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Abstract

The Hamming and the edit metrics are two common notions of measuring distances between
pairs of strings x, y lying in the Boolean hypercube. The edit distance between x and y is de�ned
as the minimum number of character insertion, deletion, and bit �ips needed for converting x
into y. Whereas, the Hamming distance between x and y is the number of bit �ips needed for
converting x to y.

In this paper we study a randomized injective embedding of the edit distance into the Ham-
ming distance with a small distortion. This question was studied by Jowhari (ESA 2012) and
is mainly motivated by two questions in communication complexity: the document exchange
problem and deciding edit distance using a sketching protocol.

We show a randomized embedding with quadratic distortion. Namely, for any x, y satisfying
that their edit distance equals k, the Hamming distance between the embedding of x and y is
O(k2) with high probability. This improves over the distortion ratio of O(log n log∗ n) obtained
by Jowhari for small values of k. Moreover, the embedding output size is linear in the input size
and the embedding can be computed using a single pass over the input.
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1 Introduction

The Hamming and the edit distance (aka Levenshtein distance) [Lev66] are two common ways of
measuring distances between pairs of strings x, y ∈ {0, 1}n. The edit distance between x and y,
denoted by ∆e(x, y), is de�ned as the minimum number of character insertion, deletion, and bit �ips
needed for converting x into y and the Hamming distance between x and y, denoted by ∆H(x, y),
is the number of bit �ips needed for converting x to y.

In this paper we study the question of randomized embedding from edit distance metric into
Hamming metric with a small distortion. Given two metric spaces (X1, d1) and (X2, d2), an em-
bedding from X1 into X2 with distortion factor φd is a mapping φ : X1 → X2, such that ∀u,v∈X1 ,
d2(φ(u), φ(v)) ≤ φd · d1(u, v). In general, it is always interesting to �nd an embedding with small
distortion from a �not so well� understood metric space to a metric space for which e�cient al-
gorithms are known, because this directly provides us e�cient algorithms for the original metric
space. Our main result provides a linear-time embedding with quadratic distortion between input
edit distance and output Hamming distance.

Our main motivation behind the study of this question is computing edit distance in the context
of two communication models. The �rst problem, known as Document Exchange problem [CPSV00],
where two communication parties Alice and Bob hold two input strings x and y and based on the
message transmitted by Alice, Bob's task is to decide whether ∆e(x, y) > k and if ∆e(x, y) ≤ k
then to report x correctly. We assume that both the parties have access to a shared randomness
and also consider an added restriction that both Alice and Bob run in time polynomial in n and k.
The document exchange problem with this restriction on running time was also studied in [Jow12]
and we will discuss about what is known about this problem in the later part of this section.

Another important problem related to embedding is to decide edit distance using a sketching
protocol. In this problem, given two strings x and y, we would like to compute sketches s(x) and
s(y) or in other words a mapping s : {0, 1}n → {0, 1}t such that t is much smaller compared
to n and our objective is to decide whether ∆e(x, y) > k or not having access to only s(x) and
s(y). One can also view the same problem as a two-party public-coin simultaneous communication
protocol [KN97], where Alice holds x and Bob holds y and both of them are only allowed to send
one message to a third referee whose job is to decide whether ∆e(x, y) > k or not depending on the
messages he receives from Alice and Bob.

1.1 Our Main Result

Our main result shows the existence of a randomized mapping f from edit distance into Hamming
distance that at most squares the edit distance. Our result applies to the shared randomness
model. Namely, we show that for every pair of strings (x, y) ∈ {0, 1}n having a small edit distance
the following holds. The Hamming distance between the encoded strings is small, provided that the
encoding was done using the same sequence of random bits1, formally:

Theorem 1.1. For any integer n > 0, there is ` = O(log n) and a function f : {0, 1}n × {0, 1}` →
{0, 1}3n such that for any pair of strings x, y ∈ {0, 1}n:

1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ O((∆e(x, y))2)

1Our result can easily be extended for strings lying in a larger alphabet (See Section 5).
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with probability at least 2/3 over the choice of the random string r ∈ {0, 1}`. Furthermore, f can be
computed in a streaming fashion in (non-uniform) log-space using one pass over the input string x.

We can also give a uniform version of this theorem by allowing a little bit more random bits.

Theorem 1.2. There is an algorithm A computing a function f : {0, 1}n×{0, 1}` → {0, 1}3n where
` = O(log2 n) such that for any pair of strings x, y ∈ {0, 1}n:

1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ O((∆e(x, y))2)

with probability at least 2/3 over the choice of the random string r ∈ {0, 1}`. The algorithm A on
input x and r works in a streaming fashion in log-space using one pass over its input x and random
access to r. On a word RAM with word size O(log n), A can be implemented so that it uses only
constant amount of working memory, i.e., O(1) words, and uses O(1) amortized time per output bit
(O(log n) per output bit in the worst-case.)

