
Towards Better Separation between Deterministic and
Randomized Query Complexity

Sagnik Mukhopadhyay∗

Swagato Sanyal†

Tata Institute of Fundamental Research, Mumbai
{swagatos , sagnik m} @tcs.tifr.res.in

June 22, 2015

Abstract

We show that there exists a Boolean function F which observes the following separations among de-
terministic query complexity (D(F)), randomized zero error query complexity (R0(F)) and randomized
one-sided error query complexity (R1(F)): R1(F) = Õ(

√
D(F)) and R0(F) = Õ(D(F))3/4. This refutes

the conjecture made by Saks and Wigderson that for any Boolean function f , R0(f) = Ω(D(f))0.753...
This also shows widest separation between R1(f) and D(f) for any Boolean function. The function F
was defined by Göös, Pitassi and Watson who studied it for showing a separation between deterministic
decision tree complexity and unambiguous non-deterministic decision tree complexity. Independently
of us, Ambainis et al proved that different variants of the function F certify optimal (quadratic) sep-
aration between D(f) and R0(f), and polynomial separation between R0(f) and R1(f). Viewed as
separation results, our results are subsumed by those of Ambainis et al. However, while the functions
considerd in the work of Ambainis et al are different variants of F, we work with the original function
F itself.

1 Introduction

The model of decision trees is one of the simplest models of computation. In this model, an algorithm for
computing a Boolean function is given query access to the input. The algorithm queries different bits of
the input, possibly in an adaptive fashion, and eventually outputs a bit. The objective is to minimize
the number of queries made. The amount of computation is generally not the quantity of interest in
this model. For a Boolean function f , The deterministic query complexity D(f) of f is defined to be
the maximum (over inputs) number of queries the best deterministic query algorithm for f makes. The
bounded-error randomized query complexity R(f) of f is defined to be the number of queries made
on the worst input by the best randomized query algorithm for f that is correct with high1 probability
on every input. R0(f), the zero error randomized query complexity of f , is the expected number of
queries made on the worst input by the best randomized algorithm for f that gives correct answer on
each input with probability 1. Finally R1(f), the one-sided randomized query complexity of f , is the
number of queries made on the worst input by the best algorithm that is correct on every input with
high probability, and in addition correct on every 1-input with probability 1. We give formal definitions
of these measures in the next section.
∗S. Mukhopadhyay is supported by a TCS Fellowship.
†S. Sanyal is supported by a DAE fellowship.
1By high we mean a constant strictly greater than 1

2

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 107 (2015)

The relations between these query complexity measures have been extensively studied in the literature.
That randomization can save more than a constant factor of queries has been known for a long time. In
their 1986 paper, Saks and Wigderson [SW86] gave examples of recursive NAND trees and recursive
MAJORITY trees, for which they credited Snir and Ravi Bopanna respectively. In both these functions,
the deterministic and randomized zero-error query complexity are polynomially separated. In the same
paper, Saks and Wigderson studied binary uniform NAND trees, and showed that R0(F) = Θ(D(F)0.753..)
where F is the binary uniform NAND tree function. They also conjectured that this is the widest
separation possible between these two measures of complexity for any Boolean function. For the same
function, Santha [San91] showed that R(F) = (1− 2ε)R0(F) where ε is the error probability. So for this
function we have R(F) = Θ(D(F)0.753...). It is easy to see that D(f) ≥ R(f), R0(f), R1(f). Blum and
Impagliazzo [BI87], Tardos [Tar89] and Hartmanis and Hemachandra [HH87] independently showed
that R0(f) ≥

√
D(f). Nisan [Nis91] showed that for any Boolean function f , D(f) ≤ 27R(f)3 and

D(f) ≤ R1(f)2. The biggest gap known so far between D(f) and R(f) for any f is much less than cubic.

During this work, we came to know of the recent work by Ambainis et al [ABB+15]. In this work the
authors prove various separation results between different query complexity measures. Among several
other results, the authors prove:

1. There exists a function f for which R0(f) = Õ(
√

D(f)). In view of the lower bound, this is the
widest separation possible between these two measures. This refutes the conjecture by Saks and
Wigderson.

2. There exists a function f for which R0(f) = Ω̃(R1(f)3/2).

1.1 Query Models

Deterministic query complexity. A deterministic query algorithm can be thought of as a rooted binary
tree where each internal node is labeled with a variable and each leaf is labeled with 0 or 1. The algorithm
starts by querying the variable at the root of the tree and depending on the value it gets it chooses
between its left child and right child and thus goes down the tree recursively. If the value of a variable at
any internal node is 0, the algorithm descends to its left child, otherwise it descends to its right child.
Whenever the algorithm reaches a leaf, it outputs the value of the leaf and terminates. We say that the
query algorithm correctly computes f if for any input x ∈ {0, 1}n, the algorithm outputs f (x). The
deterministic query complexity of a function f is defined as follows.

D(f) = min
T

Depth(T), (1)

where T ranges over decision trees which correctly computes f .

