (A
(κ)
δ ,Bδ). Once a δ-low transcript is reached, the

expected outcome of both (A(κ,δ),B) and (A
(κ)
δ ,Bδ) is δ, but when a δ-high transcript is reached,

the expected outcome of (A(κ,δ),B) is (1 − δ) (since it plays like A would), where the expected

outcome of (A
(κ)
δ ,Bδ) is at most one. All in all, the expected outcome of (A(κ,δ),B) is δ-close to

that of (A
(κ)
δ ,Bδ), and thus the expected outcome of (A(κ,δ),B) is at least 1 − ε − δ. Since ε and

8

δ are arbitrary constants, we have established an efficient attacker to bias the outcome of Π by a
value that is an arbitrary constant close to one.

1.4 Open Questions

Does the existence of any non-trivial coin-flipping protocol (i.e., bias 1
2−

1
poly(n)) imply the existence

of one-way functions? This is the main question left open. Answering it would fully resolve the
computational complexity of coin-flipping protocols.

Paper Organization

General notations and definitions used throughout the paper are given in Section 2. Our ideal
attacker (which has access to a perfect sampler) to bias any coin-flipping protocol is presented and
analyzed in Section 3, while in Section 4 we show how to modify the above attack to be useful
when the ideal attacker is replaced with a one-way function inverter.

Acknowledgment

We are very grateful to Hemanta Maji, Yishay Mansour, Eran Omri and Alex Samorodnitsky for
useful discussions.

2 Preliminaries

2.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables and functions, lowercase
for values, boldface for vectors, and sans-serif (e.g., A) for algorithms (i.e., Turing Machines). All
logarithms considered here are in base two, where ◦ denotes string concatenation. Let N denote
the set of natural numbers, where 0 is considered as a natural number, i.e., N = {0, 1, 2, 3, . . .}.
For n ∈ N, let (n) = {0, . . . , n} and if n is positive let [n] = {1, · · · , n}, where [0] = ∅. For a ∈ R
and b ≥ 0, let [a ± b] stand for the interval [a − b, a + b], (a ± b] for (a − b, a + b] etc. For a
non-empty string t ∈ {0, 1}∗ and i ∈ [|t|], let ti be the i’th bit of t, and for i, j ∈ [|t|] such that
i < j, let ti,...,j = ti ◦ ti+1 ◦ . . .◦ tj . The empty string is denoted by λ, and for a non-empty string, let
t1,...,0 = λ. We let poly denote the set all polynomials and let pptm denote a probabilistic algorithm
that runs in strictly polynomial time. Given a pptm algorithm A, we let A(u; r) be an execution
of A on input u given randomness r. A function ν : N 7→ [0, 1] is negligible, denoted ν(n) = neg(n),
if ν(n) < 1/p(n) for every p ∈ poly and large enough n.

Given a random variable X, we write x ← X to indicate that x is selected according to X.
Similarly, given a finite set S, we let s ← S denote that s is selected according to the uniform
distribution on S. We adopt the convention that when the same random variable occurs several
times in an expression, all occurrences refer to a single sample. For example, Pr[f(X) = X]
is defined to be the probability that when x ← X, we have f(x) = x. We write Un to de-
note the random variable distributed uniformly over {0, 1}n. The support of a distribution D
over a finite set U , denoted Supp(D), is defined as {u ∈ U : D(u) > 0}. The statistical dis-
tance of two distributions P and Q over a finite set U , denoted as SD(P,Q), is defined as
maxS⊆U |P (S)−Q(S)| = 1

2

∑
u∈U |P (u)−Q(u)|.

9

A measure is a function M : Ω 7→ [0, 1]. The support of M over a set Ω, denoted Supp(M), is
defined as {ω ∈ Ω: M(ω) > 0}. A measure M over Ω is the zero measure if Supp(M) = ∅.

2.2 Two-Party Protocols

The following discussion is restricted to no-input (possibly randomized), two-party protocols, where
each message consists of a single bit. We do not assume, however, that the parties play in turns
(i.e., the same party might send two consecutive messages), but only that the protocol’s transcript
uniquely determines which party is playing next (i.e., the protocol is well defined). In an m-round
protocol, the parties interact for exactly m rounds. The tuple of the messages sent so far in any
partial execution of a protocol is called the (communication) transcript of this execution.

We write that a protocol Π is equal to (A,B), when A and B are the interactive Turing Machines
that control the left- and right-hand party respectively, of the interaction according to Π. For a
party C interacting according to Π, let CΠ be the other party in Π, where if Π is clear from the
context, we simply write C.

If A and B are deterministic, then trans(A,B) denotes the uniquely defined transcript of the
protocol (A,B). If A and B are randomized, we let ρA and ρB be the (maximal) number of random
bits used by A and B respectively. For rA ∈ {0, 1}ρA , A(·; rA) stands for the variant of A when rA are
set as its random coins, and A(u; rA) is the message sent by A(·; rA) when given a partial transcript
u, for which the party A sends the next message. The above notations naturally extend for the party
B as well. The transcript of the protocol (A(·; rA),B(·; rB)) is denoted by trans (A(·; rA),B(·; rB)).
For a (partial) transcript u of a protocol Π = (A,B), let ConsisΠ(u) be the distribution of choosing
(rA, rB)← {0, 1}ρA × {0, 1}ρB conditioned on trans (A(·; rA),B(·; rB))1,...,|u| = u.

2.2.1 Binary Trees

Definition 2.1 (binary trees). For m ∈ N, let T m be the complete directed binary tree of height m.
We naturally identify the vertices of T m with binary strings: the root is denoted by the empty string
λ, and the left- and right-hand children of a non-leaf node u are denoted by u0 and u1 respectively.

• Let V(T m), E(T m), root(T m) and L(T m) denote the vertices, edges, root and leaves of T m
respectively.

• For u ∈ V(T m) \ L(T m), let T mu be the sub-tree of T m rooted at u.

• For u ∈ V(T m), let descm(u) [resp., descm(u)] be the descendants of u in T m including u
[resp., excluding u], and for U ⊆ V(T m) let descm(U) =

⋃
u∈U descm(u) and descm(U) =⋃

u∈U descm(u).

• The frontier of a set U ⊆ V(T m), denoted by frnt (U), is defined as U \ descm(U).

When m is clear from the context, it is typically omitted from the above notation.

2.2.2 Protocol Trees

We naturally identify a (possibly partial) transcript of an m-round, single-bit message protocol with
a rooted path in T m. That is, the transcript t ∈ {0, 1}m is identified with the path λ, t1, t1,2, . . . , t.

10

Definition 2.2 (tree representation of a protocol). We make use of the following definitions with
respect to an m-round protocol Π = (A,B), and C ∈ {A,B}.

• Let round(Π) = m, let T (Π) = T m, and for X ∈ {V, E , root,L} let X(Π) = X(T (Π)).

• The edge distribution induced by a protocol Π is the function eΠ : E(Π) 7→ [0, 1], defined as
eΠ(u, v) being the probability that the transcript of a random execution of Π visits v, condi-
tioned that it visits u.

• For u ∈ V(Π), let vΠ(u) = eΠ(λ, u1) · eΠ(u1, u1,2) . . . · eΠ(u1,...,|u|−1, u), and let the leaf distri-
bution induced by Π be the distribution 〈Π〉 over L(Π), defined by 〈Π〉(u) = vΠ(u).

• The party that sends the next message on transcript u is said to control u, and we denote
this party by cntrlΠ(u). We call cntrlΠ : V(Π) 7→ {A,B} the control scheme of Π. Let CtrlCΠ =
{u ∈ V(Π): cntrlΠ(u) = C}.

For S ⊆ V(Π), let Pr〈Π〉 [S] be abbreviation for Pr`←〈Π〉 [` ∈ S]. Note that every function
e : E(T m) 7→ [0, 1] with e(u, u0) + e(u, u1) = 1 for every u ∈ V(T m) \ L(T m) with v(u) > 0,
along with a control scheme (active in each node), defines a two party, m-round, single-bit message
protocol (the resulting protocol might be inefficient). The analysis in Section 3 naturally gives
rise to functions over binary trees that do not correspond to any two-party execution. We identify
the “protocols” induced by such functions by the special symbol ⊥. We let E〈⊥〉 [f] = 0, for any
real-value function f .

The view of a protocol as an edge-distribution function allows us to consider protocols induced
by sub-trees of T (Π).

Definition 2.3 (sub-protocols). Let Π be a protocol and let u ∈ V(Π). Let (Π)u denote the protocol
induced by the function eΠ on the sub-tree of T (Π) rooted at u, if such a protocol exists, and let
(Π)u =⊥ otherwise.

Namely, the protocol (Π)u is the protocol Π conditioned on u being the transcript of the first |u|
rounds. When convenient, we remove the parentheses from notation, and simply write Πu. Two sub-
protocols of interest are Π0 and Π1, induced by eΠ and the trees rooted at the left- and right-hand
descendants of root(T). For a measure M : L(Π) 7→ [0, 1] and u ∈ V(Π), let (M)u : L(Πu) 7→ [0, 1]
be the restricted measure induced by M on the sub-protocol Πu. Namely, for any ` ∈ L(Πu),
(M)u(`) = M(`).

2.2.3 Tree Value

Definition 2.4 (tree value). Let Π a two-party protocol that at the end of any of its executions,
the parties output the same real value. Let χΠ : L(Π) 7→ R be the common output function of Π —
χΠ(`) is the common output of the parties in an execution ending in `.13 Let val(Π) = E〈Π〉[χΠ],
and for x ∈ R let Lx(Π) = {` ∈ L(Π): χΠ(`) = x}.

13Conditioned that an execution of the protocol generates a transcript `, the parties’ coins are in a product
distribution. Hence, if the parties always have the same output, then the protocol’s output is indeed a (deterministic)
function of its transcript.

11

Throughout this paper we restrict ourselves to protocols whose common output is either one or
zero, i.e., the image of χΠ is the set {0, 1}. The following immediate fact states that the expected
value of a measure, whose support is a subset of the 1-leaves of some protocol, is always smaller
than the value of that protocol.

Fact 2.5. Let Π be a protocol and let M be a measure over L1(Π). Then E〈Π〉 [M] ≤ val(Π).

2.2.4 Protocol with Common Inputs

We sometimes would like to apply the above terminology to a protocol Π = (A,B) whose parties get
a common security parameter 1n. This is formally done by considering the protocol Πn = (An,Bn),
where Cn is the algorithm derived by “hardwiring” 1n into the code of C.

2.3 Coin-Flipping Protocols

In a coin-flipping protocol two parties interact and in the end have a common output bit. Ideally,
this bit should be random and no cheating party should be able to bias its outcome to either
direction (if the other party remains honest). For interactive, probabilistic algorithms A and B,
and x ∈ {0, 1}∗, let out(A,B)(x) denote the parties’ output, on common input x.

Definition 2.6 ((strong) coin-flipping). A ppt protocol (A,B) is a δ-bias coin-flipping protocol if
the following holds.

Correctness: Pr[out(A,B)(1n) = (0, 0)] = Pr[out(A,B)(1n) = (1, 1)] = 1
2 .

Security: Pr[out(A∗,B)(1n) = (∗, c)],Pr[out(A,B∗)(1n) = (c, ∗)] ≤ 1
2 + δ(n), for any pptm’s A∗ and

B∗, bit c ∈ {0, 1} and large enough n.

Sometimes, e.g., if the parties have (a priori known) opposite preferences, an even weaker
definition of coin-flipping protocols is of interest.

Definition 2.7 (weak coin-flipping). A ppt protocol (A,B) is a weak δ-bias coin-flipping protocol
if the following holds.

Correctness: Same as in Definition 2.6.

Security: There exist bits cA 6= cB ∈ {0, 1} such that

Pr[out(A∗,B)(1n) = cA],Pr[out(A,B∗)(1n) = cB] ≤ 1

2
+ δ(n)

for any pptm’s A∗ and B∗, and large enough n.

Remark 2.8. Our result still holds when replacing the value 1
2 in the correctness requirement above

with any constant in (0, 1). It also holds for protocols in which, with some small probability, the
parties are not in agreement regarding the protocol’s outcome, or even might output values that are
not bits.

In the rest of the paper we restrict our attention to m-round single-bit message coin-flipping
protocols, where m = m(n) is a function of the protocol’s security parameter. Given such a protocol
Π = (A,B), we assume that its common output (i.e., the coin) is efficiently computable from a (full)
transcript of the protocol. (It is easy to see that these assumptions are without loss of generality.)

12

2.4 One-Way Functions and Distributional One-Way Functions

A one-way function (OWF) is an efficiently computable function whose inverse cannot be computed
on average by any pptm.

Definition 2.9. A polynomial-time computable function f : {0, 1}n 7→ {0, 1}`(n) is one-way if

Prx←{0,1}n;y=f(x)

[
A(1n, y) ∈ f−1(y)

]
= neg(n)

for any pptm A.

A seemingly weaker definition is that of a distributional OWF. Such a function is easy to
compute, but it is hard to compute uniformly random preimages of random images.

Definition 2.10. A polynomial-time computable f : {0, 1}n 7→ {0, 1}`(n) is distributional one-way,
if ∃p ∈ poly such that

SD
(
(x, f(x))x←{0,1}n , (A(f(x)), f(x))x←{0,1}n

)
≥ 1

p(n)

for any pptm A and large enough n.

Clearly, any one-way function is also a distributional one-way function. While the other im-
plication is not necessarily always true, Impagliazzo and Luby [15] showed that the existence of
distributional one-way functions implies that of (standard) one-way functions. In particular, the au-
thors of [15] proved that if one-way functions do not exist, then any efficiently computable function
has an inverter of the following form.

Definition 2.11 (ξ-inverter). An algorithm Inv is an ξ-inverter of f : D 7→ R if the following holds.

Prx←D;y=f(x)

[
SD

(
(x′)x′←f−1(y), (Inv(y))

)
> ξ
]
≤ ξ.

Lemma 2.12 ([15, Lemma 1]). Assume one-way functions do not exist. Then for any polynomial-
time computable function f : {0, 1}n 7→ {0, 1}`(n) and p ∈ poly, there exists a pptm algorithm Inv
such that the following holds for infinitely many n’s. On security parameter 1n, algorithm Inv is a
1/p(n)-inverter of fn (i.e., f is restricted to {0, 1}n).

Impagliazzo and Luby [15] only gave a proof sketch for the above lemma. The full proof can be
found in [14, Theorem 4.2.2].

Remark 2.13 (Definition of inverter). In their original definition, Impagliazzo and Luby [15]
defined a ξ-inverter as an algorithm Inv for which it holds that

SD
(
(x, f(x))x←{0,1}n , (Inv(f(x)), f(x))x←{0,1}n

)
< ξ.

They also proved Lemma 2.12 with respect to this definition. By taking, for example, ξ′ = ξ2 and
applying their proof with ξ′, it is easy to see how our version of Lemma 2.12 follows with respect
to the above definition of a ξ-inverter.

Note that nothing is guaranteed when invoking a good inverter (i.e., a γ-inverter for some
small γ) on an arbitrary distribution. Yet the following lemma yields that if the distribution in
consideration is “not too different” from the output distribution of f , then such good inverters are
useful.

13

Lemma 2.14. Let f and g be two randomized functions over the same domain D ∪ {⊥} such that
f(⊥) ≡ g(⊥), and let {Di}i∈[k] be a set of distributions over D ∪ {⊥} such that for some a ≥ 0 it
holds that Ed←Di [SD(f(d), g(d))] ≤ a for every i ∈ [k]. Let A be a k-query oracle-aided algorithm
that only makes queries in D. Let Q = (Q1, . . . , Qk) be the random variable of the queries of Af in
such a random execution, setting Qi =⊥ if A makes less than i queries.

Assume that Pr(q1,...,qk)←Q [∃i ∈ [k] : qi 6=⊥ ∧ Qi(qi) > λ ·Di(qi)] ≤ b for some λ, b ≥ 0. Then

SD
(
Af ,Ag

)
≤ b+ kaλ.

To prove Lemma 2.14, we use the following proposition.

Proposition 2.15. For every two distributions P and Q over a set D, there exists a distribution
RP,Q over D ×D, such that the following hold:

1. (RP,Q)1 ≡ P and (RP,Q)2 ≡ Q, where (RP,Q)b is the projection of RP,Q into its b’th coordinate.

2. Pr(x1,x2)←RP,Q [x1 6= x2] = SD(P,Q).

Proof. For every x ∈ D, let M(x) = min {P (x), Q(x)}, let MP (x) = P (x) −M(x) and MQ(x) =
Q(x) − M(x). The distribution RP,Q is defined by the following procedure. With probability

µ =
∑

x∈DM(x), sample an element x according to M (i.e., x is returned with probability M(x)
µ),

and return (x, x); otherwise return (xP , xQ) where xP is sampled according to MP and xQ is
sampled according to MQ. It is clear that Pr(x1,x2)←RP,Q [x1 6= x2] = SD(P,Q). It also holds that

(RP,Q)1(x) = µ · M(x)

µ
+ (1− µ) · MP (x)

µP

= M(x) +MP (x)

= P (x),

where µP :=
∑

x∈DMP = (1−µ). Namely, (RP,Q)1 ≡ P . The proof that (RP,Q)2 ≡ Q is analogous.
�

Proof of Lemma 2.14. Using Proposition 2.15 and standard argument, it holds that SD
(
Af ,Ag

)
is

at most the probability that the following experiment aborts.

Experiment 2.16.

1. Start emulating a random execution of A.

2. Do until A halts:

(a) Let q be the next query of A.

(b) Sample (a1, a2)← Rf(q),g(q).

(c) If a1 = a2, give a1 to A as the oracle answer.

Otherwise, abort.

. .

14

By setting Si = {q : q ∈ Supp(Qi) ∧Qi(q) ≤ λ ·Di(q)} for i ∈ [k] and recalling that by assump-
tion f(⊥) ≡ g(⊥) (thus, when sampling (a1, a2) ← Rf(⊥),g(⊥), a1 always equals a2), we conclude
that

SD
(

Af ,Ag
)
≤ Pr(q1,...,qk)←Q [∃i ∈ [k] : qi /∈ Si ∪ {⊥}]

+ Pr(q1,...,qk)←Q
[
∃i ∈ [k] : a1 6= a2 where (a1, a2)← Rf(qi),g(qi) ∧ qi ∈ Si

]
≤ b+

∑
i∈[k]

∑
q∈Si

Qi(q) · Pr
[
a1 6= a2 where (a1, a2)← Rf(q),g(q)

]
≤ b+

∑
i∈[k]

∑
q∈Si

Qi(q) · SD(f(q), g(q))

≤ b+
∑
i∈[k]

∑
q∈Supp(Di)

λ ·Di(q) · SD(f(q), g(q))

≤ b+ λ
∑
i∈[k]

Eq←Di [SD(f(q), g(q))]

≤ b+ kaλ,

where the third inequality follows from Proposition 2.15 and the fourth from the definition of the
sets {Si}i∈[k]. �

2.5 Two Inequalities

We make use of following technical lemmas, whose proofs are given in Appendix A.

Lemma 2.17. Let x, y ∈ [0, 1] and a1, . . . , ak, b1, . . . , bk ∈ (0, 1]. Then for any p0, p1 ≥ 0 with
p0 + p1 = 1, it holds that

p0 ·
xk+1∏k
i=1 ai

+ p1 ·
yk+1∏k
i=1 bi

≥ (p0x+ p1y)k+1∏k
i=1(p0ai + p1bi)

.

Lemma 2.18. For every δ ∈ (0, 1
2], there exists α = α(δ) ∈ (0, 1] such that

λ · a1+α
1 · (2− a1 · x) + a1+α

2 · (2− a2 · x) ≤ (1 + λ) · (2− x),

for every x ≥ δ and λ, y ≥ 0 with λy ≤ 1, for a1 = 1 + y and a2 = 1− λy.

3 The Biased-Continuation Attack

In this section we describe an attack to bias any coin-flipping protocol. The described attack,
however, might be impossible to implement efficiently (even when assuming one-way functions do
not exist). Specifically, we assume access to an ideal sampling algorithm to sample a uniform
preimage of any output of the functions under consideration. Our actual attack, the subject of
Section 4, tries to mimic the behavior of this attack while being efficiently implemented (assuming
one-way functions do not exist).

The following discussion is restricted to (coin-flipping) protocols whose parties always output
the same bit as their common output, and this bit is determined by the protocol’s transcript.

15

In all protocols considered in this section, the messages are bits. In addition, the protocols under
consideration have no inputs (neither private nor common), and in particular no security parameter
is involved.14 Recall that ⊥ stands for a canonical invalid/undefined protocol, and that E〈⊥〉[f] = 0,
for any real value function f . (We refer the reader to Section 2 for a discussion of the conventions and
assumptions used above.) Although the focus of this paper is coin-flipping protocols, all the results
in this section hold true for any two-party protocol meeting the above assumptions. Specifically,
we do not assume that an honest execution of the protocol produces a uniformly random bit, nor
do we assume that the parties executing the protocol can be implemented by a polynomial time
probabilistic Turing machine. For this reason we omit the term “coin-flipping” in this section.

Throughout the paper we prove statements with respect to attackers that, when playing the
role of the left-hand party of the protocol (i.e., A), are trying to bias the common output of the
protocol towards one, and, when playing the role of the right-hand party of the protocol (i.e., B),
are trying to bias the common output of the protocol towards zero. All statements have analogues
ones with respect to the opposite attack goals.

Let Π = (A,B) be a protocol. The recursive biased-continuation attack described below recur-
sively applies the biased-continuation attack introduced by Haitner and Omri [11].15 The biased-

continuation attacker A
(1)
Π – playing the role of A – works as follows: in each of A’s turns, A

(1)
Π picks

a random continuation of Π, whose output it induces is equal to one, and plays the current turn

accordingly. The i’th biased-continuation attacker A
(i)
Π , formally described below, uses the same

strategy but the random continuation taken is of the protocol (A
(i−1)
Π ,B).

Moving to the formal discussion, for a protocol Π = (A,B), we let BiasedContΠ be the following
algorithm.

Definition 3.1 (BiasedContΠ).

Input: u ∈ V(Π) \ L(Π) and a bit b ∈ {0, 1}
Operation:

1. Choose `← 〈Π〉 conditioned that

(a) ` ∈ desc(u), and

(b) χΠ(`) = b.16

2. Return `|u|+1.

Let A
(0)
Π ≡ A, and for integer i > 0 define:

Algorithm 3.2 (A
(i)
Π).

Input: transcript u ∈ {0, 1}∗.
Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

14In Section 4, we make use of these input-less protocols by “hardwiring” the security parameter of the protocols
under consideration.

15Called the “random continuation attack” in [11].
16If no such ` exists, the algorithm returns an arbitrary leaf in desc(u).

16

2. Set msg = BiasedCont
(A

(i−1)
Π ,B)

(u, 1).

3. Send msg to B.

4. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).17

. .

The attacker B
(i)
Π attacking towards zero is analogously defined (specifically, the call

BiasedCont
(A

(i−1)
Π ,B)

(u, 1) in Algorithm 3.2 is changed to BiasedCont
(A,B

(i−1)
Π)

(u, 0)).18

It is relatively easy to show that the more recursions A
(i)
Π and B

(i)
Π do, the closer their success

probability is to that of an all-powerful attacker, who can either bias the outcome to zero or to one.
The important point of the following theorem is that, for any ε > 0, there exists a global constant

κ = κ(ε) (i.e., independent of the underlying protocol), for which either A
(κ)
Π or B

(κ)
Π succeeds in its

attack with probability at least 1 − ε. This becomes crucial when trying to efficiently implement
these adversaries (see Section 4), as each recursion call might induce a polynomial blowup in the
running time of the adversary. Since κ is constant (for a constant ε), the recursive attacker is still
efficient.

Theorem 3.3 (main theorem, ideal version). For every ε ∈ (0, 1
2] there exists an integer κ =

κ(ε) ≥ 0 such that for every protocol Π = (A,B), either val(A
(κ)
Π ,B) > 1− ε or val(A,B

(κ)
Π) < ε.

The rest of this section is devoted to proving the above theorem.
In what follows, we typically omit the subscript Π from the notation of the above attackers.

Towards proving Theorem 3.3 we show a strong (and somewhat surprising) connection between
recursive biased-continuation attacks on a given protocol and the optimal valid attack on this
protocol. The latter is the best (unbounded) attack on this protocol, which sends only valid
messages (ones that could have been sent by the honest party). Towards this goal we define
sequences of measures over the leaves (i.e., transcripts) of the protocol, connect these measures to
the optimal attack, and then lower bound the success of the recursive biased-continuation attacks
using these measures.

In the following we first observe some basic properties of the recursive biased-continuation
attack. Next, we define the optimal valid attack, define a simple measure with respect to this
attack, and analyze, as a warm-up, the success of recursive biased-continuation attacks on this
measure. After arguing why considering the latter measure does not suffice, we define a sequence
of measures, and then state, in Section 3.6, a property of this sequence that yields Theorem 3.3 as
a corollary. The main body of this section deals with proving Section 3.6,

3.1 Basic Observations About A(i)

We make two basic observations regarding the recursive biased-continuation attack. The first gives
expression to the edge distribution this attack induces. The second is that this attack is stateless.

17For the mere purpose of biasing B’s output, there is no need for A(i) to output anything. Yet doing so helps us
to simplify our recursion definitions (specifically, we use the fact that in (A(i),B) the parties always have the same
output).

18The subscript Π is added to the notation (i.e., A
(i)
Π), since the biased-continuation attack for A depends not only

on the definition of the party A, but also on the definition of B, the other party in the protocol.

17

We’ll use these observations in the following sections; however, the reader might want to skip their
straightforward proofs for now.

Recall that at each internal node in its control, A(1) picks a random continuation to one. We
can also describe A(1)’s behavior as follows: after seeing a transcript u, A(1) biases the probability
of sending, e.g., 0 to B: it does so proportionally to the ratio between the chance of having output
one among all honest executions of the protocol that are consistent with the transcript u ◦ 0, and
the same chance but with respect to the transcript u. The behavior of A(i) is analogous where
A(i−1) replaces the role of A in the above discussion. Formally, we have the following claim.

Claim 3.4. Let Π = (A,B) be a protocol and let A(j) be according to Algorithm 3.2. Then

e(A(i),B)(u, ub) = eΠ(u, ub) ·
∏i−1
j=0 val((A(j),B)ub)∏i−1
j=0 val((A(j),B)u)

, 19

for any i ∈ N, A-controlled u ∈ V(Π) and b ∈ {0, 1}.

This claim is a straightforward generalization of the proof of [11, Lemma 12]. However, for
completeness and to give an example of our notations, a full proof is given below.

Proof. The proof is by induction on i. For i = 0, recall that A(0) ≡ A, and hence e(A(0),B)(u, ub) =
eΠ(u, ub), as required.

Assume the claim holds for i − 1, and we want to compute e(A(i),B)(u, ub). The definition of
Algorithm 3.2 yields that for any positive i ∈ N, it holds that

e(A(i),B)(u, ub) = Pr`←〈A(i−1),B〉
[
`|u|+1 = b

∣∣∣ ` ∈ desc(u) ∧ χ(A(i−1),B)(`) = 1
]

20 (6)

=
Pr`←〈A(i−1),B〉

[
`|u|+1 = b ∧ χ(A(i−1),B)(`) = 1

∣∣∣ ` ∈ desc(u)
]

Pr`←〈A(i−1),B〉
[
χ(A(i−1),B)(`) = 1

∣∣∣ ` ∈ desc(u)
]

= e(A(i−1),B)(u, ub) ·
val((A(i−1),B)ub)

val((A(i−1),B)u)
,

where the last equality is by a simple chain rule, i.e., since

e(A(i−1),B)(u, ub) = Pr`←〈A(i−1),B〉
[
`|u|+1 = b

∣∣ ` ∈ desc(u)
]
, and

val((A(i−1),B)ub) = Pr`←〈A(i−1),B〉
[
χ(A(i−1),B)(`) = 1

∣∣∣ ` ∈ desc(u) ∧ `|u|+1 = b
]
.

The proof is concluded by plugging the induction hypothesis into Equation (6). �

The following observation enables us to use induction when analyzing the power of A(i).

Proposition 3.5. For every protocol Π = (AΠ,BΠ), i ∈ N and b ∈ {0, 1}, it holds that
(

A
(i)
Π ,B

)
b

and
(

A
(i)
Πb
,BΠb

)
are the same protocol, where Πb = (AΠb ,BΠb).

19Recall that for a protocol Π and a partial transcript u, we let eΠ(u, ub) stand for the probability that the party
controlling u sends b as the next message, conditioning that u is the transcript of the execution thus far.

20Recall that for a protocol Π, we let 〈Π〉 stand for the leaf distribution of Π.

18

Proof. Immediately follows from A
(i)
Π being stateless. �

Remark 3.6. Note that the party BΠb, defined by the subprotocol Πb (specifically, by the edge
distribution of the subtree T (Πb)), might not have an efficient implementation, even if B does have
one. For the sake of the arguments we make in this section, however, it matters only that BΠb is
well defined.

3.2 Optimal Valid Attacks

When considering the optimal attackers for a given protocol, we restrict ourselves to valid attackers.
Informally, we can say that, on each of its turns, a valid attacker sends a message from the set of
possible replies that the honest party might choose given the transcript so far.

Definition 3.7 (optimal valid attacker). Let Π = (A,B) be a protocol. A deterministic algorithm
A′ playing the role of A in Π is in A∗, if vΠ(u) = 0 =⇒ v(A′,B)(u) = 0 for any u ∈ V(Π).
The class B∗ is analogously defined. Let OPTA (Π) = maxA′∈A∗ {val(A′,B)} and OPTB (Π) =
maxB′∈B∗ {1− val(A,B′)}.

The following proposition is immediate.

Proposition 3.8. Let Π = (A,B) be a protocol and let u ∈ V(Π). Then,

OPTA (Πu) =


χΠ(u) u ∈ L(Π);
max {OPTA (Πub) : eΠ(u, ub) > 0} , u /∈ L(Π) and u is controlled by A;
eΠ(u, u0) · OPTA (Πu0) + eΠ(u, u1) · OPTA (Πu1), u /∈ L(Π) and u is controlled by B,

and the analog conditions hold for OPTB (Πu).21

The following holds true for any (bit value) protocol.

Proposition 3.9. Let Π = (A,B) be a protocol with val(Π) ∈ [0, 1]. Then either OPTA (Π) or
OPTB (Π) (but not both) is equal to 1.

The somewhat surprising part is that only one party has a valid winning strategy. Assume
for simplicity that OPTA (Π) = 1. Since A might accidentally mimic the optimal winning valid
attacker, it follows that for any valid strategy B′ for B there is a positive probability over the
random choices of the honest A that the outcome is not zero. Namely, it holds that OPTB (Π) < 1.
The formal proof follows a straightforward induction on the protocol’s round complexity.

Proof of Proposition 3.9. The proof is by induction on the round complexity of Π. Assume that
round(Π) = 0 and let ` be the only node in T (Π). If χΠ(`) = 1, the proof follows since OPTA (Π) = 1
and OPTB (Π) = 0. In the complementary case, i.e., χπ(`) = 0, the proof follows since OPTA (Π) = 0
and OPTB (Π) = 1.

Assume that the lemma holds for m-round protocols and that round(Π) = m + 1. If
eΠ(λ, b) = 122 for some b ∈ {0, 1}, since Π is a protocol, it holds that eΠ(λ, 1 − b) = 0. Hence, by

21Recall that for a (possible partial) transcript u, Πu is the protocol Π, conditioned that u1, . . . , u|u| were the first
|u| messages.

22Recall that λ is the string representation of the root of T (Π).