In both of the above theorems, with probability at least 1− 1/nΩ(1) over the choice of random
r, x can be recovered from f(x, r). Indeed, the algorithm computing f knows which is the case by
the end of its computation. Hence, the function f in both of the theorems can be made one-to-one
by appending r at the end of the output and also appending either 0n or x depending on whether
x can be recovered or not. (One would require an extra pass over x to append it.) Since the failure
probability of the recovery is low, x would be appended only with low probability and hence, with
high probability this would not a�ect the Hamming distance between f(x, r) and f(y, r). (Most
of the times we append 0n on both x and y.) This answers positively Problem 59 of Dortmund
Workshop on Algorithms for Data Streams 2012 [DW112] in the randomized case.

We can specify the trade-o� between the Hamming distance and its probability: for any positive
c ∈ R, the probability that ∆H(f(x, r), f(y, r)) ≤ c · ∆e(x, y)2 is at least 1 − 12√

c
− O( 1

n) (extra

O(1/n) term comes from the error incurred due to Nisan's PRG discussed in Section 4). On the
other hand ∆H(f(x, r), f(y, r)) ≥ ∆e(x, y)/2 happens with probability 1− 1/nΩ(1).

One may naturally wonder what is the distribution of the resulting Hamming distance. It very
much depends on the two strings x and y. For example if y is obtained from x by �ipping the �rst k
bits then with high probability the Hamming distance of f(x, r) and f(y, r) is O(k). On the other
hand, if y is obtained from a random x by �ipping each n/k-th bit (where n ≥ k3) then with high
probability the Hamming distance of f(x, r) and f(y, r) will be Ω(k2). Interestingly though, for
any two distinct �xed x and y, the expectation of ∆H(f(x, r), f(y, r)) is Θ(n) so the distribution is
heavy tailed. For many applications this is not any problem as in many applications one can abort
when the Hamming distance is large and retry with a new random seed.

Our embedding protocol is as follows: First we pick (using the random string r) a sequence of
random functions h1, . . . , h3n : {0, 1} → {0, 1}. We further maintain a pointer i for current position
on the input string x. In time t ≤ 3n we append the bit xi to the output, and increment i by ht(xi)
(if i exceeds n, we pad the output string with zeros).

Let us shed some light on the intuition behind the distortion guarantee. It is a consequence of
coupling of Markov chains. Let x, y ∈ {0, 1}n and k = ∆e(x, y). Consider the strings f(x, r), f(y, r)
(i.e. the strings are encoded using the same sequence h1, . . . , h3n). Observe that as long as the
pointer i points to indices in the shared pre�x of x and y, the two output strings are equal. In the �rst
iteration when i points to an index such that xi 6= yi, the output bits become di�erent. Nevertheless,
the increment of i is done independently in the embedding of each input. This independent increment
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is done in each iteration where the output bits are di�erent. The crux of our argument relies on
this independent increment to ensure that with high probability ∆H(f(x, r), f(y, r)) ≤ ck2. This is
done by reducing our problem to a certain question regarding random walks on the integer line.

Algorithm of Saha [Sah14]: An idea similar to ours is used in the algorithm of [Sah14] for
computing the edit distance of a string of parenthesis of various types from a well parenthesized
expression. The main idea of the algorithm presented in [Sah14] is to process the string left to right,
push opening parenthesis on a stack and match them against closing parenthesis. Whenever there
is a mismatch remove at random either the closing parenthesis or the opening one. This algorithm
can be applied also to approximately compute the edit distance of strings by pushing a reverse of
one of the strings on the stack and matching the other string against the stack. Whenever there is
a mismatch remove at random a symbol either from the top of the stack or from the other string.

In order to approximate the edit distance of two strings at hand it is fairly natural idea to
remove the mismatched symbols at random. Our algorithm also builds on this idea. However, there
is a major technical challenge when we do not have access to both of the strings at the same time
and we should remove the mismatched characters. We do not know which one are those. Deleting
symbols at random is unlikely to provide a good result. Hence, it is not clear that one can carry
out this basic idea in the case of string embedding when we have access only to one of the strings.
Indeed, one needs some oblivious synchronization mechanism that would guarantee that once the
removal process is synchronized it stays synchronized. The existence of such a mechanism is not
obvious. Surprisingly, there is an elegant solution to this problem with a good performance.

Instead of removing symbols we repeat them random number of times and we introduce corre-
lation between the random decisions so that our process achieves synchronization. Indeed, deleting
symbols would not work for us as we want to preserve the overall information contained in the
strings. Although the underlying mechanism of our algorithm and that of [Sah14] is di�erent, the
analysis in [Sah14] eventually reduces to a similar problem about random walks. One of an open
problems about the oblivious synchronization is whether one can design such a mechanism with a
better performance than ours.

1.2 Related Works

The notion of edit distance plays a central role in several domains such as computational biology,
speech recognition, text processing and information retrieval. As a consequence, computational
problems involving edit distance seek attentions of many researchers. We refer the reader to the
excellent survey by Navarro [Nav01] for a comprehensive treatment of this topic. The problem of
computing exact edit distance can be solved in O(n2) time using classical dynamic programming
based algorithm [WF74]. Later, Masek and Paterson [MP80] achieved slightly improved bound of
O(n2/ log2 n) on this problem and this is the best known upper bound so far. For the decision
version of this problem, an O(n+k2) time algorithm is known [LMS98], where k is the edit distance
between two input strings. On the other hand, if we focus on approximating edit distance, we have
much better bounds on running time. The exact algorithm given in [LMS98] immediately gives a
linear-time

√
n-approximation algorithm. Bar-Yossef et al. [BYJKK04] improved this approximation

factor to n3/7 with a (nearly) linear-time algorithm and later it was improved to n1/3+o(1) [BES06]

and �nally to 2Õ(
√

logn) [AO09]. The improved approximation factor by [AO09] was based on
embedding edit distance into Hamming distance [OR07], where authors showed such an embedding
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with distortion factor 2O(
√

logn log logn). In case of embedding of edit distance with moves 2 into
Hamming metric, the distortion factor is known to be upper bounded by O(log n log∗ n) [CM02].
Andoni et al. [ADG+03] showed a lower bound of 3/2 on distortion factor in case of embedding
from edit distance metric to Hamming metric.

