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Abstract

Set cover, over a universe of size n, may be modelled as a data-streaming problem, where
the m sets that comprise the instance are to be read one by one. A semi-streaming algorithm
is allowed only O(n poly{log n, log m}) space to process this stream. For each p > 1, we give
a very simple deterministic algorithm that makes p passes over the input stream and returns
an appropriately certified (p + 1)n1/(p+1)-approximation to the optimum set cover. More im-
portantly, we proceed to show that this approximation factor is essentially tight, by showing
that a factor better than 0.99 n1/(p+1)/(p + 1)2 is unachievable for a p-pass semi-streaming
algorithm, even allowing randomisation. In particular, this implies that achieving a Θ(log n)-
approximation requires Ω(log n/ log log n) passes, which is tight up to the log log n factor.

These results extend to a relaxation of the set cover problem where we are allowed to leave
an ε fraction of the universe uncovered: the tight bounds on the best approximation factor
achievable in p passes turn out to be Θp(min{n1/(p+1), ε−1/p}).

Our lower bounds are based on a construction of a family of high-rank incidence geome-
tries, which may be thought of as vast generalisations of affine planes. This construction, based
on algebraic techniques, appears flexible enough to find other applications and is therefore in-
teresting in its own right.
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1 Introduction

The set cover problem is one of the most basic and well-studied optimisation problems in com-
puter science. It features either directly or in various guises in a wide array of applications, such
as facility location, information retrieval [2], software test selection, and tableau generation [15].
It is also at the heart of a rich theory spanning approximation algorithms [30] and computational
complexity theory [3], where efforts to understand the complexity of set cover have led to inter-
esting combinatorial and mathematical interactions. In this work, we consider set cover as a “big
data” problem; specifically, we are concerned with space-efficient algorithms for set cover in the
well-established data streaming model [26, 4]. This setting has been studied in several recent works,
including Saha & Getoor [28], Emek & Rosén [12], and Demaine et al. [10].

An instance of set cover is given by a pair (X ,F), where X is a finite universe with cardinality
|X | = n and F ⊆ 2X is a finite collection (multiset) of subsets of X with cardinality |F | = m.
The pair (X ,F) satisfies the guarantee that the sets in F together cover X , i.e.,

⋃
S∈F S = X . A

candidate solution to the instance is a subcollection Sol ⊆ F ; it is said to be feasible if
⋃

S∈Sol S = X .
Its cost is defined to be the cardinality |Sol|.1 The desired goal is to find a feasible solution while
keeping its cost small. A feasible solution with minimum possible cost is said to be optimal and
its cost is called the optimum cost or optimum value of the instance. Henceforth we shall call this
problem SET-COVERn,m, or simply SET-COVER.

It is well-known that finding an optimal solution to SET-COVER is NP-hard [18]; that finding
an α-approximate solution—defined as a feasible solution whose cost is at most α times that of
the optimum—is possible in polynomial time for α = ln n− ln ln n + Θ(1) [29]; and that doing so
for α < (1− ε) ln n is impossible unless NP = P [11]. Thus, for traditional Turing Machine com-
putation, the complexity of SET-COVER is essentially fully understood. However, for genuinely
huge instances of SET-COVER, additional considerations become important: how will the data be
accessed and how will it be manipulated in a relatively small amount of working memory?

This motivates a careful study of the complexity of SET-COVER in a data-streaming setting. The
instance (X ,F) is presented as a stream consisting of the sets in F , one at a time; the universe X
is known in advance, so we may assume that X = [n] := {1, 2, . . . , n}. Representing an instance
of SET-COVERn,m requires Θ(mn) bits in general. Thus, in Θ(mn) bits of space (working memory),
we could simply run our favourite offline algorithm. The challenge is to work with sublinear—
i.e., o(mn)—space. A p-pass algorithm may read its input stream up to p times; this parameter
p, sometimes called the pass complexity, ought to be a small constant, or perhaps O(log n). Of
course, in addition to space and pass efficiency, we would also want our algorithms to process
each set quickly, with very simple operations and logic.

Since Ω(n) space is required simply to certify that a computed solution is feasible, we shall
think of an algorithm as highly space-efficient if it uses Õ(n) := O(n poly{log n, log m}) space.
Following a convention started with the study of streaming graph algorithms [14], and continued
in this context by Emek & Rosén [12], we shall call such an algorithm a semi-streaming algorithm.
Emek & Rosén undertook a detailed study of one-pass semi-streaming algorithms for SET-COVER,
obtaining nearly tight bounds on the best approximation ratio achievable by such algorithms. In
this work, we provide tight bounds for the multi-pass case, giving an almost complete under-
standing of the pass/approximation tradeoff for semi-streaming algorithms. In particular, this
answers an open question explicitly raised by Saha & Getoor [28].

1In weighted set cover, each set S ∈ F has a cost or weight w(S) > 0 and the cost of Sol is ∑S∈Sol w(S). The major
contributions of this work being lower bounds, we focus on the purely combinatorial setting, which is of course a
strength for lower bounds.
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1.1 Our Results and Techniques

A classic result of Johnson [17], refined by Slavı́k [29], gives a (ln n − ln ln n + Θ(1))-approx-
imation to SET-COVER by a greedy algorithm. Given an instance (X ,F), at each step, it adds to
the current solution the set from F that contributes most, i.e., covers the largest number of as-yet-
uncovered elements. Notice that this can be implemented as a semi-streaming algorithm, using
one pass for each step, but this leads to Ω(n) passes, which is ridiculously expensive. Saha &
Getoor [28] gave a different algorithm, which guarantees an O(log n)-approximation using only
O(log n) passes. Emek & Rosén [12] asked how good an approximation is possible for a one-pass
semi-streaming algorithm. They showed that an approximation ratio of O(

√
n) is achievable and

that the ratio must be Ω(n1/2−δ) for every constant δ > 0; Section 1.2 adds some detail. Our first
result generalises their upper bound, trading off additional passes for improved approximation.

Result 1 (Formalised as Theorem 2.5). In p passes, within semi-streaming space bounds, we can com-
pute a (p + 1)n1/(p+1)-approximate solution to SET-COVER together with an appropriate “certificate of
coverage.”

The algorithm behind Result 1 is a variant of the greedy approach wherein each pass picks sets
that contribute above some well-chosen threshold for that pass, and the sequence of thresholds is
geometrically decreasing. This kind of thresholding is itself a variant of ideas introduced by Cor-
mode, Karloff, and Wirth [9] in a non-streaming context. Our algorithm needs one final “folding”
trick that considers the final two thresholds in the sequence in a single pass.

The Emek–Rosén algorithm solves a more general problem, with set weights and a relaxed
feasibility condition (partial coverage, which we describe below). For the basic combinatorial SET-
COVER problem, our algorithm nevertheless makes a (small) contribution even in the one-pass
case, with the simplicity of its logic as compared to Emek–Rosén: our logic, being a variant of the
basic greedy approach, is arguably easier to implement and analyse. But most importantly, this
algorithm sets the stage for our main result, which gets at the pass complexity of the problem.

Result 2 (Main result, formalised as Theorem 3.8). In p passes, approximating the optimum of a SET-
COVER instance to a factor smaller than 0.99 n1/(p+1)/(p + 1)2 requires more than semi-streaming space.
This applies even to the decision problem of distinguishing a small optimum value from a large one.