19

Proposition 3.8 it holds that OPTA (Π) = OPTA (Πb) and OPTB (Π) = OPTB (Πb), regardless of
the party controlling root(Π). The proof follows from the induction hypothesis.

If eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, the proof splits according to the following complementary
cases:

OPTB (Π0) < 1 and OPTB (Π1) < 1. The induction hypothesis yields that OPTA (Π0) = 1 and
OPTA (Π1) = 1. Proposition 3.8 now yields that OPTB (Π) < 1 and OPTA (Π) = 1, regardless
of the party controlling root(Π).

OPTB (Π0) = 1 and OPTB (Π1) = 1. The induction hypothesis yields that OPTA (Π0) < 1 and
OPTA (Π1) < 1. Proposition 3.8 now yields that OPTB (Π) = 1 and OPTA (Π) < 1, regardless
of the party controlling root(Π).

OPTB (Π0) = 1 and OPTB (Π1) < 1. The induction hypothesis yields that OPTA (Π0) < 1 and
OPTA (Π1) = 1. If A controls root(Π), Proposition 3.8 yields that OPTA (Π) = 1 and
OPTB (Π) < 1. If B controls root(Π), Proposition 3.8 yields that OPTA (Π) < 1 and
OPTB (Π) = 1. Hence, the proof follows.

OPTB (Π0) < 1 and OPTB (Π1) = 1. The proof follows arguments similar to the previous case.
�

In the next sections we show the connection between the optimal valid attack and recursive
biased-continuation attacks, by connecting them both to a specific measure over the protocol’s
leaves, called here the “dominated measure” of a protocol.

3.3 Dominated Measures

Consider the following measure over the protocol’s leaves.

Definition 3.10 (dominated measures). The A-dominated measure of protocol Π = (A,B), denoted
MA

Π, is a measure over L(Π) defined as MA
Π(`) = χΠ(`) if round(Π) = 0, and otherwise recursively

defined by:

MA
Π(`) =



0, eΠ(λ, `1) = 0; 23

MA
Π`1

(`2,...,|`|), eΠ(λ, `1) = 1;

MA
Π`1

(`2,...,|`|), eΠ(λ, `1) /∈ {0, 1} ∧ (A controls root(Π) ∨ SmallerΠ (`1));

E〈Π1−`1〉
[
MA

Π1−`1

]
E〈Π`1〉

[
MA

Π`1

] ·MA
Π`1

(`2,...,|`|), otherwise,

where SmallerΠ (`1) = 1 if E〈Π`1〉
[
MA

Π`1

]
≤ E〈Π1−`1〉

[
MA

Π1−`1

]
. Finally, we let MA

⊥ be the zero
measure.

The B-dominated measure of protocol Π, denoted MB
Π, is analogously defined, except that

MB
Π(`) = 1− χΠ(`) if round(Π) = 0.

The following key observation justifies the name of the above measures.

23Recall that for transcript `, `1 stands for the first messages sent in `.

20

Lemma 3.11. Let Π = (A,B) be a protocol and let MA
Π be its A-dominated measure. Then

OPTB (Π) = 1− E〈Π〉
[
MA

Π

]
.

In particular, since OPTA (Π) = 1 iff OPTB (Π) < 1 (Proposition 3.8), it holds that OPTA (Π) =
1 iff E〈Π〉

[
MA

Π

]
> 0.

The proof of Lemma 3.11 is given below. For the intuitive explanation, note that if A controls
the root, the expected value of the A-dominated measure is the weighted average of the measures
of the subprotocols Π0 and Π1 (according to the edge distributions). However, if B controls the
root, the expected value is that of the lowest measure of the same subprotocols. Hence, in both
cases the A-dominated measure “captures” the behavior of the optimal adversary for B.

Example 3.12. Before continuing with the formal proof, we believe the reader might find the
following concrete example useful. Let Π = (A,B) be the protocol described in Figure 2a and assume
for the sake of this example that α0 < α1. The A-dominated measures of Π and its subprotocols are
given in Figure 2b.

We would like to highlight some points regarding the calculations of the A-dominated measures.
The first point we note is that MA

Π011
(011) = 1 but MA

Π01
(011) = 0. Namely, the A-dominated

measure of the subprotocol Π011 assigns the leaf represented by the string 011 with the value 1,
while the A-dominated measure of the subprotocol Π01 (for which Π011 is a subprotocol) assigns the
same leaf with the value 0. This follows since E〈Π010〉

[
MA

Π010

]
= 0 and E〈Π011〉

[
MA

Π011

]
= 1, which

yield that SmallerΠ01 (1) = 0 (recall that SmallerΠ′ (b) = 0 iff the expected value of the A-dominated
measure of Π′b is larger than that of the A-dominated measure of Π′1−b). Hence, Definition 3.10
with respect to Π01 now yields that

MA
Π01

(011) =
E〈Π010〉

[
MA

Π010

]
E〈Π011〉

[
MA

Π011

] ·MA
Π011

(011)

=
0

1
· 1 = 0.

The second point we note is that MA
Π1

(10) = 1 but MA
Π(10) = α0

α1
(recall that we assumed

that α0 < α1, so α0
α1

< 1). This follows similar arguments to the previous point; it holds that

E〈Π0〉
[
MA

Π0

]
= α0 and E〈Π1〉

[
MA

Π1

]
= α1, which yield that SmallerΠ (1) = 0 (since α0 < α1).

Definition 3.10 with respect to Π now yields that

MA
Π(10) =

E〈Π0〉
[
MA

Π0

]
E〈Π1〉

[
MA

Π1

] ·MA
Π1

(10)

=
α0

α1
· 1 =

α0

α1
.

The third and final point we note is the implication of Lemma 3.11 for this protocol. By the
assumption that α0 < α1, it holds that OPTB (Π) = 1 − α0. Independently, let us calculate the
expected value of the A-dominated measure. Since Supp

(
MA

Π

)
= {00, 01}, it holds that

E〈Π〉

[
MA

Π

]
= vΠ(00) ·MA

Π(00) + vΠ(10) ·MA
Π(10)

= β · α0 · 1 + (1− β) · α1 ·
α0

α1

= α0.

21

B

A

1

α0

B

0

β01

1

1− β01

1− α0

β

A

1

α1

0

1− α1

1− β

(a) Protocol Π = (A,B). The label of an internal
node denotes the name of the party controlling it,
and that of a leaf denotes its value. The label on an
edge leaving a node u to node u′ denotes the proba-
bility that a random execution of Π visits u′ once in
u. Finally, all nodes are represented as strings from
the root of Π, even when considering subprotocols
(e.g., the string representations of the leaf with the
thick borders is 011).

Leaves

measures 00 010 011 10 11

MA
Π00

1

MA
Π010

0

MA
Π011

1

MA
Π01

0 0

MA
Π0

1 0 0

MA
Π10

1

MA
Π11

0

MA
Π1

1 0

MA
Π 1 0 0 α0/α1 0

(b) Calculating the A-dominated measure of Π. The
A-dominated measure of a subprotocol Πu, is only
defined over the leaves in the subtree T (Πu).

Figure 2: An example of a (coin-flipping) protocol is given on the left, and an example of how to
calculate its A-dominated measure is given on the right.

Hence, E〈Π〉
[
MA

Π

]
= 1− OPTB (Π).

Towards proving Lemma 3.11, we first note that the definition of MA
Π ensures three important

properties.

Proposition 3.13. Let Π be a protocol with eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}. Then

1. (A-maximal) A controls root(Π) =⇒
(
MA

Π

)
b
≡MA

Πb
for both b ∈ {0, 1}.24

2. (B-minimal) B controls root(Π) =⇒
(
MA

Π

)
b
≡


MA

Πb
, SmallerΠ (b) = 1;

E〈Π1−b〉
[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] ·MA
Πb
, otherwise.

3. (B-immune) B controls root(Π) =⇒ E〈Π0〉
[(
MA

Π

)
0

]
= E〈Π1〉

[(
MA

Π

)
1

]
.

Namely, if A controls root(Π), the A-maximal property of MA
Π (the A-dominated measure of

Π) ensures that the restrictions of this measure to the subprotocols of Π are the A-dominated
measures of these subprotocols. In the complementary case, i.e., B controls root(Π), the B-minimal
property of MA

Π ensures that for at least one subprotocol of Π, the restriction of this measure to
this subprotocol is equal to the A-dominated measure of the subprotocol. Moreover, the B-immune
property of MA

Π ensures that the expected values of the measures derived by restricting MA
Π to the

subprotocols of Π are equal (and hence, they are also equal to the expected value of MA
Π).

24Recall that for a measure M : L(Π) 7→ [0, 1] and a bit b, (M)b is the measure induced by M when restricted to
L(Πb) ⊆ L(Π).

22

Proof of Proposition 3.13. The proof of Items 1 and 2 immediately follows from Definition 3.10.
Towards proving Item 3, we will assume that B controls root(Π). If SmallerΠ (0) = SmallerΠ (1) =

1, the proof again follows immediately from Definition 3.10. In the complementary case, i.e.,
SmallerΠ (b) = 0 and SmallerΠ (1− b) = 1 for some b ∈ {0, 1}, it holds that

E〈Πb〉

[(
MA

Π

)
b

]
= E〈Πb〉

E〈Π1−b〉

[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] ·MA
Πb


=

E〈Π1−b〉

[
MA

Π1−b

]
E〈Πb〉

[
MA

Πb

] · E〈Πb〉
[
MA

Πb

]
= E〈Π1−b〉

[
MA

Π1−b

]
= E〈Π1−b〉

[(
MA

Π

)
1−b

]
,

where the first and last equalities follow the B-minimal property of MA
Π (Proposition 3.13(2)). �

We are now ready to prove Lemma 3.11.

Proof of Lemma 3.11. The proof is by induction on the round complexity of Π.
Assume that round(Π) = 0 and let ` be the only node in T (Π). If χΠ(`) = 1, then by

Definition 3.10 it holds that MA
Π(`) = 1, implying that E〈Π〉

[
MA

Π

]
= 1. The proof follows since

in this case, by Proposition 3.9, OPTB (Π) = 0. In the complementary case, i.e., χ(`) = 0, by
Definition 3.10 it holds that MA

Π(`) = 0, implying that E〈Π〉
[
MA

Π

]
= 0. The proof follows since in

this case, by Proposition 3.9, OPTB (Π) = 1.
Assume that the lemma holds for m-round protocols and that round(Π) = m+1. For b ∈ {0, 1}

let αb := E〈Πb〉

[
MA

Πb

]
. The induction hypothesis yields that OPTB (Πb) = 1−αb for both b ∈ {0, 1}.

If eΠ(λ, b) = 1 for some b ∈ {0, 1} (which also means that eΠ(λ, 1− b) = 0), the proof follows since
Proposition 3.8 yields that OPTB (Π) = OPTB (Πb) = 1 − αb, where Definition 3.10 yields that

E〈Π〉
[
MA

Π

]
= E〈Πb〉

[
MA

Πb

]
= αb.

Assume eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1} and let p := eΠ(λ, 0). The proof splits according to
who controls the root of Π.

A controls root(Π). Definition 3.10 yields that

E〈Π〉

[
MA

Π

]
= p · E〈Π0〉

[(
MA

Π

)
0

]
+ (1− p) · E〈Π1〉

[(
MA

Π

)
1

]
= p · E〈Π0〉

[
MA

Π0

]
+ (1− p) · E〈Π1〉

[
MA

Π1

]
= p · α0 + (1− p) · α1,

where the second equality follows the A-maximal property of MA
Πb

(Proposition 3.13(1)).

23

Using Proposition 3.8 we conclude that

OPTB (Π) = p · OPTB (Π0) + (1− p) · OPTB (Π1)

= p · (1− α0) + (1− p) · (1− α1)

= 1− (p · α0 + (1− p) · α1)

= 1− E〈Π〉

[
MA

Π

]
.

B controls root(Π). We assume that α0 ≤ α1 (the complementary case is analogous). Proposi-
tion 3.8 and the induction hypothesis yield that OPTB (A,B) = 1 − α0. Hence, it is left to
show that E〈Π〉

[
MA

Π

]
= α0. The assumption that α0 ≤ α1 yields that SmallerΠ (0) = 1. Thus,

by the B-minimal property of MA
Π (Proposition 3.13(2)), it holds that

(
MA

Π

)
0
≡ MA

Π0
. It

follows that E〈Π0〉
[(
MA

Π

)
0

]
= α0, and the B-immune property of MA

Π (Proposition 3.13(3))

yields that E〈Π1〉
[(
MA

Π

)
1

]
= α0. To conclude the proof, we compute

E〈Π〉

[
MA

Π

]
= p · E〈Π0〉

[(
MA

Π

)
0

]
+ (1− p) · E〈Π1〉

[(
MA

Π

)
1

]
= p · α0 + (1− p) · α0

= α0.
�

Lemma 3.11 connects the success of the optimal attack to the expected value of the dominated
measure. In the next section we analyze the success of the recursive biased-continuation attack
using this expected value. Unfortunately, this analysis does not seem to suffice for our goal. In
Section 3.5 we generalize the dominated measure described above to a sequence of (alternating)
dominated measures, where in Section 3.6 we use this new notion to prove that the recursive biased
continuation is indeed a good attack.

3.4 Warmup — Proof Attempt Using a (Single) Dominated Measure

As mentioned above, the approach described in this section falls too short to serve our goals. Yet
we describe it here as a detailed overview for the more complicated proof, given in following sections
(with respect to a sequence of dominated measures). Specifically, we sketch a proof of the following
lemma, which relates the performance of the recursive biased-continuation attacker playing the role
of A, to the performance of the optimal (valid) attacker playing the role of B. The proof (see below)
is via the A-dominated measure of Π defined above.25

Lemma 3.14. Let Π = (A,B) be a protocol with val(Π) > 0, let k ∈ N and let A(k) be according to
Algorithm 3.2. Then

val(A(k),B) ≥ 1− OPTB (Π)∏k−1
i=0 val(A(i),B)

.

The proof of the above lemma is a direct implication of the next lemma.

25The formal proof of Lemma 3.14 follows its stronger variant, Lemma 3.25, introduced in Section 3.6.

24

Lemma 3.15. Let Π = (A,B) be a protocol with val(Π) > 0, let k ∈ N and let A(k) be according to
Algorithm 3.2. Then

E〈A(k),B〉
[
MA

Π

]
≥

E〈Π〉
[
MA

Π

]∏k−1
i=0 val(A(i),B)

.

Proof of Lemma 3.14. Immediately follows Lemmas 3.11 and 3.15 and Fact 2.5. �

We begin by sketching the proof of the following lemma, which is a special case of Lemma 3.15.
Later we explain how to generalize the proof below to derive Lemma 3.15.

Lemma 3.16. Let Π = (A,B) be a protocol with val(Π) > 0 and let A(1) be according to Algo-

rithm 3.2. Then E〈A(1),B〉
[
MA

Π

]
≥ E〈Π〉[MA

Π]
val(Π) .

Proof sketch. The proof is by induction on the round complexity of Π. The base case (i.e.,
round(Π) = 0) is straightforward. Assume that the lemma holds for m-round protocols and that

round(Π) = m+ 1. For b ∈ {0, 1} let αb := E〈Πb〉

[
MA

Πb

]
and let p := eΠ(λ, 0).

If root(Π) is controlled by A, the A-maximal property of MA
Π (Proposition 3.13(1)) yields that

E〈Π〉
[
MA

Π

]
= p · α0 + (1− p) · α1. It holds that

E〈A(1),B〉
[
MA

Π

]
= e(A(1),B)(λ, 0) · E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ e(A(1),B)(λ, 1) · E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
(7)

= p · val(Π0)

val(Π)
· E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ (1− p) · val(Π1)

val(Π)
· E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
,

where the second equality follows Claim 3.4. Since A(1) is stateless (Proposition 3.5), we can write
Equation (7) as

E〈A(1),B〉
[
MA

Π

]
= p · val(Π0)

val(Π)
· E〈

A
(1)
Π0
,BΠ0

〉 [(MA
Π

)
0

]
+ (1− p) · val(Π1)

val(Π)
· E〈

A
(1)
Π1
,BΠ1

〉 [(MA
Π

)
1

]
.

(8)

The A-maximal property of MA
Π and Equation (8) yield that

E〈A(1),B〉
[
MA

Π

]
= p · val(Π0)

val(Π)
· E〈

A
(1)
Π0
,BΠ0

〉 [MA
Π0

]
+ (1− p) · val(Π1)

val(Π)
· E〈

A
(1)
Π1
,BΠ1

〉 [MA
Π1

]
. (9)

Applying the induction hypothesis on the right-hand side of Equation (9) yields that

E〈A(1),B〉
[
MA

Π

]
≥ p · val(Π0)

val(Π)
· α0

val(Π0)
+ (1− p) · val(Π1)

val(Π)
· α1

val(Π1)

=
p · α0 + (1− p) · α1

val(Π)

=
E〈Π〉

[
MA

Π

]
val(Π)

,

which concludes the proof for the case that A controls root(Π).

25

If root(Π) is controlled by B, and assuming that α0 ≤ α1 (the complementary case is analogous),
it holds that SmallerΠ (0) = 1. Thus, by the B-minimal property of MA

Π (Proposition 3.13(2)), it
holds that

(
MA

Π

)
0
≡ MA

Π0
and

(
MA

Π

)
1
≡ α0

α1
MA

Π1
. Hence, the B-immune property of MA

Π (Proposi-

tion 3.13(3)) yields that E〈Π〉
[
MA

Π

]
= α0. In addition, since B controls root(Π), the distribution of

the edges (λ, 0) and (λ, 1) has not changed. It holds that

E〈A(1),B〉
[
MA

Π

]
= p · E〈(A(1),B)

0
〉
[(
MA

Π

)
0

]
+ (1− p) · E〈(A(1),B)

1
〉
[(
MA

Π

)
1

]
(10)

= p · E〈
A

(1)
Π0
,BΠ0

〉 [(MA
Π

)
0

]
+ (1− p) · E〈

A
(1)
Π1
,BΠ1

〉 [(MA
Π

)
1

]
= p · E〈

A
(1)
Π0
,BΠ0

〉 [MA
Π0

]
+ (1− p) · E〈

A
(1)
Π1
,BΠ1

〉 [α0

α1
MA

Π1

]
= p · E〈

A
(1)
Π0
,BΠ0

〉 [MA
Π0

]
+ (1− p) · α0

α1
· E〈

A
(1)
Π1
,BΠ1

〉 [MA
Π1

]
,

where the second equality follows since A(1) is stateless (Proposition 3.5). Applying the induction
hypothesis on the right-hand side of Equation (10) yields that

E〈A(1),B〉
[
MA

Π

]
≥ p · α0

val(Π0)
+ (1− p) · α0

α1
· α1

val(Π1)

= α0

(
p

val(Π0)
+

1− p
val(Π1)

)
≥

E〈Π〉
[
MA

Π

]
val(Π)

,

which concludes the proof for the case that A controls root(Π), and where the last equality holds
since

p

val(Π0)
+

1− p
val(Π1)

≥ 1

val(Π)
. (11)

�

The proof of Lemma 3.15 follows similar arguments to those used above for proving
Lemma 3.16.26 Informally, we proved Lemma 3.16 by showing that A(1) “assigns” more weight
to the dominated measure than A does. A natural step is to consider A(2) and to see if it assigns
more weight to the dominated measure than A(1) does. It turns out that one can turn this intuitive
argument into a formal proof, and prove Lemma 3.14 by repeating this procedure with respect to
many recursive biased-continuation attacks.27

The shortcoming of Lemma 3.14. Given a protocol Π = (A,B), we are interested in the
minimal value of κ for which A(κ) biases the value of the protocol towards one with probability of
at least 0.9 (as a concrete example). Following Lemma 3.14, it suffices to find a value κ such that

val(A(κ),B) ≥ 1− OPTB (Π)∏κ−1
i=0 val(A(i),B)

≥ 0.9. (12)

26The proof sketch given for Lemma 3.16 is almost a formal proof, lacking only consideration of the base case and
the extreme cases in which eΠ(λ, b) = 1 for some b ∈ {0, 1}.

27The main additional complication in the proof of Lemma 3.14 is that the simple argument used to derive Equa-
tion (11) is replaced with the more general argument, described in Lemma 2.17.

26

Using worst case analysis, it suffices to find κ such that (1 − OPTB (Π))/(0.9)κ ≥ 0.9, where the
latter dictates that

κ ≥
log
(

1
1−OPTB(Π)

)
log
(

1
0.9

) . (13)

Recall that our ultimate goal is to implement an efficient attack on any coin-flipping protocol,
under the mere assumption that one-way functions do not exist. Specifically, we would like to do so
by giving an efficient version of the recursive biased-continuation attack. At the very least, due to
the recursive nature of the attack, this requires the protocols (A(1),B), . . . , (A(κ−1),B) be efficient
in comparison to the basic protocol. The latter efficiency restriction together with the recursive
definition of A(κ) dictates that κ (the number of recursion calls) be constant.

Unfortunately, Equation (13) reveals that if OPTB (Π) ∈ 1 − o(1), we need to take κ ∈ ω(1),
yielding an inefficient attack.

3.5 Back to the Proof — Sequence of Alternating Dominated Measures

Let Π = (A,B) be a protocol and let M be a measure over the leaves of Π. Consider the variant of Π
whose parties act identically to the parties in Π, but with the following tweak: when the execution
reaches a leaf `, the protocol restarts with probability M(`). Namely, a random execution of the
resulting (possibly inefficient) protocol is distributed like a random execution of Π, conditioned on
not “hitting” the measure M .28 The above is formally captured by the definition below.

3.5.1 Conditional Protocols

Definition 3.17 (conditional protocols). Let Π be an m-message protocol and let M be a measure
over L(Π) with E〈Π〉[M] < 1. The m-message, M -conditional protocol of Π, denoted Π|¬M , is
defined by the color function χ(Π|¬M) ≡ χΠ, and the edge distribution function e(Π|¬M) is defined
by

e(Π|¬M)(u, ub) =

0, E〈Πu〉[M] = 1; 29

eΠ(u, ub) ·
1−E〈Πub〉[M]

1−E〈Πu〉[M] , otherwise.
,

for every u ∈ V(Π) \ L(Π) and b ∈ {0, 1}. The controlling scheme of the protocol Π|¬M is the
same as in Π.

If E〈Π〉[M] = 1 or Π =⊥, we set Π|¬M =⊥.

The next proposition shows that the M -conditional protocol is indeed a protocol. It also shows
a relation between the leaf distribution of the M -conditional protocol and the original protocol.
Using this relation we conclude that the set of possible transcripts of the M -conditional protocol
is a subset the original protocol’s possible transcripts and that if M assigns a value of 1 to some
transcript, then this transcript is inaccessible by the M -conditional protocol.

28For concreteness, one might like to consider the case where M is a set.
29Note that this case does not affect the resulting protocol, and is defined only to simplify future discussion.

27

Proposition 3.18. Let Π be a protocol and let M be a measure over L(Π) with E〈Π〉 [M] < 1.
Then

1. ∀u ∈ V(Π) \ L(Π): v(Π|¬M)(u) > 0 =⇒ e(Π|¬M)(u, u0) + e(Π|¬M)(u, u1) = 1;

2. ∀` ∈ L(Π): v(Π|¬M)(`) = vΠ(`) · 1−M(`)

1− E〈Π〉 [M]
;

3. ∀` ∈ L(Π): v(Π|¬M)(`) > 0 =⇒ vΠ(`) > 0; and

4. ∀` ∈ L(Π): M(`) = 1 =⇒ v(Π|¬M)(`) = 0.

Proof. The first two items immediately follow from Definition 3.17. The last two items follow the
second item. �

In addition to the above properties, Definition 3.17 guarantees the following “locality” property
of the M -conditional protocol.

Proposition 3.19. Let Π be a protocol and let M be a measure over L(Π). Then (Π|¬M)u =
Πu|¬(M)u for every u ∈ V(Π) \ L(Π).

Proof. Immediately follows from Definition 3.17. �

Proposition 3.19 helps us to apply induction on conditional protocols. Specifically, we use it
to prove the following lemma, which relates the (dominated measure)-conditional protocol to the
optimal (valid) attack.

Lemma 3.20. Let Π = (A,B) be a protocol with val(Π) < 1. Then OPTB

(
Π|¬MA

Π

)
= 1.

Proof. First, we note that Fact 2.5 yields that E〈Π〉
[
MA

Π

]
≤ val(Π) < 1, and hence Π|¬MA

Π 6=⊥
(i.e., is a protocol). The rest of the proof is by induction on the round complexity of Π.

Assume that round(Π) = 0 and let ` be the only node in T (Π). Since it is assumed that
val(Π) < 1, it must be the case that χΠ(`) = 0. The proof follows since MA

Π(`) = 0, and thus
Π|¬MA

Π = Π, and since OPTB (Π) = 1.
Assume the lemma holds for m-round protocols and that round(Π) = m+ 1. If eΠ(λ, b) = 1 for

some b ∈ {0, 1}, Definition 3.10 yields that
(
MA

Π

)
b

= MA
Πb

. Moreover, Definition 3.17 yields that
e(Π|¬MA

Π)(λ, b) = 1. It holds that

OPTB

(
Π|¬MA

Π

)
= OPTB

((
Π|¬MA

Π

)
b

)
(14)

= OPTB

(
Πb|¬

(
MA

Π

)
b

)
= OPTB

(
Πb|¬MA

Πb

)
= 1,

where the first equality follows Proposition 3.8, the second follows from Proposition 3.19, and the
last equality follows from the induction hypothesis.

In the complementary case, i.e., eΠ(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, the proof splits according
to who controls the root of Π.

28

A controls root(Π). The assumption that val(Π) < 1 dictates that val(Π0) < 1 or val(Π1) < 1.
Consider the following complimentary cases.

val(Π0), val(Π1) < 1: Proposition 3.8 yields that

OPTB

(
Π|¬MA

Π

)
= e(Π|¬MA

Π)(λ, 0) · OPTB

((
Π|¬MA

Π

)
0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

((
Π|¬MA

Π

)
1

)
= e(Π|¬MA

Π)(λ, 0) · OPTB

(
Π0|¬

(
MA

Π

)
0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

(
Π1|¬

(
MA

Π

)
1

)
= e(Π|¬MA

Π)(λ, 0) · OPTB

(
Π0|¬MA

Π0

)
+ e(Π|¬MA

Π)(λ, 1) · OPTB

(
Π1|¬MA

Π1

)
= 1,

where the first equality follows from Proposition 3.8, the second follows from Proposition 3.19,
the third follows from by the A-maximal property of MA

Π (Proposition 3.13(1)), and last
equality follows from the induction hypothesis.

val(Π0) < 1, val(Π1) = 1: By Definition 3.17, it holds that

e(Π|¬MA
Π)(λ, 1) = eΠ(λ, 1) ·

1− E〈Π1〉
[(
MA

Π

)
1

]
1− E〈Π〉

[
MA

Π

]
= eΠ(λ, 1) ·

1− E〈Π1〉
[
MA

Π1

]
1− E〈Π〉

[
MA

Π

]
= 0,

where the second equality follows from the A-maximal property of MA
Π , and the last equality

follows since val(Π1) = 1, which yields that E〈Π1〉
[
MA

Π1

]
= 1. Since Π|¬MA

Π is a protocol
(Proposition 3.18), it holds that e(Π|¬MA

Π)(λ, 0) = 1. The proof now follows from Equa-

tion (14).

val(Π0) = 1, val(Π1) < 1: The proof in analogous to the previous case.

B controls root(Π). Assume for simplicity that SmallerΠ (0) = 1, namely that E〈Π0〉
[
MA

Π0

]
≤

E〈Π1〉
[
MA

Π1

]
(the other case is analogous). It must hold that val(Π0) < 1 (otherwise, it holds that

E〈Π0〉
[
MA

Π0

]
= E〈Π1〉

[
MA

Π1

]
= 1, which yields that val(Π1) = 1, and thus val(Π) = 1). Hence,

E〈Π0〉
[
MA

Π0

]
< 1, and Definition 3.17 yields that e(Π|¬MA

Π)(λ, 0) > 0. By Proposition 3.8, it holds

that

OPTB

(
Π|¬MA

Π

)
≥ OPTB

((
Π|¬MA

Π

)
0

)
= OPTB

(
Π0|¬

(
MA

Π

)
0

)
= OPTB

(
Π0|¬MA

Π0

)
= 1,

where the second equality follows Proposition 3.19, the third follows the B-minimal property of MA
Π

(Proposition 3.13(2)), and the last equality follows the induction hypothesis. �

29

Let Π = (A,B) be a protocol in which an optimal adversary playing the role of A biases the
outcome towards one with probability one. Lemma 3.20 shows that in the conditional protocol
Π(B,0) := Π|¬MA

Π , an optimal adversary playing the role of B can bias the outcome towards zero
with probability one. Repeating this procedure with respect to Π(B,0) results in the protocol

Π(A,1) := Π(B,0)|¬MA
Π(B,0)

, in which again an optimal adversary playing the role of A can bias the

outcome towards one with probability one. This procedure is stated formally in Definition 3.22.

3.5.2 Sequence of Dominated Measures

Given a protocol (A,B), we use the simple ordering over the pairs {(C, j)}(C,j)∈{A,B}×Z.

Notation 3.21. Let (A,B) be a protocol. For j ∈ Z let pred(A, j) = (B, j − 1) and pred(B, j) =
(A, j), and let succ be the inverse operation of pred (i.e., succ(pred(C, j)) = (C, j)). For pairs
(C, j), (C′, j′) ∈ {A,B} × Z, we write

• (C, j) is less than or equal to (C′, j′) , denoted (C, j) � (C′, j′), if ∃ {(C1, j1), . . . , (Cn, jn)} such
that (C, j) = (C1, j1), (C′, j′) = (Cn, jn) and (Ci, ji) = pred(Ci+1, ji+1) for any i ∈ [n− 1].

• (C, j) is less than (C′, j′), denoted (C, j) ≺ (C′, j′), if (C, j) � (C′, j′) and (C, j) 6= (C′, j′).

Finally, for (C, j) � (A, 0), let [(C, j)] := {(C′, j′) : (A, 0) � (C′, j′) � (C, j)}.

Definition 3.22. (dominated measures sequence) For a protocol Π = (A,B) and (C, j) ∈ {A,B}×N,
the protocol Π(C,j) is defined by

Π(C,j) =

{
Π, (C, j) = (A, 0);

Π(C′,j′)=pred(C,j)|¬
(
MC′

Π(C′,j′)

)
, otherwise.30

Define the (C, j) dominated measures sequence of Π, denoted (C, j)-DMS (Π), by{
MC′

Π(C′,j′)

}
(C′,j′)∈[(C,j)]

. Finally, for z ∈ N, let LC,z
Π ≡

∑z
j=0M

C
Π

(C,j)

∏j−1
t=0

(
1−MC

Π
(C,t)

)
.

We show that LA,z
Π is a measure (i.e., its range is [0, 1]) and that its support is a subset of the

1-leaves of Π. We also give an explicit expression for its expected value (analogous to the expected
value of MA

Π given in Lemma 3.11).

Lemma 3.23. Let Π = (A,B) be a protocol, let z ∈ N, and let LA,z
Π be as in Definition 3.22. It

holds that

1. LA,z
Π is a measure over L1(Π):

(a) LA,z
Π (`) ∈ [0, 1] for every ` ∈ L(Π), and

(b) Supp
(
LA,z

Π

)
⊆ L1(Π).

30Note that if E〈
Π

(C,j)

〉 [MC
Π

(C,j)

]
= 1, Definition 3.17 yields that Πsucc(C,j) =⊥. In fact, since we defined ⊥ |¬M =⊥

for any measure M (also in Definition 3.17), it follows that Π(C′,j′) =⊥ for any (C′, j′) � (C, j).

