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Abstract. We give improved deterministic algorithms solving sparse
instances of MAX-SAT and MAX-k-CSP. For instances with n variables
and cn clauses (constraints), we give algorithms running in time poly(n)·
2n(1−µ) for
– µ = Ω( 1

c
) and polynomial space solving MAX-SAT and MAX-k-

SAT,
– µ = Ω( 1√

c
) and exponential space solving MAX-SAT and MAX-k-

SAT,
– µ = Ω( 1

ck2
) and polynomial space solving MAX-k-CSP,

– µ = Ω( 1√
ck3

) and exponential space solving MAX-k-CSP.

The previous MAX-SAT algorithms have savings µ = Ω( 1
c2 log2 c

) for run-

ning in polynomial space [15] and µ = Ω( 1
c log c

) for exponential space [5].
We also give an algorithm with improved savings for satisfiability of
depth-2 threshold circuits with cn wires.

Keywords: satisfiability algorithm, MAX-SAT, MAX-k-CSP

1 Introduction

The maximum satisfiability problem (MAX-SAT) is to find an assignment that
maximizes the number of satisfied clauses in a CNF formula. MAX-k-SAT is the
special case where all clauses have at most k literals. For instances with n vari-
ables and m = cn clauses, a trivial brute-force search solves MAX-SAT in time
O(mn2n). We are interested in better algorithms running in time Õ(2n(1−µ))
for µ > 0; we will call µ the savings over exhaustive search, and we use Õ()
to ignore polynomial factors. To the best of our knowledge, the best savings
is µ = Ω( 1

c log c ) obtained by Dantsin and Wolpert [5] for an exponential-space

algorithm. For polynomial space algorithms, the best savings is µ = Ω( 1
c2 log2 c

)

shown by Sakai, Seto, and Tamaki [15] recently.
The algorithm of Sakai, Seto, and Tamaki [15] is based on concentrated

shrinkage under restrictions, which was used by Santhanam [16] for solving the
satisfiability problem on de Morgan formulas. Santhanam [16] observed that, by
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greedily restricting the most frequent variables in a formula until p fraction of
the variables are left, the formula size shrinks with high probability by a factor
of pΓ for Γ > 1.5. We will call Γ the shrinkage exponent for de Morgan formulas
with respect to greedy restrictions. The satisfiability algorithm [16] recursively
restricts n − Ω(n) variables, and then gets nontrivial savings since almost all
restricted formulas have size much smaller than the number of variables left.
Sakai, Seto, and Tamaki [15] showed that a similar shrinkage property holds for
MAX-k-SAT instances, which leads to an algorithm with savings µ = Ω( 1

c2k2 ) for
instances with cn clauses. For solving MAX-SAT, they applied Schuler’s width
reduction [17, 1] to reduce MAX-SAT to MAX-k-SAT for k = O(log n); their
final MAX-SAT algorithm [15] has savings µ = Ω( 1

c2 log2 c
).

In this work, we improve the savings in [15] further to the following.

Theorem 1. There is a polynomial-space algorithm solving MAX-SAT instances
with n variables and cn clauses in time Õ(2n(1−µ)) for µ = Ω( 1

c ).

Our algorithm is based on an improvement of concentrated shrinkage under
greedy restrictions. We define a measure on MAX-SAT instances, which takes
into account the numbers of clauses of different widths. We show that by a
greedy restriction of all but p fraction of the variables, the measure shrinks with
high probability by a factor of pΓ for Γ > 2. This improved shrinkage exponent
allows us to get better savings in the algorithm for the maximization problem.
Furthermore, since the measure does not depend on the clause width, we do not
need Schuler’s width reduction which was used by [15], and our algorithm does
not differentiate between MAX-SAT and MAX-k-SAT.

We further improve the savings when the algorithm is allowed to run in
exponential space. Here we use Williams’ algorithm [19] for MAX-2-SAT as a
black-box, and improve the shrinkage exponent to Γ > 3 by defining a differ-
ent measure on MAX-SAT instances. This improved shrinkage exponent again
implies better savings in the algorithm.