Results 1 and 2 together provide a near-complete understanding of the power of each addi-
tional pass in improving the quality of an approximate solution to SET-COVER. Saha & Getoor had
posed the problem of obtaining this kind of tradeoff as an open question. Result 2 immediately
implies that obtaining an O(log n)-approximation under semi-streaming space bounds requires
Ω(log n/ log log n) passes, almost matching the pass complexity of the Saha–Getoor algorithm
(or, for that matter, the algorithm behind our Result 1).

In establishing Result 2, we invent a family of novel combinatorial structures that we call ed-
ifices. To explain these, we first consider p = 1. In this case, an Ω(

√
n) bound follows from a

reduction from the INDEX problem in communication complexity, via set systems based on affine
planes of finite order.2 A “hard instance” for one pass consists of a family of sets of two different
sizes: one “large” set and many “medium” sets with very small pairwise intersections. The family
of lines in F2, where F is a finite field, gets us most of the way towards the desired properties.
To generalise this to p > 1, we reduce from the multi-party communication problem POINTER-
JUMPING. For this reduction, we need a more elaborate set system with sets of many different
sizes (similar to contribution thresholds in the multi-pass algorithms) and a tree-like incidence

2Emek & Rosén also use affine planes, but differently, and obtain an Ω(n1/2−δ) bound versus our
√

n/(4 + δ).
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structure, plus a small-intersection property as before. Very roughly, for p = 2, we start by con-
sidering quadric surfaces inside F3, and then lines in F2 lifted onto these surfaces; for higher p,
we start with the appropriate extensions of these ideas to higher-degree algebraic varieties. These
varieties form a certain incidence geometry—we call it an edifice—that is a vast generalisation of
affine planes. Bounding the sizes of certain pairwise intersections between these varieties is the
most technical part of this work.

Following Emek & Rosén, we also study partial set covers. In the PARTIAL-COVERn,m,ε problem,
an instance I = (X ,F , ε) consists of X , F , and a parameter ε ∈ [0, 1]. We require a (1− ε)-partial
cover of X : a collection Sol ⊆ F that covers at least (1 − ε)|X | elements. A solution Sol is α-
approximate if |Sol| 6 α|Opt|, where Opt is a minimum-cost total set cover for (X ,F).

Result 3 (Formalised as Theorems 4.1 and 4.4). The smallest α for which a semi-streaming algorithm
can compute an α-approximate (1− ε)-partial cover is in Θp(min{n1/(p+1), ε−1/p}). The lower bound
applies to a decision problem of distinguishing a small total cover from a necessarily large partial cover.

The upper bound in Result 3 builds on the one-pass Emek–Rosén algorithm; thus we lose
the extreme simplicity of the algorithm behind Result 1, but gain the ability to handle weighted
instances. The main contribution is again the lower bound. It requires a reexamination of the
edifices constructed for establishing Result 2 and proving that they satisfy additional geometric
properties. These properties then allow us to build new edifices with different parameters that are
suited to the problem at hand. This construction shows the power of the axiomatic approach we
take in defining edifices.

We note in passing the minor result (formalised as Theorem 3.9) that a tweak to Result 2
gives a rounds/approximation tradeoff for a two-player communication version of SET-COVER

à la Nisan [27] and Demaine et al. [10].

1.2 Related Work

The quantification of savings afforded by extra streaming passes dates back to Munro & Pater-
son [25], who studied pass/space tradeoffs for median-finding. This general topic remains cur-
rent [16, 8, 22, 7].

Efforts to understand the hardness of SET-COVER have led to many deep insights and connec-
tions with various kinds of mathematics. Our technical contributions continue this tradition. In
the series of hardness-of-approximation results beginning with Lund & Yannakakis [21, 13, 24],
recently culminated in Dinur & Steurer [11], each result required new insights into PCPs and
parallel repetition; for details, see the latter paper and the references therein. Closer to this
work, Nisan [27] initiated the study of SET-COVER as a (two-player) communication problem and
showed that, for every constant δ > 0, computing a ( 1

2 − δ) log2 n-approximation to SET-COVERn,m
requires Ω(m) randomised communication. His “hard instances” used m ≈ exp(

√
n). Nisan’s

original motivation was combinatorial auctions, but his result can be interpreted in the data-
streaming setting as saying that a semi-streaming ( 1

2 − δ) log2 n-approximation is impossible, re-
gardless of the number of passes. Demaine et al. [10] showed that deterministic streaming algo-
rithms achieving a Θ(1)-approximation require Ω(mn) space, thereby ruling out sublinear-space
solutions altogether.

All of the above lower bounds have, at their core, some variant of an old combinatorial con-
struction: namely, that of a set system with the so-called r-covering property [21]. Our own com-
binatorial constructions (of edifices) play an analogous role in our lower bounds, but are quite
different at a technical level. In particular, they result in SET-COVERn,m instances where m = nΘ(1).
Their closest relative is the construction in Emek & Rosén [12] based on lines in an affine plane.
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Turning to upper bounds, traditional (offline) approximation algorithms for SET-COVER are
discussed at length in Vazirani [30]; see also Slavı́k [29] and the references therein. Alon et al. [1]
studied SET-COVER in an online setting, focussing on competitive ratios rather than space con-
siderations, but under a fundamentally different input model: the sets are known in advance
and elements of the universe X arrive in a stream. The setting we study was first considered by
Saha & Getoor [28], who called it “set streaming.” They gave a 4-approximation algorithm for
MAX-k-COVERAGE, the problem of choosing k sets from the stream so as to maximise the cardi-
nality of their union. Iterating this algorithm for O(log n) passes immediately gives an O(log n)-
approximation for SET-COVER. Cormode, Karloff, and Wirth [9], targeting external-memory effi-
ciency, developed a “disk-friendly greedy” (DFG) algorithm for SET-COVER. In short, each step
of DFG adds some set whose contribution is at least 1/β times the maximum. As designed, DFG
yields an O(logβ n)-pass, (1 + β ln n)-approximate, O(n log n)-space streaming algorithm.

The single-pass semi-streaming setting was first, and thoroughly, studied by Emek & Rosén [12].
Indeed, their results extend to PARTIAL-COVER, as well as item- and set-weighted variants. Their
algorithm, like ours, computes a certificate of coverage that indicates, for each item, which set (if
any) covers it: the implied solution Sol covers a 1− ε (weighted) fraction of X and has w(Sol) =
O(min{1/ε,

√
n}w(Opt)). On the lower bound side, they prove that for every ε > 1/

√
n, a

randomised semi-streaming algorithm that certifies an (unweighted) α-approximate (1− ε)-cover
must have α = Ω(1/ε). Outputting only the sets in a solution (without a certificate) still requires
α = Ω(ε−1 log log n/ log n). The still-weaker problem of approximating the optimum value re-
quires α = Ω(n1/2−δ) for every constant δ > 0. Emek & Rosén remark [12, footnote 3] that they
can show this only for SET-COVER, and not for (1− ε)-PARTIAL-COVER with ε� 1/

√
n. Compare

these lower bounds with our Results 2 and 3, specialised to p = 1.
The main result of Demaine et al. [10], whose deterministic lower bound we have discussed,

is a randomised sublinear-space, though not semi-streaming, algorithm for SET-COVER. It achieves
an O(41/δ)-pass, O(41/δρ)-approximation in Õ(mnδ) space, where ρ is the approximation ratio of
whatever offline SET-COVER algorithm we are prepared to run.