30

2. E〈Π〉

[
LA,z

Π

]
=
∑z

j=0 αj ·
∏j−1
t=0 (1 − βt)(1 − αt), where αj = 1 − OPTB

(
Π(A,j)

)
, βj = 1 −

OPTA

(
Π(B,j)

)
and OPTA (⊥) = OPTB (⊥) = 1.

Proof. We prove the above two items separately.

Proof of Item 1. Let ` ∈ L0(Π). Since MA
Π

(A,j)
(`) = 0 for every j ∈ (z), it holds that LA,z

Π (`) = 0.

Let ` ∈ L1(Π). Since LA,z
Π (`) is a sum of non-negative numbers, it follows that its value is

non-negative. It is left to argue that LA,z
Π (`) ≤ 1. Since MA

Π
(A,z)

is a measure, note that

MA
Π

(A,z)
(`) ≤ 1. Thus

LA,z
Π (`) =

z∑
j=0

MA
Π

(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

≤
z−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

+
z−1∑
j=0

MA
Π

(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π
(A,t)

(`)
)

=

 ∑
I⊆(z−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)

+
z−1∑
j=0

MA
Π

(A,j)
(`) ·

 ∑
I⊆(j−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)


=

 ∑
I⊆(z−1)

(−1)|I| ·
∏
t∈I

MA
Π

(A,t)
(`)

+

 ∑
∅6=I⊆(z−1)

(−1)|I|+1 ·
∏
t∈I

MA
Π

(A,t)
(`)


= 1.

Proof of Item 2. By linearity of expectation, it suffices to prove that

E〈Π〉

[
MA

Π(A,j)
·
j−1∏
t=0

(
1−MA

Π(A,t)

)]
= αj ·

j−1∏
t=0

(1− βt)(1− αt) (15)

for any j ∈ (z). Fix j ∈ (z). If Π(A,j) =⊥, then by Definition 3.10 it holds that MA
Π(A,j)

is the

zero measure, and both sides of Equation (15) equal 0.

In the following we assume that Π(A,j) 6=⊥. We first note that E〈Π(C,t)〉
[
MC

Π(C,t)

]
< 1 for any

(C, t) ∈ [pred(A, j)] (otherwise, it must be that Π(A,j) =⊥). Thus, Lemma 3.11 yields that
αt, βt < 1 for every t ∈ (j − 1). Hence, recursively applying Proposition 3.18(2) yields that

v(Π(A,j))(`) = vΠ(`) ·
j−1∏
t=0

1−MA
Π(A,t)

(`)

1− αt
·

1−MB
Π(B,t)

(`)

1− βt
(16)

for every ` ∈ L(Π). Moreover, for ` ∈ Supp
(
Π(A,j)

)
, i.e., v(Π(A,j))(`) > 0, we can manipulate

Equation (16) to get that

vΠ(`) = v(Π(A,j))(`) ·
j−1∏
t=0

1− αt
1−MA

Π(A,t)
(`)
· 1− βt

1−MB
Π(B,t)

(`)
(17)

31

for every ` ∈ Supp
(
Π(A,j)

)
.

It follows that

E〈Π〉

[
MA

Π(A,j)
·
j−1∏
t=0

(
1−MA

Π(A,t)

)]

=
∑

`∈L(Π)

vΠ(`) ·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

=
∑

`∈Supp(Π(A,j))∩L1(Π)

vΠ(`) ·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

=
∑

`∈Supp(Π(A,j))∩L1(Π)

v(Π(A,j))(`) ·
j−1∏
t=0

1− αt
1−MA

Π(A,t)
(`)
· 1− βt

1−MB
Π(B,t)

(`)

·

(
MA

Π(A,j)
(`) ·

j−1∏
t=0

(
1−MA

Π(A,t)
(`)
))

=
∑

`∈Supp(Π(A,j))∩L1(Π)

v(Π(A,j))(`) ·MA
Π(A,j)

(`) ·
j−1∏
t=0

(1− αj) (1− βj)

= αj ·
j−1∏
t=0

(1− βt)(1− αt),

concluding the proof. The second equality follows since Definition 3.10 yields thatMA
Π(A,j)

(`) =

0 for any ` /∈ Supp
(
Π(A,j)

)
∩L1(Π), the third equality follows by Equation (17) and the fourth

equality follows since MB
Π(B,t)

(`) = 0 for every ` ∈ L1(Π) and t ∈ (j − 1).

�

Example 3.24. Once again we consider the protocol Π from Figure 2a. In Figure 3 we present the
conditional protocol Π(B,0) = Π|¬MA

Π, namely the protocol derived when protocol Π is conditioned
not to “hit” the A-dominated measure of Π. We would like to highlight some points regarding this
conditional protocol.

The first point we note is the changes in the edge distribution. Now consider the root of Π0 (i.e.,
the node 0). According to the calculations in Figure 2b, it holds that E〈Π00〉

[
MA

Π

]
= MA

Π(00) = 1

and that E〈Π0〉
[
MA

Π

]
= α0. Hence, Definition 3.17 yields that

e(Π|¬MA
Π)(0, 00) = α0 ·

1− E〈Π00〉
[
MA

Π

]
1− E〈Π0〉

[
MA

Π

]
= α0 ·

0

1− α0

= 0.

Note that the above change makes the leaf 00 inaccessible in Π(B,0). This occurs since MA
Π(00) = 1

and follows Proposition 3.18. Similar calculations yield the changes in the distribution of the edges
leaving the root of Π1 (i.e., the node 1).

32

B

A

1

0

B

0

β01

1

1− β01

1

β

A

1

α1−α0
1−α0

0

1−α1
1−α0

1− β

Figure 3: The conditional protocol Π(B,0) = Π|¬MA
Π of Π from Figure 2a. Dashed edges are such

that their distribution has changed. Note that due to this change, the leaf 00 (the leftmost leaf,
marked by a thick border) is inaccessible in Π(B,0). The B-dominated measure of Π(B,0) assigns a
value of 1 to the leaf 010, and value of 0 to all other leaves.

The second point we note is that the conditional protocol is in fact a protocol. Namely, for every
node, the sum of the probabilities of the edges leaving it is one. This is easily seen from Figure 3
and again follows from Proposition 3.18.

The third point we note is that the edge distribution of the root of Π does not change at all.
This follows from Definition 3.17 and the fact that

E〈Π0〉

[
MA

Π

]
= E〈Π1〉

[
MA

Π

]
= E〈Π〉

[
MA

Π

]
= α0.

The fourth point we note is that in the conditional protocol, an optimal valid attacker playing
the role of B can bias the outcome towards zero with probability one. Namely, OPTB

(
Π|¬MA

Π

)
= 1.

Such an attacker will send 0 as the first message, after which A must send 1 as the next message,
and then the attacker will send 0. The outcome of this interaction is the value of the leaf 010, which
is 0. This follows from Lemma 3.20.

Using dominated measure sequences, we manage to give an improved bound for the success
probability of the recursive biased-continuation attacks (comparing to the bound of Lemma 3.16,
which uses a single dominated measure). The improved analysis yields that a constant number of
recursion calls of the biased-continuation attack is successful in biasing the protocol to an arbitrary
constant close to either 0 or 1.

3.6 Improved Analysis Using Alternating Dominated Measures

We are finally ready to state two main lemmas, whose proofs – given in the next two sections – are
the main technical contribution of Section 3, and then show how to use them to prove Theorem 3.3.

The first lemma is analogous to Lemma 3.14, but applied on the sequence of the dominated
measures, and not just on a single dominated measure.

Lemma 3.25. For a protocol Π = (A,B) with val(Π) > 0 and z ∈ N, it holds that

val(A(k),B) ≥ E〈A(k),B〉
[
LA,z

Π

]
≥

E〈Π〉

[
LA,z

Π

]
∏k−1
i=0 val(A(i),B)

·

1−
z−1∑
j=0

βj

k

33

for every k ∈ N, where βj = 1− OPTA

(
Π(B,j)

)
, letting OPTA (⊥) = 1.

The above states that the recursive biased-continuation attacker biases the outcome of the
protocol by a bound similar to that given in Lemma 3.14, but applied with respect to LA,z

Π , instead

of MA
Π in Lemma 3.14. This is helpful since the expected value of LA,z

Π is strictly larger than that

of MA
Π . However, since LA,z

Π is defined with respect to a sequence of conditional protocols, we must

“pay” the term
(

1−
∑z−1

j=0 βj

)k
in order to get this bound in the original protocol.

The following lemma states that Lemma 3.25 provides a sufficient bound. Specifically, it shows
that if we take a long enough sequence of conditional protocols, the expected value of the measure
LA,z

Π will be sufficiently large, while the payment term mentioned above will be kept sufficiently
small.

Lemma 3.26. Let Π = (A,B) be a protocol. Then for every c ∈ (0, 1
2] there exists z = z(c,Π) ∈ N

(possibly exponential large) such that:

1. E〈Π〉

[
LA,z

Π

]
≥ c · (1− 2c) and

∑z−1
j=0 βj < c; or

2. E〈Π〉

[
LB,z

Π

]
≥ c · (1− 2c) and

∑z
j=0 αj < c,

where αj = 1− OPTB

(
Π(A,j)

)
and βj = 1− OPTA

(
Π(B,j)

)
.

To derive Theorem 3.3, we take a sequence of the dominated measures that is long enough so
that its accumulated weight will be sufficiently large. Furthermore, the weight of the dominated
measures that precede the final dominated measure in the sequence is small (otherwise, we would
have taken a shorter sequence), so the parties are “missing” these measures with high probability.
The formal proof of Theorem 3.3 is given next, and the proofs of Lemmas 3.25 and 3.26 are given
in Sections 3.7 and 3.8 respectively.

3.6.1 Proving Theorem 3.3

Proof of Theorem 3.3. If val(Π) = 0, Theorem 3.3 trivially holds. Assume that val(Π) > 0, let z be

the minimum integer guaranteed by Lemma 3.26 for c = ε/2, and let κ =

⌈
log(2

ε)
log
(

1−ε/2
1−ε

)
⌉

.

If z satisfies Item 1 of Lemma 3.26, assume towards a contradiction that val(A(κ),B) ≤ 1 − ε.
Lemma 3.25 yields that

val(A(κ),B) ≥
E〈Π〉

[
LA,z

Π

]
∏κ−1
i=0 val(A(i),B)

·

1−
z−1∑
j=0

βj

κ

>
ε(1− ε)

2
·
(

1− ε/2
1− ε

)κ
≥ 1− ε,

and a contradiction is derived.
If z satisfies Item 2 of Lemma 3.26, an analogous argument to the above yields that val(A,B(κ)) ≤

ε. �

34

3.7 Proving Lemma 3.25

The proof of Lemma 3.25 is an easy implication of Lemma 3.23 and the following key lemma,
defined with respect to sequences of submeasures of the dominated measure.

Definition 3.27. (dominated submeasure sequence) For a protocol Π = (A,B), a pair (C∗, j∗) ∈
{A,B} × N and η =

{
η(C,j) ∈ [0, 1]

}
(C,j)∈[(C∗,j∗)]

, define the protocol Π̂η
(C,j) by

Π̂η
(C,j) :=

{
Π, (C, j) = (A, 0);

Π̂η
(C′,j′)=pred(C,j)|¬

(
M̂Π,η

(C′,j′)

)
, otherwise.

,

where M̂Π,η
(C′,j′) ≡ η(C′,j′) · MC′

Πη

(C′,j′)
. For (C, j) ∈ [(C∗, j∗)], define the (C, j,η)-dominated

measure sequence of Π, denoted (C, j,η)-DMS (Π), as
{
M̂Π,η

(C′,j′)

}
(C′,j′)∈[(C,j)]

, and let µ̂Π,η
(C,j) =

E〈
Π̂η

(C,j)

〉 [M̂Π,η
(C,j)

]
.31

Finally, let L̂C,η
Π ≡

∑
j : (C,j)∈[(C∗,j∗)] M̂

Π,η
(C,j) ·

∏j−1
t=0

(
1− M̂Π,η

(C,t)

)
.

Lemma 3.28. Let Π = (A,B) be a protocol with val(Π) > 0, let z ∈ N and let η ={
η(C,j) ∈ [0, 1]

}
(C,j)∈[(A,z)]

. For j ∈ (z), let αj = µ̂Π,η
(A,j), and for j ∈ (z − 1), let βj = µ̂Π,η

(B,j).

Then

E〈A(k),B〉
[
L̂A,η

Π

]
≥
∑z

j=0 αj ·
∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

for any positive k ∈ N.

The proof of Lemma 3.28 is given below, but we first use it to prove Lemma 3.25.

Proof of Lemma 3.25. Let η(C,j) = 1 for every (C, j) ∈ [(A, z)] and let η =
{
η(C,j)

}
(C,j)∈[(A,z)]

. It

follows that L̂A,η
Π ≡ LA,z

Π . Applying Lemma 3.28 yields that

E〈A(k),B〉
[
LA,z

Π

]
≥
∑z

j=0 αj ·
∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

, (18)

where αj = µ̂Π,η
(A,j) and βj = µ̂Π,η

(B,j). Multiplying the j’th summand of the right-hand side of

Equation (18) by
∏z−1
t=j (1− βj)k ≤ 1 yields that

E〈A(k),B〉
[
LA,z

Π

]
≥
∑z

j=0 αj ·
∏j−1
t=0 (1− βt)(1− αt)∏k−1

i=0 val(A(i),B)
·
z−1∏
t=0

(1− βt)k (19)

≥
∑z

j=0 αj ·
∏j−1
t=0 (1− βt)(1− αt)∏k−1

i=0 val(A(i),B)
·

(
1−

z−1∑
t=0

βt

)k
,

31Note that for η = (1, 1, 1, . . . , 1), Definition 3.27 coincides with Definition 3.22.

35

where the second inequality follows since βj ≥ 0 and (1− x)(1− y) ≥ 1− (x+ y) for any x, y ≥ 0.

By Lemma 3.11 and the definition of η it follows that µ̂Π,η
(A,j) = 1 − OPTB

(
Π(A,j)

)
and µ̂Π,η

(B,j) =

1− OPTA

(
Π(B,j)

)
. Hence, plugging Lemma 3.23 into Equation (19) yields that

E〈A(k),B〉
[
LA,z

Π

]
≥

E〈Π〉

[
LA,z

Π

]
∏k−1
i=0 val(A(i),B)

·

(
1−

z−1∑
t=0

βt

)k
. (20)

Finally, the proof is concluded, since by Lemma 3.23 and Fact 2.5 it immediately follows that

val(A(k),B) ≥ E〈A(k),B〉
[
LA,z

Π

]
. �

3.7.1 Proving Lemma 3.28

Proof of Lemma 3.28. In the following we fix a protocol Π, real vector η =
{
η(C,j)

}
(C,j)∈[(A,z)]

and

a positive integer k. We also assume for simplicity that Π̂η
(A,z) is not the undefined protocol, i.e.,

Π̂η
(A,z) 6=⊥.32 The proof is by induction on the round complexity of Π.

Base case. Assume round(Π) = 0 and let ` be the only node in T (Π). For j ∈ (z), Definition 3.27
yields that χ

Π̂η
(A,j)

(`) = χΠ(`) = 1, where the last equality holds since, by assumption, val(Π) > 0.

It follows Definition 3.10 that MA
Π̂η

(A,j)

(`) = 1 and Definition 3.27 that M̂Π,η
(A,j)(`) = η(A,j). Hence,

it holds that αj = η(A,j). Similarly, for j ∈ (z − 1) it holds that M̂Π,η
(B,j)(`) = 0 and thus βj = 0.

Clearly,
(
A(k),B

)
= Π and val(A(i),B) = 1 for every i ∈ [k − 1]. We conclude that

E〈A(k),B〉
[
L̂Π,η
A

]
=E〈Π〉

[
L̂Π,η
A

]
=

z∑
j=0

M̂Π,η
(A,j)(`) ·

j−1∏
t=0

(
1− M̂Π,η

(A,t)(`)
)

=
z∑
j=0

η(A,j) ·
j−1∏
t=0

(
1− η(A,t)

)
=

z∑
j=0

αj ·
j−1∏
t=0

(1− αt)

=

∑z
j=0 αj

∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

.

Induction step. Assume the lemma holds for m-round protocols and that round(Π) = m+1. We
prove it by the following steps: (1) we define two real vectors η0 and η1 such that the restriction

32If this assumption does not hold, let z′ ∈ (z − 1) be the largest index such that Π̂η
(A,z′) 6=⊥, and let η′ ={

η(C,j)

}
(C,j)∈[(A,z′)]

. It follows from Definition 3.10 that M̂Π,η
(A,j) is the zero measure for any z′ < j ≤ z, and thus

L̂Π,η′

A ≡ L̂Π,η
A . Moreover, the fact that αj = 0 for any z′ < j ≤ z suffices to validate the assumption.

36

of L̂Π,η
A to Π0 and Π1 is equal to L̂

Π0,η0
A and L̂

Π1,η1
A respectively; (2) we apply the induction

hypothesis on the two latter measures; (3) if A controls root(Π), we use the properties of A(k) – as
stated in Claim 3.4 – to derive the lemma, whereas if B controls root(Π), we derive the lemma from
Lemma 2.17.

All claims given in the context of this proof are proven in Section 3.7.2. We defer handling the
case that eΠ(λ, b) ∈ {0, 1} for some b ∈ {0, 1} (see the end of this proof) and assume for now that
eΠ(λ, 0), eΠ(λ, 1) ∈ (0, 1). The real vectors η0 and η1 are defined as follows.

Definition 3.29. Let ηb =
{
ηb(C,j)

}
(C,j)∈[(A,z)]

, where for (C, j) ∈ [(A, z)] and b ∈ {0, 1}, let

ηb(C,j) =



0 e
Π̂η

(C,j)
(λ, b) = 0;

η(C,j) e
Π̂η

(C,j)
(λ, b) = 1;

η(C,j) e
Π̂η

(C,j)
(λ, b) /∈ {0, 1} ∧ (C controls root(Π) ∨ Smaller

Π̂η
(C,j)

(b));

ξ1−b
(C,j)

ξb
(C,j)

· η(C,j) otherwise;

,

where ξb(C,j) = E〈(
Π̂η

(C,j)

)
b

〉
[
MC(

Π̂η
(C,j)

)
b

]
and Smaller

Π̂η
(C,j)

(b) = 1 if ξb(C,j) ≤ ξ
1−b
(C,j).

33

Given the real vector ηb, consider the dominated submeasure sequence ηb induces on the sub-
protocol Πb. At first glance, the relation of this submeasure sequence to the dominated submeasure
sequence η induces on Π, is unclear; nonetheless, we manage to prove the following key observation.

Claim 3.30. It holds that L̂
Πb,ηb
A ≡

(
L̂Π,η
A

)
b

for both b ∈ {0, 1}.

Namely, taking (A, z,ηb)-DMS (Πb) – the dominated submeasures defined with respect to Πb and

ηb – and constructing from it the measure L̂
Πb,ηb
A , results in the same measure as taking (A, z,η)-

DMS (Π) – the dominated submeasures defined with respect to Π and η – and constructing from
it the measure L̂Π,η

A while restricting the latter to Πb.
Given the above fact, we can use our induction hypothesis on the subprotocols Π0 and Π1 with

respect to the real vectors η0 and η1, respectively. For b ∈ {0, 1} and j ∈ (z), let αbj := µ
Πb,ηb

(A,j) (:=

E〈
(Π̂b)

ηb
(A,j)

〉 [M̂Πb,ηb

(A,j)

]
), and for j ∈ (z − 1) let βbj := µ

Πb,ηb

(B,j) . Assuming that val(Π1) > 0, then

E〈(A(k),B)
1
〉
[(
L̂Π,η
A

)
1

]
= E〈

A
(k)
Π1
,BΠ1

〉 [L̂Π1,η1
A

]
≥
∑z

j=0 α
1
j

∏j−1
t=0 (1− β1

t)k+1(1− α1
t)∏k−1

i=0 val
((

A(i),B
)

1

) . (21)

where the equality holds by Proposition 3.5 and Claim 3.30, and the inequality by the induction
hypothesis. Similarly, if val(Π0) > 1, then

E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
= E〈

A
(k)
Π0
,BΠ0

〉 [L̂Π0,η0
A

]
≥
∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t)k+1(1− α0
t)∏k−1

i=0 val
((

A(i),B
)

0

) . (22)

33Note that the definition of ηb follows the same lines of the definition of the dominated measure (given in Defini-
tion 3.10).

37

In the following we use the fact that the dominated submeasure sequence of one of the subpro-
tocols is at least as long as the submeasure sequence of the protocol itself. Specifically, we show
the following.

Definition 3.31. For b ∈ {0, 1}, let zb = min
{{

j ∈ (z) : αbj = 1 ∨ βbj = 1
}
∪ {z}

}
.

Assuming without loss of generality (and throughout the proof of the lemma) that z1 ≤ z0, we
have the following claim (proven in Section 3.7.2).

Claim 3.32. Assume that z1 ≤ z0, then z0 = z.

We are now ready to prove the lemma by separately considering which party controls the root
of Π.

A controls root(Π) and val(Π0), val(Π1) > 0. Under these assumptions, we can apply the induc-
tion hypothesis on both subtrees (namely, we can use Equations (21) and (22)). Let
p = eΠ(λ, 0). Compute

E〈A(k),B〉
[
L̂Π,η
A

]
(23)

= e(A(k),B)(λ, 0) · E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
+ e(A(k),B)(λ, 1) · E〈(A(k),B)

1
〉
[(
L̂Π,η
A

)
1

]
= p ·

∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val

(
A(i),B

) · E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
+ (1− p) ·

∏k−1
i=0 val

((
A(i),B

)
1

)∏k−1
i=0 val(A(i),B)

· E〈(A(k),B)
1
〉
[(
L̂Π,η
A

)
1

]
≥ p ·

∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val

(
A(i),B

) ·
∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t)k+1(1− α0
t)∏k−1

i=0 val
((

A(i),B
)

0

)
+ (1− p) ·

∏k−1
i=0 val

((
A(i),B

)
1

)∏k−1
i=0 val(A(i),B)

·
∑z

j=0 α
1
j

∏j−1
t=0 (1− β1

t)i+1(1− α1
t)∏k−1

i=0 val
((

A(i),B
)

1

)
=
p ·
(∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t)k+1(1− α0
t)
)

∏k−1
i=0 val(A(i),B)

+
(1− p) ·

(∑z
j=0 α

1
j

∏j−1
t=0 (1− β1

t)k+1(1− α1
t)
)

∏k−1
i=0 val(A(i),B)

,

where the second equality follows Claim 3.4 and the third inequality follows Equations (21)
and (22).

Our next step is to establish a connection between the above
{
α0
j , α

1
j

}
j∈(z)

and{
β0
j , β

1
j

}
j∈(z−1)

to {αj}j∈(z) and {βj}j∈(z−1) (appearing in the lemma’s statement). We prove

the following claims.

Claim 3.33. If A controls root(Π), it holds that β0
j = βj for every j ∈ (z − 1) and β1

j = βj
for every j ∈ (z1 − 1).

It is a direct implication of Proposition 3.13 that β0
j = β1

j = βj for j ∈ (z1 − 1). Moreover,

β0
j = βj for every z1 ≤ j ≤ z − 1. The latter is harder to grasp without the technical proof

of the claim, which is provided in Section 3.7.2.

38

Claim 3.34. If A controls root(Π) and z1 < z, it holds that α1
z1 = 1.

By Claim 3.33 it follows that as long as an undefined protocol was not reached in one of
the subprotocols, then β0

j = β1
j = βj . Assuming that z1 < z and β1

z1 = 1, it would have
followed that βz1 = 1, and an undefined protocol is reached in the original protocol before z,
a contradiction to our assumption. (Again, see Section 3.7.2 for the formal proof.)

Claims 3.33 and 3.34 and Equation (23) yield that

E〈A(k),B〉
[
L̂Π,η
A

]
≥

∑z
j=0

∏j−1
t=0 (1− βt)k+1

(
p · α0

j

∏j−1
t=0 (1− α0

t) + (1− p) · α1
j ·
∏j−1
t=0 (1− α1

t)
)

∏k−1
i=0 val(A(i),B)

.

(24)

The proof of this case is concluded by plugging the next claim into Equation (24).

Claim 3.35. If A controls root(Π) it holds that

αj ·
j−1∏
t=0

(1− αt) = p · α0
j ·

j−1∏
t=0

(1− α0
t) + (1− p) · α1

j ·
j−1∏
t=1

(1− α1
t)

for any j ∈ (z).

Claim 3.35 is proven in Section 3.7.2, but informally it holds since the probability of visiting
the left-hand [resp., right-hand] subprotocol in the conditional protocol Π̂η

(A,j) (in which αj is

defined) is p ·
∏j−1
t=0 (1−α0

t)/
∏j−1
t=0 (1−αt) [resp., (1− p) ·

∏j−1
t=0 (1−α1

t)/
∏j−1
t=0 (1−αt)]. Since

αj is defined to be the expected value of some measure in the above conditional protocol, its
value is a linear combination of α0

j and α1
j , with the coefficient being the above probabilities.

A controls root(Π) and val(Π0) > val(Π1) = 0. Under these assumptions, we can still use the in-
duction hypothesis for the left-hand subprotocol Π0, where for right-hand subprotocol Π1, we
argue the following.

Claim 3.36. If val(Π1) = 0, it holds that
(
L̂Π,η
A

)
1
≡ 0.34

Claim 3.36 holds since according to Claim 3.30 we can simply argue that L̂
Π1,η1
A is the zero

measure, and this holds since the latter measure is a combination of A-dominated measures,
all of which are the zero measure in a zero-value protocol.

Using Claim 3.36, similar computations to the ones in Equation (23) yield that

E〈A(k),B〉
[
L̂Π,η
A

]
(25)

= e(A(k),B)(λ, 0) · E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
+ e(A(k),B)(λ, 1) · E〈(A(k),B)

1
〉
[(
L̂Π,η
A

)
1

]
≥ p ·

∏k−1
i=0 val

((
A(i),B

)
0

)∏k−1
i=0 val

(
A(i),B

) ·
∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t)k+1(1− α0
t)∏k−1

i=0 val
((

A(i),B
)

0

)
=
p ·
(∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t)k+1(1− α0
t)
)

∏k−1
i=0 val(A(i),B)

.

34That is,
(
L̂Π,η

A

)
1

is the zero measure.

39

Using a similar argument to that of Equation (24), combining Claim 3.33 and Equation (25)
yields that

E〈A(k),B〉
[
L̂Π,η
A

]
≥

∑z
j=0

∏j−1
t=0 (1− βt)k+1

[
p · α0

j

∏j−1
t=0 (1− α0

t)
]

∏k−1
i=0 val(A(i),B)

. (26)

The proof of this case is concluded by plugging the next claim (proven in Section 3.7.2) into
Claim 3.35, and plugging the result into Equation (26).

Claim 3.37. If val(Π1) = 0, it holds that α1
j = 0 for every j ∈ (z).

A controls root(Π) and val(Π1) > val(Π0) = 0. The proof of the lemma under these assumptions
is analogous to the previous case.

We have concluded the proof for cases in which A controls root(Π), and now proceed to prove
the cases in which B controls root(Π). Roughly speaking, A and B switched roles, and claims true
before regarding βj are now true for αj , and vice versa. Moreover, the analysis above relies on the
probabilities that the recursive biased-continuation attacker visits the subprotocols Π0 and Π1 when
it plays the role of A and controls root(Π). When B controls root(Π), however, these probabilities
do not change (namely, they remain p and 1 − p respectively). To overcome this difficulty we use
a convex type argument stated in Lemma 2.17.

B controls root(Π) and val(Π0), val(Π1) > 0. In this case Equations (21) and (22) hold.

Compute

E〈A(k),B〉
[
L̂Π,η
A

]
(27)

= p · E〈(A(k),B)
0
〉
[(
L̂Π,η
A

)
0

]
+ (1− p) · E〈(A(k),B)

1
〉
[(
L̂Π,η
A

)
1

]
≥ p ·

∑z
j=0 α

0
j

∏j−1
t=0 (1− β0

t)k+1(1− α0
t)∏k−1

i=0 val
((

A(i),B
)

0

) + (1− p) ·
∑z

j=0 α
1
j

∏j−1
t=0 (1− β1

t)k+1(1− α1
t)∏k−1

i=0 val
((

A(i),B
)

1

) ,

where the inequality follows from Equations (21) and (22). If B controls root(Π), we can
prove the next claims (proven in Section 3.7.2), analogous to Claims 3.33 and 3.34.

Claim 3.38. If B controls root(Π), it holds that α0
j = αj for every j ∈ (z) and that α1

j = αj
for every j ∈ (z1).

Claim 3.39. If B controls root(Π) and z1 < z, it holds that β1
z1 = 1.

Claim 3.38 and Equation (27) yield that

E〈A(k),B〉
[
L̂Π,η
A

]
(28)

≥
z∑
j=0

αj

j−1∏
t=0

(1− αt)

(
p ·

∏j−1
t=0 (1− β0

t)k+1∏k−1
i=0 val

((
A(i),B

)
0

) + (1− p) ·
∏j−1
t=0 (1− β1

t)k+1∏k−1
i=0 val

((
A(i),B

)
1

)) .

40

Applying the convex type inequality given in Lemma 2.17 for each summand in the right-hand
side of Equation (28) with respect to x =

∏j−1
t=0 (1−β0

t), y =
∏j−1
t=0 (1−β1

t), ai = val(A(i−1),B0),
bi = val(A(i−1),B1), p0 = p and p1 = 1− p, and plugging into Equation (28) yield that

E〈A(k),B〉
[
L̂Π,η
A

]
≥

∑z
j=0 αj

∏j−1
t=0 (1− αt)

(
p ·
∏j−1
t=0 (1− β0

t) + (1− p) ·
∏j−1
t=0 (1− β1

t)
)k+1

∏k−1
i=0

(
p · val

((
A(i),B

)
0

)
+ (1− p) · val

((
A(i),B

)
1

)) .

(29)

We conclude the proof of this case by observing that for every i ∈ (k − 1) it holds that
val
(
A(i),B

)
= p · val

((
A(i),B

)
0

)
+ (1− p) · val

((
A(i),B

)
1

)
, and using the next claim (proven

in Section 3.7.2), analogous to Claim 3.35.

Claim 3.40. If B controls root(Π), it holds that

j−1∏
t=0

(1− βt) = p ·
j−1∏
t=0

(1− β0
t) + (1− p) ·

j−1∏
t=0

(1− β1
t).

B controls root(Π) and val(Π0) > val(Π1) = 0. In this case, Claims 3.33 and 3.38 yield that αj =
0 for any j ∈ (z1). Hence, it suffices to prove that

E〈A(k),B〉
[
L̂Π,η
A

]
≥
∑z

j=z1+1 αj
∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1

i=0 val(A(i),B)
. (30)

Thus, the proof immediately follows if z1 = z, and in the following we assume that z1 < z.