One of the implications of such randomized embedding is the document exchange problem. If
we focus only on one-way communication protocol, then we have an upper bound of O(k log n) on
the total number of bits transmitted [Orl91], but unfortunately that protocol incurs Bob's running
time exponential in k. Jowhari [Jow12] studied this problem with the restriction that both Alice
and Bob run poly(k, n)-time algorithms and gave a protocol with a O(k log2 n log∗ n) bound on
the number of bits transmitted. One of the main contributions of his work was to provide a time-
e�cient randomized embedding from edit distance metric into Hamming metric with distortion
factor O(log n log∗ n) equipped with a polynomial time reconstruction procedure. At the end, he
raised the question whether it is possible to achieve distortion factor o(log n) keeping both the
embedding and the reconstruction procedure time-e�cient. In this paper, we addressed this question
and achieve an upper bound of k on distortion factor which is a signi�cant improvement over the
previous result when k is �small� compared to n. This in turns translates into a protocol with a
O(k2 log n) bound on the number of bits transmitted.

Another problem that we consider in this paper is the design of sketching algorithm to decide
edit distance. For Hamming distance, e�cient sketching algorithm is known [KOR98, BYJKK04]
that solves the k vs. (1 + ε)k gap Hamming distance problem with constant size sketches. Building
on that result, Bar-Yossef et al. [BYJKK04] gave a computation of constant size sketch that can
distinguish the two cases when edit distance is at most k and when that is at least (kn)2/3, for
k ≤
√
n. Later, improvement on distortion factor of embedding [OR07] results in solution to k vs.

2O(
√

logn log logn) · k gap edit distance problem. Our embedding result can be used to solve k vs. ck2

gap edit distance problem for some constant c with constant size sketches.

1.3 Applications of the Main Result

As a consequence of Theorem 1.1, we achieve a better bound on number of bits transmitted in
a one-way protocol solving the document exchange problem. The most obvious protocol in this
regard is the following [Jow12]: Alice and Bob �rst compute f(x, r) and f(y, r), where r is the
shared randomness and then they run the one-way protocol for document exchange problem under
Hamming metric. We use the following lemma from [PL07] which provides an e�cient sketching
algorithm in case of Hamming distance.

Lemma 1.3 ( [PL07]). For two strings x, y ∈ {0, 1}n such that ∆H(x, y) ≤ h, there exists a
randomized algorithm that maintains sketches of size O(h log n) and using sketches sh(x) and sh(y),
it outputs all the tuples {(xi, yi)} where xi 6= yi with probability at least (1−1/n) in O(h log n) time.
Construction of sketch sh(x) can be done in O(n log n) time and space in one pass.

Now if ∆e(x, y) ≤ k, Bob will learn f(x, r) and then using decoding algorithm he can get back
x. After having x, Bob can decide ∆e(x, y) ≤ k in O(n+ k2) time using the algorithm by [LMS98].
This idea leads us to the following corollary.

Corollary 1.4. In the two-party communication model, there is a randomized one-way protocol that
solves document exchange problem with high probability while transmitting only O(k2 log n) bits. The
running time of each party will be O(n log n+ k2 log n).

2Similar to ∆e(x, y) with addition of a block move operation, where moving a substring of x to another location
is considered as a single operation.
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Another straightforward but important application of Theorem 1.1 is that it provides us a
randomized sketching algorithm for k vs. ck2 gap edit distance problem for some constant c. For
this purpose, we need the following lemma from [BYJKK04].

Lemma 1.5 ( [BYJKK04]). For any ε > 0 and k, k vs. (1 + ε)k gap Hamming distance problem
can be solved using an e�cient sketching algorithm that maintains sketches of size O(1/ε2) and if
the set of non-zero coordinates of each input string can be computed in time t, then running time of
Alice and Bob will be bounded by O(ε−3t log n).

Now given two input strings x and y, we can �rst use embedding f of Theorem 1.1 and then
apply the above lemma to get the following corollary.

Corollary 1.6. There exists a c ∈ N such that for any k, there is a randomized sketching algorithm
that solves k vs. ck2 gap edit distance problem with high probability using sketches of size O(1)
attaining an upper bound of O(n log n) on Alice and Bob's running time.

Among other implications of embedding, one interesting problem is to design approximate nearest
neighbor search algorithms which is de�ned as given a database of m points, we have to pre-process
such that given a query point, it would be possible to e�ciently �nd a database point close to the
query point. For Hamming metric, a search algorithm is known [IM98] that retrieves a database
point which is at most (1 + ε) times far from the closest one. Together with that, our embedding
result implies a randomized algorithm that will return a point (under edit distance metric) within
the distance of O(k) times that of the closest one.