2 A Simple Deterministic Multi-Pass Algorithm

Model of computation. An instance of SET-COVERn,m consists of sets S1, . . . , Sm ⊆ [n], specified
as a stream of tokens (i, Si), where Si is described in some reasonable way (either as a list of
its elements or as a characteristic vector) and i is the ID of Si. The IDs need not appear in the
order 1, 2, . . . , m. The desired output is a set Sol ⊆ [m] consisting of the IDs of sets that together
cover [n], plus a certificate: an array Coverer[1 . . . n] in which, for each x, Coverer[x] is the ID of a
set that covers j. Strictly speaking, Sol is redundant because it can be computed from Coverer, but
keeping track of it explicitly aids exposition.

Recall that a semi-streaming algorithm is allowed Õ(n) := O(n poly{log n, log m}) bits of
space. This clearly suffices to represent each of Sol and Coverer, which need only Θ(n log m) bits,
under the sensible assumption that |Sol| 6 n. An ideal semi-streaming algorithm for SET-COVER

would use no more space than this, asymptotically, and our Algorithms 1 and 2 achieve this space
bound.

2.1 Algorithm and Analysis

As promised, we begin by giving a very simple deterministic p-pass, semi-streaming, “progres-
sive greedy” algorithm that returns a (p + 1)n1/(p+1)-approximation. The basic idea is that the
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first pass is very conservatively greedy, picking a set into the solution iff its contribution is at least
some large number τ1 (i.e., it covers at least τ1 as-yet-uncovered elements); the second pass repeats
this logic with a threshold τ2 < τ1, making it slightly less conservative; and so on. Choosing suit-
able thresholds gets us to a p-pass pn1/p-approximation. This is the naı̈ve version of progressive
greedy. Our final algorithm “folds” the last two passes of this naı̈ve version into a single pass,
achieving the desired bound.

Algorithm 1 Naı̈ve version of “progressive greedy” algorithm for SET-COVER, in p passes

1: procedure GREEDYPASS(stream σ, threshold τ, set Sol, array Coverer)
2: foreach (i, S) in σ do
3: C ← {x : Coverer[x] 6= 0} . C is the set of already covered elements
4: if |S \ C| > τ then
5: Sol← Sol∪ {i}
6: foreach x ∈ S \ C do Coverer[x]← i

7: procedure PROGGREEDYNAIVE(stream σ, integer n, integer p > 1)
8: Coverer[1 . . . n]← 0n; Sol← ∅
9: for j = 1 to p do GREEDYPASS(σ, n1−j/p, Sol, Coverer)

10: output Sol, Coverer

For ease of reading we have not optimised the per-token processing time in our pseudocode.
Clearly, in each pass, each set S can be processed in O(|S|) time in a RAM-style machine with
word size Ω(log m).

To analyse Algorithm 1, fix an arbitrary instance of SET-COVERn,m. Each call to GREEDYPASS

makes a single pass through σ, considering every set S. Note that the contribution of S in such a
pass is the quantity |S \C|, computed in line 4, which is the number of new elements that S covers.
Let Opt ⊆ [m] be an optimum solution. For ease of exposition we will pretend that Opt and Sol are
collections of sets from the input instance (they are in fact collections of IDs of such sets).

Definition 2.1. A (τ, ρ)-bounded pass is a run of GREEDYPASS with threshold τ where, if C0 is the
set of covered elements at the start of the pass, then for all S in σ we have |S \ C0| 6 ρτ.

Lemma 2.2. A (τ, ρ)-bounded pass adds at most ρ|Opt| sets to Sol.

Proof. Put D = [n] \ C0. Each set in Opt includes at most ρτ of the elements in D, yet the sets in
Opt together cover D. Therefore |Opt| > |D|/(ρτ). Meanwhile, in this pass, each set added to Sol
includes at least τ elements of D, so the pass adds at most |D|/τ 6 ρ|Opt| sets to Sol.

Lemma 2.3. Algorithm 1 is a p-pass semi-streaming pn1/p-approximation algorithm for SET-COVERn,m.

Proof. The algorithm’s correctness and Õ(n) space bound are obvious, so we focus on the approx-
imation ratio. We claim that for each j ∈ [p], the jth pass of Algorithm 1 is (n1−j/p, n1/p)-bounded.

Let us prove this claim. Put τj = n1−j/p. For j = 1, the precondition required by Definition 2.1
is trivially satisfied. For larger j, consider an arbitrary set S in σ and let C0 be as in Definition 2.1,
for the jth pass. If S were added to Sol in an earlier pass, then |S \ C0| = 0. If not, then by the
logic of GREEDYPASS, set S’s contribution was less than τj−1 during the (j− 1)th pass. Since C0
is a superset of the set of elements that had been covered when S was processed in the (j− 1)th
pass, we have |S \ C0| < τj−1 = n1/pτj.

Having proved the claim, it follows from Lemma 2.2 that each pass adds at most n1/p|Opt| sets
to Sol. Therefore, in the end we have |Sol| 6 pn1/p|Opt|, as required.

In fact, since the first pass adds at most n1/p sets, we have |Sol| 6 n1/p(1 + (p− 1)|Opt|).
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Folding the last two passes. The final pass of Algorithm 1 picks a set merely for making a nonzero
contribution. When there are at least two passes, this final-pass logic can be “folded into” the
penultimate pass as follows. During the pth pass of a p + 1-pass scheme, we run GREEDYPASS

as usual and additionally, in parallel, run a second instance of GREEDYPASS with threshold 1 that
builds an alternate solution Alt (certified by a new array Backup, analogous to Coverer), starting
from ∅. Thus, Alt is the solution that a 1-pass version of Algorithm 1 would have built. At the
end of the penultimate (pth) pass, Sol might have left some elements of X uncovered. We fix
this by post-processing: for each such element x, we add to Sol the set in Alt that covered x; this
information can be read from Backup. Algorithm 2 implements this very idea.

Algorithm 2 Progressive greedy algorithm for SET-COVER in p passes

1: procedure PROGGREEDY(stream σ, integer n, integer p > 1)
2: Coverer[1 . . . n], Backup[1 . . . n]← 0n; Sol, Alt← ∅
3: for j = 1 to p− 1 do GREEDYPASS(σ, n1−j/(p+1), Sol, Coverer)
4: in parallel, do GREEDYPASS(σ, n1−p/(p+1), Sol, Coverer) and GREEDYPASS(σ, 1, Alt, Backup)

5: for x = 1 to n do . Post-processing: elements not covered by Sol will get covered by sets from Alt
6: if Coverer[x] = 0 then
7: Sol← Sol∪ Backup[x]
8: Coverer[x]← Backup[x]
9: output Sol, Coverer

Lemma 2.4. For every stream σ, the output of PROGGREEDY(σ, p) in Algorithm 2 is identical to that of
PROGGREEDYNAIVE(σ, p + 1) in Algorithm 1.

Proof. Fix an input stream σ. Let A1 and A2 denote, respectively, the invocation of Algorithm 1 as
PROGGREEDYNAIVE(σ, p + 1) and the invocation of Algorithm 2 as PROGGREEDY(σ, p). Let Sol1
be the value of Sol after p passes of A1. It is immediate that Sol1 is also the value of Sol in A2 just
before the post-processing loop in lines 5 to 8.

Let Cov1 and Cov2 denote, respectively, the final output values of the array Coverer inA1 andA2.
Let C =

⋃
S∈Sol1 S. Our above observation says that Cov1[x] = Cov2[x] for all x ∈ C. It remains

to prove that the same equality also holds for all x ∈ [n] \ C. But this, too, is immediate from the
observation that for each x ∈ [n] \ C, each of Cov1[x] and Backup[x], and thus Cov2[x] as well, is set
to the earliest set in σ that contains x.