As in Equation (27), compute

E〈A(k),B〉
[
L̂Π,η
A

]
= p · E〈(A(k),B)

0
〉
[(
L̂Π,η
A

)
0

]
+ (1− p) · E〈(A(k),B)

1
〉
[(
L̂Π,η
A

)
1

]
(31)

≥ p ·
∑z

j=0 α
0
j

∏j−1
t=0 (1− β0

t)k+1(1− α0
t)∏k−1

i=0 val
((

A(i),B
)

0

) ,

where the inequality follows Equation (22) and Claim 3.36. Claim 3.38 now yields

E〈A(k),B〉
[
L̂Π,η
A

]
≥

z∑
j=0

αj

j−1∏
t=0

(1− αt) ·
p ·
∏j−1
t=0 (1− β0

t)k+1∏k−1
i=0 val

((
A(i),B

)
0

) , (32)

where Claim 3.38 yields

E〈A(k),B〉
[
L̂Π,η
A

]
≥

z∑
j=z1+1

αj

j−1∏
t=0

(1− αt) ·
p ·
∏j−1
t=0 (1− β0

t)k+1∏k−1
i=0 val

((
A(i),B

)
0

) . (33)

Multiplying both the numerator and the denominator for every summand of Equation (33)
with pk yields

E〈A(k),B〉
[
L̂Π,η
A

]
≥

z∑
j=z1+1

αj

j−1∏
t=0

(1− αt) ·

(
p ·
∏j−1
t=0 (1− β0

t)
)k+1

∏k−1
i=0 p · val

((
A(i),B

)
0

) . (34)

41

Equation (30), and hence the proof of this case, is derived by observing that val(A(i),B) =
p·val

((
A(i),B

)
0

)
for every i ∈ (k−1),35 and plugging Claims 3.39 and 3.40 into Equation (34).

B controls root(Π) and val(Π1) > val(Π0) = 0. Analogously to Claim 3.37, it holds that α0
j = 0

for every j ∈ (z). Claim 3.38 yields that αj = 0 for every j ∈ (z). The proof of this case
trivially follows since ∑z

j=0 αj
∏j−1
t=0 (1− βt)k+1(1− αt)∏k−1
i=0 val(A(i),B)

= 0.

The above case analysis concludes the proof of the lemma when assuming that eΠ(λ, b) /∈ {0, 1}
for both b ∈ {0, 1}. Assume that eΠ(λ, b) = 1 for some b ∈ {0, 1}. Since, by assumption, val(Π) > 0,
it follows that val(Πb) > 0. Moreover, the definition of conditional protocols (Definition 3.17) yields
that e

Π̂η
(C,j)

(λ, b) = 1 and e
Π̂η

(C,j)
(λ, 1 − b) = 0 for any (C, j) ∈ [(A, z)] (regardless of which party

controls root(Π)). By defining ηb = η, the definition of the dominated measure (Definition 3.10)
yields that αj = αbj for every j ∈ (z) and that βj = βbj for every j ∈ (z − 1). The proof of this case
immediately follows from the induction hypothesis on Πb. �

3.7.2 Missing Proofs

This section is dedicated to proving deferred statements used in the proof of Lemma 3.28. We
assume a fixed protocol Π, fixed real vector η =

(
η(A,0), η(B,0), . . . , η(B,z−1), η(A,z)

)
and a fixed

positive integer k. We also assume that Π̂η
(A,z) 6=⊥, z1 ≤ z0 and eΠ(λ, b) ∈ (0, 1) for both b ∈ {0, 1}.

Recall that we defined two real vectors η0 and η1 (Definition 3.29), and for b ∈ {0, 1} we defined

αbj := µ
Πb,ηb

(A,j) (:= E〈
(Π̂b)

ηb
(A,j)

〉 [M̂Πb,ηb

(A,j)

]
) for j ∈ (z), and βbj := µ

Πb,ηb

(B,j) , for j ∈ (z − 1).

We begin with the following proposition, which underlies many of the claims to follow.

Proposition 3.41. For b ∈ {0, 1} and (C, j) ∈ [(A, z)], it holds that

1.
(

Π̂η
(C,j)

)
b

=
(

Π̂b

)ηb

(C,j)
; and

2.
(
M̂Π,η

(C,j)

)
b
≡ M̂Πb,ηb

(C,j) .

Namely, the restriction of Π̂η
(C,j) (the (C, j)’th conditional protocol with respect to Π and η) to

its b’th subtree is equal to the (C, j)’th conditional protocol defined with respect to Πb (b’th subtree
of Π) and ηb. Moreover, the result of multiplying the C-dominated measure of Π̂η

(C,j) by η(C,j), and

then restricting it to the subtree
(

Π̂η
(C,j)

)
b
, is equivalent to multiplying the C-dominated measure

of
(

Π̂b

)ηb

(C,j)
by ηb(C,j).

36

Proof of Proposition 3.41. The proof is by induction on the ordered pairs [(A, z)].

35Recall that if val (A,B) = 0, then val
(
A(i),B

)
= 0 for every i ∈ N.

36Note that Item 1 is not immediate. Protocol
(

Π̂η
(C,j)

)
b

is a restriction of a protocol defined on the root of Π,

whereas
(

Π̂b

)ηb

(C,j)
is a protocol defined on the root of Πb.

42

Base case. Recall that the first pair of [(A, z)] is (A, 0). Definition 3.27 yields that Π̂η
(A,0) = Π

and that
(

Π̂b

)ηb

(A,0)
= Πb, yielding that Item 1 holds for (A, 0). As for Item 2, by Definition 3.10

and the assumption that eΠ(λ, b) ∈ (0, 1) for both b ∈ {0, 1}, it holds that

(
M̂Π,η

(A,0)

)
b
≡
(
η(A,0) ·MA

Π

)
b
≡

 η(A,0) ·MA
Πb

A controls root(Π) ∨ SmallerΠ (b) ;

η(A,0) ·
ξ1−b
(A,0)

ξb
(A,0)

·MA
Πb

otherwise.

The proof that Item 2 holds for (A, 0) now follows from Definition 3.29.

Induction step. Fix (C, j) ∈ [(A, z)] and assume the claim holds for pred(C, j). Using the
induction hypothesis, we first prove Item 1 for (C, j). Next, using the fact that Item 1 holds for
(C, j), we prove Item 2.

Proving Item 1. By Definition 3.27, it holds that(
Π̂η

(C,j)

)
b

=
(

Π̂η
pred(C,j)|¬

(
M̂Π,η

pred(C,j)

))
b

=
(

Π̂η
pred(C,j)

)
b
|¬
(
M̂Π,η

pred(C,j)

)
b

=
(

Π̂b

)ηb

pred(C,j)
|¬
(
M̂

Πb,ηb

pred(C,j)

)
=
(

Π̂b

)ηb

(C,j)
,

where the third equality follows from the induction hypothesis.

Proving Item 2. Similarly to the base case, Definition 3.10 yields that

(
M̂Π,η

(C,j)

)
b
≡



0 e
Π̂η

(C,j)
(λ, b) = 0;

η(C,j) ·MC(
Π̂η

(C,j)

)
b

e
Π̂η

(C,j)
(λ, b) = 1;

η(C,j) ·MC(
Π̂η

(C,j)

)
b

e
Π̂η

(C,j)
(λ, b) /∈ {0, 1}∧(

C controls root(Π) ∨ Smaller
Π̂η

(C,j)
(b)

)
;

η(C,j) ·
ξ1−b
(C,j)

ξb
(C,j)

·MC(
Π̂η

(C,j)

)
b

otherwise,

and the proof follows by Item 1 and Definition 3.29.
�

Recall that the real numbers αbj and βbj were defined to be the expected values of the (A, j)’th
and (B, j)’th dominated measures in the sequence (A, z,ηb)-DMS (Πb), respectively (see the proof
of Lemma 3.28). Following Proposition 3.41, we could equivalently define αbj and βbj with respect
to the sequence (A, z,η)-DMS (Π).

Proposition 3.42. For both b ∈ {0, 1}, it holds that

43

1. αbj = E〈(
Π̂η

(A,j)

)
b

〉 [(M̂Π,η
(A,j)

)
b

]
for every j ∈ (z); and

2. βbj = E〈(
Π̂η

(B,j)

)
b

〉 [(M̂Π,η
(B,j)

)
b

]
for every j ∈ (z − 1).

Proof. Immediately follows Proposition 3.41. �

Proposition 3.42 allows us to use Proposition 3.13 in order to analyze the connections between
α0
j and α1

j to αj , and similarly between β0
j and β1

j to βj . Towards this goal, we analyze the
edge distribution of the conditional protocols defined in the procedure that generates the measure
sequence (A, z,η)-DMS (Π).

Proposition 3.43. The following holds for both b ∈ {0, 1}.

1. A controls root(Π) =⇒

(a) e
Π̂η

(A,j)
(λ, b) = eΠ(λ, b) ·

∏j−1
t=0(1−αbt)∏j−1
t=0 (1−αt)

for all j ∈ (z).

(b) e
Π̂η

(B,j)
(λ, b) = eΠ(λ, b) ·

∏j
t=0(1−αbt)∏j
t=0(1−αt)

for all j ∈ (z − 1).

2. B controls root(Π) =⇒

(a) e
Π̂η

(A,j)
(λ, b) = eΠ(λ, b) ·

∏j−1
t=0(1−βbt)∏j−1
t=0 (1−βt)

for all j ∈ (z).

(b) e
Π̂η

(B,j)
(λ, b) = eΠ(λ, b) ·

∏j−1
t=0(1−βbt)∏j−1
t=0 (1−βt)

for all j ∈ (z − 1).

Proof. We prove Item 1 using induction on the ordered pairs [(A, z)]. The proof of Item 2 is
analogous.

Base case. The proof follows since according to Definition 3.27, it holds that Π̂η
(A,0) = Π.

Induction step. Fix (C, j) ∈ [(A, z)] and assume the claim holds for pred(C, j). The proof splits
according to which party C is.

Case C = A. If e
Π̂η

(B,j−1)
(λ, b) = 0, Definition 3.17 yields that e

Π̂η
(A,j)

(λ, b) = 0. The proof follows

since, by the induction hypothesis, it holds that

e
Π̂η

(A,j)
(λ, b) = e

Π̂η
(B,j−1)

(λ, b) = eΠ(λ, b) ·
∏j−1
t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

.

In the complementary case, i.e., e
Π̂η

(B,j−1)
(λ, b) > 0, Proposition 3.13 and Definition 3.10 yield

that βj−1 = βbj−1. It must be the case that βj−1 = βbj−1 < 1, since otherwise, according to

44

Definition 3.27, it holds that Π̂η
(A,j) =⊥, a contradiction to the assumption that Π̂η

(A,z) 6=⊥.
The proof follows since in this case Definition 3.17 and Proposition 3.42 yield that

e
Π̂η

(A,j)
(λ, b) = e

Π̂η
(B,j−1)

(λ, b) ·
1− βbj−1

1− βj−1

= e
Π̂η

(B,j−1)
(λ, b)

= eΠ(λ, b) ·
∏j−1
t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

,

where the last equality follows the induction hypothesis.

Case C = B. It must be that case that αj < 1, since otherwise, similarly to the previous case and

according to Definition 3.27, it holds that Π̂η
(B,j) =⊥, a contradiction to the assumption that

Π̂η
(A,z) 6=⊥. The proof follows since in this case Definition 3.17 and Proposition 3.42 yield that

e
Π̂η

(B,j)
(λ, b) = e

Π̂η
(A,j)

(λ, b) ·
1− αbj
1− αj

= eΠ(λ, b) ·
∏j−1
t=0

(
1− αbt

)∏j−1
t=0 (1− αt)

·
1− αbj
1− αj

= eΠ(λ, b) ·
∏j
t=0

(
1− αbt

)∏j
t=0 (1− αt)

,

where the second equality follows the induction hypothesis.
�

Using the above propositions, we now turn our focus to proving the claims in the proof of
Lemma 3.28. To facilitate reading and tracking the proof, we cluster claims together according to
their role in the proof of Lemma 3.28.

3.7.2.1 Proving Claims 3.30 and 3.32

Proof of Claim 3.30. For b ∈ {0, 1} it holds that

L̂
Πb,ηb
A ≡

z∑
j=0

M̂
Πb,ηb

(A,j) ·
j−1∏
t=0

(
1− M̂Πb,ηb

(A,t)

)

≡
z∑
j=0

(
M̂Π,η

(A,j)

)
b
·
j−1∏
t=0

(
1−

(
M̂Π,η

(A,t)

)
b

)
≡
(
L̂Π,η
A

)
b
,

where the second equality follows Proposition 3.41. �

Proof of Claim 3.32. Assume towards a contradiction that z0 < z. By the definition of z0

(Definition 3.31) and the definition of conditional protocols (Definition 3.17), it follows that

45

(
Π̂0

)η0

(A,z0+1)
=⊥. Since (by assumption) z1 ≤ z0 , it also holds that

(
Π̂1

)η1

(A,z0+1)
=⊥. Hence,

Proposition 3.41 yields that
(

Π̂η
(A,z0+1)

)
0
,
(

Π̂η
(A,z0+1)

)
1

=⊥. Namely, the function describing

Π̂η
(A,z0+1)

does not correspond to any two-party execution when restricting it to the subtrees T (Π0)

and T (Π1). Hence, the aforementioned function does not correspond to a two-party execution (over
T (Π)), in contradiction to the assumption that Π̂η

(A,z) 6=⊥. �

3.7.2.2 Proving Claims 3.33 to 3.35

The following proofs rely on the next observation. As long as αbj < 1 and βbj < 1, Proposition 3.43
ensures that there is a positive probability to visit both the left and the right subtree of the (C, j)’th
conditional protocol.

Proof of Claim 3.34. Assume that A controls root(Π) and that z1 < z. Assume towards a contra-
diction that α1

z1 < 1. Since z1 ≤ z0 (by assumption), it follows that α0
z1 < 1 as well. The definition

of z1 (Definition 3.31) yields that β1
z1 = 1. However, Proposition 3.43 yields that e

Π̂η
(B,j)

(λ, b) ∈ (0, 1)

for both b ∈ {0, 1}, and thus Propositions 3.13 and 3.42 yield that βz1 = 1. Now, Definition 3.27
yields that Π̂η

(A,z1+1)
=⊥, a contradiction to the assumption that Π̂η

(A,z) 6=⊥. �

Proof of Claim 3.33. For j ∈ (z1 − 1), it holds that e
Π̂η

(B,j)
(λ, b) ∈ (0, 1) for both b ∈ {0, 1}. Thus,

β0
j = β1

j = βj is a direct implication of Propositions 3.13 and 3.41.

For z1 ≤ z − 1, Claim 3.34 and Proposition 3.43 yield that e
Π̂η

(B,j)
(λ, 0) = 1. Since, by Defini-

tion 3.29, it holds that η(B,j) = η0
(B,j), Definition 3.10 and Proposition 3.41 yield that β0

j = βj . �

Proof of Claim 3.35. The proof immediately follows from Propositions 3.42 and 3.43. �

3.7.2.3 Proving Claims 3.36 and 3.37

Proof of Claim 3.36. By Definition 3.10 it holds that M̂
Π1,η1

(A,j) ≡ 0 for every j ∈ (z). Definition 3.27

yields that L̂
Π1,η1
A ≡ 0. The proof follows from Claim 3.30. �

Proof of Claim 3.37. Follows similar arguments to the above proof of Claim 3.36, together with
Proposition 3.42. �

3.7.2.4 Proving Claims 3.38 to 3.40

The proofs of the rest of the claims stated in the proof of Lemma 3.28 are analogous to the claims
proven above. Specifically, Claim 3.38 is analogous to Claim 3.33, Claim 3.39 is analogous to
Claim 3.34, and Claim 3.40 is analogous to Claim 3.35.

3.8 Proving Lemma 3.26

Lemma 3.26 immediately follows by the next lemma.

46

Lemma 3.44. For every protocol Π, there exists (C, j) ∈ {A,B} × N such that

E〈Π(C,j)〉
[
MC

Π(C,j)

]
= 1.

The proof of Lemma 3.44 is given below, but first we use it to derive Lemma 3.26.

Proof of Lemma 3.26. Let z be the minimal integer such that
∑z

j=0 αj ≥ c or
∑z

j=0 βj ≥ c. Note
that such z is guaranteed to exist by Lemma 3.44 and since by Lemma 3.11 it holds that αj =

E〈Π(A,j)〉
[
MA

Π(A,j)

]
and βj = E〈Π(B,j)〉

[
MB

Π(B,j)

]
. The proof splits to the following cases.

Case
∑z

j=0 αj ≥ c. By the choice of z it holds that
∑z−1

j=0 αj < c and
∑z−1

j=0 βj < c. Lemma 3.23
yields that

E〈Π〉

[
LA,z

Π

]
=

z∑
j=0

αj

j−1∏
t=0

(1− βt)(1− αt)

≥

 z∑
j=0

αj

 ·
1−

z−1∑
j=0

βj

 ·
1−

z−1∑
j=0

αj


≥ c · (1− 2c),

where the first inequality follows by multiplying the j’th summand by
∏z−1
t=j (1−βt)(1−αt) ≤ 1

and both inequalities follow since (1 − x)(1 − y) ≥ 1 − (x + y) for any x, y ≥ 0. Hence, z
satisfies Item 1.

Case
∑z

j=0 αj < c. By the choice of z it holds that
∑z

j=0 βj ≥ c and
∑z−1

j=0 βj < c. Similar
arguments to the previous case show that z satisfies Item 2.

�

Towards proving Lemma 3.44 we prove that there is always a leaf for which the value of the
dominated measure is 1.

Claim 3.45. Let Π be a protocol with OPTA (Π) = 1. Then there exists ` ∈ L1(Π) such that
MA

Π(`) = 1.

Proof. The proof is by induction on the round complexity of Π.
Assume that round(Π) = 0 and let ` be the only node in T (Π). Since OPTA (Π) > 0, it must

be the case that χΠ(`) = 1. The proof follows since Definition 3.10 yields that MA
Π(`) = 1.

Assume that round(Π) = m+1 and that the lemma holds for m-round protocols. If eΠ(λ, b) = 1
for some b ∈ {0, 1}, then by Proposition 3.8 it holds that OPTA (Πb) = OPTA (Π) = 1. This allows
us to apply the induction hypothesis on Πb, which yields that there exists ` ∈ L1(Πb) such that
MA

Πb
(`) = 1. In this case, according to Definition 3.10, MA

Π(`) = MA
Πb

(`) = 1, and the proof follows.
In the following we assume that eΠ(λ, b) ∈ (0, 1) for any b ∈ {0, 1}. We conclude the proof using

the following case analysis.

A controls root(Π). According to Proposition 3.8, there exists b ∈ {0, 1} such that OPTA (Πb) =
OPTA (Π) = 1. This allows us to apply the induction hypothesis on Πb, which yields that there
exists ` ∈ L1(Πb) such that MA

Πb
(`) = 1. The A-maximal property of MA

Π (Proposition 3.13(1))

yields that MA
Π(`) = MA

Πb
(`) = 1, and the proof for this case follows.

47

B controls root(Π). According to Proposition 3.8, OPTA (Πb) = OPTA (Π) = 1 for both b ∈ {0, 1}.
This allows us to apply the induction hypothesis on Π0 and Π1, which yields that there
exists `0 ∈ L1(Π0) and `1 ∈ L1(Π1) such that MA

Π0
(`0) = 1 and MA

Π1
(`1) = 1. The B-

minimal property of MA
Π (Proposition 3.13(2)) yields that there exists b ∈ {0, 1} such that

MA
Π(`b) = MA

Πb
(`b) = 1 (the bit b for which SmallerΠ (b) = 1), and the proof for this case

follows.

This concludes the case analysis and the proof follows. �

We can now derive Lemma 3.44. Claim 3.45 and Proposition 3.13 yield that the number of
possible transcripts of Π(C,j) shrinks as (C, j) grows. Specifically, at least one possible transcript

of Π(A,j) whose common outcome is 1 (the transcript represented by the leaf is guaranteed to exist

from Claim 3.45) is not a possible transcript of Π(B,j). Similarly, at least one possible transcript
of Π(B,j−1) whose common outcome is 0 is not a possible transcript of Π(A,j). Since the number of

possible transcripts of Π is finite (though might be exponentially large), there exists j ∈ N such
that either the common outcome of all possible transcripts Π(A,j) is 1 or the common outcome of
all possible transcripts of Π(B,j) is 0. The expected value of the A-dominated measure of Π(A,j) or
the B-dominated measure of Π(B,j) will be 1. The formal proof is given next.

Proof of Lemma 3.44. Assume towards a contradiction that E〈Π(C,j)〉
[
MC

Π(C,j)

]
< 1 for every

(C, j) ∈ {A,B} × N. It follows that Π(C,j) 6=⊥ for every such (C, j). For a pair (C, j) ∈ {A,B} × N,

recursively define L(C,j) := Lpred(C,j) ∪ S(C,j), where S(C,j) :=
{
` ∈ L(Π): MC

Π(C,j)
(`) = 1

}
and

L(B,−1) := ∅. The following claim (proven below) shows two properties of S(C,j).

Claim 3.46. It holds that S(C,j) 6= ∅ and Lpred(C,j) ∩ S(C,j) = ∅ for every (C, j) � (B, 0).

Claim 3.46 yields that
∣∣L(C,j)

∣∣ > ∣∣Lpred(C,j)

∣∣ for every (C, j) � (B, 0), a contradiction to the fact
that L(C,j) ⊆ L(Π) for every (C, j). �

Proof of Claim 3.46. Let (C, j) � (B, 0). By Lemma 3.20 it holds that OPTC

(
Π(C,j)

)
= 1.37

Hence, Claim 3.45 yields that S(C,j) 6= ∅.
Towards proving the second property, let `′ ∈ Lpred(C,j), and let (C′, j′) ∈ [pred(C, j)] such that

`′ ∈ S(C′,j′). By the definition of S(C′,j′), it holds that MC′
Π(C′,j′)

(`′) = 1. By Proposition 3.18 it

holds that `′ /∈ Supp
(〈

Π(C′′,j′′)

〉)
for every (C′′, j′′) � (C′, j′). Since (C, j) � pred(C, j) � (C′, j′),

it holds that `′ /∈ Supp
(〈

Π(C,j)

〉)
. By Definition 3.10 it holds that MC

Π(C,j)
(`) = 0 for every

` /∈ Supp
(〈

Π(C,j)

〉)
, and thus `′ /∈ S(C,j). Hence, Lpred(C,j) ∩ S(C,j) = ∅. �

4 Efficiently Biasing Coin-Flipping Protocols

In Section 3 we showed that for any coin-flipping protocol and any ε ∈ (0, 1
2], applying κ = κ(ε)

recursions of the biased-continuation attack biases the honest party’s outcome by (at least) 1/2−ε.
37Note that this might not hold for Π(A,0) = Π. Namely, it might be the case that OPTB (Π) = 1. In this case MA

Π

is the zero measure, Π(B,0) = Π and S(A,0) = ∅.

48

Implementing this attack, however, requires access to a sampling algorithm (i.e., BiasedCont; see
Definition 3.1), which we do not know how to efficiently implement even when assuming OWFs
do not exist. In this section we show that the nonexistence of OWFs does suffice to implement an
approximation of BiasedCont, which in turn can be used to implement a strong enough variant of
the aforementioned attack.

The outline of this section is as follows. We begin, in Section 4.1, by defining an approximation of
the BiasedCont sampling algorithm that can be efficiently implemented assuming the nonexistence of
OWFs. We then use this approximation to define the recursive approximated biased-continuation
attacker, the approximated variant of the recursive biased-continuation attacker defined in Sec-
tion 3. We then relate the success probability of this attacker to the probability that it visits
low-value nodes (the expected protocol’s outcome conditioned on visiting the nodes [transcripts] is
close to zero), and to the probability that it visits unbalanced nodes (the attack drastically increases
the probability of visiting these nodes). Finally, we relate these two probabilities to one another
by showing that it is unlikely that a protocol will visit an unbalanced node without first visiting
a low-value node. We conclude that the recursive approximated biased-continuation attacker suc-
cessfully biases protocols that have no low-value nodes. In Section 4.2 we define a special class of
protocols, called pruned protocols, that have (almost) no low-value nodes. We use the observations
made in Section 4.1 to prove that the recursive approximated biased-continuation attacker performs
well on such pruned protocols. In Section 4.3 we define the pruning-in-the-head attacker, which
behaves as if the protocol it is attacking is pruned, and by doing so manages to make use of the
recursive approximated biased-continuation attacker to attack any protocol. Finally, in Section 4.4
we show that the assumption that OWFs do not exist indeed implies that the above attacker can
be implemented efficiently, and thus that the outcome on any coin-flipping protocol can be biased
to be arbitrarily close to 0 or 1.

4.1 The Approximated Biased-Continuation Attacker

We require the approximated biased-continuator sampler to work well only when applied on nodes
whose value is not too close to the borders. (This value is the probability that the protocol outcome
is 1 given that the current transcript is the node’s label.) In the following let BiasedContΠ be as in
Definition 3.1.

Definition 4.1 (BiasedContξ,δΠ). Algorithm BC is a (ξ, δ)-biased-continuator for an m-round protocol
Π if the following hold.

1. Pr`←〈Π〉
[
∃i ∈ (m− 1) : SD (BC(`1,...,i, 1),BiasedContΠ(`1,...,i, 1)) > ξ ∧ val(Π`1,...,i) > δ

]
≤ ξ, and

2. Pr`←〈Π〉
[
∃i ∈ (m− 1) :SD (BC(`1,...,i, 0),BiasedContΠ(`1,...,i, 0)) > ξ ∧ val(Π`1,...,i)< 1− δ

]
≤ξ.

Let BiasedContξ,δΠ be an arbitrary (but fixed) (ξ, δ)-biased-continuator of Π.

The recursive approximated biased-continuation attacker is identical to that defined in Section 3,
except that it uses the approximated biased-continuator sampler and not the ideal one.

Let A
(0,ξ,δ)
Π ≡ A, and for integer i > 0 define:

Algorithm 4.2 (A
(i,ξ,δ)
Π).

Input: transcript u ∈ {0, 1}∗.

49

Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

2. Set msg = BiasedContξ,δ(
A

(i−1,ξ,δ)
Π ,B

)(u, 1).

3. Send msg to B.

4. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).
. .

Adversary B
(i,ξ,δ)
Π attacking towards zero is analogously defined. In the following we sometimes

refer to the base (non-recursive) version of the above algorithm, i.e., A
(1,ξ,δ)
Π , as the approximated

biased-continuation attacker. As in Section 3, when clear from the context, we remove the protocol
name (i.e., Π) from the subscript of the above attacker.38

Our first goal is to bound the difference between the (non-recursive) biased-continuation attacker
and its approximated variant defined above. Clearly, if the statistical distance of the answers
of BiasedCont and BiasedContξ,δ is small, then so will be the difference between the attackers.
Definition 4.1, however, does not always guarantee such small statistical distance. Specifically,
there is no such guarantee for low-value and high-value transcripts.

Definition 4.3 (low-value and high-value nodes). For a protocol Π = (A,B) and δ ∈ [0, 1], let

• SmallδΠ = {u ∈ V(Π) \ L(Π) : val(Πu) ≤ δ}, and

• LargeδΠ = {u ∈ V(Π) \ L(Π) : val(Πu) ≥ 1− δ}.

For C ∈ {A,B}, let Smallδ,CΠ = SmallδΠ ∩ CtrlCΠ and similarly let Largeδ,CΠ = LargeδΠ ∩ CtrlCΠ.39

For non-low-value and non-high-value transcripts, Definition 4.1 guarantees small statistical
distance between the answers of BiasedCont and BiasedContξ,δ, when queried on transcripts chosen
according to the honest distribution of leaves (i.e., 〈Π〉). The queries the biased-continuation
attacker makes, however, might be chosen from a different distribution, making some transcripts
much more likely to be queried than before. We call such transcripts “unbalanced”.

Definition 4.4 (unbalanced nodes). For a protocol Π = (A,B) and γ ≥ 1, let UnBalγΠ ={
u ∈ V(Π) \ L(Π): v(

A
(1)
Π ,B

)(u) ≥ γ · v(A,B)(u)

}
, where A

(1)
Π is as in Algorithm 3.2 and v as in Def-

inition 2.2.

Namely, UnBalγΠ are those nodes that a random execution of (A(1),B) visits with probability at
least γ times the probability that a random execution of Π does.

Consider an execution of (A(1,ξ,δ),B). Such an execution asks BiasedContξ,δ for continuations of
transcripts under A’s control, leading to 1-leaves. Hence, as long as this execution generates neither
low-value transcripts under A’s control nor unbalanced transcripts, we expect the approximated
biased-continuation attacker to do almost as well as its ideal variant. This is formally put in the
following lemma.

38As a rule of thumb, in statements and definitions we explicitly write the protocols to which the algorithms refer,
whereas in proofs and informal discussions we usually omit them.

39Recall that CtrlCΠ denotes the nodes in T (Π) controlled by party C (see Definition 2.2).

50

Lemma 4.5. Let Π = (A,B) be an m-round protocol and let δ ∈ (0, 1
2]. Then

SD
(〈

A
(1)
Π ,B

〉
,
〈

A
(1,ξ,δ)
Π ,B

〉)
≤ m · γ ·

(
2ξ + Pr〈A,B〉

[
desc(Smallδ,AΠ)

])
+ Pr〈

A
(1)
Π ,B

〉 [desc
(
UnBalγΠ

)]
40

for every γ ≥ 1 and ξ > 0.

Proof. We use Lemma 2.14. For function O, let HO be an algorithm that outputs the transcript

of a random execution of
(

A
(1)
Π ,B

)
in which A

(1)
Π ’s calls to BiasedContΠ are sent to O instead. Let

f and g be the (random) functions BiasedContΠ and BiasedContξ,δΠ respectively, with the exception
that f(⊥) = g(⊥) =⊥. By construction, it holds that

SD
(〈

A
(1)
Π ,B

〉
,
〈

A
(1,ξ,δ)
Π ,B

〉)
= SD

(
Hf ,Hg

)
. (35)

For i ∈ [m], let D′i be the distribution of the i’th node under A’s control in a random execution of
Π, taking the value ⊥ if no such node exists, and let Di = (D′i, 1), with (⊥, 1) =⊥. By definition,

Ed←Di [SD(f(d), g(d))] = Ed←Di

[
SD(BiasedContΠ(d),BiasedContξ,δΠ (d)) · 1¬⊥(d)

]
(36)

≤ 2ξ + Pr〈Π〉

[
desc(Smallδ,AΠ)

]
,

letting the indicator 1¬⊥(d) take the value one if d 6=⊥, and zero otherwise.
Let Qi denote the i’th query to f in a random execution of Hf , taking the value ⊥ if no such

query exists, and let Q = (Q1, . . . , Qm). By definition,

Pr(q1,...,qm)←Q [∃i ∈ [m] : qi 6=⊥ ∧ Qi(qi) > γ ·Di(qi)] = Pr〈
A

(1)
Π ,B

〉 [desc
(
UnBalγΠ

)]
. (37)

Hence, the proof follows by Lemma 2.14, letting k := m, a := 2ξ + Pr〈Π〉

[
desc(Smallδ,AΠ)

]
, λ := γ

and b := Pr〈
A

(1)
Π ,B

〉 [desc
(
UnBalγΠ

)]
. �

In the rest of this subsection we show that it is unlikely that a protocol will visit an unbalanced
node without first visiting a low-value node controlled by the attacking party. This fact is used in
Sections 4.2 and 4.3 for designing an effective attack using the approximated biased-continuation
attacker.

4.1.1 Bounding the Probability of Visiting Unbalanced Nodes

Given a protocol Π = (A,B), we would like to understand what makes a node unbalanced. Let
u be a γ-unbalanced node, i.e., v(A(1),B)(u) ≥ γ · v(A,B)(u). By the edge distribution of

(
A(1),B

)
(Claim 3.4), it follows that

v(A(1),B)(u)

v(A,B)(u)
=

∏
0≤i≤|u|−1:

u1,...,i∈CtrlAΠ

val(Πu1,...,i+1)

val(Πu1,...,i)
≥ γ. (38)

40Recall that for S ⊆ V(Π), desc (S) stands for the set of nodes which have an ancestor in S (see Definition 2.1).