2 Preliminaries

In the rest of the paper, we refer to a random walk on a line as a random walk on the integer line
where in each step with probability 1/2 we stay at the same place, with probability 1/4 we step to
the left, and otherwise we step to the right. For parameters t ∈ N, ` ∈ Z, We denote by q(t, `) the
probability that a random walk on a line starting at the origin reaches the point ` at time t for the
�rst time (for convenience we set q(0, 0) = 1).

Observation 2.1. Let t ∈ N then:

1. For all ` < 0 it holds that q(t, `) ≤ q(t, `+ 1), and for all ` > 0, q(t, `) ≤ q(t, `− 1),

2. For all ` ∈ N it holds that q(t, `) = 1
4q(t− 1, `− 1) + 1

2q(t− 1, `) + 1
4q(t− 1, `+ 1),

3. For all ` > 1 it holds that q(t, `) =
∑

j<t q(t− j, `− 1)q(j, 1).

The following is a well known fact about random walks that can be found e.g. in [LPW06,
Theorem 2.17].

Proposition 2.2 (Folklore). For any k, ` ∈ N it holds that:

∑̀
t=0

q(t, k) ≥ 1− 12k√
`
.

In particular,
∑1296k2

t=0 q(t, k) ≥ 2
3 .
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3 The Basic Embedding

In this section we present our basic embedding and in the subsequent section we show how to reduce
the number of its random bits to prove our main theorems. The pseudo-code for the embedding is
given in Algorithm 1.

Algorithm 1 Basic Embedding Function f

Input : x ∈ {0, 1}n, and a random string r ∈ {0, 1}6n
Output: f(x, r) ∈ {0, 1}3n
Interpret r as a description of h1, . . . , h3n : {0, 1} → {0, 1}.
Initialization: i = 1, Output = λ;
for j = 1, 2, . . . , 3n do

if i ≤ n then
Output = Output� xi, where the operation � denotes concatenation;
i = i+ hj(xi);

end
else

Output = Output� 0;
end

end
Set f(x, r) = Output.

Let us illustrate our embedding applied on the strings: x = abc, . . . , xyz, def, . . . , xyz and
y = def, . . . , xyz, abc, . . . , xyz while using the same sequence r as random string.

Figure 1: Runtime example of the embedding algorithm:

As one can see, upon each block of edit changes, the output strings f(x, r) and f(y, r) become
di�erent, till they �synchronize� again. In the sequel, we justify this kind of behavior and show that
the synchronization is rapid.

We summarize here the main properties of our basic embedding:

Theorem 3.1. The mapping f : {0, 1}n × {0, 1}6n → {0, 1}3n computed by Algorithm 1 satis�es
the following conditions:

1. For every x ∈ {0, 1}n, given f(x, r) and r, it is possible to decode back x with probability
1− exp(−Ω(n)).

2. For every x, y ∈ {0, 1}n, ∆e(x, y)/2 ≤ ∆H(f(x, r), f(y, r)) with probability at least 1 −
exp(−Ω(n)).
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3. For every positive constant c and every x, y ∈ {0, 1}n, ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

with probability at least 1− 12√
c
.

Moreover, both the mapping f and its decoding (given f(x, r) and r) take linear time and can be
performed in a streaming fashion.

Let us justify the properties of our basic embedding from Theorem 3.1. It is clear from the
algorithm that |f(x, r)| = 3n. For the �rst property observe that we can recover x from f(x, r) and
r provided that i = n + 1 at the end of the run of the algorithm. Since at each iteration of the
algorithm, i is incremented with probability 1/2, the probability that during 3n rounds it does not
reach n+ 1 can be bounded by 2−Ω(n) by the Cherno� bound. So unless this low probability event
happens we can recover x from f(x, r) and r.

Proving the second property is straightforward. Indeed, let k = ∆e(x, y). We claim that
k/2 ≤ ∆H(f(x, r), f(y, r)) whenever the algorithm ends with i = n+ 1 on both x and y. In such a
case x can be obtained from f(x, r) by removing all the bits where hj(f(x, r)j) = 0. Similarly for y.
Hence, y di�ers from x only in the part which is obtained from the portion of f(y, r) which bit-wise
di�ers from f(x, r). If ` = ∆H(f(x, r), f(y, r)) then we need to apply at most ` edit operations on x
to obtain all the y except for at most the last ` bits of y (in the case when they are all 0). So except
for an event that happens with exponentially small probability ∆e(x, y) ≤ 2 ·∆H(f(x, r), f(y, r)).

The rest of this section is devoted for the proof of Property 3. We will need the following main
technical lemma. Together with Proposition 2.2 it implies the theorem.

Lemma 3.2. Let x, y ∈ {0, 1}n be of edit distance ∆e(x, y) = k. Let q(t, k) be the probability that
a random walk on the integer line starting from the origin visits the point k at time t for the �rst
time. Then for any ` > 0, Pr[∆H(f(x, r), f(y, r)) ≤ `] ≥

∑`
t=0 q(t, k) where the probability is over

the choice of r.