Randomized query complexity. A randomized query algorithm can be thought of as a distribution
over deterministic query algorithms. A randomized query algorithm can also be viewed as a query
algorithm where each node has an additional power of tossing coins . After querying the variable
associated with any internal node of the tree, the algorithm decides which input bit to query depending
on the responses to the queries so far (i.e. the current node in the tree) and the value of the coin tosses
while in that node. It is not hard to see that the two definitions are equivalent. We are interested in
two different measures of complexity, one where we do not allow the algorithm to make error and we
measure the expected number of queried variables on an input. Let us denote the expected number of
queried variables by algorithm A for evaluating f on input x by Q(A, x). The zero error randomized
query complexity of f , denoted by R0(f), is defined as follows:

R0(f) = min
A

max
x

Q(A, x), (2)

2

where A ranges over all randomized query algorithms which correctly computes f on every input. It is
to be noted that the expectation is taken over the random coin tosses. Another notion of complexity is
randomized bounded error query complexity, where we allow the query algorithm to err on inputs and
we look at the maximum number of queries on any input. We say that a randomized query algorithm
A computes f with probability δ if for every input x, PrR[A(x) 6= f (x)] ≤ δ. The bounded error
randomized query complexity of f , denoted by Rδ(f), is defined as follows.

Rδ(f) = min
A

Depth(AT), (3)

where AT denotes the support of the distribution of binary trees associated with A and we take the
minimum over those A’s which computes f with error probability δ. The depth of a collection of trees is
interpreted as the maximum depth of any tree in that collection. Since the randomized bounded error
query complexity of f for any two constant error values are within a constant multiplicative factor of
each other, we drop the subscript δ whenever convenient, and call it R(f).
A third notion of query complexity is randomized one-sided query complexity. An input x is said to be a
0-input (1-input) of a function f if f (x) = 0 (f (x) = 1). We say that a randomized one-sided error query
algorithm A computes f with probability δ if for every 1-input, x, PrR[A(x) 6= f (x)] = 0 and for every
0-input x, PrR[A(x) 6= f (x)] ≤ δ. The one-sided error randomized query complexity of f , denoted by
Rδ

1, is defined as follows.
Rδ

1 = min
A

Depth(AT), (4)

where AT denotes the support of the distribution of binary trees associated with A and we take the mini-
mum over those A’s which computes f with error probability δ. Since the one-sided error randomized
query complexity of f for any two constant error values are within a constant multiplicative factor of
each other, we drop the subscript δ whenever convenient, and call it R1(f).

For our zero-error algorithm we will use the following simple fact: For any Boolean function f , R0(f) =
O(max{R1(f), R1(f)}).

1.2 Our results

In this work we prove the following results.

Theorem 1. There exists a Boolean function F for which R0(F) = Õ(D(F)3/4).

Theorem 1 refutes the conjecture made by Saks and Wigderson [SW86], though this result does not
match the lower bound of R0(f) in terms of D(f). As mentioned in the Introduction, Ambainis et al
[ABB+15] exhibit a function that certifies quadratic separation between R0(f) and D(f), which is the
widest possible in view of matching lower bound.

Theorem 2. There exists a Boolean function F for which R1(F) = Õ(
√

D(F)).

This separation matches the lower bound, upto logarithmic factors, on R1(f) in terms of D(f) for any
function f . However, since R0(f) ≥ R1(f), the function used by Ambainis et al [ABB+15] also certifies
the same separation. Thus, viewed as separation results, our results are subsumed by those of Ambainis
et al [ABB+15].
The functions F in Theorems 1 and 2 are the same, and was first defined by Göös et al [GPW15] for
showing a gap between deterministic decision tree complexity and unambiguous non-deterministic
decision tree complexity. While the functions used by Ambainis et al are different variants of this
function, we work with the original function itself.

We define the function F now. The domain of F is D = {0, 1}n(1+dlog ne). An input M ∈ D to F is
viewed as a matrix of dimension

√
n×
√

n. Each cell Mi,j of M consists of two parts:

3

1. A bit-entry bi,j ∈ {0, 1}.

2. A pointer-entry pi,j ∈ {0, 1}dlog ne. pi,j is either a valid pointer to some other cell of M, or is
interpreted as ⊥ (null). If pi,j is not a valid pointer to some other cell, we write “pi,j = ⊥”.

Now, we define what we call a valid pointer chain. Assume that t =
√

n. For an input M to F, a sequence
((i1, j1), . . . , (it, jt)) of indices in [

√
n]× [

√
n] is called a valid pointer chain if:

1. bi1,j1 = 1;

2. bi2,j2 = . . . = bit ,jt = 0;

3. ∀k < i1, pk,j1 = ⊥;

4. for ` = 1, . . . , t− 1, pi`,j` = (i`+1, j`+1) and pit ,jt is ⊥;

F evaluates to 1 on M iff the following is true:

1. M contains a unique all 1’s column j1, i.e., there exists j1 ∈ [
√

n] such that ∀i ∈ [
√

n], bi,j1 = 1.