Theorem 2. There is an exponential-space algorithm solving MAX-SAT in-
stances with n variables and cn clauses in time Õ(2n(1−µ)), for µ = Ω( 1√

c
).

This improves the previous best-known result with savings µ = Ω( 1
c log c ) by

Dantsin and Wolpert [5] for solving MAX-SAT in exponential space.
Our approach is quite generic; we also apply it to solve sparse MAX-k-CSP.

Specifically, we give a measure for MAX-k-CSP instances, and show that the
measure shrinks nontrivially with probability 1 under greedy restrictions. This
allows us to give the following algorithms.

Theorem 3. For MAX-k-CSP instances with n variables and cn constraints,
there is a polynomial-space algorithm running in time Õ(2n(1−µ)) with savings
µ = Ω( 1

ck2 ), and an exponential-space algorithm with savings µ = Ω( 1√
ck3

).

All our algorithms extend to counting the number of optimal assignments
for the weighted version of the problem, where each clause/constraint is given a
weight, and the goal is to maximize the total weight of satisfied clauses/constraints.
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We also consider depth-2 threshold circuits, which can be viewed as a gener-
alization of MAX-SAT. Impagliazzo, Paturi, and Schneider [10] recently gave a
satisfiability algorithm with savings µ = 1

cO(c2)
for depth-2 threshold circuits of

cn wires. Using our shrinkage approach, we improve the savings slightly to 1
cO(c) ,

with a much simpler analysis.

1.1 Related work

Exact algorithms for sparse MAX-SAT and MAX-k-SAT have been well studied.
For MAX-SAT instances with n variables and m = cn clauses, the best savings
of polynomial-space algorithms was Ω( 1

c2 log2 c
) [15] (and Ω( 1

c log3 c
) for a ran-

domized algorithm), improving a previous result Ω( 1
2O(c) ) [13]. The best savings

of exponential-space algorithms was Ω( 1
c log c ) [5]. In this work, we improve the

savings for both polynomial-space and exponential-space algorithms.
There are also algorithms with running time expressed as Õ(2δm) for a con-

stant δ < 1, where m is the number of clauses/constraints. For example, the best
such algorithms achieved δ 6 0.4057 for MAX-SAT [2], δ 6 0.1583 for MAX-2-
SAT [7], and δ 6 0.1901 for MAX-2-CSP [7]. However, such algorithms are not
better than exhaustive search for m > n/δ.

For general (non-sparse) instances, the only non-trivial exact algorithm is
Williams’ algorithm for MAX-2-CSP (and MAX-2-SAT), which runs in time
Õ(2nω/3) for ω < 2.376 and in exponential space. It is open whether we have
non-trivial MAX-2-CSP algorithms running in polynomial space, or generalize
Williams’ algorithm for MAX-3-CSP or MAX-3-SAT. In this work, we will use
Williams’ algorithm as a blackbox for improving algorithms for sparse MAX-k-
CSP and MAX-SAT.

The shrinkage approach to satisfiability algorithms was initiated by San-
thanam [16] for de Morgan formulas. The algorithm was improved later [3, 4, 12]
by improving the shrinkage exponents with respect to certain greedy restrictions.
In particular, the improvement in [4] follows from a measuring technique of [9,
14] for de Morgan formulas.

The measuring and shrinkage technique we use in this work is also related to
the “measure and conquer” approach [6], which was used to give improved exact
algorithms for graph problems such as maximum independent set. The main dif-
ference is that, the usual “measure and conquer” approach reduces the measure
additively in each recursive step, whereas the shrinkage approach reduces the
measure by a multiplicative factor (depending on the shrinkage exponent), and
moreover the reduction only occurs with high probability in the latter case.