Theorem 2.5. There is a p-pass, O(n log m)-space algorithm that, for every instance of SET-COVERn,m,
outputs a feasible solution Sol with |Sol| 6 n1/(p+1)(1 + p|Opt|) 6 (p + 1)n1/(p+1)|Opt|.

Proof. This follows immediately by combining Lemma 2.3 with Lemma 2.4.

Folding three passes? It is natural to wonder whether the above “folding” idea can be taken
further, achieving an even better pass/approximation tradeoff. As it turns out, we cannot fold (the
last) three passes into one. The most convincing proof is the lower bound that we shall establish
in Section 3.

As designed, the algorithm cannot be sure what the contribution of a set will be in a particular
pass until it actually sees this set in that pass. In the last pass, however, we need only know that
the contribution is non-zero: after the penultimate pass, if Coverer[x] = 0 and Backup[x] = i, we
know “in advance” that set Si has non-zero contribution.
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2.2 Tightness of Analysis

The lower bound in Section 3 shows that the approximation ratio guaranteed by Theorem 2.5 is
asymptotically optimal for p = Θ(1) passes. But if p is allowed to grow with n, then there remains
a small Θ(p3) discrepancy between that upper bound and the lower bound we shall eventually
prove in Theorem 3.8. We can, however, prove that our analysis of the approximation guarantee
of Algorithm 1 is tight.

Theorem 2.6. For each integer p > 2 and q large enough, there is an instance In,m of SET-COVERn,m, with
n = qp − 1 and m 6 pq, such that In,m admits a set cover of size 1, whereas Algorithm 1, using p passes
and running on In,m, returns a solution with p(q− 1) ≈ pn1/p sets.

Proof. Put X = [q]p \ {(q, q, . . . , q)}. For each j ∈ [p] and y ∈ [q− 1], define the sets

Xj = {(x1, . . . , xp) ∈ X : x1 = · · · = xj−1 = q} ,

Sy
j = {(x1, . . . , xp) ∈ X : x1 = · · · = xj−1 = q ∧ xj = y} .

Then X = X1 ⊇ · · · ⊇ Xp and Sy
j ⊆ Xj. Observe that these sets Sy

j are pairwise disjoint and
partition X . Further, |Sy

j | = qp−j and |Xj| = qp−j+1 − 1 for all j, y.
Let σj be the stream consisting of the sets {Sy

j : y ∈ [q− 1]} in some arbitrary order. Let σ be the
stream consisting of σp followed by σp−1 and so on, down to σ1, and finally the set X . Consider the
SET-COVERn,m instance In,m defined by σ: it satisfies n = |X | = qp − 1 and m = p(q− 1) + 1 6 pq,
as claimed. Since the entire universe X occurs as a set in In,m, the optimum set cover consists of
just that one set.

Now consider the behaviour of Algorithm 1 on σ. For each j ∈ [p], let τj = n1−j/p be the
threshold in the jth pass. We claim that

qp−j − 1 < τj 6 qp−j . (1)

The second inequality in (1) is easy to see: τj =
(
(qp − 1)1/p)p−j

6 qp−j. The first inequality is
obvious when j = p, so suppose that 1 6 j < p. Consider the function

Gj,p(x) = (xp − 1)1−j/p − (xp−j − 1) .

A routine calculation shows that the derivative G′j,p(x) = (p − j)xp−1((xp − 1)−j/p − x−j). For
x > 1, we have (xp − 1)1/p < x, so (xp − 1)−j/p > x−j; therefore G′j,p(x) > 0. Since Gj,p(1) = 0,
we now conclude that Gj,p(q) > 0, which gives us the first inequality in (1) and proves the claim.
We can now see that the jth pass satisfies the following properties.

1. At the start of the pass, the set of uncovered elements is precisely Xj.

2. Each set in σp, . . . , σj+1 makes a contribution equal to its cardinality. Therefore the largest
such contribution is qp−j−1 < qp−j − 1 < τj, by (1).

3. Each set in σj makes a contribution equal to its cardinality, which is qp−j > τj, by (1).

4. Each set in σj−1, . . . , σ1 makes a contribution of zero.

5. The set X , which arrives at the end of σ, makes a contribution of qp−j − 1 < τj, by (1).

6. Therefore the sets added to Sol during the pass are exactly the sets in σj.
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The validity of these properties can be formally proved by backward induction on j. The details
are routine and tedious, so we omit them.

Based on the above properties, we see that Algorithm 1 produces a solution consisting of all
sets in all substreams σj. The number of sets in this solution is p(q− 1), as claimed.

3 The Basic Lower Bound

In this section we establish our main result, which gives a strong lower bound on the best approxi-
mation ratio achievable by a semi-streaming algorithm for SET-COVER. Our lower bound gives the
optimal dependence of this ratio on n. Moreover, for p passes, our lower bound is only about p3

times smaller than our upper bound in Theorem 2.5. In particular, when p = Θ(1), the lower
bound is asymptotically optimal.

3.1 Warm Up: One-Pass Algorithms

Our proof is based on a fairly technical combinatorial construction. To motivate it, let us first
outline a simple proof of a one-pass lower bound. We start with the well-known INDEX (or IDX)
problem in communication complexity, where Alice must send Bob a (possibly random) message
about her n-bit string x, so that Bob, who holds an index h ∈ [n], can output xh (the hth bit of x)
with high probability. A textbook result [20] is that this requires Alice to send Ω(n) bits. To reduce
IDX to SET-COVER, we construct a universe X and a family of n distinct sets S1, . . . , Sn ⊂ X . Alice
encodes x as the stream of sets {Si : xi = 1}, and Bob encodes h as a “stream” of just one set:
X \ Sh. Alice’s stream followed by Bob’s is an instance of SET-COVER.

When xh = 1, this instance clearly has |Opt| = 2. We can force |Opt| to be much larger when
xh = 0 if we make each |Si| large and each |Si ∩ Sj| small (for i 6= j): since Alice’s stream is
missing Sh, it will take “many” sets Si, i 6= h, to cover the elements of Sh.

Incidence geometry gives us an elegant construction of a collection {S1, . . . , Sn} with these
properties. Consider the lines of an affine plane of order q, with q a prime power. More explicitly,
let Fq denote the finite field with q elements, X = F2

q, n = |X | = q2, and {S1, . . . , Sn} be some
collection of n distinct lines out of the q2 + q such lines in F2

q. Then each |Si| = q and each
|Si ∩ Sj| 6 1, for i 6= j. In particular, xh = 0 now implies that |Opt| > q =

√
n. Therefore

approximating such a SET-COVER instance to a factor smaller than
√

n/2 is enough to solve IDX,
whence an algorithm achieving such approximation must use Ω(n) space.

To rule out a semi-streaming algorithm we must prove a stronger, n1+Ω(1) space, lower bound.
A simple tweak achieves this: sticking with the universe F2

q, replace the lines in the above con-
struction with degree-2 algebraic curves, say. This preserves the essential dichotomy between
large |Si| and small |Si ∩ Sj| while allowing us to reduce from an IDX instance on n1+Ω(1) bits.