Consider two strings x, y ∈ {0, 1}n such that ∆e(x, y) = k. We will analyze the behavior of the
embedding function on these two strings. We are interested in the Hamming distance of the output
of the function. Let y = x(0), x(1), . . . , x(k) = x be a series of strings such that ∆e(x

(`−1), x(`)) = 1.
Such strings exist by our assumption on the edit distance of x and y. Let i` be the �rst index on
which x(`−1) and x(`) di�er. Without loss of generality assume i1 < · · · < ik. For a �xed value of
h1, . . . , h3n we de�ne a function ix : [3n]→ [n] such that ix(j) is the value of i in the j-th iteration
of Algorithm 1 applied on x.

Let dj measure the di�erence between deleted and inserted bits between x and y that were seen
till iteration j, i.e. d0 is initialized to 0, and dj is de�ned recursively as follows: whenever j is such
that ix(j) /∈ {i1, . . . , ik} then dj = dj−1. Otherwise, suppose ix(j) = i`, then dj = dj−1 − 1 when
x(`+1) is obtained by deletion from x(`), it is dj−1 when it was a bit �ip and dj−1 + 1 when it was a
insertion. The main observation is as follows:

Observation 3.3. Let j ∈ [3n] be such that ix(j) ∈ [i`, i`+1), then:

1. If ix(j) = iy(j) + dj, then xix(j) = yiy(j) so f(x, r)j = f(y, r)j.

2. Moreover if ix(j) = iy(j) + dj, for every j′ ≥ j if ix(j′) < i`+1, then ix(j′) = iy(j′) + dj.
Overall, for every j′ ≥ j satisfying ix(j′) < i`+1 it holds that f(x, r)j′ = f(y, r)j′.

The �rst item follows easily by the de�nition of dj and x(0), . . . , x(k). As for the second item,
observe that as long as ix(j′) ≤ i`+1 the increment of ix(j′), iy(j′) is identical as xix(j′) = yiy(j′), so
in particular hj′(xix(j′)) = hj′(yiy(j′)).
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To bound ∆H(f(x, r), f(y, r)) we de�ne the following randomized process which is induced by
the behavior of the algorithm on x and y. The process consists of a particle moving randomly on
the integer line and a goalspot. In the beginning both the particle and the goalspot are located at
the origin. The process lasts 3n units of time.

The goal spot is moved according to dj , i.e. whenever ix(j) hits an index i`, then the goalpost
is moved according to the following rule:

• If x(`) is obtained from x(`−1) by a bit �ip then the goalspot remains in its place.

• If x(`) is obtained from x(`−1) by a bit insertion then the goalspot shifts one step to the right.

• If x(`) is obtained from x(`−1) by a bit deletion then the goalspot shifts one step to the left.

The particle moves according to the following rule: If j is such that f(x, r)j = f(y, r)j then
the particle is idle. Otherwise, it makes a step according to hj(xix(j)) − hj(yiy(j)). Clearly,
∆H(f(x, r), f(y, r)) equals the number of steps in which the particle is not idle (including the
steps it remains in its place). Observe that whenever f(x, r)j 6= f(y, r)j then xix(j) 6= yiy(j). There-
fore, in such a case, since hj is random, the particle shifts to the left/right with probability 1/4 and
stays in its place with probability 1/2.

Let j ∈ [3n] satisfying i` ≤ ix(j) < i`+1. The goalpost position in iteration j measures the
di�erence between deleted and inserted bits in the series x(1), . . . , x(`), namely it equals dj . The
particle position measures the di�erence between the increments of ix(j) and iy(j). Therefore, if the
particle reaches the goalspot position then by Observation 3.3 it holds xix(j) = yiy(j). And by the
second item of Observation 3.3 this implies that the particle would stay idle till the next iteration
in which ix(j) = i`+1. Therefore, we need to analyze how many steps the particle performs after
it becomes non-idle till it reaches the goalspot again. For this sake we de�ne a new process that is
easier to analyze:

The Kennel Struggle: Let us consider a process involving a dog, a cat and a kennel. All the
involving entities are located on the integer line. In the beginning the kennel is located on the origin
and so are the dog and the cat. The dog would like the cat to step out of the kennel. To this end
the dog can perform one of the following actions:

The dog can bark, forcing the cat to perform a random step (de�ned shortly). Alternatively, the
dog can move with kennel one step towards his preferred side. Whenever the cat is in the kennel
the dog must perform an action. If the cat is not in the kennel, the dog may perform an action or
stay idle. The dog's decision is based only on the cat position. Upon performing k actions the dog
gives up and vanishes so the kennel is empty from then on (where k = ∆e(x, y)).

The cat, upon each dog barking, or whenever she is not at the kennel performs a random step:
she steps to the left/right with probability 1/4 and stays in its place with probability 1/2. If the
cat �nds the kennel empty, then she happily stays there and the game is over.

It can be easily seen that for each con�guration of the particle and goalpost process, there is a
strategy for the dog such that: The distribution of the cat steps equals to the distribution of the
particle moves, with the little change that we do not stop the particle and goalpost process after 3n
steps (in the kennel struggle we skip the idle steps). Observe that if we do not end the particle and
goalpost process after 3n steps the number of steps made by the particle is just larger. Therefore,
an upper bound on the number of cat steps under any dog strategy, translates into an upper bound
on the number of particle non-idle steps, which in turn bounds the Hamming distance of x and y.