1.2 Organization of the paper

We give preliminaries in Section 2. Since our MAX-SAT algorithms require more
involved analysis than MAX-k-CSP, we first present our MAX-k-CSP algorithms
in Section 3, and then MAX-SAT algorithms in Section 4. In Section 5, we apply
a similar approach to improve satisfiability algorithms for depth-2 threshold
circuits.
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2 Preliminaries

2.1 MAXSAT, MAX-k-SAT, MAX-k-CSP

Let x1, . . . , xn be boolean variables. A literal is either a variable or its negation.
A clause is a disjunction of literals; a k-clause is a clause on k literals. The
MAX-SAT problem is to find, given a collection of clauses, an assignment to the
variables maximizing the number of satisfied clauses (we call such an assignment
optimal). MAX-k-SAT is the special case of MAX-SAT where all clauses have at
most k literals. The weighted MAX-SAT problem generalizes MAX-SAT by asso-
ciating with each clause an integer weight, and the goal is to find an assignment
maximizing the total weight of satisfied clauses.

A k-constraint is a boolean function on k variables. The (weighted) MAX-
k-CSP problem generalizes (weighted) MAX-k-SAT by allowing arbitrary con-
straints rather than disjunctions of literals. We will also consider the problems
of counting the number of optimal assignments for the above optimization prob-
lems.

2.2 Concentration bounds

A sequence of random variables X0, X1, . . . , Xn is a supermartingale with re-
spect to a sequence of random variables R1, . . . , Rn if E[Xi | Ri−1, . . . , R1] 6
Xi−1, for 1 6 i 6 n. We need the following variant of Azuma’s inequality.

Lemma 1 ([3]). Let {Xi}ni=0 be a supermartingale with respect to {Ri}ni=1. Let
Yi = Xi −Xi−1. If, for every 1 6 i 6 n, the random variable Yi (conditioned on
Ri−1, . . . , R1) assumes two values each with probability 1/2, and there exists a
constant ci > 0 such that Yi 6 ci, then, for any λ, we have

Pr[Xn −X0 > λ] 6 exp

(
− λ2

2
∑n
i=1 c

2
i

)
.

3 MAX-k-CSP

3.1 Known algorithms for MAX-2-CSP

Williams [19] gave an algorithm with constant savings solving general (non-
sparse, weighted) MAX-2-CSP and MAX-2-SAT. In fact, Williams’s algorithm
also counts the number of optimal assignments.

Theorem 4 ([19, 11]). For MAX-2-CSP instances with n variables and m con-
straints where each constraint has a weight at most W , there is an algorithm
which counts the number of optimal assignments in time O(µ(nmW ) · 2nω/3),
where ω < 2.376 and µ(b) = b log b log log b.
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Note that, Williams’ algorithm requires exponential space; it is not known
whether there are polynomial-space algorithms with constant savings.

For sparse instances of MAX-2-CSP with cn constraints, several known al-
gorithms [18, 8] have savings of the form µ = Ω( 1

c ). In the following, we show
one simple algorithm with savings Ω( 1

c ). The algorithm is based on a greedy
restriction of the most frequent variables appearing in 2-constraints. Although
the hidden constant in the savings Ω( 1

c ) is not the best, we wish to use it as a
warm-up for our later algorithms.

Lemma 2. There is a polynomial-space algorithm solving MAX-2-CSP with n
variables and cn 2-constraints in time Õ(2n(1−Ω( 1

c ))).

Proof. Given a MAX-2-CSP instance with cn 2-constraints, we assume each 2-
constraint is over two distinct variables. Let x be a variable which appears the
maximum number of times in the 2-constraints. This means x appears in at least
2c of 2-constraints. We make two branches by fixing x = 0 in one branch and
x = 1 in the other. In each branch, the number of remaining 2-constraints is at
most cn− 2c = cn(1− 2/n) 6 cn(1− 1/n)2. Then recursively restrict the most
frequent variables one at a time. After n−pn steps, for p = 1/(2c), there will be
pn variables left unfixed, but the number of remaining 2-constraints will be at
most cn(1−1/n)2 · · · (1−1/(pn+1))2 = cn ·p2 = pn/2. Then after at most pn/2
more steps (restricting the most frequent variable in each step), all 2-constraints
will be eliminated, and we get a MAX-1-CSP instance (on pn/2 variables).