2. There exists a valid pointer chain ((i1, j1), . . . , (it, jt)). This means that the column j1 has a cell
with non-null pointer entry. (i1, j1) is the cell on column j1 with minimum row index whose
pointer-entry is non-null. Starting from pi1,j1 , if we follow the pointer, the following conditions are
satisfied: In each step except the last, the cell reached by following the pointer-entry of the cell in
the previous step, contains a 0 as bit-entry and a non-null pointer as pointer-entry. In the last step,
the cell contains a zero as bit-entry and a null pointer (⊥) as pointer-entry. Also, this pointer chain
covers all columns of M.

By a simple adversarial strategy, Göös et al. [GPW15] showed that D(F) = Ω̃(n). Our contribution is to
show the following results.

Lemma 3. For the function F defined above, R0(F) = Õ(n3/4).

Lemma 4. For the function F defined above, R1(F) = Õ(
√

n).

Clearly, Lemmas 3 and 4 imply Theorems 1 and 2 respectively.

2 Intuition of the Randomized One-sided Error Query Algorithm for
F

We show that the randomized one-sided error query complexity of F is Õ(
√

n). In this section we provide
intuition for our one-sided error algorithm for F. Our algorithm errs on one side: on 0-inputs it always
outputs 0 and on 1-inputs it outputs 1 with high probability.
The algorithm attempts to find a 1-certificate. If it fails to find a 1-certificate, it outputs 0. We show that
on every 1 input, with high probability, the algorithm succeeds in finding a 1-certificate. The 1-certificate
our algorithm looks for consists of:

1. A column j, all of whose bit-entries are 1’s.

2. All null pointers of column j till its first non-null pointer-entry.

4

3. The pointer chain of length
√

n that starts from the first non-null pointer entry, and in the next√
n− 1 hops, visits all the other columns. The bit entries of all the other cells of the pointer chain

than the one in this column are 0.

To find a 1-certificate, the algorithm tries to find columns with 0-cells on them, and adds those columns
to a set of discarded columns that it maintains. To this end, a first natural attempt is to repeatedly sample
a cell randomly from M, and if its bit-entry is 0, try to follow the pointer originating from that cell.
Following the chain, each time we visit a cell with bit-entry 0, we can discard the column on which the
cell lies. We can expect that, with high probability, after sampling O(

√
n) cells, we land up on some

cell in the middle portion of the correct pointer chain that is contained in the 1-certificate (we call this
the principle chain). Then if we follow that pointer we spend O(

√
n) queries, and eliminate a constant

fraction of the existing columns.
The problem with this approach is possible existence of other long pointer chains, than the principle
chain. It may be the case that we land up on one such chain, of Ω(

√
n) length, which passes entirely

through the columns that we have already discarded. Thus we end up spending Ω(
√

n) queries, but can
discard only one column (the one we began from).
To bypass this problem, we start by observing that the principle chain passes through every column, and
hence in particular through every undiscarded column. Let N be the number of undiscarded column at
some stage of the algorithm. Note that the length of the principle chain is

√
n. Therefore if we start to

follow it from a randomly chosen cell on it, we are expected to see an undiscarded column in roughly
another

√
n/N hops. In view of this, we modify our algorithm as follows: while following a pointer

chain, we check if on an average we are seeing one undiscarded column in every
√

n/N hops. If this
check fails, we abandon following the pointer, sample another random cell from M, and continue. Our
procedure MILESTONETRACE does this pointer-traversal. We can prove that conditioned on the event
that we land up on the principle chain, the above traversal algorithm enables us to eliminate a constant
fraction of the existing undiscarded columns with high probability. We also show that spending about√

n/N queries for each column we eliminate is enough for us to get the desired query complexity bound.
After getting hold of the unique all 1’s column, the final step is to check if all its bit-entries are indeed
1’s, and if that can be completed into a full 1-certificate. That can clearly be done in Õ(

√
n) queries. The

VERIFYCOLUMN procedure does this.

3 Bounding R1(F)

In this section we give the formal description and analysis of our one-sided error query algorithm for F:
Algorithm 1. Algorithm 1 uses two procedures: VERIFYCOLUMN and MILESTONETRACE. As outlined in
the previous section, VERIFYCOLUMN, given a column, checks if all its bit-entries are 1 and whether it
can be completed into a 1-certificate. MILESTONETRACE procedure implements the pointer traversal
algorithm that we described in the preceding paragraph. We next describe the MILESTONETRACE
procedure in a little more detail. We recall from the last section that the algorithm discards columns in
course of its execution. We denote the set of undiscarded columns by C.

MILESTONETRACE procedure

The functions of the variables used are as follows:

1. step: Contains the number of pointer-entries queried so far. A bit query is always accompanied by
a pointer query, unless the bit is 1 in which case the traversal stops. So upto logarithmic factor, the
value in step gives us the number of bits queried.

2. seen: Set of columns that were undiscarded before the current run of MILESTONETRACE, and that
have so far been seen and marked for discarding.