The one-pass lower bound proof we have just outlined is arguably more straightforward than
the Emek–Rosén proof [12]. Though both proofs begin with the affine plane, our builds an explicit
set system, rather than relying on a probabilistic argument, and reduces directly from IDX, rather
than a employing bespoke entropy calculations, leading to a more modular proof. But there is
a far more important takeaway from our proof: the observation that employing higher-degree
curves adds great flexibility to the construction. Exploiting this observation to its fullest allows
us to handle multi-pass algorithms by greatly generalising the construction, moving from affine
planes to more abstract incidence geometries that we call edifices (Definition 3.3 below). Edifices,
like affine planes, are examples of Buekenhout geometries [6].
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3.2 Multi-Player Tree Pointer Jumping

A popular source problem for multi-pass streaming lower bounds is the communication problem
multi-player tree pointer jumping, which generalises IDX. Let T be a rooted tree with k > 2 layers of
vertices, where a vertex is in layer ` if it is at distance exactly k− ` from the root (thus, the root is in
layer k) and every leaf is in layer 1. The pointer jumping problem on T, denoted MPJT, is a k-player
number-in-hand communication game involving players named PLR1, . . . , PLRk. For 1 < j 6 k,
PLRj’s input specifies one pointer (i.e., out-edge) at each vertex in layer j; by definition each such
pointer leads to a vertex in layer j − 1. Furthermore, PLR1’s input specifies a bit at each layer-1
vertex; these bits are called leaf bits. Given such an input, π, let T|π denote the subgraph of T
defined by retaining only those edges of T that correspond to pointers in π. Then T|π contains a
unique root-to-leaf path, ending at a leaf vπ, say. The desired output corresponding to π, denoted
MPJT(π), is defined to be the leaf bit at vπ.

The communication game involves players announcing messages on a shared broadcast chan-
nel, according to a public-coin randomised protocol. The protocol proceeds in rounds, where a
round is defined as one message each from PLR1, . . . , PLRk, speaking in that order. The last mes-
sage of the protocol must be a single bit, which is defined to be the protocol’s output. An [r, C, ε]-
protocol for MPJT is defined to be one in which

• there are at most r rounds of communication;

• within each round, the total number of bits communicated is at most C; and

• the protocol’s output equals MPJT(π) with probability at least 1− ε.

Definition 3.1. The r-round randomised communication complexity of MPJT is defined to be
Rr(MPJT) := min{C : there exists an [r, C, 1

3 ]-protocol for MPJT}.

Intuitively, if players trying to solve MPJT are restricted to a “small” amount of communication
per round, then because they are forced to speak in the “wrong” order, in the first round the
only player who is able to convey “useful” information is PLRk, in the second round the only
such player is PLRk−1, and so on. Therefore, if the protocol is further restricted to k − 1 rounds,
PLR1 rarely gets a chance to convey useful information and so the protocol’s error probability
should be high. This intuition was formalised in the round elimination ideas of Miltersen et al. [23].
Using these ideas and a direct sum argument, Chakrabarti, Cormode, and McGregor [8] proved
a distributional communication complexity lower bound for MPJ. We only need the consequent
randomised communication complexity bound, stated below.

Theorem 3.2 ([8, Theorem 4.5]). Let T be a complete t-ary tree with k > 2 layers of vertices. Then
Rk−1(MPJT) = Ω(t/k2).

3.3 Reduction to Set Cover via Edifices

Definition 3.3. A (k, d, q, t)-edifice T over a universe X is a rooted tree, together with an associated
collection of sets called the varieties of the edifice, satisfying the following properties.

(E1) T is a complete t-ary tree, i.e., every non-leaf vertex has exactly t children.

(E2) T has k levels (equivalently, depth k− 1), numbered 1 through k from leaves to root.

(E3) Each vertex v of T has an associated set Xv ⊆ X , called the variety at v.

(E4) If u is the parent of v, then Xu ⊇ Xv. If r is the root of T , then Xr = X .
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(E5) If z is a leaf of T , then |Xz| > q.

(E6) For each leaf z of T and each vertex v not an ancestor of z, we have |Xz ∩ Xv| 6 d + k− 1.

The (k, d, q, t)-edifices that interest us will have k ≈ d � q � t. In particular, if d + k 6 q
and t > 2, it is easy to prove from (E4), (E5), and (E6) that varieties at distinct vertices are distinct
(as sets). For readers familiar with incidence geometry, we note that these varieties then form
a Buekenhout geometry [6] of rank k, where the type map sends each variety to the level of its
corresponding vertex and the incidence relation is symmetrised set inclusion. Thus our notion of
an edifice generalises affine planes, which we used in our warm-up proof: an affine plane over Fq
is a (2, 0, q, q2 + q)-edifice over the universe F2

q.

Theorem 3.4. Suppose there exists a (p + 1, d, q, t)-edifice T with q > (p + d)(p + 1). Then every
randomised p-pass streaming algorithm that, with probability at least 2/3, approximates SET-COVER to a
factor smaller than q/ ((p + d)(p + 1)) must use at least Rp(MPJT )/p = Ω(t/p3) bits of space.

Proof. Let the edifice T be over a universe X . We shall transform an input π to MPJT into an
instance I(π) of SET-COVER on the universe X , with each set in I(π) being assigned to one of
PLR1, . . . , PLRp+1.

The transformation is as follows. Let u be a vertex of T in layer j > 2. Then π specifies a
pointer from u to some vertex, say v. We encode this pointer as the set Xu \ Xv and assign this
set to PLRj. We perform this encoding for each vertex in layers 2 and higher. Furthermore, we
encode the leaf bits of π as the collection of sets {Xz : π specifies a ‘1’ at leaf z} and assign all sets
in this collection to PLR1. Finally, we assign every singleton subset ofX to PLR1. This completes the
specification of our SET-COVER instance, which is valid thanks to the inclusion of the singletons.

Let vp+1, . . . , v1 be the unique root-to-leaf path in T |π, with vj being in layer j, for each j. Put
Xj = Xvj , for each j. By (E4), X = Xp+1 ⊇ · · · ⊇ X1, so the encodings of the pointers at vp+1, . . . , v2

together cover
⋃p+1

j=2 (Xj \ Xj−1) = X \ X1. Now suppose that MPJT (π) = 1. Then the encoding of
the leaf bits includes X1, so I(π) has a set cover of size Q1 := p + 1.

Next, suppose that MPJT (π) = 0. A set cover must, in particular, cover X1. However, the
encodings of the pointers at vp+1, . . . , v2 are all disjoint from X1 and the encoding of the leaf bits
does not include X1. Therefore, X1 must be covered using only singletons and sets corresponding
to non-ancestors of v1. For each such non-ancestor, y, the corresponding set in I(π) is a subset of
the variety Xy. By (E6), such a set covers at most d + p elements of X1 whereas, by (E5), |X1| > q.
Therefore every set cover in I(π) uses least Q0 := q/(d + p) sets.

It follows that approximating even the optimum value of I(π) to a factor smaller than Q0/Q1 =
q/((p + d)(p + 1)) is sufficient to determine MPJT (π).

Let A be a p-pass 1
3 -error randomised streaming algorithm that approximates SET-COVER this

well, using at most s bits of space. The players can solve MPJT as follows. On input π, each player
follows the above encoding scheme so that players jointly arrive at the SET-COVER instance I(π),
with sets assigned amongst the players. They simulate the execution ofA on the stream σ obtained
by taking PLR1’s sets, followed by PLR2’s sets, and so on. Each time the execution of A moves off
one player’s portion of σ, that player broadcasts the memory contents of σ. This simulation uses
one communication round per streaming pass, and spends sp bits of communication per round.
Therefore it yields a [p, sp, 1

3 ]-protocol for MPJT (π), whence sp > Rp(MPJT ).