We can maintain the number of satisfied constraints along each recursive
branch, and, at the end of each branch, solve MAX-1-CSP by setting each vari-
able to a value which satisfies at least as many constraints as the other. The
total number of branches is at most 2n−pn/2. Therefore, the running time is
Õ(2n−pn/2) = Õ(2n(1−

1
4c )), and the algorithm uses polynomial space. ut

Note that, this algorithm can be extended to solve weighted MAX-2-CSP
and also count the number of optimal assignments, by maintaining necessary
information along the recursive branches. If W is the maximum weight of the
constraints, the running time will be Õ(2n(1−

1
4c ) · logW ).

3.2 A polynomial-space algorithm for MAX-k-CSP

We first extend the algorithm in Lemma 2 to solve MAX-k-CSP. We introduce
a measure on the instances, and use greedy restrictions such that the measure
(and thus, the size of the instance) reduces non-trivially.

Let F be a MAX-k-CSP instance on n variables. For each i-constraint C in F ,
we define σ(C) = σi ≡ i(i− 1). Let σ(F ) =

∑
C∈F σ(C). Consider a restriction

ρ where we randomly pick a variable and fix it. For an i-constraint C,

Eρ[σ(C|ρ)] 6
n− i
n

σi +
i

n
σi−1 = σi ·

[
1− i

n

(
1− σi−1

σi

)]
= σi ·

(
1− 2

n

)
.

We then have Eρ[σ(F |ρ)] 6 σ(F )(1 − 2/n) 6 σ(F )(1 − 1/n)2. By averaging,
we can deterministically find one variable (in polynomial time) such that, after
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fixing it to either 0 or 1, σ(F ) reduces by a factor of (1−1/n)2. If we repeat this
recursively until pn variables left, the measure on the restricted instance will be
at most σ(F )p2. Our algorithm follows from this non-trivial shrinkage.

Theorem 5. For MAX-k-CSP instances on n variables with cn constraints,

there is an algorithm running in Õ(2n(1−Ω( 1
ck2 ))) time and polynomial space.

Proof. Let F be an instance with cn constraints; then σ(F ) 6 cnσk = cnk(k−1).
The algorithm recursively restricts one variable at a time. At the i-th step,
restrict a variable x such that the measure reduces by a factor of (1−1/(n−i+1))2

for both restrictions x = 0 and x = 1. After n − pn steps, for p = 1
ck(k−1) , the

restricted instance F ′ has σ(F ′) 6 σ(F )p2 6 pn. Note that, this holds for all
recursive branches.

Suppose the number of i-constraints left in F ′ is bi; then since σ(F ′) =∑k
i=2 bii(i − 1) 6 pn, we have

∑k
i=2 bi(i − 1) 6 pn/2. Therefore, after pn/2

recursive steps (fix all but one variable in each i-constraint), all remaining con-
straints have width 1, and we can solve MAX-1-CSP in polynomial time. The
recursion tree has at most 2n−pn/2 branches. The total running time is at most
poly(n) · 2n(1−p/2), and the algorithm uses polynomial space. ut

3.3 An exponential-space algorithm for MAX-k-CSP

We next give an algorithm with improved running time but using exponential
space. The algorithm reduces MAX-k-CSP to MAX-2-CSP via greedy restric-
tions as before, and then solves MAX-2-CSP using Williams’ algorithm [19].
Using a different measure on the instances, we can improve the shrinkage expo-
nent, and get better savings in the running time.

Let F be an instance with n variables and cn constraints. For each i-constraint
C, we change the measure to σ(C) = σi ≡ i(i − 1)(i − 2). Then σ(F ) 6
cn · k(k− 1)(k− 2). Under a restriction ρ which randomly fixes one variable, we
have, for i > 3,

E[σ(C|ρ)] 6 σi ·
[
1− i

n

(
1− σi−1

σi

)]
= σi ·

(
1− 3

n

)
6 σi ·

(
1− 1

n

)3

.