3. discard: size of seen

5

1: procedure MILESTONETRACE(M, C, i, j)
2: Read bi,j;
3: if bi,j = 1 then return ;
4: end if
5: step:=0;
6: discard:=1;
7: current:=(i, j);
8: seen:={j};
9: while step ≤ 100

√
n · discard

|C| do
10: read the pointer-entry of current;
11: step← step+1;
12: current← pointer-entry of current;
13: if current is ⊥ then goto step 21;
14: end if
15: read bit-entry of current;
16: if current is on a column k in C \ seen and bit-entry of current is 0 then
17: seen← seen ∪{k};
18: discard← discard+1;
19: end if
20: end while
21: C ← C \ seen;
22: end procedure

1: procedure VERIFYCOLUMN(M, k)
2: Check if all the bit-entries of cells in the k-th column of M are 1; If not, output 0;
3:
4: if All the pointer-entries of cells in the the k-th column of M are ⊥ then
5: Output 0;
6: end if
7: if The pointer chain starting from the first non-null pointer in column k is valid then
8: Output 1;
9: else

10: Output 0;
11: end if
12: end procedure

6

Algorithm 1
1: C := set of columns in M.
2: for t = 1 to O(

√
n log n) do

3: if |C| < 100 then
4: goto step 10;
5: end if
6: Sample a column j from C uniformly at random;
7: Sample i ∈ [

√
n] uniformly at random;

8: MILESTONETRACE(M, C, i, j);
9: end for

10: if |C| > 100 or |C| = 0 then
11: Output 0;
12: else
13: Read all columns in C;
14: if There is a column k with all bit-entries equal to 1 then
15: VERIFYCOLUMN(M, k);
16: else
17: Output 0;
18: end if
19: end if

4. current: Contains the indices of the cell currently being considered.

The condition in the while loop checks if the number of queries spent is not too much larger than
√

n
|C| at

any point in time. The if condition in line 13 checks if the current pointer-entry is null. If it is null, C is
updated, and control returns to Algorithm 1. The condition in line 13 checks if the pointer chain has
reached its end.

To analyse Algorithm 1, we need to prove two statements about MILESTONETRACE, which we now
informally state. Assume that the algorithm is run on a 1-input.

1. Conditioned on the event that a cell (i, j) randomly chosen from the columns in C is on the principle
chain, a call to MILESTONETRACE(M, C, i, j) serves to eliminate a constant fraction of surviving
columns with high probability.

2. It is enough to ensure that the average number of queries spent for each eliminated column is not
too much larger than

√
n
|C| . Note that |C| is the number of undiscarded columns during the start of

the MILESTONETRACE procedure.

In the following subsection, we prove that Algorithm 1 makes Õ(
√

n) queries on every input. In the next
subsection we prove that Algorithm 1 succeeds with probability 1 on 0-inputs and with probability at
least 2/3 on 1-inputs. Lemma 4 follows from Lemma 6, Corollary 9 and Lemma12.

3.1 Query complexity of Algorithm 1

In this subsection we analyse the query complexity of Algorithm 1. We bound the total number of bi,j’s
and pi,j’s read by the algorithm. Upto logarithmic factors, that is the total number of bits queried. For
the rest of this subsection, one query will mean one query to a bit-entry or a pointer-entry of some cell.
We first analyse the MILESTONETRACE procedure. Recall that C denotes the set of undiscarded columns.

7

Lemma 5. Let i, j be such that bi,j = 0. Let Q and D respectively be the number of queries made and number of
columns discarded by a call to MILESTONETRACE(M, C, i, j). Then,

Q ≤ D · 200
√

n
|C| + 3

Proof. We note that the variable step contains the number of pointer queries made so far, and the variable
discard maintains the number of columns marked so far for discarding. Every time the while loop is
entered, step ≤ 100

√
n · discard

|C| . In each iteration of the while loop, step goes up by 1. So at any point,

step ≤ 100
√

n · discard
|C| + 1. The lemma follows by observing that the total number of bit-entries queried

is at most one more than total number of pointer-entries queried.

We now use Lemma 5 to bound the total number of queries made by Algorithm 1.

Lemma 6. Algorithm 1 makes Õ(
√

n) queries on each input.

Proof. Whenever bi,j = 1, MILESTONETRACE(M, C, i, j) returns after reading bi,j. So the total number of
queries made by all calls to MILESTONETRACE(M, C, i, j) on such inputs is Õ(

√
n).

After leaving the while loop, the total number of queries required to read constantly many columns in C
and to run VERIFYCOLUMN is O(

√
n).

Since inside the while loop all the queries are made inside the MILESTONETRACE procedure, it is enough
to show that the total number of queries made by all calls to MILESTONETRACE(M, C, i, j) on inputs for
which bi,j = 0 is Õ(

√
n).