3.4 Construction of an Edifice

Theorem 3.5. Let k, d, and q be integers with k > 1, d > 0, and q > d + k, with q being a prime power.
Then there exists a (k, d, q, qd+k(1− 1/q))-edifice.
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Proof. We shall construct an explicit edifice over the universe X = Fk
q. The varieties of our edifice

will be certain well-structured varieties in the sense of algebraic geometry, i.e., solution sets of
polynomial equations. Write the coordinates of a generic point in Fk

q as (x, y1, . . . , yk−1). An edificial
equation of rank i is defined to be an equation of the form

yi = `i(y1, . . . , yi−1, fk−i(x)) , 1 6 i 6 k− 1 , (2)

where `i(z1, . . . , zi) is a homogeneous linear form over Fq whose zi-coefficient is nonzero and f j(x)
is a monic polynomial in Fq[x] of degree exactly d + j. Equation (2) is abbreviated as J`i : fk−iK.

Notice that irrespective of the value of i there are exactly d + k coefficients appearing on the
right-hand side of eq. (2), one of which must be nonzero. There are exactly t := qd+k(1− 1/q)
ways to choose these coefficients, leading to exactly t distinct edificial equations of each rank.

Let T be a rooted complete t-ary tree with k levels, the root r being at level k. For 1 6 i 6 k− 1,
for each level-(i + 1) vertex v of T , label each of the t edges leaving v with one of the t distinct
rank-i edificial equations. Associate a variety Xv with vertex v as follows. Let Xr = X . If v 6= r,
let Xv be the variety defined by the set of edificial equations labelling the edges on the path from r
to v. We shall show that T , with these associated varieties, forms a (k, d, q, t)-edifice. Certainly,
properties (E1), (E2), (E3), and (E4) are immediate. The following observation will be helpful in
establishing the remaining properties.

Observation 3.6. Suppose x = (x, y1, . . . , yk−1) satisfies the edificial equations J`1 : fk−1K, . . . , J`j : fk−jK
for some j with 1 6 j 6 k− 1. Then there exist linear forms λi(z1, . . . , zi) over Fq such that

yi = λi( fk−1(x), . . . , fk−i(x)) , 1 6 i 6 j . (3)

Therefore each of y1, . . . , yj is determined by x.

For the rest of this proof let z be a leaf; let x = (x, y1, . . . , yk−1) ∈ Xz be an arbitrary point in the
variety at z and let J`1 : fk−1K, . . . , J`k−1 : f1K be the edificial equations defining Xz. We record the
following corollary of Observation 3.6.

Observation 3.7. The point x is completely determined by its first coordinate x.

It follows that for each a ∈ Fq, Xz contains exactly one such point x with x = a, whence
|Xz| = |Fq| = q. This establishes property (E5).

Property (E6) requires a more careful examination of the form of the edificial equations. Con-
sider a vertex v that is not an ancestor of the leaf z. Let u be the highest (by level) ancestor of v
that is still not an ancestor of z. Since Xu ⊇ Xv, it suffices to prove that |Xz ∩ Xu| 6 d + k− 1. Sup-
pose u is at level j < k. Then Xu is defined by the k− j− 1 highest-ranked edificial equations that
define Xz (which are of ranks k− 1 through j + 1) plus an additional rank-j equation J`+j : f+k−jK,
where either `j 6= `+j or fk−j 6= f+k−j, or both.

Suppose that `j = `+j , so that fk−j 6= f+k−j. Each point x = (x, y1, . . . , yk−1) ∈ Xz ∩ Xu must, in
particular satisfy J`j : fk−jK and J`j : f+k−jK. Comparing these two equations gives

`j(y1, . . . , yj−1, fk−j(x)) = yj = `j(y1, . . . , yj−1, f+k−j(x)) (4)

⇒ `j(0, . . . , 0, fk−j(x)− f+k−j(x)) = 0

⇒ fk−j(x)− f+k−j(x) = 0 , (5)

because the linear form `j(z1, . . . , zj) is required to have a nonzero zj-coefficient. The left-hand
side of eq. (5) is a nonzero univariate polynomial of degree at most d + k− j, whence it has at most
d + k− j roots in Fq. By Observation 3.7, it follows that |Xz ∩ Xu| 6 d + k− j 6 d + k− 1.
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Finally, suppose `j 6= `+j . We now make the crucial observation that

f1(x), . . . , fk−1(x) are linearly independent over Fq , (6)

which holds because these polynomials have distinct degrees. With this in mind, examining
eqs. (2) and (3) and recalling that `i(z1, . . . , zi) has a nonzero zi-coefficient, we see that λi(z1, . . . , zi)
also has a nonzero zi-coefficient. Therefore, for each i ∈ {1, . . . , k− 1}, the collection of polynomi-
als {λ1( fk−1(x)), . . . , λi( fk−1(x), . . . , fk−i(x))} is a basis for the linear subspace of Fq[x] spanned
by { fk−1(x), . . . , fk−i(x)}.

Suppose x = (x, y1, . . . , yk−1) ∈ Xz ∩ Xu. Proceeding as in eq. (4), we find that

`j(y1, . . . , yj−1, fk−j(x)) = yj = `+j (y1, . . . , yj−1, f+k−j(x)) .

Therefore there exists a linear form h(z1, . . . , zj−1) and scalars a, a+ ∈ Fq, where either h 6= 0 or
a 6= a+ or both, such that h(y1, . . . , yj−1) + a fk−j(x)− a+ f+k−j(x) = 0. By Observation 3.6,

h(λ1( fk−1(x)), . . . , λj−1( fk−1(x), . . . , fk−j+1(x))) + a fk−j(x)− a+ f+k−j(x) = 0 . (7)

We claim that the left-hand side of eq. (7) is a nonzero polynomial. If h = 0, this is immediate
because a 6= a+, whereas fk−j(x) and f+k−j(x) are both monic of degree d + k− j. If h 6= 0, then by
our observations about the polynomials {λi( fk−1(x), . . . , fk−i(x))}, the first term on the left-hand
side is a nonzero polynomial in the span of { fk−1(x), . . . , fk−j+1(x)}. In particular, its degree is at
least d + k− j + 1. The other two terms have degree at most d + k− j, which proves the claim.

Thus, eq. (7) states that x is a root of a nonzero polynomial of degree at most d + k− 1, a fact
we derived from the condition that x ∈ Xz ∩ Xu. By Observation 3.7, |Xz ∩ Xu| 6 d + k− 1.

Justifications for observations. For the sake of completeness, we formally justify the observa-
tions made in the course of the just-concluded proof. Observation 3.6 can be proved by induction
on i. When i = 1, eq. (2) specialises to y1 = `1( fk−1(x)), so we reach eq. (3) by taking λ1 = `1. For
general i, by the induction hypothesis, we have

yi = `i(λ1( fk−1(x)), . . . , λi−1( fk−1(x), . . . , fk−i+1(x)), fk−i(x)) . (8)

Each argument to `i in the above equation is a linear form in { fk−1(x), . . . , fk−i(x)}, and `i is itself
a linear form. Taking λi to be the “composition” of these linear forms gives us eq. (3).

Observation 3.7 is, as noted, a simple corollary to Observation 3.6.
We turn to the observation, made just after (6), that λi(z1, . . . , zi) has a nonzero zi-coefficient.