51

Hence, if γ is large, one of the terms of the product in Equation (38) must be large. Since the
value of any sub-protocol is at most one, the numerator of each term cannot be large. It then must
be the case that the denominator of at least one of those terms is close to zero, i.e., that u has a
low-value ancestor controlled by A.41

The following key lemma formulates the above intuition, and shows that the biased-continuation
attacker does not bias the original distribution of the protocol by too much, unless it has previously
visited a low-value node controlled by A.

Lemma 4.6. Let Π = (A,B) be a protocol and let A
(1)
Π be as in Algorithm 3.2. Then for every

δ ∈ (0, 1
2] there exists a constant c = c(δ) > 0, such that for every δ′ ≥ δ and γ > 1:

Pr〈
A

(1)
Π ,B

〉 [desc
(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))]
≤ 2

γc
.42

Namely, the probability of reaching a γ-unbalanced node which does not have a δ′-low an-
cestor, for δ′ ≥ δ, is some inverse polynomial in γ. Looking ahead, we will apply this lemma
for some γ ∈ poly(n), where n is the security parameter given to the parties. At a high level,
BiasedContξ,δ gives a good (enough) approximation for BiasedCont when called on nodes that are
at most poly(n)-unbalanced. This lemma is useful since it gives a 1/ poly(n) bound for the prob-
ability that BiasedContξ,δ is called on nodes that are more than poly(n)-unbalanced. Another
important point is that the inverse polynomial (i.e., c) depends only on δ (and is independent
of γ and δ′). This becomes crucial when analyzing the success probability of the approximated
biased-continuation attacker.

Proof. The lemma is proven via the following three steps:

(1) Prove that for any such δ there exists c > 0, such that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
≤ 2− val(Π)

γc
(39)

for every γ > 1. Note that Equation (39) only considers descendants of Smallδ,AΠ , and not
proper descendants.

(2) Prove that for γ > 1 it holds that

desc
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
⊆ desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
. (40)

(3) Prove that for δ′ > δ it holds that

UnBalγΠ \ desc
(
Smallδ

′,A
Π

)
⊆ UnBalγΠ \ desc

(
Smallδ,AΠ

)
. (41)

41This discussion is not entirely accurate, but it gives a good intuition for why unbalanced nodes relate to low-
value ones. Indeed, the actual statement (Lemma 4.6) shows this discussion to hold only with high probability, which
suffices for our needs.

42Recall that for S ⊆ V(Π), desc (S) stands for the set of nodes which have an ancestor in S, but are not in S itself
(see Definition 2.1).

52

It is clear that combining the above steps yields (a stronger version of) the lemma.

Proof of (1): Fix δ ∈ (0, 1
2] and let c := α(δ) be the value guaranteed in Lemma 2.18. The

proof is by induction on the round complexity of Π.
Assume round(Π) = 0 and let ` be the single leaf of Π. By Definition 4.4, ` /∈ UnBalγΠ and thus

UnBalγΠ = ∅. Hence, for every δ > 0,

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc(Smallδ,AΠ)

)]
= Pr〈A(1),B〉 [∅] = 0 ≤ 2− val(Π)

γc
.

Assume that Equation (39) holds for m-round protocols and that round(Π) = m+ 1.
Assuming e(A,B)(λ, b) = 1 for some b ∈ {0, 1} (recall that λ denotes the empty string), then

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc(Smallδ,AΠ)

)]
= Pr〈(A(1),B)

b
〉
[
desc

(
UnBalγΠb \ desc(Smallδ,AΠb

)
)]

= Pr〈
A

(1)
Πb
,BΠb

〉 [desc
(
UnBalγΠb \ desc(Smallδ,AΠb

)
)]
,

where the second equality follows Proposition 3.5. The proof now follows from the induction
hypothesis.

To complete the proof, we assume that e(A,B)(λ, b) /∈ {0, 1} for both b ∈ {0, 1}, and let p =
e(A,B)(λ, 0). The proof splits according to who controls the root of Π.

B controls root(Π). We first prove that

UnBalγΠ \ desc
(
Smallδ,AΠ

)
=
(
UnBalγΠ0

\ desc
(
Smallδ,AΠ0

))
∪
(
UnBalγΠ1

\ desc
(
Smallδ,AΠ1

))
.

(42)

Let u ∈ V(Π). First, note that since B controls root(Π), it holds that e(A(1),B)(λ, b) =

e(A,B)(λ, b), and thus, if u 6= root(Π), it holds that u ∈ UnBalγΠ if and only if u ∈ UnBalγΠb .

Assume that u ∈ UnBalγΠ \ desc
(
Smallδ,AΠ

)
. Since γ > 1, it holds that u 6= root(Π),

and thus u ∈ UnBalγΠb . Moreover, it follows that u1, . . . , u1,...,|u| /∈ Smallδ,AΠb
, and thus

u ∈ UnBalγΠb \desc
(
Smallδ,AΠb

)
. For the other direction, assume u ∈ UnBalγΠb \desc

(
Smallδ,AΠb

)
.

As argued before, it holds that u ∈ UnBalγΠ. Moreover, it follows that u1, . . . , u1,...,|u| /∈
Smallδ,AΠb

, and since B controls root(Π), it also holds that root(Π) /∈ Smallδ,AΠb
. Hence,

u ∈ UnBalγΠ \ desc
(
Smallδ,AΠ

)
. This complete the proof of Equation (42).

53

We can now write

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉

[
desc

(
UnBalγΠ0

\ desc(Smallδ,AΠ0
)
)]

+ e(A(1),B)(λ, 1) · Pr〈(A(1),B)1〉
[
desc

(
UnBalγΠ1

\ desc(Smallδ,AΠ1
)
)]

= p · Pr〈
A

(1)
Π0
,BΠ0

〉 [desc
(
UnBalγΠ0

\ desc(Smallδ,AΠ0
)
)]

+ (1− p) · Pr〈
A

(1)
Π1
,BΠ1

〉 [desc
(
UnBalγΠ1

\ desc(Smallδ,AΠ1
)
)]

≤ p · 2− val(Π0)

γc
+ (1− p) · 2− val(Π1)

γc

=
2− val(Π)

γc
.

The first equality follows from Equation (42), the second equality follows from Proposition 3.5,
and the inequality follows from the induction hypothesis.

A controls root(Π). If val(Π) ≤ δ, then root(Π) ∈ Smallδ,AΠ . Therefore, UnBalγΠ\desc
(
Smallδ,AΠ

)
=

∅ and the proof follows from a similar argument as in the base case.

In the complementary case, i.e., val(Π) > δ, assume without loss of generality that val(Π0) ≥
val(Π) ≥ val(Π1). We start with the case that val(Π1) > 0 and the case that val(Π1) = 0 is

handled later. For b ∈ {0, 1}, let γb := val(Π)
val(Πb)

·γ. By Claim 3.4, for u ∈ V(Π) with u 6= root(Π)
and b = u1, it holds that

v(A(1),B)(u)

v(A,B)(u)
=

e(A,B)(λ, b)

e(A(1),B)(λ, b)
·

v(A(1),B)b
(u)

v(A,B)b(u)
=

val(Πb)

val(Π)
·

v(A(1),B)b
(u)

v(A,B)b(u)
.

Thus, u ∈ UnBalγΠ if and only if u ∈ UnBalγbΠb
. Hence, using also the fact that root(Π) /∈

Smallδ,AΠ (since we assumed val(Π) > δ), arguments similar to those used to prove Equa-
tion (42) yield that

(43)

UnBalγΠ \ desc
(
Smallδ,AΠ

)
=
(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))
∪
(
UnBalγ1

Π1
\ desc

(
Smallδ,AΠ1

))
.

Moreover, we can write

(44)

Pr〈(A(1),B)b〉
[
desc

(
UnBalγbΠb

\ desc(Smallδ,AΠb
)
)]

= Pr〈
A

(1)
Πb
,BΠb

〉 [desc
(
UnBalγΠ1

\ desc(Smallδ,AΠ1
)
)]

≤ 2− val(Πb)

γcb

=

(
val(Πb)

val(Π)

)c
· 2− val(Πb)

γc
.

54

The first equality follows from Proposition 3.5, and the inequality follows from the induction
hypothesis if γb > 1, and the fact that 2−val(Πb)

γcb
≥ 1 otherwise. We have that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
(45)

= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉
[
desc

(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))]
+ e(A(1),B)(λ, 1) · Pr〈(A(1),B)1〉

[
desc

(
UnBalγ1

Π1
\ desc

(
Smallδ,AΠ1

))]
≤ p ·

(
val(Π0)

val(Π)

)1+c

· 2− val(Π0)

γc
+ (1− p) ·

(
val(Π1)

val(Π)

)1+c

· 2− val(Π1)

γc
,

where the equality follows from Equation (43), and the inequality follows from Equation (44)

together with Claim 3.4. Letting y = val(Π0)
val(Π) − 1 , x = val(Π) and λ = p

1−p , and noting that

λy =
(
val(Π0)
val(Π) − 1

)
· p

1−p = p·val(Π0)−p·val(Π)
val(Π)−p·val(Π) ≤

p·val(Π0)
val(Π) ≤ 1, we can use Lemma 2.18 to deduce

(after multiplying by 1−p
γc) that

p ·
(

val(Π0)

val(Π)

)1+c

· 2− val(Π0)

γc
+ (1− p) ·

(
val(Π1)

val(Π)

)1+c

· 2− val(Π1)

γc
≤ 2− val(Π)

γc
, (46)

completing the proof for the case val(Π1) > 0.

It is left to argue the case that val(Π1) = 0. In this case, according to Claim 3.4, it holds that
e(A(1),B)(λ, 0) = 1 and e(A(1),B)(λ, 1) = 0. Hence, there are no unbalanced nodes in Π1, i.e.,

UnBalγΠ\desc
(
Smallδ,AΠ

)
∩V(Π1) = ∅. As before, let γ0 := val(Π)

val(Π0) ·γ = p·γ (The latter equality

holds since val(Π) = p · val(Π0).) Arguments similar to those used to prove Equation (43)
yield that

UnBalγΠ \ desc
(
Smallδ,AΠ

)
= UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

)
. (47)

It follows that

Pr〈A(1),B〉
[
desc

(
UnBalγΠ \ desc

(
Smallδ,AΠ

))]
= e(A(1),B)(λ, 0) · Pr〈(A(1),B)0〉

[
desc

(
UnBalγ0

Π0
\ desc

(
Smallδ,AΠ0

))]
≤
(

1

p

)1+c

· 2− val(Π0)

γc
.

Applying Lemma 2.18 with the same parameters as above completes the proof.

Proof of (2): Fix γ > 1. We prove that

frnt
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
⊆ UnBalγΠ \ desc

(
Smallδ,AΠ

)
, 43 (48)

which clearly derives (2).

43Recall that for a set S ⊂ V(Π), frnt (S) stands for the frontier of S, i.e., the set of nodes belong to S, whose
ancestors do not belong to S (see Definition 2.1).

55

Let u ∈ frnt
(
UnBalγΠ \ desc

(
Smallδ,AΠ

))
. We prove Equation (48) by showing that u /∈ Smallδ,AΠ .

Since γ > 1 and u ∈ UnBalγΠ, it is clear that u 6= root(Π). Let w be the parent of u. By the choice
of u, it follows that w /∈ UnBalγΠ, and thus v(A(1),B)(w) < γ · v(A,B)(w). We write

γ · v(A,B)(w) · e(A(1),B)(w, u) > v(A(1),B)(w) · e(A(1),B)(w, u) (49)

= v(A(1),B)(u)

≥ γ · v(A,B)(u)

= γ · v(A,B)(w) · e(A,B)(w, u).

We conclude that e(A,B)(w, u) < e(A(1),B)(w, u), and thus it must be the case that w is controlled by

A. By Claim 3.4, it holds that e(A(1),B)(w, u) = e(A,B)(w, u) · val(Πu)
val(Πw) , and thus val(Πu) > val(Πw).

Finally, observe that w /∈ Smallδ,AΠ , since otherwise u ∈ desc
(
Smallδ,AΠ

)
. It follows that val(Πw) > δ,

and hence val(Πu) > δ, as required.

Proof of (3): Note that for every δ′ ≥ δ it holds that Smallδ,AΠ ⊆ Smallδ
′,A

Π . Hence, UnBalγΠ \
desc(Smallδ

′,A
Π) ⊆ UnBalγΠ \ desc(Smallδ,AΠ), and the proof follows. �

Lemma 4.6 allows us to bound the probability that the (ideal) biased-continuation attacker
hits unbalanced nodes with the probability that the original protocol hits A-controlled low-value
nodes. Indeed, consider the first time (A(1),B) reaches a γ-unbalanced node u. If this process
generates an A-controlled low-value ancestor for u, then this ancestor cannot be γ-unbalanced, and
thus the probability of hitting it (and in turn hitting u) is bounded by γ times the probability of
the original protocol hitting A-controlled low-value nodes. In the complementary case, in which
no A-controlled low-value node was generated before hitting u, then the probability of hitting u is
bounded by Lemma 4.6. The above discussion is stated formally next.

Corollary 4.7. Let Π = (A,B) be a protocol, let δ ∈ (0, 1
2], and let c = c(δ) be according Lemma 4.6.

Then

Pr〈
A

(1)
Π ,B

〉 [desc
(
UnBalγΠ

)]
≤ γ · Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc
,

for any δ′ ≥ δ and γ > 1.

Proof. Our first step is to show that

desc
(
UnBalγΠ

)
⊆ desc

(
Smallδ

′,A
Π \ UnBalγΠ

)
∪ desc

(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
. (50)

Indeed, let ` ∈ desc
(
UnBalγΠ

)
, and let u ∈ frnt

(
UnBalγΠ

)
such that ` ∈ desc (u). Assume that

u has an A-controlled δ′-value ancestor w, i.e., that there exists w ∈ Smallδ
′,A

Π such that u ∈
desc (w). Then by the choice of u, w must be γ-balanced, i.e., w /∈ UnBalγΠ. It follows that

` ∈ desc
(
Smallδ

′,A
Π \ UnBalγΠ

)
. In the complementary case, i.e., that u /∈ desc

(
Smallδ

′,A
Π

)
, it holds

that ` ∈ desc
(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))
. This yields Equation (50).

56

We can now compute

Pr〈A(1),B〉
[
desc

(
UnBalγΠ

)]
≤ Pr〈A(1),B〉

[
desc

(
Smallδ

′,A
Π \ UnBalγΠ

)]
+ Pr〈A(1),B〉

[
desc

(
UnBalγΠ \ desc

(
Smallδ

′,A
Π

))]
≤ γ · Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc
,

where the second inequality follows from the definition of UnBalγΠ and Lemma 4.6. �

Finally, using Corollary 4.7, we can derive the main conclusion of Section 4.1 — the approxi-
mated biased-continuation attacker successfully biases protocols in which the probability of hitting
A-controlled low-value nodes is small.

Corollary 4.8. Let Π = (A,B) be an m-round protocol, let δ ∈ (0, 1
2], and let c = c(δ) be according

to Lemma 4.6. Then

SD
(〈

A
(1)
Π ,B

〉
,
〈

A
(1,ξ,δ′)
Π ,B

〉)
≤ 2 ·m · γ ·

(
ξ + Pr〈A,B〉

[
desc(Smallδ

′,A
Π)

])
+

2

γc

for any δ′ ≥ δ, ξ > 0 and γ > 1.

Proof. The proof immediately follows by plugging Corollary 4.7 into Lemma 4.5. �

Bounding the Probability of Hitting Low-Density Sets. Our final statement in Section 4.1
is a generalization of Corollary 4.7 to arbitrary sets of nodes (i.e., not only unbalanced) and to the
recursive version of the ideal biased-continuation attacker. This generalization will be helpful in
the rest of the section.

Proposition 4.9. Let Π = (A,B) be a protocol, let δ ∈ (0, 1
2], and let c = c(δ) be according

Lemma 4.6. Then the following holds for any δ′ ≥ δ:

1. For every k ∈ N and any γ1, . . . , γk > 1 it holds that

Pr〈
A

(k)
Π ,B

〉 [desc
(
Smallδ

′,A
Π

)]
≤ Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
·
k∏
i=1

γi + 2 ·
k∑
i=1

·
∏k
j=i+1 γj

γci
.

2. For every S ⊆ V(Π) with Pr〈A,B〉 [desc (S)] ≤ α, any β ≥ Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π

)]
, every

k ∈ N and any γ = (γ1, . . . , γk) with γi > 1 for all i ∈ [k], it holds that

Pr〈
A

(k)
Π ,B

〉 [desc (S)] ≤ φBal(α, β, δ,γ) := (α+ β) ·
k∏
i=1

γi + 2 ·
k∑
i=1

·
∏k
j=i+1 γj

γci
.

Proof. The proof follows from an analysis similar to the proof of Corollary 4.7. �

57

4.2 Attacking Pruned Protocols

In the previous section we showed that if the probability to visit A-controlled low-value nodes
is small, the approximated biased-continuation attacker biases the protocol almost as well as its
ideal variant does. For some protocols, however, this probability might be arbitrarily large, so the
analysis in Section 4.1 does not suffice to argue that the approximated biased-continuation attacker
successfully biases any protocol. For an arbitrary protocol, however, we can define a pruned variant
of it, such that the probability of hitting A-controlled low-value nodes is indeed small. The above
corollary yields that the approximated biased-continuation attacker successfully biases the above
variant.

The definition of these pruned variants and the analysis of attacking them using the approx-
imated biased-continuation attacker are the focus of this section. We show that the (recursive
variant) of the approximated biased-continuation attacker defined in the previous section is very
effective against the (approximated) pruned variant of the protocol, defined next.

4.2.1 Pruned Protocols

In the pruned variant of a protocol Π = (A,B), the edge distribution remains intact, while the
controlling scheme is changed, giving the control to B on low-value nodes, and to A on high-value
nodes.

Definition 4.10 (the pruned variant of a protocol). Let Π = (A,B) be an m-round protocol and

let δ ∈ (0, 1
2). In the δ-pruned variant of Π, denoted by Π[δ] =

(
A

[δ]
Π ,B

[δ]
Π

)
, the parties follow the

protocol Π, where A
[δ]
Π and B

[δ]
Π take the roles of A and B respectively, with the following exception

occurring the first time the protocol’s transcript u is in SmallδΠ ∪ LargeδΠ:

If u ∈ LargeδΠ, set C = A
[δ]
Π ; otherwise set C = B

[δ]
Π . The party C takes control of the node u,

samples a leaf `← 〈Πu〉, and then, bit by bit, sends `|u|+1,...,m to the other party.

Namely, the first time the value of the protocol is close to either 1 or 0, the party interested in

this value (i.e., A
[δ]
Π for 1, and B

[δ]
Π for 0) takes control and decides the outcome (without changing

the value of the protocol). Hence, the protocol is effectively pruned at these leaves (each such a
node is effectively a parent of two leaves).

For every protocol Π, its pruned variant Π[δ] is a well-defined protocol, so the analysis of
Section 3 can be applied.44 (Later, our almost-final attacker will “pretend” it is actually running
on this pruned variant, rather than on the original protocol). The pruned variant of a protocol,
however, might not be efficiently computed, even if OWFs do not exist. To cope with this efficiency
issue, we consider an approximated variant of the pruned protocol.

4.2.1.1 Approximated Pruned Protocols

To define the approximated pruned protocols, we begin by defining two algorithms, both of which
can be efficiently implemented assuming OWFs do not exist for an appropriate set of parameters.
The first algorithm samples an honest (i.e., unbiased) continuation of the protocol.

44Note that in the pruned protocol, the parties’ turns might not alternate (i.e., the same party might send several
consecutive bits), even if they do alternate in the original protocol. Rather, the protocol’s control scheme (determining
which party is active at a given point) is a function of the protocol’s transcript and the original protocol’s control
scheme. Such schemes are consistent with the ones considered in the previous sections.

58

Definition 4.11 (approximated honest continuation). Let Π be an m-round protocol, and let
HonContΠ be the algorithm that on node u ∈ V(Π) returns ` ← 〈Πu〉. Algorithm HC is a ξ-
Honest-Continuator for Π, if Pr`←〈Π〉 [∃i ∈ (m− 1) : SD (HC(`1,...,i),HonContΠ(`1,...,i)) > ξ] ≤ ξ. Let

HonContξΠ be an arbitrary (but fixed) ξ-honest-continuator for Π.

The second algorithm estimates the value of a given transcript (i.e., a node) of the protocol.

Definition 4.12 (estimator). Let Π be an m-round protocol. A deterministic algorithm Est is a

ξ-Estimator for Π, if Pr`←〈Π〉
[
∃i ∈ (m− 1) :

∣∣Est(`1,...,i)− val(Π`1,...,i)
∣∣ > ξ

]
≤ ξ. Let EstξΠ be an

arbitrary (but fixed) ξ-estimator for Π.

Using the above estimator, we define the approximated version of the low and high value nodes.

Definition 4.13 (approximated low-value and high-value nodes). For protocol Π, δ ∈ (0, 1
2) and a

deterministic real-value algorithm Est, let

• Smallδ,EstΠ = {u ∈ V(Π) \ L(Π): Est(u) ≤ δ};

• Largeδ,EstΠ = {u ∈ V(Π) \ L(Π): Est(u) ≥ 1− δ}.

For ξ ∈ [0, 1], let Smallδ,ξΠ = Small
δ,EstξΠ
Π .

We can now define the approximated pruned protocol, which is the oracle variant of the ideal
pruned protocol.

Definition 4.14 (the approximated pruned variant of a protocol). Let Π = (A,B) be an m-round
protocol, let δ ∈ (0, 1

2), let HC be an algorithm, and let Est be a deterministic real value algorithm.

The (δ,Est,HC)-approximately pruned variant of Π, denoted Π[δ,Est,HC] =
(

A
[δ,Est,HC]
Π ,B

[δ,Est,HC]
Π

)
, is

defined as follows.

Control Scheme: the parties follow the control scheme of the protocol Π, where A
[δ,Est,HC]
Π and

B
[δ,Est,HC]
Π take the roles of A and B respectively, with the following exception occurring the first

time the protocol’s transcript u is in Smallδ,EstΠ ∪Largeδ,EstΠ : if u ∈ Largeδ,EstΠ set C = A
[δ,Est,HC]
Π ;

otherwise set C = B
[δ,Est,HC]
Π . The party C takes control of all nodes in desc (u) (i.e., nodes for

which u is an ancestor).

Execution: for a protocol’s transcript u and a party C who controls u, C sets ` = HC(u) and sends
`|u|+1 to the other party.45

For δ ∈ (0, 1
2) and ξ, ξ′ ∈ [0, 1], let Π[δ,ξ,ξ′] = Π[δ,EstξΠ,HonCont

ξ′
Π] and Π[δ,ξ] = Π[δ,ξ,ξ], and the same

notation is used for the parties of the pruned protocol.

Namely, in Π[δ,ξ], the parties follow the control scheme of Π until reaching a node in Smallδ,ξΠ ∪
Largeδ,ξΠ for the first time. Upon reaching such a node, the control moves to (and stays with) A if

u ∈ Largeδ,ξΠ , or B if u ∈ Smallδ,ξΠ . The fact that the messages sent by the parties are determined

by the answers of HonContξΠ, instead of by their random coins, makes them stateless throughout
the execution of the protocol. This will be crucial when implementing our final attacker.

45This happens to every transcript, even those that are not children of Smallδ,EstΠ ∪ Largeδ,EstΠ .

59

Properties of the approximated pruned protocol. We now prove some important properties
of the approximated pruned protocol. The first property is that it is a good approximation of the
ideal pruned protocol.

Lemma 4.15. Let Π = (A,B) be an m-round protocol. Then

SD
(
〈Π〉,

〈
Π[δ,ξ]

〉)
≤ 2 ·m · ξ

for every δ ∈ (0, 1
2] and ξ ∈ (0, 1).

Note that the leaf distributions of Π and Π[δ] are identical, so the above lemma indeed shows
that the leaf distributions of the ideal and approximated pruned protocols are close. Moreover, the
above bound is a simple implication of the approximation guarantee of the honest-continuator, and
does not depend on δ.

Proof. By definition, every message in Π[δ,ξ,0] is set by calling a perfect honest-continuator for Π.
Thus, 〈Π〉 ≡

〈
Π[δ,ξ,0]

〉
, and it suffices to bound SD

(〈
Π[δ,ξ,0]

〉
,
〈
Π[δ,ξ]

〉
=
〈
Π[δ,ξ,ξ]

〉)
, which we do by

applying Lemma 2.14.
For function O, let HO be an algorithm that outputs the transcript of a random execution of

Π[δ,EstξΠ,O]. Let f and g be the (random) functions HonContΠ and HonContξΠ respectively, with the
exception that f(⊥) = g(⊥) =⊥. By construction, it holds that

SD
(〈

Π[δ,ξ,0]
〉
,
〈

Π[δ,ξ,ξ]
〉)

= SD
(

Hf ,Hg
)
.

For i ∈ [m], let Di be i’th node in a random execution of Π (such a node consists of i− 1 bits), and

let FailContξ,iΠ =
{
u ∈ V(Π): |u| = i− 1 ∧ SD

(
HonContΠ(u),HonContξΠ(u)

)
> ξ
}

. By definition,

Pru←Di

[
u ∈ FailContξ,iΠ

]
= Pr`←〈Π〉

[
SD

(
HonCont(`1,...,i−1),HonContξΠ(`1,...,i−1)

)
> ξ
]

≤ Pr`←〈Π〉

[
∃i ∈ [m] : SD

(
HonCont(`1,...,i−1),HonContξΠ(`1,...,i−1)

)
> ξ
]

≤ ξ,

and thus

Eu←Di [SD (f(u), g(u))]

= Eu←Di

[
SD

(
HonContΠ(u),HonContξΠ(u)

)]
= Pru←Di

[
u ∈ FailContξ,iΠ

]
· Eu←Di

[
SD

(
HonContΠ(u),HonContξΠ(u)

) ∣∣∣ u ∈ FailContξ,iΠ

]
+ Pru←Di

[
u /∈ FailContξ,iΠ

]
· Eu←Di

[
SD

(
HonContΠ(u),HonContξΠ(u)

) ∣∣∣ u /∈ FailContξ,iΠ

]
≤ ξ + ξ = 2ξ,

where the first equality follows since Di(⊥) = 0.
Let Qi denote the i’th query to f in a random execution of Hf (note that by construction, such

a query always exists) and let Q = (Q1, . . . , Qm). By definition, Qi ≡ Di, and thus

Pr(q1,...,qm)←Q [∃i ∈ [m] : qi 6=⊥ ∧ Qi(qi) > Di(qi)] = 0.

The proof follows by Lemma 2.14, letting k = m, a = 2ξ, λ = 1 and b = 0. �

60

The second (and most important) property of the approximated pruned protocol is that it visits
low-value nodes under A’s control only with small probability. While it is impossible to reach such
a node in the ideal pruned protocol, bounding this probability is not an immediate corollary of
Lemma 4.15. This is because the value of each node in both protocols might not be the same, and
because the control scheme of these protocols might be different. It turns out that the bound for
the above probability depends on the probability of the original protocol visiting nodes whose value
is close to the pruning value.

Definition 4.16. For protocol Π, ξ ∈ (0, 1) and δ ∈ (0, 1
2), let

Borderδ,ξΠ = {u ∈ V(Π) \ L(Π): val(Πu) ∈ (δ ± ξ] ∨ val(Πu) ∈ [1− δ ± ξ)} ,

and let borderΠ(δ, ξ) = Pr〈Π〉

[
desc

(
Borderδ,ξΠ

)]
.

Namely, Borderδ,ξΠ are those nodes that are ξ-close to the “border” between SmallδΠ ∪ LargeδΠ
and the rest of the nodes.

Lemma 4.17. Let δ ∈ (0, 1
2], let ε ∈ (0, δ), let ξ ∈ (0, 1) and let Π̃ =

(
Ã, B̃

)
= Π[δ,ξ] be the

(δ, ξ)-approximately pruned variant of an m-round protocol Π. Then

Pr〈Π̃〉
[
desc

(
Smallδ−ε,Ã

Π̃

)]
≤ borderΠ(δ, ξ) +

4 ·m · ξ
ε

.

Namely, as long as the probability of reaching nodes whose value is ξ-close to δ is small in the
original protocol, the probability of hitting low-value nodes in the approximated pruned protocol
is small as well. For proving Lemma 4.17, we use the following proposition, showing that if two
protocols are close and there exists a set of nodes whose value (the probability that the common
output is one conditioned on reaching these nodes) is large in one protocol but small in the other,
then the probability of reaching this set is small.

Proposition 4.18. Let Π = (A,B) and Π′ = (C,D) be two m-round protocols with χΠ ≡ χΠ′, and
let F ⊆ V(Π) be a frontier. Assume that SD (〈Π〉, 〈Π′〉) ≤ ε , that Pr〈Π〉 [L1(Π) | desc (F)] ≤ α, and
that Pr〈Π′〉 [L1(Π) | desc (F)] ≥ β, for some ε > 0 and 0 ≤ α < β ≤ 1. Then, Pr〈Π〉 [desc (F)] ≤
ε · 1+β

β−α .

Note that since both Π and Π′ have m-rounds, it holds that V(Π) = V(Π′) and L(Π) = L(Π′).
Moreover, since χΠ ≡ χΠ′ , it also holds that L1(Π), the set of 1-leaves in Π, is identical to L1(Π′),
the set of 1-leaves in Π′.

Proof. Let µ = Pr〈Π〉 [desc (F)], µ′ = Pr〈Π′〉 [desc (F)] and S = {` ∈ L1(Π): χΠ(`) = 1}. It follows
that

Pr〈Π〉 [S] = Pr〈Π〉 [desc (F)] · Pr〈Π〉 [L1(Π) | desc (F)] ≤ µ · α (51)

and that

Pr〈Π′〉 [S] = Pr〈Π′〉 [desc (F)] · Pr〈Π′〉 [L1(Π) | desc (F)] ≥ µ′ · β. (52)

61

Moreover, since SD (〈Π〉, 〈Π′〉) ≤ ε, it follows that µ′ ≥ µ − ε and that Pr〈Π′〉 [S] − Pr〈Π〉 [S] ≤ ε.
Putting it all together, we get

ε ≥ Pr〈Π′〉 [S]− Pr〈Π〉 [S]

≥ µ′ · β − µ · α
≥ (µ− ε) · β − µ · α
= (β − α) · µ− β · ε,

which implies the proposition. �

Proof of Lemma 4.17. Let FailEstξΠ =
{
u ∈ V(Π):

∣∣∣val(Πu)− EstξΠ(u)
∣∣∣ > ξ

}
and let F =

frnt
(
Smallδ−ε,Ã

Π̃

)
\
(
Borderδ,ξΠ ∪ FailEstξΠ

)
. It follows that

Pr〈Π̃〉
[
desc

(
Smallδ−ε,Ã

Π̃

)]
≤ Pr〈Π̃〉

[
desc

(
Borderδ,ξΠ ∪ FailEstξΠ

)]
+ Pr〈Π̃〉 [desc (F)] . (53)

By Lemma 4.15, it holds that

Pr〈Π̃〉
[
desc

(
Borderδ,ξΠ ∪ FailEstξΠ

)]
≤ borderΠ(δ, ξ) + 3 ·m · ξ. (54)

Let u ∈ F . Since u is under Ã’s control, we have EstξΠ(u) > δ. Since u /∈ FailEstξΠ, we have

val(Πu) > δ − ξ, and since u /∈ Borderδ,ξΠ , we have val(Πu) ≥ δ + ξ. By definition, val(Π̃u) ≤
δ − ε. Thus, Pr〈Π̃〉 [L1(Π) | desc (F)] ≤ δ − ε and Pr〈Π〉 [L1(Π) | desc (F)] ≥ δ + ξ. Finally, by

Proposition 4.18 and Lemma 4.15,

Pr〈Π̃〉 [desc (F)] ≤ 2 ·m · ξ · 1 + δ − ε
ξ + ε

≤ 4 ·m · ξ
ε

. (55)

Plugging Equations (54) and (55) into Equation (53) completes the proof of the lemma. �

Lemma 4.17 upper-bounds the probability of visiting a low-value node under A’s control in
the approximated pruned protocol with the probability of visiting nodes whose value is close to
the point of pruning in the original protocol. Given a protocol and a pruning point, the latter
probability might be large. We argue, however, that if we allow a small deviation from the point
of punning, this probability is small.