Let t = Õ(
√

n) be the total number of calls to MILESTONETRACE on such inputs, made in the entire
run of Algorithm 1. Let si be the value of |C| when the i-th call to MILESTONETRACE is made, and let
st+1 be the value of |C| after the execution of the t-th call to MILESTONETRACE completes . Let ∆si and
∆qi respectively be the number of columns discarded and number of queries made in the i-th call to
MILESTONETRACE. Since C shrinks only when bi,j = 0, we have ∆si = si+1 − si for i = 1 . . . t. Since

s1 =
√

n, we have that for i = 2, . . . , t, si =
√

n−
i−1

∑
j=1

∆sj.

From lemma 5 we have ∆qi ≤ ∆si · 200
√

n
si

+ 3 for i = 1, . . . , t. Substituting
√

n− ∑i−1
j=1 ∆sj for si when

i > 1, and adding, we have,
t

∑
i=1

∆qi ≤ 200
√

n ·
t

∑
i=1

∆si
si

+ 3t

= 200
√

n ·
(

∆s1√
n
+

t

∑
i=2

∆si√
n−∑i−1

j=1 ∆sj

)
+ Õ(

√
n)

≤ 200
√

n ·
((

1√
n
+

1√
n− 1

+ . . . +
1√

n− ∆s1 + 1

)
+(

1√
n− ∆s1

+
1√

n− ∆s1 − 1
+ . . . +

1√
n− ∆s1 − ∆s2 + 1

)
+ . . .

+

(
1

√
n−∑t−1

j=1 ∆sj
+

1
√

n−∑t−1
j=1 ∆sj − 1

+ . . . +
1

√
n−∑t−1

j=1 ∆sj − ∆st + 1

))
+ Õ(

√
n)

≤ O(
√

n) ·
(√

n

∑
i=1

1
i

)
+ Õ(

√
n)

= O(
√

n log n) + Õ(
√

n)

= Õ(
√

n).

Hence proved.

8

3.2 Success Probability of Algorithm 1

In this section we prove that Algorithm 1 outputs correct answer with probability 1 on 0-inputs and with
probability at least 2/3 on 1-inputs. We start by a proving a probability statement (Lemma 7) that will
help us in the analysis.
Let x1, . . . , x` be non-negative real numbers and ∑`

i=1 xi = N. We say that an index I ∈ [`] is bad if there
exists a non-negative integer 0 ≤ D ≤ N − I such that

I+D

∑
i=I

xi > 100(D + 1) · N
`

We say that an index I is good if I is not bad.

Lemma 7. Let I be chosen uniformly at random from [`]. Then,

P[I is good] >
99

100

Proof. We show existence of a set K = {J1, · · · , Jt} of disjoint sub-intervals of [1, `] with integer end-
points, having the following properties:

1. Every bad index is in some interval Ji ∈ K.

2. ∀1 ≤ i ≤ t, ∑j∈Ji
xj > 100|Ji| · N

` .

It then follows that the number of bad indices is upper bounded by ∑i∈[t] |Ji| (by property 1 and
disjointness of the intervals). But N ≥ ∑i∈[t] ∑j∈Ji

xj > 100 · N
` ∑i∈t |Ji| , which gives us that ∑i∈t |Ji| <

`
100 . In the above chain of inequalities, the first inequality follows from the disjointness of Ji’s and the
second inequality follows from property 2.
Now we describe a greedy procedure to obtain such a set K of intervals. Let j be the smallest bad
index. Then there exists a d such that ∑i∈[j,j+d] xi > 100(d + 1) · N

` . We include the interval [j, j + d] in K.
Then let j′ be the smallest bad index greater than j + d. Then there exists a d′ for which ∑i∈[j′ ,j+d′] xi >

100(d′ + 1) · N
` . We include [j′, j′ + d′] in K. We continue in this way till there is no bad index which is

not already contained in some interval in K. It is easy to verify that the intervals in the set K thus formed
are disjoint, and the set K satisfies properties 1 and 2.

Let us begin by showing that algorithm 1 is correct with probability 1 on 0 inputs of F.

Claim 8. If Procedure VERIFYCOLUMN outputs 1 on inputs M and k, then M is a 1 input of F.

Proof. VERIFYCOLUMN outputs 1 only if the column k has all its bit-entries equal to 1, and if the pointer
chain starting from the first non-null pointer entry is valid (recall the definition of a valid pointer chain
from Section 1.2). From the definition of F, for such inputs F evaluates to 1.

Corollary 9. Let M be a 0-input of of F. Then algorithm 1 outputs 0 with probability 1.

Proof. The corollary follows by observing that if algorithm 1 returns 1, a call to VERIFYCOLUMN also
returns 1, and hence from Claim 9 the input is a 1-input of F.

Let us now turn to 1-inputs of F. Let M be a 1-input of F, that we fix for the rest of this subsection.
Without explicit mention, for the rest of the subsection we assume that Algorithm 1 is run on M. Since M
is a 1-input, by the definition of F, there is a column C such that all its bit-entries are 1, and the pointer
chain starting from the first non-null pointer-entry of j is valid. Call this pointer chain the principle

9

chain. Let (C = c1, . . . , c√n) be the order of columns of M in which the pointer chain crosses them. Let
(C = m1, . . . , m|C|) be the order of the columns of C in which the pointer chain crosses them. Note that
the column C always belongs to C, as a column is discarded only if the bit-entry of some cell on it is 0.
Define Xi to be the number of cj’s between mi and mi+1, including mi, if i < |C|, and the number of cj’s

after mi, including mi, if i = |C|. Clearly
|C|

∑
i=1

Xi =
√

n.