Of the i arguments to `i, only the last involves fk−i(x), and that last argument is given a nonzero
coefficient by the defining property of `i. The other arguments are polynomials in the span of
{ fk−1(x), . . . , fk−i+1(x)}. The linear independence observed in (6) completes the justification.

3.5 Pass/Approximation Tradeoff for Set Cover

We now bring together our technical results to obtain a pass/approximation tradeoff for SET-
COVER in the semi-streaming setting.

Theorem 3.8 (Main result). Let c > 1 be a constant. Let A be a p-pass streaming algorithm that, for
all large enough n and m, approximates the optimum value of SET-COVERn,m instances to a factor smaller
than n1/(p+1)/(c(p + 1)2) with probability at least 2/3. Then A must use Ω(nc/p3) bits of space. This
space lower bound applies to instances with m = Θ(ncp).
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Proof. Let q be a sufficiently large prime power. Put d = (c− 1)(p + 1), t = qd+p+1(1− 1/q), and
n = qp+1. By Theorem 3.5, there exists a (p + 1, d, q, t)-edifice over a universe X with |X | = n.
By Theorem 3.4, the space usage of A, which approximates SET-COVER to a factor better than
n1/(p+1)/((p + d)(p + 1)), is at least Rp(MPJT)/p, where T is a complete (p + 1)-level t-ary tree.
By Theorem 3.2, this space bound is Ω(t/p3) = Ω(nd/(p+1)+1(1− 1/q)/p3) = Ω(nc/p3).

Examining the reduction in Theorem 3.4 shows that instances of SET-COVER demonstrating the
above lower bound have roughly as many sets as the edifice has leaves, i.e., m = Θ(ncp).

It is instructive to note the following corollaries of Theorem 3.8.

1. Let p be a constant. Then there exist positive constants α < 1 and β > 1 such that (αn1/(p+1))-
approximating SET-COVER in p streaming passes requires Ω(nβ) space. In particular, such
an approximation is not possible for a semi-streaming algorithm.

2. Every multi-pass semi-streaming O(log n)-approximation algorithm for SET-COVER requires
p = Ω(log n/ log log n) passes.

3.6 Two-Player Communication Complexity of Set Cover

Nisan [27] and Demaine et al. [10] have studied SET-COVER as a communication game. Our proof
of Theorem 3.8 directly implies a lower bound for a certain multi-player SET-COVER game. But one
may wonder about implications for the more fundamental setting of two-player communication
complexity. Our next theorem shows that our technology does indeed yield a new two-player
result.

In the two-player SET-COVER game, there is a fixed finite universe X = [n], Alice receives as
input a collectionF ⊆ 2X , and Bob receives a collection G ⊆ 2X . The players wish to solve the SET-
COVER instance (X ,F ∪G) as cheaply as possible. Specifically, they must output a cover certificate
(analogous to the array Coverer in Algorithm 1) that specifies, for each x ∈ X , the set in F ∪ G that
covers x. A communication protocol that gives such an output is said to be α-approximate if the
implied set cover, Sol, satisfies |Sol| 6 α|Opt|, where Opt is an optimum solution to the instance.

By mimicking the standard offline greedy algorithm for SET-COVER, one readily obtains a
(ln n − ln ln n + Θ(1))-approximate protocol that communicates at most n messages, each mes-
sage being n bits long; in particular, the total communication cost is nO(1). Nisan proved [27, The-
orem 4] that for every constant δ > 0, a ( 1

2 − δ) log2 n-approximate protocol requires an amount of
communication that is exponentially larger, roughly exp(

√
n) for small δ. Nisan’s theorem uses a

reduction from SET-DISJOINTNESS and is therefore agnostic about the number of messages in the
protocol. Our theorem complements this by giving a “bounded-round” lower bound.

Theorem 3.9. Let c > 1 be a constant. Suppose there exists a (randomised) α-approximate protocol for
the two-player SET-COVER game that communicates a total of C bits in at most r messages. Then either
α > n1/(r+1)/(c(r + 1)2) or C = Ω(nc/r2).

Proof sketch. We encode an instance of POINTER-JUMPING on a tree as a SET-COVER instance, using
our edifices, exactly as in the proof of Theorem 3.4. We then treat POINTER-JUMPING as a two-
player communication game, with Alice holding the information at vertices of the tree whose
level is odd, and Bob holding the rest. For this two-player game, we invoke the bounded-round
communication lower bound due to Klauck et al. [19] to finish the proof.

While we could have used the above two-player version of POINTER-JUMPING as the basis
for a data-streaming lower bound, it is important to note that doing so would have considerably
weakened the streaming result, because p streaming passes translate into 2p − 1 messages in a
two-player protocol.
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4 Extension to Partial Cover

Thus far we have focused on the SET-COVER problem as traditionally defined, in which a feasible
solution must cover the entire universe. However, as is the case with many optimisation problems,
SET-COVER admits a relaxation in the form of a bicriterial approximation, wherein the feasibility
constraint can be violated by some amount ε, and we seek a solution with cost at most α(ε, n)
times the optimum fully feasible solution, for some function α.

To be precise, we consider the problem PARTIAL-COVERn,m,ε, where an instance I = (X ,F , ε)
consists of a universe X , with |X | = n, a collection of sets F ⊆ 2X with |F | = m, and a parameter
ε ∈ [0, 1]. The goal is to compute a (1− ε)-partial cover of X , defined as a collection Sol ⊆ F
that covers at least (1− ε)|X | elements. Such a solution Sol is said to be α-approximate if |Sol| 6
α|Opt|—or, in the weighted version, w(Sol) 6 αw(Opt)—where Opt is a minimum-cost set cover
for (X ,F). Notice that we are comparing the cost of our partial cover with that of the best total
cover.

4.1 Upper Bound

We begin with our most general upper bound, which includes partial covers and weighted sets.
For convenience in stating the space bound, we assume that all weights are O(log m)-bit integers.

Theorem 4.1. For every integer p > 1, there is a p-pass, O(n log m)-space algorithm for the weighted
version of PARTIAL-COVERn,m,ε that produces an α(n, ε)-approximate cost (1 − ε)-partial cover, where
α(n, ε) = min{8pε−1/p, (8p + 1)n1/(p+1)}.

Proof. We run the following two schemes in parallel, returning the lower-cost solution. First, we
run the Emek–Rosén algorithm for p passes, each time obtaining a (1 − ε1/p)-partial cover of
the remaining (uncovered) portion of X , and each time adding at most 8ε−1/pw(Opt) cost to our
solution Sol. By definition of a partial cover, for each j ∈ [p], the collection of sets constituting Sol
after j passes leaves at most εj/p|X | elements uncovered. Therefore, in the end, Sol is a (1− ε)-
partial cover.

Second, we run the Emek–Rosén algorithm for p passes (again) but here, in each pass, ob-
taining a (1 − 1/n1/(p+1))-partial cover of the remaining (uncovered) portion of X , and each
time adding at most 8n1/(p+1)w(Opt) cost to our solution Sol. The collection of sets constitut-
ing Sol after j passes leaves at most n(p+1−j)/(p+1) elements uncovered. After p passes, Sol cov-
ers all but at most n1/(p+1) elements. Covering each of these with its cheapest-covering set—
which the Emek–Rosén algorithm records—of cost at most w(Opt), leads to a total cost of at most
(8p + 1)n1/(p+1)w(Opt). Since this is a full cover of X , it is also a (1− ε)-partial cover.