Proposition 4.19. Let Π be an m-round protocol, let δ ∈ (0, 1
2], and let ξ ∈ (0, 1). If ξ ≤ δ2

16m2 ,
then there exists j ∈ J :=

{
0, 1, . . . ,

⌈
m/
√
ξ
⌉}

such that borderΠ(δ′, ξ) ≤ m·
√
ξ for δ′ = δ/2+j ·2ξ ∈

[δ2 , δ].

Proof. For j ∈ J , let δ′(j) = δ/2 + j · 2ξ. From the definition of J , it is clear that δ′(j) ∈ [δ2 , δ] for
every j ∈ J . Hence, it is left to argue that ∃j ∈ J such that borderΠ(δ′(j), ξ) ≤ m ·

√
ξ.

For i ∈ [m], let Borderδ,ξ,iΠ =
{
u ∈ V(Π): u ∈ Borderδ,ξΠ ∧ |u| = i− 1

}
. It holds that

Pr〈Π〉

[
desc

(
Borderδ,ξΠ

)]
≤ Pr〈Π〉

[
desc

(
∪i∈[m]Borderδ,ξ,iΠ

)]
(56)

≤
m∑
i=1

Pr〈Π〉

[
desc

(
Borderδ,ξ,iΠ

)]
.

62

For every i ∈ [m], let N (i) =
{
j ∈ J : Pr〈Π〉

[
desc

(
Border

δ′(j),ξ,i
Π

)]
>
√
ξ
}

and let N = ∪i∈[m]N (i).

We use the following claim.

Claim 4.20. It holds that |N (i)| < 1/
√
ξ for every i ∈ [m].

Proof of Claim 4.20. Assume towards a contradiction that there exists i ∈ [m] such
that |N (i)| ≥ 1/

√
ξ. Let Di be the distribution over {0, 1}i, described by outputting

`i, for ` ← 〈Π〉. We get that Pr〈Π〉

[
desc

(
Border

δ′(j),ξ,i
Π

)]
= Di

(
Border

δ′(j),ξ,i
Π

)
. Since

Border
δ′(j),ξ,i
Π ∩ Border

δ′(j′),ξ,i
Π = ∅ for every j 6= j′ ∈ J , it holds that

1 ≥
∑
j∈J

Di

(
Border

δ′(j),ξ,i
Π

)
≥
∑

j∈N (i)

Di

(
Border

δ′(j),ξ,i
Π

)
> |N (i)| ·

√
ξ ≥ 1,

and a contradiction is derived, where the last inequality follows the assumption that
|N (i)| ≥ 1/

√
ξ. �

Claim 4.20 yields that |N | ≤
∑m

i=1 |N (i)| < m√
ξ
< |J |. Thus, ∃j ∈ J such that j /∈ N .

Set δ′ = δ′(j). It holds that Pr〈Π〉

[
desc

(
Borderδ

′,ξ,i
Π

)]
≤
√
ξ for every i ∈ [m]. Plugging it into

Equation (56) yields that borderΠ(δ′, ξ) = Pr〈Π〉

[
desc

(
Borderδ

′,ξ
Π

)]
≤ m ·

√
ξ, completing the proof

of Proposition 4.19. �

4.2.2 Attacking Approximated Pruned Protocols

Lemma 4.17 and Proposition 4.19 yield that for any protocol there is an (eventually polynomial-
size) set of approximated pruned protocols, such that at least one of them has a small probability of
visiting A-controlled low-value transcripts. Hence, by Corollary 4.8, a (non-recursive) approximated
biased-continuation attacker biases this approximated pruned protocol with similar success to that
of the (ideal) biased-continuation attacker. A single recursion, however, is not guaranteed to be a
good enough attacker. Hence, our next step is to argue the same for the recursive approximated
biased-continuation attacker.

Unlike its non-recursive variant, the recursive approximated biased-continuation attacker might
increase the probability of hitting low-value nodes. Let Π = (A,B) be a protocol in which the
probability of hitting nodes whose value is smaller than δ (the set of δ-low nodes) is small. Consider
the protocols Π(k) = (A(k),B) and Π̃(k) = (A(k,ξ,δ),B), in which the recursive ideal and approximated
biased-continuation attackers, respectively, take the role of A. Since the probability of hitting δ-low
nodes is small, the values of Π(1) and Π̃(1) are close (depending on the approximation guarantee ξ).
For the next level of recursion, however, this might no longer be the case; in Π(1), every node has
a higher value than in Π, so the δ-low set can only decrease. This is because the attacker is always
successful in choosing a continuation leading to one (unless none exist). When replacing Π(1) with
Π̃(1), however, the latter argument is no longer true. The approximated biased-continuator might
fail to find a continuation leading to one, resulting in nodes whose value in Π̃(1) might be smaller

63

than in Π. Namely the δ-low value set might increase. Hence, it is no longer clear that the values
of Π(2) and Π̃(2) are close.

Fortunately, as the next lemma shows, there is only a small probability that the situation
described above will occur.

Lemma 4.21. Let 0 < δ ≤ δ′ ≤ 1
4 , let c = c(δ) be according to Lemma 4.6, let ξ ∈ (0, 1) and let

Π̃ =
(

Ã, B̃
)

= Π[2δ′,ξ] be the (2δ′, ξ)-approximately pruned variant of a m-round protocol Π. Then

SD
(〈

A
(k)

Π̃
, B̃
〉
,
〈

A
(k,ξ,δ′)

Π̃
, B̃
〉)

≤ φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ)

:= k ·
30k ·mk ·

∏k
i=1 γi

δ′2k
·
(

borderΠ(2δ′, ξ) +
9 ·m · ξ
δ′

)
+

k∑
i=1

2k−i+2 ·
30k−i ·mk−i ·

∏k
j=i+1 γj

δ′2(k−i) · γci
,

for every k ∈ N and γ = (γ1, . . . , γk) with γi > 1 for every i ∈ [k].

As this lemma shows, there is only a small probability of hitting nodes whose value decreases
when the recursive approximated biased-continuation attacker biases the approximated pruned
protocol. This is because the value of each node can only increase when the recursive ideal biased-
continuation attacker biases this protocol. The proof of Lemma 4.21 is given below, but we first use
it to derive an important property of the recursive approximated biased-continuation attacker. In
Section 4.1.1 (Proposition 4.9(2)) we showed that the ideal recursive biased-continuation attacker,
when attacking the approximated pruned protocol, does not increase the probability of hitting
any set of nodes by much. Using the above lemma, we can argue the same for the approximated
recursive biased-continuation attacker when attacking the same protocol.

Proposition 4.22. Let 0 < δ ≤ δ′ ≤ 1
4 , let ξ ∈ (0, 1) and let Π̃ =

(
Ã, B̃

)
= Π[2δ′,ξ] be the (2δ′, ξ)-

approximately pruned variant of an m-round protocol Π. Let F be a frontier with Pr〈Π〉 [desc (F)] ≤
α. Then

Pr〈
A

(k,δ′,ξ)
Π̃

,B̃
〉 [desc (F)] ≤ φBal(α+ 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ)

+ φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ)

for every k ∈ N and γ = (γ1, . . . , γk) with γi > 1 for every i ∈ [k].46

Proof. By Lemma 4.15, it holds that Pr〈Π̃〉 [desc (F)] ≤ α + 2 ·m · ξ. By Lemma 4.17, it follows

that

Pr〈Π̃〉
[
desc

(
Smallδ

′,Ã

Π̃

)]
≤ borderΠ(2δ′, ξ) +

4 ·m · ξ
δ′

.

Hence, Proposition 4.9(2) yields that

Pr〈
A

(k,δ′,ξ)
Π̃

,B̃
〉 [desc (F)] ≤ φBal(α+ 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ).

The proof of Proposition 4.22 now follows directly from Lemma 4.21. �

46See Proposition 4.9 and Lemma 4.21, for the definitions of φBal and φIt respectively.

64

Finally, we analyze the efficiency (i.e., running time and number of randoms bits) of the ap-
proximated biased-continuation attacker, when attacking the approximated pruned protocols. This
analysis assumes access to an honest-continuator and an estimator for the original protocol, and
the efficiency is stated with respect to these algorithms.

Lemma 4.23. Let δ ∈ (0, 1
4), let ξ ∈ (0, 1

2), and let Π̃ = Π[2δ,ξ] be the (2δ, ξ)-approximately pruned

variant of an m-round protocol Π. Assume the running times of EstξΠ and HonContξΠ are TEst and

THonCont respectively, and that HonContξΠ uses at most ρHonCont random bits. Then, for every k ∈ N,

algorithm A
(k,ξ,δ)

Π̃
(see Algorithm 4.2) has the following properties.

1. It uses at most k ·mk ·
⌈

log(1/ξ)
log(1/(1−δ))

⌉k
· ρHonCont random bits.

2. It runs in time (at most) k ·mk ·
⌈

log(1/ξ)
log(1/(1−δ))

⌉k
· (TEst + THonCont).

4.2.2.1 Proving Lemma 4.21

Proof of Lemma 4.21. Fix γ1, . . . , γk > 1. The proof is by induction on k. For k = 1, plugging
Lemma 4.17 into Corollary 4.8 yields that

SD
(〈

A
(1)

Π̃
, B̃
〉
,
〈

A
(1,ξ,δ′)

Π̃
, B̃
〉)
≤ 2 ·m · γ1 ·

(
ξ + borderΠ(2δ′, ξ) +

4 ·m · ξ
δ′

)
+

2

γc1

≤ 30 ·m · γ1

δ′2
·
(

borderΠ(2δ′, ξ) +
9 ·m · ξ
δ′

)
+

4

γc1
,

as required.
Assume the lemma holds for k − 1; we prove it for k. The proof relies on the following lemma.

Lemma 4.24. Let Π = (A,B) and Π′ = (C,D) be two m-round protocols with the same control
scheme, let 0 < δ ≤ δ′ ≤ 1

4 , let c = c(δ) be according to Lemma 4.6, and let ξ ∈ (0, 1). Assume that

1. χΠ ≡ χΠ′,

2. SD (〈Π〉, 〈Π′〉) ≤ α, and

3. Pr〈Π′〉

[
desc

(
Small1.5δ

′,C
Π′

)]
≤ β.

Then for every ξ > 0 and γ > 1, it holds that

SD
(〈

A
(1,ξ,δ′)
Π ,B

〉
,
〈

C
(1)
Π′ ,D

〉)
≤ 30 ·m · γ

δ′2
· (α+ ξ + β) +

4

γc
.

The proof of Lemma 4.24 is given below, but first we use it to prove Lemma 4.21. For i ∈ [k], let

Π
(i)
1 =

(
A

(i)

Π̃
, B̃
)

and let Π
(i)
2 =

(
A

(i,ξ,δ′)

Π̃
, B̃
)

. By this notation, we can write Π
(k)
1 =

(
A

(1)

Π
(k−1)
1

, B̃

)
and Π

(k)
2 =

(
A

(1,ξ,δ′)

Π
(k−1)
2

, B̃

)
. Hence,

SD
(〈

A
(k)

Π̃
, B̃
〉
,
〈

A
(k,ξ,δ′)

Π̃
, B̃
〉)

= SD

(〈
A

(1)

Π
(k−1)
1

, B̃

〉
,

〈
A

(1,ξ,δ′)

Π
(k−1)
2

, B̃

〉)
. (57)

65

We would like to apply Lemma 4.24 with respect to Π
(k−1)
1 and Π

(k−1)
2 . Indeed, these protocols

share the same control scheme and common output function χ, and the induction hypothesis gives

us a bound for SD
(〈

Π
(k−1)
1

〉
,
〈

Π
(k−1)
2

〉)
. It remains to bound Pr〈

Π
(k−1)
1

〉 [desc

(
Small1.5δ

′,A

Π
(k−1)
1

)]
.

Note that the value of a node in Π
(i)
1 cannot be lower than its value in Π

(i−1)
1 , and thus

Pr〈
Π

(k−1)
1

〉 [desc

(
Small1.5δ

′,A

Π
(k−1)
1

)]
≤ Pr〈

Π
(k−1)
1

〉 [desc
(
Small1.5δ

′,A

Π̃

)]
(58)

≤ Pr〈Π̃〉
[
desc

(
Small1.5δ

′,A

Π̃

)]
·
k−1∏
i=1

γi + 2 ·
k−1∑
i=1

·
∏k−1
j=i+1 γj

γci

≤
(

borderΠ(2δ′, ξ) +
8 ·m · ξ
δ′

)
·
k−1∏
i=1

γi + 2 ·
k−1∑
i=1

·
∏k−1
j=i+1 γj

γci
.

The second inequality follows Proposition 4.9(1) and the third one Lemma 4.17. By the induction
hypothesis and Lemma 4.24, it holds that

SD
(〈

A
(k)

Π̃
, B̃
〉
,
〈

A
(k,ξ,δ′)

Π̃
, B̃
〉)

≤ 30 ·m · γk
δ′2

·

(
(k − 1) ·

30k−1 ·mk−1 ·
∏k−1
i=1 γi

δ′2(k−1)
·
(

borderΠ(2δ′, ξ) +
9 ·m · ξ
δ′

)

+
k−1∑
i=1

2k−i+1 ·
30k−1−i ·mk−1−i ·

∏k−1
j=i+1 γj

δ′2(k−1−i) · γci

+

(
borderΠ(2δ′, ξ) +

8 ·m · ξ
δ′

)
·
k−1∏
i=1

γi + 2 ·
k−1∑
i=1

·
∏k−1
j=i+1 γj

γci
+ ξ

)
+

4

γck

=
30 ·m · γk

δ′2
·

(
(k − 1) ·

30k−1 ·mk−1 ·
∏k−1
i=1 γi

δ′2(k−1)
·
(

borderΠ(2δ′, ξ) +
9 ·m · ξ
δ′

)

+

(
borderΠ(2δ′, ξ) +

8 ·m · ξ
δ′

)
·
k−1∏
i=1

γi + ξ

)

+
30 ·m · γk

δ′2
·

(
k−1∑
i=1

2k−i+1 ·
30k−1−i ·mk−1−i ·

∏k−1
j=i+1 γj

δ′2(k−1−i) · γci
+ 2 ·

k−1∑
i=1

·
∏k−1
j=i+1 γj

γci

)
+

4

γck
.

The induction proof now follows by grouping together the summands in the parentheses. This
concludes the proof of Lemma 4.21. �

Proof of Lemma 4.24. To prove the lemma, we make use of the biased-continuation attacker being
robust.

Lemma 4.25 (robustness lemma). Let Π = (A,B) and Π′ = (C,D) be two m-round protocols,
let δ ∈ (0, 1

2], and let c = c(δ) according to Lemma 4.6. Assume that SD (〈Π〉, 〈Π′〉) ≤ α, that
χΠ ≡ χΠ′, and that Π and Π′ have the same control scheme. Then

SD

(〈
A

(1)
Π ,B

〉
,
〈

C
(1)
Π′ ,D

〉)
≤ 3 ·m · γ

δ′
·
(
α+ Pr〈A,B〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)])
+

2

γc
,

66

for every δ′ ≥ δ and γ ≥ 1, where A(1) and C(1) are as in Algorithm 3.2.

Namely, the biased-continuation attacker does not make similar protocols too dissimilar. To
get an intuition about this robustness property, recall that the biased-continuation attacker, when
attacking Π, chooses a random 1-leaf according to 〈Π〉, the leaf distribution of Π. Since Π and
Π′ are similar, however, the attacker can instead sample from 〈Π′〉, while making similar decisions
throughout its operation. So, the biased-continuation attacker is robust to the distribution from
which it samples. Lemma 4.25 is proven below.

We now return to proving Lemma 4.24. The proof proceeds in two steps: first, we apply
Lemma 4.25 (robustness lemma) to show that after the (ideal) biased-continuation attacker takes
the role of the left-hand party in Π and Π′, the leaf distributions of these protocols remain close;
second, we apply Corollary 4.8 (ideal-to-approximated biased-continuation attacker) to show that
replacing the attacker of the left-hand party in Π with its approximated variant, the leaf distribu-
tions of these protocols remain close.

In order to apply Lemma 4.25, we first need to bound Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
.

Let F = frnt
(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)
, let F1 = {u ∈ F : val((Π′)u) ≥ 1.5δ′}, and let F2 =

{u ∈ F : val((Π′)u) < 1.5δ′}. Since F ⊆ F1
⋃
F2, it suffices to bound Pr〈Π〉 [desc (F1)] and

Pr〈Π〉 [desc (F2)], which we do separately.

Bounding F1: Nodes in F1 must have small value in Π but large value in Π′. Since 〈Π〉 and 〈Π′〉
are close, the probability of reaching such nodes is small.

Let µ = Pr〈Π〉 [desc (F1)], µ′ = Pr〈Π′〉 [desc (F1)]. By noting that every node in F1 must

belong to Smallδ
′,A

Π , it follows that Pr〈Π〉 [L1(Π) | desc (F1)] ≤ δ′. The assumption (1) of the
lemma and the definition of F1 yield, however, that Pr〈Π′〉 [L(Π) | desc (F1)] ≥ 1.5δ′. By
Proposition 4.18 it follows that

Pr〈Π〉 [desc (F1)] ≤ α · 1 + 1.5δ′

0.5δ′
≤ 4α

δ′
.

The last inequality holds since, by assumption, δ′ ≤ 1/4.

Bounding F2: The definition of F2, the assumption that Π and Π′ have the same control
scheme, and assumption (3), yield that Pr〈Π′〉 [desc (F2)] ≤ β. Hence, the assumption that
SD (〈Π〉, 〈Π′〉) ≤ α (assumption (2) of the lemma) yields that Pr〈Π〉 [desc (F2)] ≤ α+ β.

Combining the two bounds, it follows that Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
≤ 5α/δ′+β. We

can apply Lemma 4.25 and derive

SD
(〈

A
(1)
Π ,B

〉
,
〈

C
(1)
Π′ ,D

〉)
≤ 3 ·m · γ

δ′
·
(
α+

5α

δ′
+ β

)
+

2

γc
. (59)

Our next step is to apply Corollary 4.8. To do so we need to bound Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
, but

since it is clear that Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
≤ Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
, it follows that

Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
≤ 5α/δ′ + β. Applying Corollary 4.8, we derive

SD
(〈

A
(1)
Π ,B

〉
,
〈

A
(1,ξ,δ′)
Π ,B

〉)
≤ 2 ·m · γ ·

(
ξ +

5α

δ′
+ β

)
+

2

γc
. (60)

67

Finally, combining the last two inequalities and using the triangle inequality completes the proof
of Lemma 4.24. �

Proving The Robustness Lemma — Lemma 4.25

Proof of Lemma 4.25. We use Lemma 2.14. Define the random function f : V(Π) 7→ L(Π) as
follows: given u ∈ V(Π), if A controls u return `← 〈Πu〉 such that χΠ(`) = 1, and otherwise, i.e., if
B controls u, return `← 〈Πu〉. The random function g : V(Π) 7→ L(Π) is analogously defined with
respect to protocol Π′.47 For function O with range in L(Π), let HO be the following algorithm:

Algorithm 4.26 (H).

Oracle: O.

State: node u, set to λ at the start of the execution.

Operation:

1. Repeat for m times:

(a) Set ` := O(u).

(b) Set u := u ◦ `i, where i is the current iteration.

2. Output u.

. .

It is easy to verify that Hf ≡
〈

A
(1)
Π ,B

〉
and Hg ≡

〈
C

(1)
Π′ ,D

〉
. Hence, it suffices to upper-bound

SD
(
Ef ,Eg

)
. For i ∈ [m], let Di to be i’th node in a random execution of Π (such a node consists

of i− 1 bits). We use the next claim, proven below.

Claim 4.27. Eu←Di [SD (f(u), g(u))] ≤ 2α
δ′ + Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
.

Let Qi denote the i’th query to f in a random execution of Hf (note that by construction, such
a query always exists) and let Q = (Q1, . . . , Qm). By construction, for u ∈ V(Π) with |u| = i− 1,

Qi(u) is the probability that u is visited in a random execution of
(

A
(1)
Π ,B

)
. We get

Pr(q1,...,qm)←Q [∃i ∈ [m] : qi 6=⊥ ∧Qi(qi) > γ ·Di(qi)] = Pr〈A(1),B〉
[
desc

(
UnBalγΠ

)]
≤ γ · Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
+

2

γc
,

where the inequality follows from Corollary 4.7.
The proof of Lemma 4.25 now follows by Lemma 2.14, letting k = m, a = 2α

δ′ +

Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
, λ = γ and b = γ · Pr〈Π〉

[
desc

(
Smallδ

′,A
Π

)]
+ 2

γc . �

47The sets V(Π) and V(Π′), as well as the sets L(Π) and L(Π′), are identical, as the both describe nodes in the
complete binary tree of height m. See Section 2 for further details.

68

Proof of Claim 4.27. Let Vi(Π) = {v ∈ V(Π): |v| = i− 1}, VAi (Π) = Vi(Π) ∩ CtrlAΠ and VBi (Π) =
Vi(Π) ∩ CtrlBΠ. Compute

Eu←Di [SD (f(u), g(u))] =
∑

u∈Vi(Π)

Di(u) · SD (f(u), g(u)) (61)

=
∑

u∈VA
i (Π)

Di(u) · SD (f(u), g(u)) +
∑

u∈VB
i (Π)

Di(u) · SD (f(u), g(u)).

In the rest of the proof we show that∑
u∈VA

i (Π)

Di(u) · SD (f(u), g(u)) ≤ 1

δ′
·
∑

u∈VA
i (Π)

Di(u) · SD
(
〈Πu〉,

〈
Π′u
〉)

(62)

+ Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
,

that ∑
u∈VB

i (Π)

Di(u) · SD (f(u), g(u)) ≤
∑

u∈VB
i (Π)

Di(u) · SD
(
〈Πu〉,

〈
Π′u
〉)
, (63)

and that ∑
u∈Vi(Π)

Di(u) · SD
(
〈Πu〉,

〈
Π′u
〉)
≤ 2 · SD

(
〈Π〉,

〈
Π′
〉)
. (64)

Plugging Equations (62) to (64) into Equation (61) completes the proof Claim 4.27.

Proof of Equation (62): Let u ∈ VAi (Π). By the definition of f , and since u is under A’s
control, it follows that Pr [f(u) = `] = 〈Πu〉(`)/val(Πu) if χΠ(`) = 1, and Pr [f(u) = `] = 0 oth-
erwise. Since Π and Π′ have the same control scheme, the same holds for g(u) with respect to
Π′. Let S ′u ⊆ L1(Π) be the set with SD (f(u), g(u)) =

∑
`∈S′u (Pr [f(u) = `]− Pr [g(u) = `]) =∑

`∈L1(Π)\S′u (Pr [g(u) = `]− Pr [f(u) = `]).48 Define Su ⊆ L1(Π) as follows: if val(Πu) ≥ val(Π′u)

let Su = S ′u; otherwise let Su = L1(Π) \ S ′u. It follows that∑
u∈VA

i (Π)

Di(u) · SD (f(u), g(u)) ≤
∑

u∈VA
i (Π):

val(Πu)≥val(Π′u)≥δ′

Di(u) ·
∑
`∈Su

(
〈Πu〉(`)
val(Πu)

− 〈Π
′
u〉(`)

val(Π′u)

)
(65)

+
∑

u∈VA
i (Π):

val(Π′u)>val(Πu)≥δ′

Di(u) ·
∑
`∈Su

(
〈Π′u〉(`)
val(Π′u)

− 〈Πu〉(`)
val(Πu)

)

+
∑

u∈VA
i (Π):

val(Πu)<δ′∨val(Π′u)<δ′

Di(u).

Assume that val(Πu) ≥ val(Π′u). The definition of Su implies that 〈Πu〉(`)/val(Πu) ≥
〈Π′u〉(`)/val(Π′u) for every ` ∈ Su. But since val(Πu)/val(Π′u) ≥ 1, the latter yields that

48Note that it must be the case that S ′u ⊆ L1(Π), since Pr [f(u) = `] = Pr [g(u) = `] = 0, for every ` with χΠ(`) = 0,
which follows from the assumption that χΠ ≡ χΠ′ .

69

〈Πu〉(`) ≥ 〈Π′u〉(`) for every ` ∈ Su. Using this observation, we bound the first summand in
the right-hand side of Equation (65).∑

u∈VA
i (Π):

val(Πu)≥val(Π′u)≥δ′

Di(u) ·
∑
`∈Su

(
〈Πu〉(`)
val(Πu)

− 〈Π
′
u〉(`)

val(Π′u)

)
(66)

≤
∑

u∈VA
i (Π):

val(Πu)≥val(Π′u)≥δ′

Di(u)

val(Π′)
·
∑
`∈Su

(
〈Πu〉(`)−

〈
Π′u
〉
(`)
)

≤ 1

δ′

∑
u∈VA

i (Π):
val(Πu)≥val(Π′u)≥δ′

Di(u) ·
∑
`∈Su

(
〈Πu〉(`)−

〈
Π′u
〉
(`)
)

≤ 1

δ′

∑
u∈VA

i (Π):
val(Πu)≥val(Π′u)≥δ′

Di(u) · SD
(
〈Πu〉,

〈
Π′u
〉)
,

where the second inequality follows since
∑

`∈Su (〈Πu〉(`)− 〈Π′u〉(`)) ≥ 0, as argued above. Similar
calculations, and using the symmetry of statistical distance, we bound the second summand in the
right-hand side of Equation (65):∑

u∈VA
i (Π):

val(Π′u)≥val(Πu)≥δ′

Di(u) ·
∑
`∈Su

(
〈Π′u〉(`)
val(Π′u)

− 〈Πu〉(`)
val(Πu)

)
≤ 1

δ′

∑
u∈VA

i (Π):
val(Π′u)≥val(Πu)≥δ′

Di(u) · SD
(
〈Πu〉,

〈
Π′u
〉)
.

(67)

Finally, to bound the third summand in the right-hand side of Equation (65), we note that it sums

over (not all) u ∈ Smallδ
′,A

Π ∪ Smallδ
′,C

Π′ . Since Di simply samples a random partial transcript from
Π, we derive the following bound:∑

u∈VA
i (Π):

val(Πu)<δ′∨val(Π′u)<δ′

Di(u) ≤ Pr〈Π〉

[
desc

(
Smallδ

′,A
Π ∪ Smallδ

′,C
Π′

)]
. (68)

Plugging Equations (66) to (68) into Equation (65) yields Equation (62).

Proof of Equation (63): Since it is the right-hand party who controls u in Π and in Π′, it follows
that SD (f(u), g(u)) = SD (〈Πu〉, 〈Π′u〉). Equation (63) follows immediately.

Proof of Equation (64): Using the definition of Di, we can write∑
u∈Vi(Π)

Di(u) · SD
(
〈Πu〉,

〈
Π′u
〉)

=
∑

u∈Vi(Π)

vΠ(u) · 1

2

∑
`∈L(Πu)

∣∣vΠu(`)− vΠ′u(`)
∣∣

=
1

2

∑
`∈L(Π)

∣∣∣∣vΠ(`1,...,i−1) · vΠ`1,...,i−1
(`)− vΠ(`1,...,i−1) · vΠ′`1,...,i−1

(`)

∣∣∣∣
= SD

(
〈Π〉,

〈
Π′′
〉)
,

70

for 〈Π′′〉(`) := vΠ(`1,...,i−1) · vΠ′`1,...,i−1
(`).

We prove that SD (〈Π′〉, 〈Π′′〉) ≤ SD (〈Π′〉, 〈Π〉), and Equation (64) follows from the triangle

inequality. Let h be the random function that, given ` ∈ L(Π), returns `′ ←
〈

Π′`1,...,i−1

〉
. Therefore,

h(〈Π′〉) ≡ 〈Π′〉 and h(〈Π〉) ≡ 〈Π′′〉, and this completes the proof.
This completes the proof of Equations (62) to (64), and thus the proof of Claim 4.27. �

4.2.2.2 Proving Lemma 4.23

The attacker A
(k,ξ,δ)

Π̃
requires a (ξ, δ)-biased continuator for the protocol

(
A

(k−1,ξ,δ)

Π̃
, B̃
)

. Since the

efficiency of A
(k,ξ,δ)

Π̃
is simply that of calling this continuator, we need to show how to implement

this continuator and analyze its efficiency. This implementation relies on the fact that the protocol(
A

(i,ξ,δ)

Π̃
, B̃
)

is stateless for every 0 ≤ i ≤ k− 1 (for the case i = 0, we simply get the approximated

pruned protocol of Π, which is by definition stateless). We start by showing how to implement
an honest continuator for a stateless protocol, and then show how a biased continuator can be
implemented using an honest continuator.

Honest continuator for stateless protocols. For stateless protocols (i.e., the parties maintain
no state), providing (perfect) honest continuation is immediate.

Algorithm 4.28 (HonContSLΠ).

Input: transcript u ∈ {0, 1}∗.
Operation:

1. Set t := u.

2. Repeat until t ∈ L(Π):

(a) Let C be the party that controls t.

(b) Choose uniformly at random coins rC for this round.

(c) Set t := t ◦ C(t; rC).

3. Return t.
. .

Claim 4.29. Assume that Π is stateless. Then HonContSLΠ of Algorithm 4.28 is a 0-honest
continuator for Π.

Proof. Immediate. �

From honest continuation to biased continuation. Turning an honest continuator into a
biased continuator is also straightforward: given a transcript u and a bit b toward which the
continuator should bias, sample sufficiently many honest continuations for u, and return the first
continuation whose common output is b. Indeed, if the transcript value (i.e., expected outcome) is
close enough to b, then with high probability the above process indeed returns a biased continuation.

Algorithm 4.30 (BiasedCont
(ξ,δ,HC)
Π).

71

Parameters: ξ, δ ∈ (0, 1).

Oracle: algorithm HC.

Input: u ∈ V(Π) and b ∈ {0, 1}.
Operation:

1. For i = 1 to
⌈

log(1/ξ)
log(1/(1−δ))

⌉
:

(a) Set ` := HC(u).

(b) If χΠ(`) = b, return `|u|+1.

2. Return ⊥.
. .

Claim 4.31. Let Π be an m-round protocol, let ξ, ξ′, δ ∈ (0, 1) and let t =
⌈

log(1/ξ)
log(1/(1−δ))

⌉
. Assume

that HC is a ξ′-honest continuator for Π. Then BiasedCont
(ξ,δ,HC)
Π is a ((t + 1) · ξ′ + ξ, δ)-biased

continuator for Π.

Proof. We show that for every u ∈ V(Π) with SD (HC(u),HonCont(u)) ≤ ξ′ and val(Πu) ≥ δ, it
holds that

SD
(

BiasedCont
(ξ,δ,HC)
Π (u, 1),BiasedCont(u, 1)

)
≤ t · ξ′ + ξ. (69)

This suffices to complete the proof since that case for val(Πu) ≤ 1 − δ is analogous and since the
probability that Π generates a node u such that SD (HC(u),HonContΠ(u)) > ξ′ is at most ξ′.

Let u ∈ V(Π) with SD (HC(u),HonContΠ(u)) ≤ ξ′ and val(Πu) ≥ δ. Define the following
algorithm, implementing the well-known rejection sampling strategy.

Algorithm 4.32 (̂BiasedCont).

Operation:

1. Do (forever):

(a) Set ` := HonCont(u).