Lemma 10. Let (i, j) be a randomly chosen cell on the restriction of the principle chain to the columns in C (i.e.
j ∈ C) and let |C| = N ≥ 100. Then with probability at least 97

100 over the choice of (i, j), a run of the procedure
TRACEMILESTONE on inputs M, C, i, j shrinks the size of C to at least 99N

100 .

Proof. By applying Lemma 7 on the sequence (Xi)
|C|
i=1 described in the paragraph preceding this lemma,

except with probability at least 1/100 + 1/100 + 1/|C| ≤ 3/100, j is a good index, j < 99N
100 (i.e. the

column j has at least N
100 columns of C ahead of it on the principle chain), and j 6= C. Since j 6= C, the

bit-entry of the cell sampled is 0, and hence procedure TRACEMILESTONE does not return control in
step 3. In the procedure TRACEMILESTONE, if current is on the principle chain, the condition in line 13
cannot be satisfied unless current is the last cell on the chain. Now, if the condition in the while loop is
violated while current is on the principle chain, it implies that j is a bad index. Thus with probability at
least 1− 3/100 = 97/100, the procedure does not terminate as long as all the N

100 columns ahead of j are
not seen. Since all columns in C that are seen are discarded, we have the lemma.

Now, let us bound the number of iterations of the for loop of algorithm 1 required to shrink |C| by a
factor of 1/100.

Lemma 11. Assume that at a stage of execution of algorithm 1 where the control is in the beginning of the for
loop, |C| = N. Then except with probability 1/25, after 10

√
n iterations of the for loop, |C| will become at most

99N/100.

Proof. The probability that a cell on the principle chain is sampled in steps 6 and 7 is 1√
n . So the

probability that in none of the 10
√

n executions of steps 6 and 7, a cell on the principle chain is picked
is (1− 1√

n)
10
√

n ≤ 1
100 . Conditioned on the event that a cell on the principle chain is sampled, from

lemma 10, except with probability 3/100, |C| reduces by a factor of 1/100 in the following run of
MILESTONETRACE. Union bounding we have that except with probability 1/100 + 3/100 = 1/25, after
10
√

n iterations of the for loop, |C| ≤ 99N/100.

Let t be the minimum integer such that
√

n ·
(99

100
)t

< 100. Thus t = O(log n). For i = 1, . . . , t, let the
random variable Yi be equal to the index of the first iteration of the for loop of Algorithm 1 after which

|C| ≤
√

n.
(99

100
)i

. Let Z1 = Y1 and for i = 2, . . . , t define Zi = Yi −Yi−1. From Lemma 11, for each i we

have E[Zi] ≤ 25× 10
√

n = O(
√

n). By linearity of expectation, we have E[
t

∑
i=1

Zi] = O(
√

n log n). By

Markov’s inequality, with probability at least 2/3,
t

∑
i=1

Zi = O(
√

n log n). Thus, if we choose the constant

hidden in the number of iterations of the for loop of Algorithm 1 large enough, then with probability at
least 2/3, |C| shrinks to less than 100. Then the VERIFYCOLUMN procedure reads all the columns in C
and outputs the correct value of F. Thus we have proved the following Lemma.

Lemma 12. With probability at least 2/3, algorithm 1 outputs 1 on a 1-input.

10

4 Zero error query complexity of F

We first present a randomized query algorithm which satisfies the following: If the algorithm outputs 0
then the given input is a 0-input (The algorithm actually exhibits a 0 -certificate) and if the given input is
a 0-input, then the algorithm outputs 0 with high probability. This algorithm makes Õ(n3/4) queries in
worst case. For the randomized zero-error algorithm we run Algorithm 1 and this algorithm one after
another. If Algorithm 1 outputs 1 then we stop and output 1. Else, if Algorithm 2 says 0, we stop and
output 0. Otherwise, we repeat. By the standard argument of ZPP = RP∩ coRP we get the randomized
zero-error algorithm. Though the query complexity of Algorithm 1 is Õ(

√
n), we get the zero-error query

complexity of F to be Õ(n3/4) because of the query complexity of Algorithm 2.

Now we define the notion of column covering and column span which we will use next.

Definition 13. For two columns Ci and Cj in input matrix M, we say Cj is covered by Ci if there is a cell (k, i)
in Ci and a sequence (β1, δ1), . . . , (βt, δt) of pairs from [

√
n]× [

√
n] such that:

1. bk,i = 0,

2. δt = j,

3. for all ` ∈ [t], bβ`,δ` = 0 and

4. pk,i = (β1, δ1) and for ` = 1, . . . , t− 1, p(β`,δ`) = (β`+1, δ`+1).