Then E[σ(F |ρ)] 6 σ(F )
(
1− 1

n

)3
. By averaging, we can deterministically find a

variable such that σ(F ) shrinks by
(
1− 1

n

)3
.

Theorem 6. For MAX-k-CSP instances with n variables and cn constraints,
there is an algorithm running in time Õ(2n(1−µ)) for µ = Ω( 1√

ck3
).

Proof. We recursively restrict variables one by one. At the i-th step, restrict
a variable x such that the measure reduces by (1 − 1/(n − i + 1))3. After

n − pn steps for p =
√

1
ck(k−1)(k−2) , let F ′ be the restricted instance; we have

σ(F ′) 6 σ(F ) · p3 6 pn. Then we can further restrict pn/6 variables such that
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all remaining constraints have width at most 2 (restrict all but two variables in
each constraint). We get MAX-2-CSP instances for each branch and solve by
Williams’ algorithm in Theorem 4. The running time is at most

poly(n) · 2n−pn+pn/6 · 2(pn−pn/6)·2.376/3 = poly(n) · 2
n(1−Ω( 1√

ck3
))
.

ut

Note that, the algorithm uses exponential space as required by Williams’
algorithm. In general, this shrinkage approach gives a reduction from sparse
instances of large width to dense instances of small width.

Theorem 7. If, for some r, MAX-r-CSP is solvable in time 2n(1−δ), where δ is
independent of the number of clauses, then, for all k > r, MAX-k-CSP instances
with cn constraints are solvable in time Õ(2n(1−µ)) for µ = Ω( δ

c1/rk1+1/r ).

The proof is essentially the same as in Theorem 6, by changing σi = i(i −
1) · · · (i− r). We omit the proof here.

We also note that, the algorithm in Theorem 6 can be generalized to count
optimal assignments for even weighted instances. As required by Williams’ al-
gorithm in Theorem 4, for maximum constraint weight W , the running time
increases by a factor of poly(W ). This is in contrast with the polynomial-space
algorithms in Lemma 2 and Theorem 5, where the running time increases by a
factor of O(logW ).

4 MAX-SAT and MAX-k-SAT

The algorithms for MAX-k-CSP also apply to the special case MAX-k-SAT.
However, we can still improve the savings by eliminating the dependency on the
clause width, and also generalize the algorithms to solve MAX-SAT. Here we
still use the greedy restriction approach, but need a more involved analysis on
the shrinkage of the instance size.

4.1 A polynomial-space algorithm for MAX-SAT

Let F be a MAX-SAT instance on n variables and cn clauses. We associate with
each i-clause a measure σi. Let C be an i-clause, for i > 2. Let ρ be a restriction
which randomly picks and fixes one variable. Then C becomes an (i− 1)-clause
or a constant each with probability i/2n. Thus,

E[σ(C|ρ)] 6
n− i
n

σi +
i

2n
σi−1 = σi ·

[
1− i

n

(
1− σi−1

2σi

)]
.

We can choose
σ1 = 0, σ2 = 1, and σi = 2, i > 3.

It is easy to check that, for all i > 2, E[σ(C|ρ)] 6 σi(1−2/n) 6 σi(1−1/n)2. Then
we have E[σ(F |ρ)] 6 σ(F )(1−1/n)2. By averaging, we can deterministically find
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a variable x such that [σ(F |x=1) + σ(F |x=0)]/2 6 σ(F )(1 − 1/n)2. Note that,
this only bounds the average of σ(F |x=1) and σ(F |x=0).

The MAX-SAT algorithm then follows by restricting variables recursively.
Although we only have shrinkage on average in each step, we can argue that,
shrinkage happens with high probability over the whole process, using a similar
approach as in [16, 3].