Fix a strategy S for the dog, and denote by pS(`) the probability that after at most ` steps
the cat reaches an empty kennel, provided that the dog acts according to S. The following claim
implies Lemma 3.2.
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Lemma 3.4. Let k ∈ N. Consider the kennel struggle, where the dog performs k actions. For every
strategy S of the dog, pS(`) ≥

∑`
t=0 q(t, k).

Proof. The lemma is a consequence of the following claim.

Claim 3.5. The following dog's strategy S minimizes pS(t) for every t: Wait till the cat reaches the
kennel and then push the kennel to the right.

Let us conclude the proof using the claim. Consider the dog's strategy given by Claim 3.5. In
this strategy the probability pS(`) is given by:

∑
t1,...,tk|t1+···+tk≤`

(q(t1, 1) · · · q(tk, 1)) =
∑̀
t=0

∑
t1,...,tk|t1+···+tk=t

(q(t1, 1) · · · q(tk, 1)). (1)

On the other hand, the inner sum in (1) equals the probability that a random walk on line starting
at the origin reaches place k at time t. To see that, observe that the last event can be phrased
as follows: First compute the probability that the walk reaches place 1 in t1 steps. Conditioned
on that compute the probability that it reaches 2 in t2 steps, and so on. Clearly, these events are
independent. In order to get a total number of t steps we require t1 + · · ·+ t2 = t.

Let us put things together. If the dog acts according to the strategy given by Claim 3.5 (which

minimizes pS(`) for every `), then for all values of ` > 0: pS(`) =
∑`

t=0 q(t, k). The lemma follows.

Proof of Claim 3.5. Consider a best strategy for the dog. That is, a series of decisions conditioned
on the current position of the cat. We divide the dog's strategy into intervals, where each interval
lasts until the cat reaches the kennel. Observe �rst that the distribution on the number of steps
made by the cat in each interval is independent on the other intervals. Therefore in order to conclude
the claim we show that in each interval separately we can replace the dog action by waiting till the
cat reaches the kennel and then pushing it to the right.

Fix such an interval. Consider the last action in this interval, we �rst show that it must be a
push of the kennel further from the cat. Let d be the distance of the cat from the kennel before the
dog pushes the kennel and let t ∈ N. We claim that for any value of t the probability that the cat
reaches an empty kennel within t steps is minimized when the dog pushes the kennel further from
the cat. Indeed:

• If the dog chooses to bark, then the above probability is given by: 1
4q(t, d − 1) + 1

2q(t, d) +
1
4q(t, d+ 1) = q(t+ 1, d).

• If the dog chooses to push the kennel towards the cat, then the above probability is given
by:14q(t, d− 2) + 1

2q(t, d− 1) + 1
4q(t, d) = q(t+ 1, d− 1).

• If the dog chooses to push the kennel further from the cat, then the above probability is given
by: 1

4q(t, d) + 1
2q(t, d+ 1) + 1

4q(t, d+ 2) = q(t+ 1, d+ 1).

The equality in each case is obtained by Observation 2.1 Item 2. By Item 1 of Observation 2.1
we conclude that the probability that the cat reaches an empty kennel within t steps is minimized
when the dog pushes the kennel further from the cat.

Now we show that if we replace the last action by waiting until the cat reaches the kennel, and
then pushing it to the right, the distribution on the cat steps does not change. The probability that
the cat reaches the kennel in t steps is given by: q(t, d + 1). If the dog instead waits until the cat
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reaches the kennel and then pushes the kennel to the right. Then probability that the cat reaches
(again) the kennel in t steps is given by:

∑t
i=1(q(i, d))q(t− i, 1) which, by Observation 2.1, equals

q(t, d+ 1), the claim follows. In such a way, it can be shown that each kennel push in this interval,
can be be replaced by waiting till the cat reaches the kennel and then pushing the kennel to the
right.

4 Reducing the randomness

In this section we show how to reduce the number of random bits used by Algorithm 1 to derive
Theorems 1.1 and 1.2.

An easy observation is that for the Boolean case, one can save a half of the random bits needed
for our basic embedding function given by Algorithm 1. We may replace the current condition for
incrementing i that hj(xi) = 1 by the condition rj = xi. As one can verify in our analysis of the
third property in Theorem 3.1 this would not substantially a�ect the property of the algorithm.
It would actually improve the bound on the resulting Hamming distance by a factor of roughly 2
because the induced random walk would be non-lazy. To obtain more substantial savings we will
use tools from derandomization.

By standard probabilistic method similar to [Gol01, Proposition 3.2.3], we argue that there
exists a subset of {0, 1}6n of substantially small size (of size at most 2nc

′
), from which sampling r is

�almost� as good as sampling it uniformly from {0, 1}6n. Thus by hard-wiring R inside the algorithm
and sampling r from R, we get the desired non-uniform algorithm promised in Theorem 1.1, details
below.

By choosing c appropriately and for large enough n, our basic embedding function f has the
property that with probability at least 3/4, for random r ∈ {0, 1}6n

1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2.