Definition 14. For a column C, we define SpanC to be the subset of columns in M which consists of C and any
column which is covered by C.

We first give an informal description of the algorithm and then we proceed to formally analyze the
algorithm in Section 4.1. As mentioned before this is also a one-sided algorithm, i.e., it errs on one side
but it errs on the different side than that of Algorithm 1. The 0-certificates it attempts to capture are as
follows:

1. If each the columns has a cell with bit-entry 0, then the function evaluates to 0. Those bit-entries
form a 0-certificate. If there are many 0’s in each column, The algorithms may capture such a
certificate in the first phase (sparsification).

2. Two columns C1 and C2 in M such that C1 /∈ SpanC2
and C2 /∈ SpanC1

. Existence of two such
columns makes the existence of a valid pointer chain impossible. This is captured in the second
phase of the algorithm.

3. Lastly, if there is column all of whose bit-entries are 1, which does not have a valid pointer chain,
then that is also a 0-certificate. The algorithm may capture such a certificate in the last phase.

The algorithm proceeds as follows: The main goal of the algorithm is to eliminate any column where
it finds a 0 in any of its cells. First the algorithm filters out the columns with large number of 0’s with
high probability by random sampling. The algorithm probes n1/4 locations at random in each column
and if it finds any 0 in any column, it eliminates that column. This step is called sparsification. After
sparsification, we are guaranteed that all the columns have small number of 0’s. Now the remaining
columns can have either of the following two characteristics: First, a large number of the columns in
existing column set have large span. This implies that if we choose a column randomly from the existing
columns, the column will span a large number of columns (i.e., a constant fraction of existing columns)
with high probability and we can eliminate all of them. The algorithm does this exactly in the procedure
A of the second phase. The other case can be where most of the columns have small spans. We can show
that if this is the case, then if we pick two random columns Ci and Cj from the set of existing columns, Ci
will not lie in the span of Cj and vice-versa with high probability, certifying that F is 0. This case is taken
care of in the procedure B of the second phase of the algorithm.

11

The algorithm runs procedure A and procedure B one after another for logarithmic number of steps. If
at any point of the iteration, the algorithm finds two columns which are not in span of each other, the
algorithm outputs 0 and terminates. Otherwise, as the procedure A eliminates the number of existing
columns by a constant factor in each iteration, with logarithmic number of iteration, either we completely
exhaust the column set, which is again a 0-certificate, or we are left with a single column. Then the
algorithm checks the remaining column and the validity of the pointer chain if that column is an all 1’s
column and answers accordingly. This captures the third kind of 0-certificate as mentioned before. In
Algorithm 2, we set τ to be the least number such that

√
n · (99

100)
τ ≤ 1. Clearly τ = O(log n).

4.1 Analysis

Let’s first look at the running time of the algorithm

Claim 15. The query complexity of Algorithm 2 is Õ(n3/4) in worst case.

Proof. We count the number of bit-entries and pointer-entries of the input matrix the algorithm probes.
Upto logarithmic factor, that is asymptotically same as the number of bits queried.
The first for loop runs for

√
n iteration and in each iteration samples T cells from a column. So the

number of probes of the first for loop is O(
√

n× T) = Õ(n3/4).

In procedure A, the number of probes needed to scan the column and to trace pointer from the column
is O(n3/4). In procedure B, the algorithm has to check the span of two columns, which takes O(n3/4)
probes. The number of iterations of the for loop of line 9 is at most τ = O(log n). Hence the total number
of probes made inside the for loop is Õ(n3/4).

Lastly, VERIFYCOLUMN takes O(
√

n) probes. So the total number of probes is bounded by Õ(n3/4).
Thus the claim follows.

The first for loop, i.e., line 3 to 8 is called sparsification. We have the following guarantee after sparsification.

Claim 16. After the sparsification, with probability at least 99/100, every column in C has at most n1/4 cells
with bit-entry 0.

Proof. We will bound the probability that all the T probes in a column outputs 1 conditioned on the fact
that the column has more than n1/4 0’s. A single probe in such a column outputs 0 with probability at
least 1/n1/4. Hence all the probes output 1 with probability (1− 1/n1/4)T ≤ 1

100
√

n . By union bound,
this happens to some column in M with probability at most 1/100.

This implies that except with probability 1/100, the if conditions of lines20 and 32are never satisfied.

Claim 17. Either of the following is true in each iteration of the for loop of line 9:

1. for a random column C ∈ C, |SpanC| > |C|/100 with probability at least 1/100.

2. For two randomly picked columns Ci and Cj in C, with probability at least 24/25, Cj /∈ SpanCi
and

Ci /∈ SpanCj
.