(b) If χΠ(`) = 1, return `|u|+1.

. .

It is not difficult to verify that the probability that ̂BiasedCont does not halt is zero, and thus
̂BiasedCont ≡ BiasedCont(u, 1), and that

SD
(

BiasedCont
(ξ,δ,HonCont)
Π (u, 1), ̂BiasedCont

)
≤ Pr

[
BiasedCont

(ξ,δ,HonCont)
Π (u, 1) =⊥

]
. (70)

We compute

Pr
[
BiasedCont

(ξ,δ,HonCont)
Π (u, 1) =⊥

]
=
(
Pr`←HonCont(u) [χΠ(`) = 0]

)t
≤ (1− δ)t

≤ ξ,

72

where the first inequality follows since val(Πu) ≥ δ and the last inequality follows from the

choice of t. Moreover, since BiasedCont
(ξ,δ,HC)
Π makes t calls to its oracle, the assumption that

SD (HonCont(u),HC(u)) ≤ ξ′ and a standard hybrid argument yield that

SD
(

BiasedCont
(ξ,δ,HonCont)
Π (u, 1),BiasedCont

(ξ,δ,HC)
Π (u, 1)

)
≤ t · ξ,

which completes the proof. �

Having developed the necessary tools, we can now analyze the efficiency of the pruning-in-the-
head attacker.

Proof of Lemma 4.23. We begin by giving a proof for Item 1 by showing that A
(k,ξ,δ)

Π̃
uses at most∑k

i=1m
i ·
⌈

log(1/ξ)
log(1/(1−δ))

⌉i
· ρHonCont random bits. We then explain how to extend this analysis to

prove Item 2.
For the base case k = 1, note that by definition, the protocol Π̃ is stateless. Thus, by Claim 4.29,

algorithm HonContSL
Π̃

is a 0-honest continuator for Π̃, which uses at most m · ρHonCont random

coins (in Π̃ the parties make a single call to EstξΠ and HonContξΠ for every round; EstξΠ is as-
sumed to be deterministic and thus no random coins are needed for calling it). Note that a

call to A
(1,ξ,δ)

Π̃
simply calls BiasedContξ,δ

Π̃
, the fixed (ξ, δ)-biased continuator for Π̃ (see Defini-

tion 4.1). We now set BiasedContξ,δ
Π̃

:= BiasedCont
(ξ,δ,HonContSL

Π̃
)

Π̃
, which, by Claim 4.31 and since

HonContSL
Π̃

is a 0-honest continuator for Π̃, is a (ξ, δ)-biased continuator for Π̃.49 By the definition

of BiasedCont
(ξ,δ,HonContSL

Π̃
)

Π̃
(in Algorithm 4.30), it makes

⌈
log(1/ξ)

log(1/(1−δ))

⌉
calls to HonContSL

Π̃
, each

with fresh randomness. All in all, A
(1,ξ,δ)

Π̃
uses at most m ·

⌈
log(1/ξ)

log(1/(1−δ))

⌉
· ρHonCont random bits,

which completes the proof of the base case.

Assume the lemma holds for k−1, and let Π̃(k−1) =
(

A
(k−1,ξ,δ)

Π̃
, B̃
)

, where B̃ is the party taking

the role of B in Π̃. As in the base case, note that A
(k,ξ,δ)

Π̃
simply calls BiasedContξ,δ

Π̃(k−1)
, the fixed

(ξ, δ)-biased continuator for Π̃(k−1). We now set BiasedContξ,δ
Π̃(k−1)

:= BiasedCont
(ξ,δ,HonContSL

Π̃(k−1))

Π̃(k−1)

and argue that this is valid (i.e., the latter algorithm is a (ξ, δ)-biased continuator for Π(k−1)).

By definition, A
(k−1,ξ,δ)

Π̃
is stateless, and thus Π̃(k−1) is a stateless protocol. By Claim 4.29,

algorithm HonContSL
Π̃(k−1) is a 0-honest continuator for Π̃(k−1). Furthermore, for every A’s

turn, HonContSL
Π̃(k−1) chooses random bits for A

(k−1,ξ,δ)

Π̃
, which by the induction hypothe-

sis are at most
∑k−1

i=1 m
i ·
⌈

log(1/ξ)
log(1/(1−δ))

⌉i
· ρHonCont; and for every B’s turn HonContSL

Π̃(k−1)

chooses random bits for B̃, which are at most ρHonCont. Overall, HonContSL
Π̃(k−1) uses at most

m ·
∑k−1

i=1 m
i ·
⌈

log(1/ξ)
log(1/(1−δ))

⌉i
· ρHonCont + m · ρHonCont random bits. Now, same arguments from the

base case yield that BiasedCont
(ξ,δ,HonContSL

Π̃(k−1))

Π̃(k−1)
is a (ξ, δ)-biased continuator for Π(k−1) that uses

49All the previously claimed properties of A
(i,ξ,δ)

Π̃
are true for an arbitrary fixing of a (ξ, δ)-biased continuator.

Specifically, they are true for this fixing.

73

at most ⌈
log(1/ξ)

log(1/(1− δ))

⌉
·

(
m ·

k−1∑
i=1

mi ·
⌈

log(1/ξ)

log(1/(1− δ))

⌉i
· ρ ˜HonCont

+m · ρ ˜HonCont

)
=

k∑
i=1

mi ·
⌈

log(1/ξ)

log(1/(1− δ))

⌉i
· ρ ˜HonCont

,

random bits, which completes the induction step.
To see that Item 2 holds, note that the running time of HonContSL

Π̃
is m · (TEst + THonCont).

The same calculations from above can be used to prove this item by replacing ρHonCont with
(TEst + THonCont). �

4.3 The Pruning-in-the-Head Attacker

In the previous section we showed that the recursive approximated biased-continuation attacker
successfully biases protocols, as long as these protocols are close to being pruned. Most protocols,
however, do not possess the latter property. In this section we design an attacker that biases any
protocol, while relying on the results of the previous section. This attacker applies the approximated
biased-continuation attacker as if the attacked protocol is pruned, until it reaches a low or high
value node, and then it switches its behavior to act honestly.

We begin with providing an intuition as to why this approach works in the ideal case. Consider
the ideal pruned variant of a protocol pruned at some constant δ, which we denote by Π[δ] =(
A[δ],B[δ]

)
(see Definition 4.10). The ideal pruned protocol is itself a protocol, and the results of

Section 3 apply to it. Specifically, and without loss of generality, Theorem 3.3 yields that
(
A[δ]
)(k)

successfully biases Π[δ]. Let A(k,δ) be the following attacker: until reaching a pruned node according

to δ (i.e., a node whose value is lower than δ or higher than 1−δ), it acts like
(
A[δ]
)(k)

; when reaching

a pruned node, and in the rest of the execution, it acts like the honest party A. A(k,δ) “thinks” —
“in its head” — it is actually attacking the pruned variant of the protocol, instead of the original
protocol.

We argue that A(k,δ) biases the original protocol almost as well as
(
A[δ]
)(k)

biases the ideal

pruned protocol. Consider the protocols
((

A[δ]
)(k)

,B[δ]
)

and
(
A(k,δ),B

)
. On unpruned nodes, both

protocols act the same. On low-value nodes, the protocols might have different control schemes,

but their outputs share the same distribution. On high-value nodes, the value of
((

A[δ]
)(k)

,B[δ]
)

might be as high as 1, since
(
A[δ]
)(k)

attacks such nodes; in
(
A(k,δ),B

)
, when a high-value node is

reached, A(k,δ) acts honestly, but since this is a high-value node, its value is at least 1 − δ. All in
all, the values of the two protocols differ by at most δ.

In the rest of this section we extend the above intuition for approximated attackers attacking
approximated pruned protocols. Specifically, we give an approximated variant of A(k,δ) — which we
call the Pruning-in-the-Head attacker — and show that it biases any protocol Π almost as well as
the recursive approximated biased-continuation attacker biases the δ-approximated pruned variant
of Π.

Algorithm 4.33 (Â
(i,ξ,δ)
Π).

74

Input: transcript u ∈ {0, 1}∗.

Notation: let Π̃ = Π[2δ,ξ] and let F = frnt

(
Small

2δ,EstξΠ
Π ∪ Large

2δ,EstξΠ
Π

)
.

Operation:

1. If u ∈ L(Π), output χΠ(u) and halt.

2. Set msg as follows.

• If u ∈ desc (F), set msg = HonContξΠ(u).

• Otherwise, set msg = A
(i,ξ,δ)

Π̃
(u) (see Algorithm 4.2).

3. Send msg to B.

4. If u′ = u ◦msg ∈ L(Π), output χΠ(u′).
. .

The next lemma gives a lower bound on the success probability of the pruning-in-the-head
attacker. It states that if a given protocol Π does not have many nodes whose value is close to
2δ, then the above algorithm (i.e., the pruning-in-the-head attacker) biases Π almost as well as the
approximated attacker biases the approximated pruned protocol.

Lemma 4.34. Let 0 < δ ≤ δ′ ≤ 1
4 , let c = c(δ) be according to Lemma 4.6, let ξ ∈ (0, 1) and let

Π̃ =
(

Ã, B̃
)

= Π[2δ′,ξ] be the (2δ′, ξ)-approximately pruned variant of an m-round protocol Π. Then

val
(

Â
(k,ξ,δ′)
Π ,B

)
≥ val

(
A

(k)

Π̃
, B̃
)
− 2δ′ − 2 · (m+ 1) ·

√
ξ

− 2 · φBal(
√
ξ + 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ)

− 3 · φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ),

for every k ∈ N and γ = (γ1, . . . , γk) with γi > 1 for every i ∈ [k].

4.3.1 Proving Lemma 4.34

The idea of the proof is to establish the above intuition for the pruning-in-the-head attacker, which
uses an honest continuator and an estimator. This intuition indeed holds when the pruning-in-
the-head attacker does not generate transcripts on which its approximating oracles fail; thus we
need to bound the probability of hitting such transcripts. The probability of the original protocol
to hit such failing transcripts is small, and thus we can use the results of the previous section
(Proposition 4.22) to argue that this probability remains small even for the recursive approximated
biased-continuation attacker, when attacking the approximated pruned protocol. Consider the
following cases:

1. If the failing transcript precedes the pruned transcript (high- or low-value transcripts),
then the pruning-in-the-head attacker behaves just like the recursive approximated biased-
continuation attacker, so the probability remains small.

2. If the pruned transcript precedes the failing one, then we must consider two additional cases.

75

(a) In the first case, the probability of the original protocol to hit a pruned transcripts is
small, and in this case we are done by the above argument since, until reaching a pruned
transcript, both attackers behave in exactly the same way.

(b) In the second case, the probability of the original protocol to hit pruned transcript is
high. In this case, however, the probability of the original protocol to generate failing
transcripts given that the protocol reached a pruned transcript is small. Since the
pruning-in-the-head attacker behaves just like the original protocol once it reaches a
pruned transcript, the probability of generating failing transcripts in this case remains
small.

All in all, we get that the probability that the pruning-in-the-head attacker will hit transcripts on
which its approximating oracles fail is small, and thus the intuition from the ideal case applies.

Moving to the formal proof, fix δ′, ξ, k and γ as described in the statement of the lemma, and

let Π̃ =
(

Ã, B̃
)

= Π[2δ′,ξ]. Consider the (hybrid) protocols Π0, . . . ,Π5. Let Π0 =
(

Â
(k,ξ,δ′)
Π ,B

)
,

Π4 =
(

A
(k,δ′,ξ)

Π̃
, B̃
)

, and Π5 =
(

A
(k)

Π̃
, B̃
)

. The remaining protocols are defined using the following

sets:

• FailContξ := frnt
({
u ∈ V(Π): SD

(
HonContΠξ(u),HonCont(u)

)
> ξ
})

.

• Large := frnt
(
Large2δ′,ξ

Π \ desc
(
FailContξ ∪ Small2δ

′,ξ
Π

))
.

• Small := frnt
(
Small2δ

′,ξ
Π \ desc

(
FailContξ ∪ Large2δ′,ξ

Π

))
.

• FailContMid := FailContξ \ desc (Large ∪ Small).

• FailContLarge := FailContξ ∩ desc (Large).

• FailContSmall := FailContξ ∩ desc (Small).

• FailEst :=
{
u ∈ V(Π): val(Πu) < 1− 2δ′ − ξ ∧ EstξΠ(u) > 1− 2δ′

}
.

• FailEstLarge := FailEst ∩ Large.

• FailEstSmall := FailEst ∩ Small.

Note that FailContMid, Large and Small are disjoint, and that FailContLarge and FailContSmall
are proper descendants of Large and Small respectively. In all the protocols described below, the
control scheme and the coloring function are identical to those of Π0.

• Π1: Both parties act as in Π4, with the following exception the first time the parties reach
a node u ∈ FailContMid ∪ Large ∪ Small. If u ∈ FailContMid, the parties act as in Π0 until
reaching a leaf. If u ∈ Large the parties act as in Π, except when first reaching a node in
FailContLarge, where the parties then act as in Π0 until reaching a leaf. If u ∈ Small the
parties act as in Π, except when first reaching a node in FailContSmall, where the parties
then act as in Π0 until reaching a leaf.

76

• Π2: Both parties act as in Π1, with the following exception the first time the parties reach a
node u ∈ FailContMid ∪ FailContLarge ∪ FailContSmall. If u ∈ FailContMid ∪ FailContSmall,
the parties act as in Π4 until reaching a leaf. If u ∈ FailContLarge, the parties act as in Π
until reaching a leaf.

• Π3: Both parties act as in Π2, with the following exception the first time the parties reach a
node u ∈ FailEstLarge ∪ FailEstSmall, where the parties act as in Π4.

The following sequence of claims, bounding the statistical distance between each pair of “neigh-

boring” protocols, yields that
(

Â
(k,ξ,δ′)
Π ,B

)
and

(
A

(k)

Π̃
, B̃
)

are close, and the proof of the lemma

follows.

Claim 4.35. It holds that SD (〈Π0〉, 〈Π1〉) ≤ m · ξ.

Proof. The difference between the protocols is as follows.

• For nodes not in desc (FailContMid ∪ Large ∪ Small): Π0 behaves like
(

A
(k,ξ,δ′)

Π̃
,B
)

; namely

if u is controlled by A, then the next message in Π0 is A
(k,ξ,δ′)

Π̃
(u) and if u is controlled by B,

then the next message in Π0 is HonCont(u). Π1 behaves like
(

A
(k,ξ,δ′)

Π̃
, B̃
)

; namely it behaves

the same as Π0 if u is controlled by A, and if u is controlled by B, then the next message in
Π0 is HonContξΠ(u).

• For nodes in desc (FailContMid): both protocols behave like Π0.

• For nodes in desc (Large) \ desc (FailContLarge) or in desc (Small) \ desc (FailContSmall): Π0

acts as
(

Ã,B
)

; namely if u is controlled by A, then the next message in Π0 is HonContξΠ(u)

and if u is controlled by B, then the next message in Π0 is HonContΠ(u). Π1 behaves like
(A,B); namely the next message in Π0 is always HonContΠ(u).

• For nodes in desc (FailContLarge) or in desc (FailContSmall): both protocols behave like Π0.

From the above case analysis, we can see that the differences between the two protocols are in
nodes where one protocols calls HonContΠ(u) and the other calls HonContξΠ(u), all for nodes u not
in FailContξ. Since there are at most m such calls, the claim follows. �

Claim 4.36. It holds that

SD (〈Π1〉, 〈Π2〉) ≤
√
ξ + 2 · φBal(

√
ξ + 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ)

+ 2 · φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ).

Proof. Since Π1 and Π2 are identical until reaching nodes in FailContMid ∪ FailContLarge ∪
FailContSmall, it holds that

SD (〈Π1〉, 〈Π2〉) ≤ Pr〈Π1〉 [desc (FailContMid ∪ FailContLarge ∪ FailContSmall)] (71)

≤ Pr〈Π1〉 [desc (FailContMid)] + Pr〈Π1〉 [desc (FailContLarge ∪ FailContSmall)] .

To conclude the proof we upper-bound the above two right-hand side terms.
The definition of HonContξΠ yields that both Pr〈Π〉 [desc (FailContMid)] and

77

Pr〈Π〉 [desc (FailContLarge ∪ FailContSmall)] are at most ξ, and the definition of Π1 yields
that

Pr〈Π1〉 [desc (FailContMid)] (72)

= Pr〈
A

(i,ξ,δ′)
Π̃

,kB̃
〉 [desc (FailContMid)]

≤ φBal(ξ + 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ) + φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ),

where the inequality follows from Proposition 4.22. This bounds one right-hand side term of
Equation (71). To bound the second term we show that

Pr〈Π1〉 [desc (FailContLarge ∪ FailContSmall)] (73)

≤
√
ξ + φBal(

√
ξ + 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ) + φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ),

which completes the proof of the claim.
Let α = Pr〈

A
(k,ξ,δ′)
Π̃

,B̃
〉 [desc (Large ∪ Small)] and

β = Pr〈Π〉 [desc (FailContLarge ∪ FailContSmall) | desc (Large ∪ Small)]. The definition of Π1 yields
that

Pr〈Π1〉 [desc (FailContLarge ∪ FailContSmall)] = α · β. (74)

Assuming without loss of generality that β >
√
ξ (as otherwise Equation (73) holds trivially) and

since ξ ≥ Pr〈Π〉 [desc (FailContLarge ∪ FailContSmall)] = Pr〈Π〉 [desc (Large ∪ Small)] · β, it follows
that Pr〈Π〉 [desc (Large ∪ Small)] ≤

√
ξ. Using Proposition 4.22 again, we get that

α ≤ φBal(
√
ξ + 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ) + φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ),

and Equation (73) follows since α, β ≤ 1 and thus α · β ≤ α+ β. �

Claim 4.37. It holds that

SD (〈Π2〉, 〈Π3〉) ≤ φBal(ξ + 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ)

+ φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ).

Proof. Π2 and Π3 are identical until reaching nodes in FailEstLarge ∪ FailEstSmall and until then

they both behave like
(

A
(k,ξ,δ′)

Π̃
, B̃
)

. Thus, it holds that

SD (〈Π2〉, 〈Π3〉) ≤ Pr〈
A

(k,ξ,δ′)
Π̃

,B̃
〉 [desc (FailEstLarge ∪ FailEstSmall)] .

By the definition of EstξΠ, it holds that Pr〈Π〉 [desc (FailEstLarge ∪ FailEstSmall)] ≤ ξ, and the claim
follows Proposition 4.22. �

Claim 4.38. It holds that val(Π4)− val(Π3) ≤ 2 · δ′ + (m+ 1) · ξ.

Proof. Π3 and Π4 are identical until reaching nodes in Large \FailEstLarge or Small \FailEstSmall.
Thus, it holds that

val(Π4)− val(Π3) ≤ max
u∈Large\FailEstLarge∪Small\FailEstSmall

{val((Π4)u)− val((Π3)u)} . (75)

Let u be a node in which the above maximum reaches it value. The proof splits according to the
set containing u.

78

u ∈ Large \ FailEstLarge: Since u ∈ Large, it holds that EstξΠ(u) ≥ 1 − 2δ′, and since u /∈
FailEstLarge, it holds that val(Πu) ≥ 1−2δ′−ξ. Furthermore, the definition of Π3 yields that
val((Π3)u) = val(Πu), and it always holds that val((Π4)u) ≤ 1. Thus val((Π4)u)−val((Π3)u) ≤
2δ′ + ξ.

u ∈ Small \ FailEstSmall: The protocols (Π3)u and (Π4)u differ only in nodes in desc (u) \
desc (FailContSmall). If v is such a node then (Π3)u behaves like Π; namely the next mes-

sage in (Π3)u is HonContΠ(v). (Π4)u behaves like
(

A
(k,ξ,δ′)

Π̃
, B̃
)

; namely the next message

in (Π4)u is HonContξΠ(v) (u is in Small
2δ′,EstξΠ
Π , so v is under B̃’s control, and it simply calls

HonContξΠ(v)).

Since all the above calls are not in FailContSmall, and there are at most m such calls, it holds
that SD (〈(Π3)u〉, 〈(Π4)u〉) ≤ m · ξ. It follows that val((Π4)u)− val((Π3)u) ≤ m · ξ.

�

Claim 4.39. SD (〈Π4〉, 〈Π5〉) ≤ φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ).

Proof. This is exactly the statement of Lemma 4.21. �

4.3.2 Implementing the Pruning-in-the-Head Attacker Using an Honest Continuator

The pruning-in-the-head attacker (Algorithm 4.33) requires three algorithms: honest-continuator,
estimator (both defined with respect to the attacked protocol), and the approximated biased-
continuation attacker. We have already seen (Lemma 4.23) that the approximated biased-
continuation attacker can be implemented using only an honest continuator. Here we take one
more step and show how to implement an estimator using an honest continuator. This will al-
most immediately give us the implementation of the pruning-in-the-head attacker using only an
honest-continuator for the attacked protocol. Specifically, the technical details of the estimator’s
implementation require us to slightly tweak the pruning-in-the-head attacker, so we can implement
it efficiently.

From honest continuation to estimation. Turning an honest continuator into a randomized
estimator is straightforward: given a transcript u, sample many honest continuations from u and re-
turn the mean of the parties’ common outcome bit of these continuations. The pruning-in-the-head
attacker, however, requires a deterministic estimator. By using standard techniques (polynomially
many repetitions to get an exponentially small error, and then union bound over all possible partial
transcripts) we can fix, at random, the coins of the randomized estimator in order to obtain, with
high probability, a sufficiently good deterministic estimator.

Algorithm 4.40 (Est
(ξ,HC)
Π).

Parameters: ξ ∈ (0, 1).

Oracle: algorithm HC.

Input: transcript u ∈ V(Π).

Operation:

1. Set sum = 0 and s =

⌈
ln
(

2m+1

ξ

)
ξ2/2

⌉
.

79

2. For i = 1 to s: sum = sum+ χΠ(HC(u)).

3. Return sum/s.
. .

As before, we omit the subscript Π from the above notation of the algorithm. We also use the
following convention.

Notation 4.41. Let ρEst be an upper bound on the number of random bits used by Est in a single

call (i.e., the number of random coins used to call HC times s). For r ∈ {0, 1}ρEst, let Est
(ξ,HC)
r

denote the deterministic algorithm defined by hard-wiring r into the randomness of Est(ξ,δ,HC).

Claim 4.42. Let Π be an m-round protocol and let ξ ∈ (0, 1). Assume that HC is a ξ/2-honest
continuator for Π. Then

Prr←{0,1}ρEst
[
Est(ξ,HC)

r is a ξ-estimator for Π
]
≥ 1− ξ.

Proof. For ease of notation, let Estr = Est
(ξ,HC)
r . For u ∈ V(Π) let µu = E`←HC(u) [χ(`)], and for

r ∈ {0, 1}ρEst let Ar denote the event that ∀u ∈ V(Π) \ L(Π): |Estr(u)− µu| ≤ ξ/2. The proof is
an immediate conclusion from the following two simple observations.

(1) Estr is a ξ-estimator for Π, ∀r ∈ {0, 1}ρEst for which Ar occurs.

(2) Prr←{0,1}ρEst [¬Ar] ≤ ξ.

Proof of (1): Compute

Pr`←〈Π〉
[
∃i ∈ (m− 1) :

∣∣Estr(`1,...,i)− val(Π`1,...,i)
∣∣ > ξ

]
(76)

≤ Pr`←〈Π〉
[
∃i ∈ (m− 1) :

∣∣Estr(`1,...,i)− µ`1,...,i
∣∣ > ξ/2 ∨

∣∣µ`1,...,i − val(Π`1,...,i)
∣∣ > ξ/2

]
≤ Pr`←〈Π〉

[
∃i ∈ (m− 1) :

∣∣Estr(`1,...,i)− µ`1,...,i
∣∣ > ξ/2

]
+ Pr`←〈Π〉

[
∃i ∈ (m− 1) :

∣∣µ`1,...,i − val(Π`1,...,i)
∣∣ > ξ/2

]
.

Since, by assumption, Ar occurs, the first summand of the right-hand side of Equation (76) is zero.
Furthermore, since HC is a ξ/2-honest continuator for Π, we bound the second summand of the
right-hand side of Equation (76):

Pr`←〈Π〉
[
∃i ∈ (m− 1) :

∣∣µ`1,...,i − val(Π`1,...,i)
∣∣ > ξ/2

]
≤ Pr`←〈Π〉 [∃i ∈ (m− 1) : SD (HC(`1,...,i),HonContΠ(`1,...,i)) > ξ/2]

≤ ξ/2 ≤ ξ.

Plugging the above into Equation (76) completes the proof.

Proof of (2): We use the following fact derived from Hoeffding’s bound.

Fact 4.43 (sampling). Let t ≥
ln
(

2
γ

)
2·ε2 , let X1, . . . , Xt ∈ [0, 1] be iid Boolean random variables, and

let µ = E[Xi]. Then Pr
[∣∣1
t

∑t
i=1Xi − µ

∣∣ ≥ ε] ≤ γ.

80

Inserting ε := ξ/2 and γ := ξ/2m into Fact 4.43 yields that

Prr←{0,1}ρEst [|Estr(u)− µu| > ξ/2] ≤ ξ

2m
(77)

for every u ∈ V(Π) \ L(Π), and a union bound yields that

Prr←{0,1}ρEst [¬Ar] = Prr←{0,1}ρEst [∃u ∈ V(Π) \ L(Π): |Estr(u)− µu| > ξ/2]

≤
∑

u∈V(Π)\L(Π)

Prr←{0,1}ρEst [|Estr(u)− µu| > ξ/2]

≤
∑

u∈V(Π)\L(Π)

ξ

2m
= ξ.

�

Tweaking the pruning-in-the-head attacker. The “tweaked” pruning-in-the-head attacker
invokes the pruning-in-the-head attacker, while implementing the estimator using Algorithm 4.40.
Since the pruning-in-the-head attacker requires the estimator to be deterministic, the “tweaked”
attacker fixes the estimator’s randomness for the entire execution.

Definition 4.44. Let Π be an m-round protocol and let HC be an algorithm. The algorithm

Ã
(k,ξ,δ,HC)
Π operates as follows. Before the first call to it, Ã

(k,ξ,δ,HC)
Π sets HonContξΠ := HC and

EstξΠ := Est
(ξ,HonContξΠ)

Π,r , where the latter is Algorithm 4.40 when its coins are fixed to r, chosen

uniformly at random. Now, when Ã
(k,ξ,δ,HC)
Π is called with transcript u, it replies with Â

(k,ξ,δ)
Π (u),

the answer of the pruning-in-the-head attacker from Algorithm 4.33.

Lemma 4.45. Let Π = (A,B) be an m-round protocol, let 0 < δ ≤ δ′ ≤ 1
4 and let ξ ∈ (0, 1).

Assume that HC is a ξ/2-honest continuator for Π that uses ρHC random bits and runs in time

THC. Then, the algorithm Ã
(i,ξ,δ′,HC)
Π has the following properties:

1. Let Π̃ =
(

Ã, B̃
)

= Π[2δ′,ξ] be the (2δ′, ξ)-approximately pruned variant of Π. It holds that

val
(

Ã
(k,ξ,δ′,HC)
Π ,B

)
≥ val

(
A

(k)

Π̃
, B̃
)
− 2δ′ − 2 · (m+ 1) ·

√
ξ − ξ (78)

− 2 · φBal(
√
ξ + 2 ·m · ξ, borderΠ(2δ′, ξ) + 4 ·m · ξ/δ′, δ,γ)

− 3 · φIt(borderΠ(2δ′, ξ), ξ,m, δ, δ′,γ),

for every k ∈ N and γ = (γ1, . . . , γk) with γi > 1 for every i ∈ [k].

2. Ã
(k,ξ,δ′,HC)
Π uses at most k ·mk ·

⌈
log(1/ξ)

log(1/(1−δ))

⌉k
· ρHC +

⌈
ln
(

2m+1

ξ

)
ξ2/2

⌉
· ρHC random bits.

3. Ã
(k,ξ,δ′,HC)
Π ’s running time is at most 2 · k ·mk ·

⌈
log(1/ξ)

log(1/(1−δ))

⌉k
·

⌈
ln
(

2m+1

ξ

)
ξ2/2

⌉
· THC.

81

Proof. Let Π̃ = Π[2δ′,ξ]. We prove each item separately.

Proof of (1): This immediately follows from Lemma 4.34 and Claim 4.42. (Note the extra ξ

term in the right-hand side of Equation (78), which accounts for the probability that EstξΠ is not a
ξ-estimator.)

Proof of (2): The proof follows from Lemma 4.23(1). Ã
(k,ξ,δ′,HC)
Π chooses random bits for the

estimator, and then either chooses random bits for A
(k,,ξ,δ)

Π̃
or HonContξΠ. We focus on the former

case, as A
(k,ξ,δ)

Π̃
uses more random bits than HonContξΠ. Since HonContξΠ was set to HC, the number

of random bits it uses is ρHC. Thus, by Lemma 4.23(1), the number of random bits used for all calls

to A
(k,,ξ,δ)

Π̃
is at most k ·mk ·

⌈
log(1/ξ)

log(1/(1−δ′))

⌉k
· ρHC ≤ k ·mk ·

⌈
log(1/ξ)

log(1/(1−δ))

⌉k
· ρHC. Adding the number

of random bits the estimator uses, which, by Algorithm 4.40, is

⌈
ln
(

2m+1

ξ

)
ξ2/2

⌉
· ρHC, completes the

proof.

Proof of (3): The proof follows from Lemma 4.23(2). Ã
(k,ξ,δ′,HC)
Π makes a single call to EstξΠ, and

then either calls A
(k,ξ,δ)

Π̃
or HonContξΠ.50 We focus on the former case, as the running time of A

(k,ξ,δ)

Π̃

is longer than that of HonContξΠ.Since HonContξΠ was set to HC, the running time of HonContξΠ is

THC, and by Algorithm 4.40 the running time of EstξΠ is

⌈
ln
(

2m+1

ξ

)
ξ2/2

⌉
· THC. By Lemma 4.23(2), the

running time of Ã
(k,ξ,δ′,HC)
Π is thus

k ·mk

⌈
log(1/ξ)

log(1/(1− δ′))

⌉iTHC +


ln
(

2m+1

ξ

)
ξ2/2

 · THC
+


ln
(

2m+1

ξ

)
ξ2/2

 · THC ≤
2 · k ·mk ·

⌈
log(1/ξ)

log(1/(1− δ))

⌉k
·


ln
(

2m+1

ξ

)
ξ2/2

 · THC,
which completes the proof. �

For Lemma 4.45 to be useful, we need the two last terms in Equation (78) to be small, and
specifically borderΠ(2δ′, ξ) to be small. Proposition 4.19 yields that there is a choice for δ′ such
that borderΠ(2δ′, ξ) is small, and that this choice can be made from a polynomial-sized set. When
using the above attack (see the next section), we will iterate over the polynomially-many different
choices of δ′, to find a value with respect to which the above terms are indeed small.

4.4 Main Theorem — Constructing an Efficient Attacker

We are finally ready to state and prove our main result – the existence of any constant bias (even
weak) coin-flipping protocol implies the existence of one-way functions.

In the following we consider both protocols and algorithms that get a security parameter,
written in unary, as input (sometimes, in addition to other input), and protocols and algorithms

50As written in Algorithm 4.33, Ã
(k,ξ,δ′,HC)
Π might make m calls to EstξΠ (checking whether u ∈ desc (F) in step 2

of the algorithm). This, however, can be easily avoided by having the attacker keep a state.