Theorem 8 (Theorem 1 restated). There is a polynomial-space algorithm
solving MAX-SAT instances with n variables and cn clauses in time Õ(2n(1−µ))
for µ = Ω( 1

c ).

Proof. Let F be an instance with n variables and cn clauses, and thus σ(F ) 6
2cn. The algorithm recursively restricts one variable at a time.

Let F0 := F , and Fi be the restricted instance after the i-th step. At the
i-th step, we find a variable x in Fi−1 such that, by randomly fixing x to 0 or 1,
E[σ(Fi)] 6 σ(Fi−1)(1− 1

n−i+1 )2.
Define

Zi = log σ(Fi)− log σ(Fi−1)− 2 log

(
1− 1

n− i+ 1

)
.

By Jensen’s inequality, conditioned on the random bits assigned to the first

i − 1 variables, E[Zi] 6 0. We also have Zi 6 ci := −2 log
(

1− 1
n−i+1

)
, since

σ(Fi) 6 σ(Fi−1).

Then {
∑i
j=1 Zj} is a supermartingale with respect to the random bits as-

signed to restricted variables. By Lemma 1, for any λ,

Pr

 i∑
j=1

Zj > λ

 6 exp

(
− λ2

2
∑i
j=1 c

2
j

)
.

The left-hand side is

Pr

[
log σ(Fi)− log σ(F )− 2 log

(
n− i
n

)
> λ

]
= Pr

[
σ(Fi) > eλσ(F )

(
n− i
n

)2
]
.

For each 1 6 j 6 i, by log(1 +x) 6 x, we have cj = 2 log(1 + 1
n−j ) 6 2

n−j . Thus,∑i
j=1 c

2
j 6

4
n−i−1 since

i∑
j=1

(
1

n− j

)2

6
i∑

j=1

(
1

n− j − 1
− 1

n− j

)
6

1

n− i− 1
.

For i = n− pn, λ = ln 2, and pn > 20, we get

Pr
[
σ(Fi) > 4cnp2

]
6 Pr

[
σ(Fi) > 2σ(F )p2

]
6 e−λ

2(pn−1)/8 < 2−pn/20.

Choose p = δ/4c, for δ to be fixed later. We have that, after restricting n−pn
variables, with probability at least 1 − 2−pn/20, there are at most 4cnp2 = δpn
remaining clauses of width at least 2.
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Claim. There is a polynomial-space algorithm running in time Õ(2n/2) which
solves MAX-SAT for instances with n variables and δn clauses of width at least
2, for δ 6 0.1.

Proof. We recursively restrict arbitrary variables that appear in clauses of width
at least 2, and stop when all remaining clauses have width 1; then solve MAX-
1-SAT easily. Let m = δn be the number of clauses of width at least 2. The
recursion tree has size bounded by the recurrence T (n,m) 6 T (n − 1,m) +

T (n− 1,m− 1). This is at most
(
n
δn

)
6
(
e
δ

)δn
< 2n/2, where the first inequality

follows from
(
n
k

)
6
(
ne
k

)k
.

ut

Choose δ = 0.1. By the above claim, the running time for branches left with
at most δpn clauses of width at least 2 is 2n−pn · 2pn/2 = 2n−pn/2. For the other
branches, we use brute-force search; the running time is at most 2n · 2−pn/20.
Therefore, the total running time is bounded by poly(n) · 2n(1−Ω(1/c)). ut

4.2 An exponential-space algorithm for MAX-SAT

To improve the savings in the running time, we can improve the shrinkage ex-
ponent by reducing the instances to MAX-2-SAT, and apply Williams’ algo-
rithm [19].

We let σ1 = σ2 = 0, σ3 = 1, σ4 = 2, and σi = 3, for i > 5. It is easy to see
that, under one step of random restriction ρ, for an i-clause C where i > 3,

σ(C|ρ) 6 σi ·
[
1− i

n

(
1− σi−1

2σi

)]
6 σi ·

(
1− 3

n

)
.