Proof. Suppose (1) does not hold. For two random columns Ci and Cj, Let Li (Lj) be the event that
|SpanCi

| (|SpanCj
|)| > |C|/100. Let Ei,j (Ej,i) be the event that Cj ∈ SpanCi

(Ci ∈ SpanCj
). Thus we have,

P{Ei,j} = P{Li} ·P{Ei,j|Li}+ P{Li} ·P{Ei,j|Li}

12

Algorithm 2
1: C := Set of columns in M;
2: τ := Least number such that

√
n · (99

100)
τ ≤ 1;

3: for each column C in C do
4: Sample T = 10 · n1/4 log n cells uniformly at random;
5: if any bit-entry of any cell is 0 then
6: C ← C \ {C};
7: end if
8: end for
9: for t = 1 to τ do

10: if |C| ≤ 1 then
11: goto step 40
12: end if
13: repeat
14: procedure A
15: Sample a column C from C uniformly at random;
16: Read all entries of all cells of C;
17: if All bit-entries are 1 then
18: VERIFYCOLUMN(M, C);
19: end if
20: if Number of 0 bit-entries in C > n1/4 then
21: Output 1 and abort;
22: end if
23: For each cell on C with bit-entry 0, trace pointer and compute SpanC;
24: C ← C \ SpanC;
25: end procedure
26: until α log log n times
27: procedure B
28: Pick two columns C1 and C2 uniformly at random from C;
29: if All bit-entries of C1 (C2) are 1 then
30: VERIFYCOLUMN(M, C1) (VERIFYCOLUMN(M, C1));
31: end if
32: if Number of 0 bit-entries in C1 or C2 > n1/4 then
33: Output 1 and abort;
34: end if
35: if C2 /∈ SpanC1

and C1 /∈ SpanC2
then

36: Output 0 and abort;
37: end if
38: end procedure
39: end for
40: if C = ∅ then
41: Output 0;
42: end if
43: if |C| = 1 then
44: Let C = {C}.
45: VERIFYCOLUMN(M, C);
46: end if
47: Output 1.

13

≤ P{Li}+ P{Ei,j|Li}

≤ 1
100

+
1

100
=

1
50

Similarly P{Ej,i} ≤ 1
50 . By union bound, (2) is true;

Now we are ready prove the correctness of the algorithm.

Claim 18. Given a 0-input, Algorithm 2 outputs 0 with probability at least 19/20 .

Proof. We first note that after the execution of for loop in line 3, except with probability at most 1/100
there is no column in C having more than n1/4 cells with bit-entries 0.

If the algorithm finds a column all of whose bit-entries are 1, it gives correct output by a run of
VERIFYCOLUMN.

Next, we note that if in any iteration of the for loop (line 9), condition (2) of Claim 17 is satisfied, then we
find a 0-certificate (i.e. a pair of columns, none of which lies in the span of the other) with probability at
least 24/25.

Finally, assume that for each iteration of the for loop, condition (2) is not satisfied. This implies that for
each iteration of the loop, condition (1) is satisfied (From Claim 17). As we run procedure A α log log n
times, with probability at least 1− (99

100)
α log log n ≥ 1− 1

100τ (for appropriate setting of the constant α) we
land up on a column whose span is at least |C|/100 and hence we eliminate 1/100 fraction of columns
in C, in one of the iterations of the inner repeat loop (line 13). By union bound, the probability that
there is even one bad repeat loop where we do not eliminate |C|/100 columns, is at most 1/100. Thus
the probability that after the execution of for loop is over, |C| > 1, is at most 1/100. So, the total error
probability is bounded by 1/100 + max{1/25, 1/100} = 1/20 from which the claim follows.

Claim 19. Given a 1-input, Algorithm 2 outputs 1 with probability 1.

Proof. The proof of this claim is straight-forward. As mentioned before, Algorithm 2 outputs 0 only if it
finds a 0-certificate. As there is no 0-certificate for a 1-input , the algorithm outputs 1.

Lemma 3 follows by combining Claim 18 and Claim 19.

Acknowledgements: We thank Arkadev Chattopadhyay, Prahladh Harsha and Srikanth Srinivasan for
useful discussions.

References

[ABB+15] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris
Smotrovs. Separations in query complexity based on pointer functions. CoRR, abs/1506.04719,
2015.

[BI87] Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes (extended abstract).
In 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA,
27-29 October 1987, pages 118–126, 1987.

[GPW15] Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. Electronic Colloquium on Computational Complexity (ECCC), 22:50, 2015.

[HH87] Juris Hartmanis and Lane A. Hemachandra. One-way functions, robustness, and the non-
isomorphism of np-complete sets. In Proceedings of the Second Annual Conference on Structure
in Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19, 1987, 1987.

14

[Nis91] Noam Nisan. CREW prams and decision trees. SIAM J. Comput., 20(6):999–1007, 1991.

[San91] Miklos Santha. On the monte carlo boolean decision tree complexity of read-once formulae.
In Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago, Illinois,
USA, June 30 - July 3, 1991, pages 180–187, 1991.

[SW86] Michael E. Saks and Avi Wigderson. Probabilistic boolean decision trees and the complexity
of evaluating game trees. In 27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27-29 October 1986, pages 29–38, 1986.

[Tar89] Gábor Tardos. Query complexity, or why is it difficult to seperate NP a cap co NPa from Pa

by random oracles a? Combinatorica, 9(4):385–392, 1989.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