Now take a random subset R ⊆ {0, 1}6n of the size of the smallest power of two ≥ nc
′
, for some

suitable constant c′ > 0. Fix x, y ∈ {0, 1}n. By Cherno� bound, the probability that∣∣∣∣∣ Pr
r∈{0,1}6n

[
1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

]

− Pr
r∈R

[
1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

] ∣∣∣∣∣ > 1

n

over the random choice of R is at most 2−2n. Hence, by the union bound over all x and y, there is
a set R of the required size such that for any x, y ∈ {0, 1}n,∣∣∣∣∣ Pr

r∈{0,1}6n

[
1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

]

− Pr
r∈R

[
1

2
·∆e(x, y) ≤ ∆H(f(x, r), f(y, r)) ≤ c · (∆e(x, y))2

] ∣∣∣∣∣ ≤ 1

n
.
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Thus instead of sampling r from the whole universe {0, 1}6n we can sample r from R without
a�ecting the probability of small distortion by more than 1/n. Since R is of size at most 2nc

′
,

we need only log |R| = dc′ log ne random bits to sample a random element of R. The non-uniform
algorithm for the embedding function of Theorem 1.1 has R hard-wired as a table. On input x and
s ∈ {0, 1}log |R| the algorithm simulates Algorithm 1 on x and the s-th string in R. By properties
of R we know that such an algorithm satis�es the conclusion of Theorem 1.1.

The above algorithm has an optimal seed length but it has the disadvantage of storing a large
table of non-uniformly selected strings (the subset R). To get rid of the table we will use Nisan's
pseudo-random generator [Nis90].

Nisan's pseudo-random generator Gk,w is a function that takes a seed s of length w and k
pair-wise independent hash functions h1, h2, . . . , hk : {0, 1}w → {0, 1}w and outputs a string r ∈
{0, 1}w2kde�ned recursively as follows:

G0,w(s) = s

Gk,w(s, h1, h2, . . . , hk) = Gk−1,w(s, h1, . . . , hk−1)�Gk−1,w(hk(s), h1, . . . , hk−1)

Nisan proved that his generator satis�es the following property.

Theorem 4.1 ([Nis90]). For an arbitrary constant c0 > 0, let A be an algorithm that uses work
space of size at most c0 log n and runs in time at most nc0 with a two-way access to its input string
x and a one-way access to a random string r. There is a constant c1 > 0 such that∣∣∣∣Pr

r
[A(x, r) accepts]− Pr

r′
[A(x, r′) accepts]

∣∣∣∣ < 1

n2

where r is taken uniformly at random, and r′ is taken according to the distribution induced by
Gc0 logn,w(s, h1, . . . , hc0 logn) where w = c1 log n, s ∈ {0, 1}w is taken uniformly at random and each
hi is sampled independently from an ensemble of pair-wise independent hash functions.

There are ensembles of pair-wise independent hash functions mapping w bits into w bits where
each function is identi�ed by a binary string of length O(w). Nisan [Nis90] gives several such
examples and there are many others. In particular, the ensemble given by Dietzfelbinger [Die96]
can be evaluated on word RAM with word size O(w) using O(1) multiplications and bit operations.

We would like to apply Theorem 4.1 on Algorithm 1. However, Theorem 4.1 applies only for
decision algorithms. Therefore we de�ne the following algorithm A:

Algorithm 2 Hamming Distance Test

Input : x, y ∈ {0, 1}n, k ∈ {1, . . . , 3n}, and a random string r ∈ {0, 1}6n
Output: Accept i�: ∆H(f(x, r), f(y, r)) = k
Compute ∆H(f(x, r), f(y, r)) for the basic embedding function f by simultaneously computing
f(x, r) and f(y, r) while counting the Hamming distance of f(x, r) and f(y, r);
Accept if ∆H(f(x, r), f(y, r)) = k;

Given the properties of our Algorithm 1 for the basic embedding function, it is clear that A
processes its input in logarithmic space using one-way access to its random string r. Hence, we can
apply Theorem 4.1 on algorithm A. That implies that the distributions of the Hamming distance
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∆H(f(x, r), f(y, r)) on a random string r and a random string r′ sampled according to Nisan's
pseudo-random generator are close in `∞ distance.

Hence, instead of providing Algorithm 1 with completely random string we will provide it with
a seed of length O(log n) and a sequence O(log n) of hash functions that will be expanded by the
Nisan's pseudo-random generator into a full pseudo-random string r′. This r′ is used in place of r
to compute f(x, r′). Since each hash function can be speci�ed using O(log n) bits this algorithm
will require only O(log2 n) random bits in total.

Furthermore, it is clear from the description of the Nisan's pseudo-random generator, that each
bit of r′ can be obtained by evaluating at most O(log n) hash functions. When computing r′ bit
by bit we only need to evaluate O(1) hash function on average. Thus when using Dietzfelbinger's
hash functions on a RAM with word size O(log n) we can compute f(x, r′) in a streaming fashion
spending only O(1) operations per output bit on average and O(log n) in the worst-case. This proves
Theorem 1.2.