Thus, for an instance F ,

σ(F |ρ) 6 σ(F ) ·
(

1− 3

n

)
6 σ(F ) ·

(
1− 1

n

)3

.

Theorem 9 (Theorem 2 restated). For MAX-SAT instances on n variables
with cn constraints, there is an algorithm running in time Õ(2n(1−µ)) for µ =
Ω( 1√

c
).

The proof is similar to the proof of Theorem 1. We can greedily restrict n−pn
variables. Then with high probability (at least 1 − 2−pn/20), there are at most
4cnp3 clauses of width at least 3; we solve such restricted instances following the
claim below for p =

√
δ/4c and δ = 0.01. Otherwise, we use brute-force search.

The total running time is bounded by Õ(2n(1−Ω(p))). We omit the complete
proof.

Claim. MAX-SAT instances on n variables and δn clauses of width larger than
2, for δ 6 0.01, are solvable in time Õ(20.9n) and exponential space.
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Proof. We recursively restrict variables appearing in clauses of width larger than
2; when all clauses have width at most 2, we use Williams’ algorithm in Theo-
rem 4 for MAX-2-SAT. The total running time is bounded by

(
n
δn

)
· 22.376n/3 6(

e
δ

)δn · 22.376n/3 < 20.9n.
ut

Again, we have the following reduction from sparse instances of large width
to dense instances of small width.

Theorem 10. If for some r, MAX-r-SAT is solvable in time 2n(1−δ), where δ
is independent of the number of clauses, then MAX-SAT for instances with cn
clauses is solvable in time Õ(2n(1−µ)) for µ = Ω( δ

c1/r
).

Sakai et al. [15] uses Schuler’s width reduction to reduce MAX-SAT instances
with cn clauses to MAX-k-SAT instances for k = O(log c), and then solve MAX-
k-SAT in time O(2n(1−µ)) for µ = Ω( 1

c2k2 ); their final algorithm [15] for MAX-

SAT runs in time O(2n(1−µ)) for µ = Ω( 1
c2 log2 c

). Our result avoids Schuler’s

width reduction and improves the running time.
Our MAX-SAT algorithms can be extended to solve the weighted version

and also the counting problem. For instances with clause weight at most W ,
the running time of the polynomial-space algorithm (Theorem 1) increases by
a factor of log(W ), and the running time of the exponential-space algorithm
(Theorem 2) increases by a factor of poly(W ).

5 Sparse depth-2 threshold circuits

A threshold circuit is a boolean circuit where all internal gates are threshold
gates; a threshold gate on k inputs computes a function sign(

∑k
i=1 wixi + w0)

where wi’s are integer weights. A depth-2 threshold circuit on n inputs has one
output threshold gate at the top, a layer of threshold gates in the middle, and
n input gates at the bottom. Obviously, a MAX-SAT instance with m clauses is
a special case of depth-2 threshold circuits with m+ 1 threshold gates.

Impagliazzo et al. [10] showed a nontrivial satisfiability algorithm for depth-2
threshold circuits with linear number of wires (a wire is an edge in the underlying
graph of the circuit). For depth-2 threshold circuits with cn wires, the algorithm
runs in time Õ(2(1−µ)n) for µ = 1

cO(c2)
. They first give an algorithm for the

special case where there are few threshold gates, and then applied restrictions
to eliminate threshold gates non-trivially. Using our shrinkage approach, we can
improve the parameters in gate elimination, which implies better savings of the
algorithm.

Lemma 3. Given a depth-2 threshold circuits with n variables and cn wires,
there is a set U of at least pn variables for p = 1

cO(c) such that the number of
threshold gates depending on at least two variables in U is at most δpn, for any
constant δ < 1. Furthermore, U can be constructed in polynomial time.
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This lemma follows directly from the following claim. Impagliazzo et al. [10]
showed this result for p = 1

cO(c2)
using a more dedicated analysis.