82

that do not get a security parameter, as we did in previous sections. We refer to the former type
as parametrized and to the latter type as non-parametrized. It will be clear from the context
whether we consider a parametrized or non-parametrized entity. In particular, a poly-time entity
whose running time is measured as a function of its security parameter is by definition parametrized.
Given a parametrized protocol Π and n ∈ N, let Πn be its non-parametrized variant with the security
parameter 1n hardwired into the parties’ code. We apply similar notation also for parametrized
algorithms.

Theorem 4.46 (main theorem, restatement of Theorem 1.1). Assume one-way functions do not
exist. Then for every ppt coin-flipping protocol Π = (A,B) and ε > 0, there exist pptm’s A and B
such that the following hold for infinitely many n’s.

1. Pr [out(A(1),B)(1n)] ≥ 1− ε or Pr [out(A,B(0))(1n)] ≤ ε, and

2. Pr [out(A(0),B)(1n)] ≤ ε or Pr [out(A,B(1))(1n)] ≥ 1− ε.

The proof of Theorem 4.46 follows from Theorem 3.3 and Lemma 4.45 together with the fol-
lowing lemma, which shows how to implement an efficient honest continuator assuming OWFs do
not exist.

Lemma 4.47. Assume one-way functions do not exist. Then for any ppt coin-flipping protocol
Π = (A,B) and p ∈ poly, there exists a pptm algorithm HC such that HCn is a 1/p(n)-honest
continuator for Πn for infinitely many n’s.

The proof of Lemma 4.47 is given below, but we first we use it to prove Theorem 4.46.

Proof of Theorem 4.46. We focus on proving the first part of the theorem, and the second, sym-
metric part follows the same arguments.

Let δ = ε/8, and let ξ(n) = 1/p(n) < (2δ)2

16m(n)2 for some large enough p ∈ poly to be determined

by the analysis. Let HC be the algorithm guaranteed by Lemma 4.47, such that HCn is an ξ(n)/2-
honest continuator for Πn for every n in an infinite set I ⊆ N. For n ∈ I, let δ′n ∈ [δ/2, δ] be
such that borderΠn(2δ′n, ξ(n)) ≤ m(n) ·

√
2ξ(n), guaranteed to exist from Proposition 4.19.51 Let

Π̃n =
(

Ãn, B̃n
)

= Πn
[2δ′n,ξ] be the (2δ′n, ξ)-approximately pruned variant of Πn and let κ = κ(ε/2)

be such that val
(

A
(k)

Π̃n
, B̃n

)
> 1 − ε/2 or val

(
Ãn,B

(k)

Π̃n

)
< ε/2, guaranteed to exist for every n ∈ I

from Theorem 3.3. Assume without loss of generality that there exists an infinite set I ′ ⊆ I such
that

val
(

A
(k)

Π̃n
, B̃n

)
> 1− ε/2 (79)

for every n ∈ I ′, and let c = c(δ/2) from Lemma 4.6. Note that the bound in Lemma 4.6 holds for
any δ′ ≥ δ/2 as well. Let γ = (γ1, . . . , γκ) be such that γi ∈ poly for every i, to be determined by
the analysis, and let γn = (γ1(n), . . . , γκ(n)). We recall that κ ∈ N is constant depending only on
ε from Theorem 3.3, and not a function of n.

51By the choice of ξ and by Proposition 4.19 there exists δ′′ ∈ [δ, 2δ] such that borderΠn(δ′′, ξ(n)) ≤ m(n) ·
√

2ξ(n).
Now we can set δ′ = δ′′/2.

83

After preparing the background, we are now ready to determine the rest of the parameters.
Compute

φIt(borderΠn(2δ′n, ξ(n)), ξ(n),m(n), δ, δ′n,γn)

= κ ·
30κ ·m(n)κ ·

∏κ
i=1 γi(n)

δ′n
2κ ·

(
m(n) ·

√
2ξ(n) +

9 ·m(n) · ξ(n)

δ′n

)
(80)

+

κ∑
i=1

2κ−i+2 ·
30κ−i ·m(n)κ−i ·

∏κ
j=i+1 γj(n)

δ′n
2(κ−i) · γi(n)c

. (81)

Set γκ ∈ poly such that 4/γκ(n)c ∈ o(1) (all asymptotic notations are with respect to n). For

i ∈ [κ− 1], set γi ∈ poly such that 2κ−i+2 · 30κ−i·m(n)κ−i·
∏κ
j=i+1 γj(n)

δ′n
2(κ−i)·γi(n)c

∈ o(1) (this can be done by first

setting γκ−1, then γκ−2, and so on). Since κ and c are fixed and independent of n, it is guaranteed
that such settings for γ exist, and that the term in Equation (81) is in o(1). After setting γ, and
since δ′n is bounded in [δ/2, δ] and κ and c are independent of n, the term in Equation (80) can be
bound by

√
ξ(n) · poly(n). Hence, we can now set ξ(n) = 1/p(n), such that p ∈ poly and the term

in Equation (80) is also in o(1). Compute

φBal(
√
ξ(n) + 2 ·m(n) · ξ(n), borderΠn(2δ′n, ξ(n)) + 4 ·m(n) · ξ(n)/δ′n, δ/2,γn) (82)

=

(√
ξ(n) + 2 ·m(n) · ξ(n) +m(n) ·

√
2ξ(n) +

4 ·m(n) · ξ(n)

δ′n

)
·
κ∏
i=1

γi(n) + 2 ·
κ∑
i=1

·
∏κ
j=i+1 γj(n)

γi(n)c
.

By our choice of parameters the right-hand side (and thus the left-hand side) of Equation (82) is
in o(1). Hence, Lemma 4.45(1) yields that

val
(

Ã
(κ,ξ(n),δ′n,HCn)
Πn

,BΠn

)
≥ val

(
A

(k)

Π̃n
, B̃n

)
− 3δ′ − o(1) ≥ 1− ε

2
− ε

4
− o(1). (83)

Our final adversary A(1) is defined as follows: on input 1n, it checks all possible candidates

for δ′n from Proposition 4.19, estimates the value of Π̃δ′n :=
(

Ã
(κ,ξ(n),δ′n,HCn)
Πn

,BΠn

)
by running the

latter for polynomially-many times, sets δ∗n to be the value that maximizes Π̃δ′n , and then, when

interacting with B, it behaves like Ã
(κ,ξ,δ∗n,HCn)
Πn

. Since A(1) estimates the value of Π̃δ′n for polynomial

many times, it estimates the value of Π̃δ′n to be at least 1 − 3ε/4 − o(1) with exponentially small
probability. Thus,

Pr [out(A(1),B)(1n)] ≥ val
(

Â
(κ,δ′n,ξ(n),HCn)
Πn

,BΠn

)
− o(1) ≥ 1− 3ε/4− o(1) ≥ 1− ε (84)

for large enough n ∈ I ′.
The last step is to argue that A(1) is efficient. By our choice of parameters, the fact that κ is

constant (i.e., independent of n) and HC is pptm, Lemma 4.45(2,3) yields that Ã
(κ,ξ(n),δ′n,HCn)
Πn

is a
pptm. Since there are only poly(n) possibilities for setting δ′n, it follows that the running time of
A(1) is also is poly(n). �

It is left to prove Lemma 4.47.

84

Proof of Lemma 4.47. Let m(n) = round(Πn), and let ρA(n) and ρB(n) be, respectively, the (maxi-
mal) number of random bits used by A and B on common input 1n. Consider the transcript function
fΠ over 1∗ × {0, 1}ρA(n) × {0, 1}ρB(n) × (m(n)− 1), defined by

fΠ(1n, rA, rB, i) = 1n, trans((A(·; rA),B(·; rB))(1n))1,...,i. (85)

Since Π is a polynomial time protocol, it follows without loss of generality that m(n), ρA(n), ρB(n) ∈
poly(n) and that fΠ is computable in polynomial time.

Under the assumption that OWFs do not exist, the transcript function is not distributional
one-way, i.e., it has an inverter that returns a random preimage. We would like to argue that an
algorithm that outputs the transcript induced by the randomness this inverter returns is an honest
continuator. This is almost true, as this inverter guarantees to work for a random node of the
protocol tree, and we require that an honest continuator work for all nodes in a random path of the
protocol tree. Still, since any path in the protocol tree is of polynomial length, the lemma follows
by a union bound. We now move to the formal proof.

Fix p ∈ poly and let Inv be the 1/(m · p)-inverter guaranteed to exist by Lemma 2.12. Namely,
Invn = Inv(1n, ·) is a 1/(m(n) ·p(n))-inverter for fΠ(1n, ·, ·, ·) for every n within an infinite size index
set I ⊆ N.52 By the definition of fΠ, choosing a random preimage from f−1(1n, u) is equivalent
to choosing an element according to the distribution (ConsisΠn(u), |u|).53 For a transcript u, let
fu(x, y, z) := u ◦ (trans(A(·;x),B(·; y))(1n))|u|+1,...,m(n), and let HCn be the algorithm that, given
input u, returns fu(Invn(u)). We show that HCn is a 1/p(n)-honest continuator for Πn, for every
n ∈ I.

Fix n ∈ I. Let m = m(n), p = p(n) and from now on we omit n from notations. Note that
fu(ConsisΠ(u), |u|) ≡ 〈Πu〉 ≡ HonContΠ(u), and thus

SD (Inv(u), (ConsisΠ(u), |u|)) ≥ SD (HC(u),HonContΠ(u)), (86)

for every transcript u. Let I and L be random variables distributed as I ← (m− 1) and L← 〈Π〉
52Lemma 2.12 is stated for functions whose domain is {0, 1}n for every n ∈ N, i.e., functions defined for every input

length. Although the transcript function is not defined for every input length (and has 1n as an input), using the
fact that it is defined on {0, 1}q(n) for some q(n) ∈ poly(n) and standard padding techniques, Lemma 2.12 does in
fact guarantee such an inverter.

53Recall that ConsisΠ(u) returns random coins for the parties, consistent with a random execution of Π leading to
u.

85

respectively. Compute

Pr

[
SD (Inv(L1,...,I), (ConsisΠ(L1,...,I), I)) >

1

m · p

]
=

m−1∑
j=0

Pr

[
SD (Inv(L1,...,I), (ConsisΠ(L1,...,I), I)) >

1

m · p
| I = j

]
· Pr [I = j]

=
1

m

m−1∑
j=0

Pr

[
SD (Inv(L1,...,j), (ConsisΠ(L1,...,j), j)) >

1

m · p

]

≥ 1

m

m−1∑
j=0

Pr

[
SD (HC(L1,...,j),HonContΠ(L1,...,j)) >

1

m · p

]

≥ 1

m

m−1∑
j=0

Pr

[
SD (HC(L1,...,j),HonContΠ(L1,...,j)) >

1

p

]

≥ 1

m
Pr

[
∃j ∈ (m− 1) : SD (HC(L1,...,j),HonContΠ(L1,...,j)) >

1

p

]
.

The proof now follows by the properties of Inv.
�

References

[1] B. Averbuch, M. Blum, B. Chor, S. Goldwasser, and S. Micali. How to implement Bracha’s
O(log n) Byzantine agreement algorithm, 1985. Unpublished manuscript.

[2] A. Beimel, E. Omri, and I. Orlov. Protocols for multiparty coin toss with dishonest majority.
In Advances in Cryptology – CRYPTO 2010, pages 538–557, 2010.

[3] M. Blum. Coin flipping by telephone. In Advances in Cryptology – CRYPTO ’81, pages 11–15,
1981.

[4] A. Chailloux and I. Kerenidis. Optimal quantum strong coin flipping. In Proceedings of the
50th Annual Symposium on Foundations of Computer Science (FOCS), pages 527–533, 2009.

[5] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing (STOC), pages 364–369, 1986.

[6] R. Cleve and R. Impagliazzo. Martingales, collective coin flipping and discrete control processes
(extended abstract). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.

1797, 1993.

[7] D. Dachman-Soled, Y. Lindell, M. Mahmoody, and T. Malkin. On the black-box complexity of
optimally-fair coin tossing. In Theory of Cryptography, 8th Theory of Cryptography Conference
(TCC), volume 6597, pages 450–467, 2011.

[8] O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In Proceedings
of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32, 1989.

86

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.1797
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.1797

[9] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of random
functions. In Advances in Cryptology – CRYPTO ’84, pages 276–288, 1984.

[10] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of
the ACM, pages 792–807, 1986.

[11] I. Haitner and E. Omri. Coin Flipping with Constant Bias Implies One-Way Functions. In
Proceedings of the 52nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 110–119, 2011.

[12] I. Haitner, M. Nguyen, S. J. Ong, O. Reingold, and S. Vadhan. Statistically hiding commit-
ments and statistical zero-knowledge arguments from any one-way function. SIAM Journal on
Computing, 39(3):1153–1218, 2009.

[13] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, pages 1364–1396, 1999. Preliminary versions
in STOC’89 and STOC’90.

[14] R. Impagliazzo. Pseudo-random generators for cryptography and for randomized algorithms.
http://cseweb.ucsd.edu/~russell/format.ps. Ph.D. Thesis.

[15] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptog-
raphy. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science
(FOCS), pages 230–235, 1989.

[16] A. Y. Kitaev. Quantum coin-flipping. Presentation at the 6th Workshop on Quantum Infor-
mation Processing (QIP 2003), 2003.

[17] H. K. Maji, M. Prabhakaran, and A. Sahai. On the Computational Complexity of Coin
Flipping. In Proceedings of the 51st Annual Symposium on Foundations of Computer Science
(FOCS), pages 613–622, 2010.

[18] C. Mochon. Quantum weak coin flipping with arbitrarily small bias. arXiv:0711.4114, 2007.

[19] T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In Theory of Cryptography,
6th Theory of Cryptography Conference (TCC), pages 1–18, 2009.

[20] M. Naor. Bit commitment using pseudorandomness. Journal of Cryptology, pages 151–158,
1991. Preliminary version in CRYPTO’89.

[21] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.
In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages
33–43, 1989.

[22] A. W. Roberts and D. E. Varberg. Convex Functions. Academic Press Inc, 1973.

[23] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing (STOC), pages 387–394, 1990.

[24] S. Zachos. Probabilistic Quantifiers, Adversaries, and Complexity Classes: An Overview. In
Proceedings of the First Annual IEEE Conference on Computational Complexity, pages 383–
400, 1986.

87

http://cseweb.ucsd.edu/~russell/format.ps

A Missing Proofs

A.1 Proving Lemma 2.17

Lemma A.1 (Restatement of Lemma 2.17). Let x, y ∈ [0, 1] and a1, . . . , ak, b1, . . . , bk ∈ (0, 1].
Then for any p0, p1 ≥ 0 with p0 + p1 = 1, it holds that

p0 ·
xk+1∏k
i=1 ai

+ p1 ·
yk+1∏k
i=1 bi

≥ (p0x+ p1y)k+1∏k
i=1(p0ai + p1bi)

. (87)

Proof. The lemma easily follows if one of the following holds: (1) p0 = 1, p1 = 0; (2) p0 = 0, p1 = 1;
and (3) x = y = 0. Assuming 1 > p0, p1 > 0 and x+y > 0, dividing Equation (87) by its right-hand
side (which is always positive) gives

p0 ·

(
x

(p0x+p1y)

)k+1

∏k
i=1

ai
p0ai+p1bi

+ p1 ·

(
y

(p0x+p1y)

)k+1

∏k
i=1

bi
p0ai+p1bi

≥ 1. (88)

Define the following variable changes:

z =
p0x

p0x+ p1y
ci =

p0ai
p0ai + p1bi

for 1 ≤ i ≤ k.

It follows that

1− z =
p1y

p0x+ p1y
1− ci =

p1bi
p0ai + p1bi

for 1 ≤ i ≤ k.

Note that 0 ≤ z ≤ 1 and that 0 < ci < 1 for every 1 ≤ i ≤ k. Plugging the above into Equation (88),
it remains to show that

zk+1∏k
i=1 ci

+
(1− z)k+1∏k
i=1(1− ci)

≥ 1 (89)

for all 0 ≤ z ≤ 1 and 0 < ci < 1. Equation (89) immediately follows for z = 0, 1, and in the rest of

the proof we show that it also holds for z ∈ (0, 1). Define f(z, c1, . . . , ck) := zk+1∏k
i=1 ci

+ (1−z)k+1∏k
i=1(1−ci)

−1.

Equation (89) follows by showing that f(z, c1, . . . , ck) ≥ 0 for all z ∈ (0, 1) and 0 < ci < 1. Taking
the partial derivative with respect to ci for 1 ≤ i ≤ k, it holds that

∂

∂ci
f = − zk+1

c2
i

∏
1≤j≤k
j 6=i

cj
+

(1− z)k+1

(1− ci)2
∏

1≤j≤k
j 6=i

(1− cj)
.

Fix 0 < z < 1, and let fz(c1, . . . , ck) = f(z, c1, . . . , ck). If c1 = . . . = ck = z, then for every
1 ≤ i ≤ k it holds that ∂

∂ci
fz(c1, . . . , ck) = ∂

∂ci
f(z, c1, . . . , ck) = 0. Hence, fz has a local extremum

at (c1, . . . , ck) = (z, . . . , z). Taking the second partial derivative with respect to ci for 1 ≤ i ≤ k, it
holds that

∂2

∂ci
f =

2zk+1

c3
i

∏
1≤j≤k
j 6=i

cj
+

2(1− z)k+1

(1− ci)3
∏

1≤j≤k
j 6=i

(1− cj)
> 0,

88

and thus, (c1, . . . , ck) = (z, . . . , z) is a local minimum of fz.
The next step is to show that (c1, . . . , ck) = (z, . . . , z) is a global minimum of fz. This is done

by showing that fz is convex when 0 < ci < 1. Indeed, consider the function − ln(x). This is
a convex function in for 0 < x < 1. Thus the function

∑k
i=1− ln(ci), which is a sum of convex

functions, is also convex. Moreover, consider the function ex. This is a convex function for any

x. Hence, the function e
∑k
i=1− ln(ci) = 1∏k

i=1 ci
, which is a composition of two convex functions, is

also convex for 0 < ci < 1. Since z is fixed, the function zk+1∏k
i=1 ci

is also convex. Similar argument

shows that (1−z)k+1∏k
i=1(1−ci)

is also convex for 0 < ci < 1. This yields that fz, which is a sum of two

convex functions, is convex. It is known that a local minimum of a convex function is also a global
minimum for that function [22, Therorem A, Chapter V], and thus (z, . . . , z) is a global minimum
of fz.

Let z′, c′1, . . . , c
′
k ∈ (0, 1). Since (z′, . . . , z′) is a global minimum of fz′ , it holds that

f(z′, z′, . . . , z′) = fz′(z
′, . . . , z′) ≤ fz′(c

′
1, . . . , c

′
k) = f(z′, c′1, . . . , c

′
k). But f(z′, z′, . . . , z′) = 0, and

thus f(z′, c′1, . . . , c
′
k) ≥ 0. This shows that Equation (89) holds, and the proof is concluded. �

A.2 Proving Lemma 2.18

Lemma A.2 (Restatement of Lemma 2.18). For every δ ∈ (0, 1
2], there exists α = α(δ) ∈ (0, 1]

such that

λ · a1+α
1 · (2− a1 · x) + a1+α

2 · (2− a2 · x) ≤ (1 + λ) · (2− x), (90)

for every x ≥ δ and λ, y ≥ 0 with λy ≤ 1, for a1 = 1 + y and a2 = 1− λy.

Proof. Fix δ ∈ (0, 1
2]. Rearranging the terms of Equation (90), one can equivalently prove that for

some α ∈ (0, 1], it holds that

x · (1 + λ− λ · (1 + y)2+α − (1− λy)2+α) ≤ 2 · (1 + λ− λ · (1 + y)1+α − (1− λy)1+α) (91)

for all x, λ and y in the proper range. Note that the above trivially holds, regardless of the choice
of α ∈ (0, 1], if λy = 0 (both sides of the inequality are 0). In the following we show that for the
cases λy = 1 and λy ∈ (0, 1), Equation (91) holds for any small enough choice of α. Hence, the
proof follows by taking the small enough α for which the above cases hold simultaneously.

λy = 1: Let z = 1
λ + 1 = y + 1 > 1. Plugging in Equation (91), we need to find αh ∈ (0, 1] for

which it holds that

x ·
(

1 +
1

z − 1
− z2+α

z − 1

)
≤ 2 ·

(
1 +

1

z − 1
− z1+α

z − 1

)
(92)

for for all z > 1 and α ∈ (0, αh). Equivalently, by multiplying both sides by z−1
z – which,

since z > 1, is always positive – it suffices to find αh ∈ (0, 1] for which it holds that

x · (1− z1+α) ≤ 2 · (1− zα) (93)

for all z > 1 and α ∈ (0, αh).

89

Since 1−z1+α < 0 for all α ≥ 0 and z > 1, and letting hα(z) := zα−1
z1+α−1

, proving Equation (93)
is equivalent to finding αh ∈ (0, 1] such that

δ ≥ sup
z>1
{2 · hα(z)} = 2 · sup

z>1
{hα(z)} (94)

for all z > 1 and α ∈ (0, αh).

Consider the function

h(w) := sup
z>1
{hw(z)} . (95)

Claim A.3 states that limw→0+ h(w) = 0 (i.e., h(w) approaches 0 when w approaches 0 from
the positive side), and hence 2 · limw→0+ h(w) = 0. The proof of Equation (94), and thus the
proof of this part, follows since there is now small enough αh < 1 for which x ≥ 2 · h(α) for
every α ∈ (0, αh] and x ≥ δ.

λy ∈ (0, 1): Consider the function

g(α, λ, y) := 1 + λ− λ · (1 + y)2+α − (1− λy)2+α. (96)

Claim A.4 states that for α ≥ 0, the function g is negative over the given range of λ and y.
This allows us to complete the proof by finding α ∈ (0, 1] for which

δ ≥ 2 · sup
λ,y>0,λy<1

{
fα(λ, y) :=

1 + λ− λ · (1 + y)1+α − (1− λy)1+α

1 + λ− λ · (1 + y)2+α − (1− λy)2+α

}
. (97)

Consider the function

f(w) := sup
λ,y>0,λy<1

{fw(λ, y)} . (98)

Claim A.5 states that limw→0+ h(w) = 0, and hence (1 + δ) · limw→0+ h(w) = 0. The proof of
Equation (97), and thus the proof of this part follows since there is now small enough αf < 1
for which x ≥ 2 · h(α) for every α ∈ (0, αf] and x ≥ δ.

By setting αmin = min {αh, αf}, it follows that x ≥ h(α), f(α) for any α ∈ (0, αmin) and x ≥ δ,
concluding the the proof of the claim. �

Claim A.3. limw→0+ h(w) = 0.

Proof. Simple calculations show that for fixed w, the function hw(z) is decreasing in the interval
(1,∞). Indeed, fix some w > 0, and consider the derivative of hw

h′w(z) =
wzw−1(z1+w − 1)− (1 + w)zw(zw − 1)

(z1+w − 1)2
(99)

=
−zw−1(z1+w − (1 + w)z + w)

(z1+w − 1)2
.

90

Let p(z) := z1+w − (1 + w)z + w. Taking the derivative of p and equaling it to 0, we have that

p′(z) = (1 + w)zw − (1 + w) = 0 (100)

⇐⇒ z = 1.

Since p′′(1) = (1 + w)w > 0 for all w > 0, it holds that z = 1 is the minimum of p in [1,∞). Since
p(1) = 0, it holds that p(a) > 0 for every a ∈ (1,∞). Thus, h′w(z) < 0, and hw(z) is decreasing in
the interval (1,∞). The latter fact yields that

lim
w→0+

h(w) = lim
w→0+

sup
z>1

hw(z)

= lim
w→0+

lim
z→1+

zw − 1

z1+w − 1

= lim
w→0+

lim
z→1+

wzw−1

(1 + w)zw

= lim
w→0+

w

1 + w

= 0,

where the third equality holds by L’Hôpital’s rule. �

Claim A.4. For all α ≥ 0 and λ, y > 0 with λy < 1, it holds that g(α, λ, y) < 0.

Proof. Fix λ, y > 0 with λy ≤ 1 and let f(x) := g(x, λ, y). We first prove that f is strictly
decreasing in the range [0,∞), and then show that f(0) < 0, yielding that g(α, λ, y) < 0 for the
given range of parameters. Taking the derivative of f , we have that

f ′(x) = −λ · (1 + y)2+x · ln(1 + y) + (1− λy)2+x · ln(1− λy), (101)

and since ln(1 − λy) < 0, it holds that f ′ is a negative function. Hence, f is strictly decreasing,
and takes its (unique) maximum over [0,∞) at 0. We conclude the proof by noting that f(0) =
−λ · y2 · (1 + λ) < 0. �

Claim A.5. limw→0+ f(w) = 0.

Proof. Assume towards a contradiction that the claim does not hold. It follows that there exist
ε > 0 and an infinite sequence {wi}i∈N such that limi→∞wi = 0 and f(wi) ≥ ε for every i ∈ N.
Hence, there exists an infinite sequence of pairs {(λi, yi)}i∈N, such that for every i ∈ N it holds that
f(wi) = fwi(λi, yi) ≥ ε, λi, yi > 0 and λiyi ≤ 1.

If {λi}i∈N is not bounded from above, we focus on a subsequence of {(λi, yi)} in which λi
converges to ∞, and let λ∗ = ∞. Similarly, if {yi}i∈N is not bounded from above, we focus on a
subsequence of {(λi, yi)} in which yi converges to ∞, and let y∗ =∞. Otherwise, by the Bolzano-
Weierstrass Theorem, there exists a subsequence of {(λi, yi)} in which both λi and yi converge to
some real values. We let λ∗ and y∗ be these values.

The rest of the proof splits according to the values of λ∗ and y∗. In each case we focus on the
subsequence of {(wi, λi, yi)} that converges to (0, λ∗, y∗), and show that limi→∞ fwi(λi, yi) = 0, in
contradiction to the above assumption.

91

y∗ =∞: First note that the assumption y∗ = ∞ and the fact that λiyi ≤ 1 for every i yield that
λ∗ = 0.

For c ∈ [0, 1), the Taylor expansion with Lagrange remainder over the interval [0, c] yields that

(1− c)t = 1− tc+
t(t− 1)(1− s)t−2

2
c2 (102)

for some s ∈ (0, c). Consider the function

g(t, λ, y) := 1 + λ− λ · (1 + y)t − (1− λy)t. (103)

Equation (102) yields that

g(t, λi, yi) = 1 + λi − λi · (1 + yi)
t −
(

1− tλiyi +
t(t− 1)(1− si)t−2

2
λ2
i y

2
i

)
(104)

= λi

(
1− (1 + yi)

t + ty − t(t− 1)(1− si)t−2

2
λiy

2
i

)
for every index i and some si ∈ (0, λiyi). We conclude that

lim
i→∞

fwi(λi, yi) = lim
i→∞

g(1 + wi, λi, yi)

g(2 + wi, λi, yi)

= lim
i→∞

1− (1 + yi)
1+wi + (1 + wi)yi − (1+wi)wi(1−si)wi−1

2 λiy
2
i

1− (1 + yi)2+wi + (2 + wi)yi − (2+wi)(1+wi)(1−si)wi
2 λiy2

i

= lim
i→∞

1
(1+yi)2+wi

− (1+yi)
1+wi

(1+yi)2+wi
+ (1+wi)yi

(1+yi)2+wi
− (1+wi)wi(1−si)wi−1λiy

2
i

2(1+yi)2+wi

1
(1+yi)2+wi

− 1 + (2+wi)yi
(1+yi)2+wi

− (2+wi)(1+wi)(1−si)wiλiy2
i

2(1+yi)2+wi

= 0.

λ∗ =∞: Note that the assumption λ∗ =∞ yields that y∗ = 0. For c ∈ [0, 1), the Taylor expansion
with Lagrange remainder over the interval [0, c] yields that

(1− c)t = 1− tc+
t(t− 1)

2
c2 − t(t− 1)(t− 2)(1− s)t−3

6
c3, (105)

for some s ∈ (0, c), and

(1 + c)t = 1 + tc+
t(t− 1)

2
c2 +

t(t− 1)(t− 2)(1 + s′)t−3

6
c3, (106)

for some s′ ∈ (0, c).

92

Applying Equations (105) and (106) for the function g of Equation (103) yields that

g(t, λi, yi) (107)

= g̃(t, λi, yi, si, s
′
i)

:= 1 + λi − λi
(

1 + ty +
t(t− 1)

2
y2
i +

t(t− 1)(t− 2)(1 + s′i)
t−3

6
y3
i

)
−
(

1− tλiyi +
t(t− 1)

2
λ2
i y

2
i +

t(t− 1)(t− 2)(1− si)t−3

6
λ3
i y

3
i

)
= −λ

2
i y

2
i

6

(
3t(t− 1)

λi
+
t(t− 1)(t− 2)(1 + s′i)

t−3yi
λi

+ 3t(t− 1) + t(t− 1)(t− 2)(1− si)t−3λiyi

)
for large enough index i and some si ∈ (0, λiyi) and s′i ∈ (0, yi). We conclude that

lim
i→∞

fwi(λi, yi)

= lim
i→∞

g(1 + wi, λi, yi)

g(2 + wi, λi, yi)

= lim
i→∞

g̃(1 + wi, λi, yi, si, s
′
i)

g̃(2 + wi, λi, yi, si, s′i)

= lim
i→∞

3(1+wi)wi
λi

+
(1+wi)wi(wi−1)(1+s′i)

wi−1yi
λi

+ 3(1 + wi)wi + (1 + wi)wi(wi − 1)(1− si)wi−2λiyi
3(2+wi)(1+wi)

λi
+ (2+wi)(1+wi)wi(1+s′)wi−1yi

λi
+ 3(2 + wi)(1 + wi) + (2 + wi)(1 + wi)wi(1− s)wi−1λiyi

=
0

6
= 0,

where the next-to-last equality holds since λiyi ≤ 1 for every i, and hence the last term of the
numerator and denominator goes to 0 when i→∞.

λ∗, y∗ > 0: It holds that

lim
i→∞

fwi(λi, yi) = lim
i→∞

1 + λi − λi · (1 + yi)
1+wi − (1− λiyi)1+wi

1 + λi − λi · (1 + yi)2+wi − (1− λiyi)2+wi

=
1 + λ∗ − λ∗(1 + y∗)− (1− λ∗y∗)

1 + λ∗ − λ∗(1 + y∗)2 − (1− λ∗y∗)2

= 0.

λ∗ = 0 and y∗ > 0: Equations (102) and (104) yield that

lim
i→∞

fwi(λi, yi) = lim
i→∞

1− (1 + yi)
1+wi + (1 + wi)yi − (1+wi)wi(1−si)wi−1

2 λiy
2
i

1− (1 + yi)2+wi + (2 + wi)yi − (2+wi)(1+wi)(1−si)wi
2 λiy2

i

=
1− (1 + y∗) + y∗

1− (1 + y∗)2 + 2y∗

= 0.

93

y∗ = 0: Rearranging Equation (107) yields that the following holds for large enough index i:

g(t, λi, yi) (108)

= g̃(t, λi, yi, si, s
′
i)

= −λiy
2
i

6

(
3t(t− 1) + t(t− 1)(t− 2)(1 + s′i)

t−3yi + 3t(t− 1)λi + t(t− 1)(t− 2)(1− si)t−3λ2
i yi
)

for some si ∈ (0, λiyi) and si ∈ (0, yi). Given, this formulation it is easy to see that

lim
i→∞

fwi(λi, yi) = lim
i→∞

g̃(1 + wi, λi, yi, si, s
′
i)

g̃(2 + wi, λi, yi, si, s′i)

=
0

6 + 6λ∗

= 0.

The above holds since every term in the numerator goes to 0 and the term 3(2 + wi)(1 + wi) in
the denominator goes to 6.

This concludes the case analysis, and thus the proof of the claim. �

94

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