5 Non-binary alphabets

Our results carry over directly to larger alphabets of constant size. For alphabets Σn where the
size of Σn depends on n we assume that the symbols are binary encoded by strings of length
log |Σn|. Our basic embedding given by Algorithm 1 only needs that each h1, . . . , h3n is a pair-wise
independent hash function from Σn to {0, 1}. Such a hash function is obtained for example by

selecting a random vector r ∈ {0, 1}log |Σn| and a bit b, and taking the inner product of the binary
encoding of an alphabet symbol with r and adding b over GF2. Hence, one needs only 1 + log |Σn|
bits to specify each hash function.

Thus Theorem 3.1 will use n · (1 + log |Σn|) random bits, Theorem 1.1 will have ` = O(log n+
log log |Σn|) and Theorem 1.2 will have ` = O((log n+ log log |Σn|)2).

Acknowledgements

The authors thank anonymous reviewers for pointing out [Sah14, DW112] and other useful com-
ments.

References

[ADG+03] Alexandr Andoni, Michel Deza, Anupam Gupta, Piotr Indyk, and Sofya Raskhod-
nikova, Lower bounds for embedding edit distance into normed spaces., SODA,
ACM/SIAM, 2003, pp. 523�526.

[AO09] Alexandr Andoni and Krzysztof Onak, Approximating edit distance in near-linear time,
Proceedings of the Forty-�rst Annual ACM Symposium on Theory of Computing (New
York, NY, USA), STOC '09, ACM, 2009, pp. 199�204.

[BES06] Tu§kan Batu, Funda Ergun, and Cenk Sahinalp, Oblivious string embeddings and edit
distance approximations, Proceedings of the Seventeenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithm (Philadelphia, PA, USA), SODA '06, Society for Industrial
and Applied Mathematics, 2006, pp. 792�801.

13



[BYJKK04] Z. Bar-Yossef, T.S. Jayram, R. Krauthgamer, and R. Kumar, Approximating edit dis-
tance e�ciently, Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, Oct 2004, pp. 550�559.

[CM02] Graham Cormode and S. Muthukrishnan, The string edit distance matching problem
with moves, Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 6-8, 2002, San Francisco, CA, USA., 2002, pp. 667�676.

[CPSV00] Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin, Commu-
nication complexity of document exchange, Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA), SODA '00, Society
for Industrial and Applied Mathematics, 2000, pp. 197�206.

[Die96] Martin Dietzfelbinger, Universal hashing and k-wise independent random variables via
integer arithmetic without primes, STACS 96, 13th Annual Symposium on Theoretical
Aspects of Computer Science, Grenoble, France, February 22-24, 1996, Proceedings,
1996, pp. 569�580.

[DW112] Dortmund workshop on algorithms for data streams 2012, 2012.

[Gol01] Oded Goldreich, The foundations of cryptography - volume 1, basic techniques, Cam-
bridge University Press, 2001.

[IM98] Piotr Indyk and Rajeev Motwani, Approximate nearest neighbors: Towards removing
the curse of dimensionality, Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing (New York, NY, USA), STOC '98, ACM, 1998, pp. 604�613.

[Jow12] Hossein Jowhari, E�cient communication protocols for deciding edit distance, Algo-
rithms - ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, Septem-
ber 10-12, 2012. Proceedings, 2012, pp. 648�658.

[KN97] Eyal Kushilevitz and Noam Nisan, Communication complexity, Cambridge University
Press, New York, NY, USA, 1997.

[KOR98] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani, E�cient search for approximate
nearest neighbor in high dimensional spaces, Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing (New York, NY, USA), STOC '98, ACM, 1998,
pp. 614�623.

[Lev66] VI Levenshtein, Binary Codes Capable of Correcting Deletions, Insertions and Rever-
sals, Soviet Physics Doklady 10 (1966), 707.

[LMS98] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt, Incremental string com-
parison, SIAM J. Comput. 27 (1998), no. 2, 557�582.

[LPW06] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, Markov chains and mixing
times, American Mathematical Society, 2006.

[MP80] William J. Masek and Michael S. Paterson, A faster algorithm computing string edit
distances, Journal of Computer and System Sciences 20 (1980), no. 1, 18 � 31.

14



[Nav01] Gonzalo Navarro, A guided tour to approximate string matching, ACM Comput. Surv.
33 (2001), no. 1, 31�88.

[Nis90] N. Nisan, Pseudorandom generators for space-bounded computations, Proceedings of
the Twenty-second Annual ACM Symposium on Theory of Computing (New York,
NY, USA), STOC '90, ACM, 1990, pp. 204�212.

[OR07] Rafail Ostrovsky and Yuval Rabani, Low distortion embeddings for edit distance, J.
ACM 54 (2007), no. 5, 23+.

[Orl91] Alon Orlitsky, Interactive communication: Balanced distributions, correlated �les, and
average-case complexity, FOCS, IEEE Computer Society, 1991, pp. 228�238.

[PL07] Ely Porat and Ohad Lipsky, Improved sketching of hamming distance with error cor-
recting., CPM (Bin Ma and Kaizhong Zhang, eds.), Lecture Notes in Computer Science,
vol. 4580, Springer, 2007, pp. 173�182.

[Sah14] Barna Saha, The dyck language edit distance problem in near-linear time, 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, 2014, pp. 611�620.

[WF74] Robert A. Wagner and Michael J. Fischer, The string-to-string correction problem, J.
ACM 21 (1974), no. 1, 168�173.

15

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