Claim. Let S be a collection of subsets of [n] such that
∑
A∈S |A| 6 cn. Then

there is a subset U ⊆ [n] of size at least pn for p = 1
cO(c) such that there are at

most δpn subsets in S containing at least two elements in U , for any constant
δ < 1. Furthermore, U can be constructed in polynomial time.

Proof. Define σ(S) =
∑
A∈S |A| − |S|. At the beginning, let U = [n] and obtain

T from S by eliminating singletons; note that σ(T ) = σ(S). We will greedily
eliminate elements from U and subsets in T such that σ(T ) reduces non-trivially.
We maintain T as the collection of subsets each containing at least two elements
from U .

At each step, check whether |T | 6 δ|U |. If so, then we are done and return
U .

Otherwise, it holds that |T | > δ|U |; we will greedily eliminate one element
and continue the process. Suppose that

∑
A∈T |A| = c′|U | for c′ 6 c. Then we

can easily find some x ∈ U which appears in at least c′ subsets in T . Eliminate
x from U and from all subsets in T ; we also remove any singletons from T . Let
U ′ = U \ {x}, and denote by T ′ the new collection. Then∑

A∈T ′

|A| 6 c′|U | − c′ = c′(|U | − 1) 6 c|U ′|,

and since σ(T ) = c′|U | − |T | < (c′ − δ)|U |,

σ(T ′) 6 σ(T )− c′ < σ(T )

(
1− c′

(c′ − δ)|U |

)
6 σ(T )

(
1− 1

|U |

)c/(c−δ)
.

Fix p′ = (2(c− δ))−(c−δ)/δ = c−O(c). If |T | 6 δ|U | holds at the i-th step for
some i 6 n− p′n, then we have returned U at the i-th step; the claim holds for
p = |U |/n = c−O(c).

If the process continues for n−p′n steps (|T | > δ|U | holds at each step), then
the collection T after n− p′n steps has σ(T ) 6 (cn− δn)p′c/(c−δ) 6 p′n/2. Note
that we still have p′n elements in U . Then, for each A ∈ T , eliminate all but one
arbitrary element of A from U and all subsets in T ; we also remove any singletons
from T . Since σ(T ) 6 p′n/2, we can eliminate at most p′n/2 elements in total.
Finally, there are at least p′n/2 elements left in U , but T becomes empty; that
is |T | = 0 6 δ|U |. We return U ; the claim holds for p > p′/2 = c−O(c).

ut

We need the following algorithm [10] for the special case where there are few
threshold gates.

Lemma 4 ([10]). For depth-2 threshold circuits with n variables and δn thresh-
old gates for δ < 0.099, there is a satisfiability algorithm running in time
Õ(2(1−µ)n) for a constant µ > 0.
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We then get the following improved algorithm by combining greedy restric-
tions in Lemma 3 with the algorithm of Lemma 4.

Theorem 11. There is a satisfiability algorithm for depth-2 circuits with n vari-
ables and cn wires running in time Õ(2n(1−µ

′)) for µ′ = 1
cO(c) .

Proof. Given a depth-2 threshold circuit with n variables and cn wires, we fix
δ < 0.099, and find a subset U of pn variables for p = 1

cO(c) as in Lemma 3. We
restrict all variables not in U . By enumerating assignments to variables not in
U , we get 2n−pn branches. Each branch gives a restricted circuit on pn variables
and δpn threshold gates; then apply the algorithm of Lemma 4 for each branch,
which takes time Õ(2(1−µ)pn) for a constant µ.

The total running time is bounded by Õ(2n−pn · 2(1−µ)pn) = Õ(2n−n/c
O(c)

).
ut

6 Open questions

A major open question is to improve the savings to Ω(1/ polylog(c)) for solv-
ing MAX-SAT/MAX-k-SAT on instances of cn clauses. For depth-2 thresh-
old circuits with cn wires, it would be interesting to improve the savings to
Ω(1/ poly(c)), or give an algorithm for circuits with cn gates, instead of wires.
It is challenging to get constant savings for solving non-sparse MAX-k-SAT, for
any k > 3.
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