The above upper bound generalises Theorem 2.5, except for the constant “8” that arises in
the Emek–Rosén analysis. One can tweak their algorithm so as to replace the 8 with (1 + δ)3,
where δ > 0 is a constant of our choice, at the cost of increasing the space usage by a factor of
Θ(1/ log(1 + δ)), which is about Θ(δ−1) for small δ.

4.2 Lower Bound

We shall now show that Theorem 4.1 is asymptotically tight for every constant p by proving an ap-
propriate lower bound on the approximation factor that a semi-streaming algorithm for PARTIAL-
COVER can achieve. Our lower bound will hold even for unweighted PARTIAL-COVER and will
match the upper bound of Theorem 4.1 up to a Θ(p3) factor.
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Our proof is based on edifices—as in the proof of Theorem 3.8—except that we need a different,
more complicated, setting of parameters that is not directly achieved by Theorem 3.5. Instead,
we revisit the edifices constructed in the proof of Theorem 3.5 and observe that they have an
additional geometric property that we call wideness: roughly speaking, each level contains many
groups of mutually parallel varieties. Clustering these parallel classes into “supervarieties” gives
us new edifices with the desired parameters.

Let CT (u) denote the set of children of a vertex u in a tree T . A (k, d, q, t)-edifice T is said to be
(b, t′)-wide if, for each non-leaf vertex u of T , there exist subsets V1, . . . ,Vt′ ⊆ CT (u) such that

(W1) V1, . . . ,Vt′ are pairwise disjoint;

(W2) for all i ∈ [t′], |Vi| = b; and

(W3) for all i ∈ [t′], for all v 6= v′ ∈ Vi, we have Xv ∩ Xv′ = ∅.

Lemma 4.2. If there exists a (k, d, q, t)-edifice T on universe X that is (b, t′)-wide, then there exists a
(k, bk(d + k− 1), bk−1q, t′)-edifice on the same universe X .

Proof. The desired edifice is built by “merging” certain carefully chosen sets of vertices of T .
Define the following colour-and-trim procedure on a vertex u of T . If u is a leaf, then do

nothing. Otherwise, let V1, . . . ,Vt′ be subsets of CT (u) satisfying (W1)–(W3). For each i ∈ [t′], for
each v ∈ Vi, assign colour i to the edge from u to v. Delete all uncoloured edges out of u as well as
the subtrees pointed to by these edges. Then recursively colour-and-trim the remaining vertices
in CT (u).

Let T ′ be the fully edge-coloured (bt′)-ary tree obtained by applying this colour-and-trim pro-
cedure to r, the root of T . Reusing the varieties from T makes T ′ a (k, d, q, bt′)-edifice.

For each vertex v of T ′, define the rainbow at v to be the sequence of colours on the unique path
from r to v. Create a new edge-coloured rooted tree T ′′ by merging vertices of T ′ that have the
same rainbow into “supervertices” and defining the parent of a supervertex v′′ to be the vertex u′′

whose rainbow is obtained by deleting the last colour in the rainbow at v′′; assign this deleted
colour to the edge from u′′ to v′′. Property (W2) implies that each Vi is nonempty; property (W1)
then implies that T ′′ is a t′-ary tree with k levels.

For each vertex u′′ of T ′′, let 〈u′′〉 denote the set of vertices of T ′ that were merged to pro-
duce u′′. Define the variety Xu′′ ⊆ X thus:

Xu′′ =
⊎

u∈〈u′′〉
Xu .

By (W3), the above union is indeed a disjoint union (denoted by “]”).
We shall show that T ′′ is the desired edifice. Properties (E1), (E2), and (E3) are immediate.

Property (E4) follows from the same property of T ′ and the observation that whenever two ver-
tices of T ′ are merged in T ′′, so are their parents. For property (E5), first note that (W2) implies
that at each level j ∈ [k] there are exactly bk−j vertices of T ′ that have a particular rainbow. Thus,
for each leaf z′′ of T ′′ we have |〈z′′〉| = bk−1. Using property (E5) of T ′, we have

|Xz′′ | =
∣∣∣∣ ⊎

z∈〈z′′〉
Xz

∣∣∣∣ = ∑
z∈〈z′′〉

|Xz| > ∑
z∈[z′]

q = bk−1q .

Finally, we address property (E6). As in the proof of Theorem 3.5, it suffices to upper-bound
|Xz′′ ∩ Xu′′ |, where z′′ is a leaf of T ′′ and u′′ is a vertex of T ′′ that is not an ancestor of z′′, whereas
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the parent y′′ of u′′ is. Suppose that u′′ is at level j < k. Then

Xz′′ ∩ Xu′′ =

( ⋃
z∈〈z′′〉

Xz

)
∩
( ⋃

u∈〈u′′〉
Xu

)
=

⋃
z∈〈z′′〉, u∈〈u′′〉

(Xz ∩ Xu) . (9)

Since |〈z′′〉| = bk−1 and |〈u′′〉| = bk−j, this latter expression immediately leads to |Xz′′ ∩ Xu′′ | 6
b2k−j−1(d+ k− 1), using property (E6) of T ′. However, this upper bound is too weak; to strengthen
it, we consider the structure of Xz′′ and Xu′′ more carefully.

Consider a generic z ∈ 〈z′′〉 and a generic u ∈ 〈u′′〉. There must exist y1, y2 ∈ 〈y′′〉 such that z
is a descendant of y1 and u is a descendant of y2. The crucial observation is that if y1 6= y2, then
by (W3), Xy1 ∩ Xy2 = ∅, whence by (E4), Xz ∩ Xu = ∅. Therefore the pair (z, u) contributes to the
latter union in eq. (9) only when y1 = y2. Therefore,

Xz′′ ∩ Xu′′ =
⋃

y∈〈y′′〉

⋃
z∈〈z′′〉, u∈〈u′′〉

z,u descendants of y

(Xz ∩ Xu) .

Since |〈y′′〉| = bk−j−1 and each y ∈ 〈y′′〉 has bj descendants in 〈z′′〉 and b descendants in 〈u′′〉, we
obtain |Xz′′ ∩ Xu′′ | 6 bk−j−1bjb(d + k− 1) = bk(d + k− 1) 6 bk(d + k− 1) + k− 1, as required.

Lemma 4.3. The (k, d, q, t)-edifice constructed in Theorem 3.5 is (bδqc, b1/δct/q)-wide for all δ ∈ (0, 1].

Proof. It suffices to prove the lemma in the case δ = 1; a little thought shows that the general case
then follows as a corollary.

Let T be the edifice constructed in Theorem 3.5. Let u be a non-leaf vertex of T , at level j + 1,
where j ∈ [k− 1]. Then the edges out of u are labelled by the t distinct rank-j edificial equations.
Let us call two such equations J`j : fk−jK and J`+j : f+k−jK similar if `j = `+j and fk−j − f+k−j is a
constant polynomial. This similarity relation then naturally extends to CT (u). Similarity is easily
seen to be an equivalence relation, each of whose equivalence classes has size exactly |Fq| = q.
Therefore there are exactly t/q equivalence classes; let V1, . . . ,Vt/q ⊆ CT (u) be these classes.

To show that T is (q, t/q)-wide, we shall show that these classes {Vi} satisfy properties (W1),
(W2), and (W3). The first two properties are immediate. For the third, consider arbitrary v 6= v′ ∈
Vi, for some i. Then v and v′ are similar, which means that a point x = (x, y1, . . . , yk−1) ∈ Xv ∩ Xv′

must satisfy a pair of similar, but distinct, edificial equations. Let these equations be J`j : fk−jK and
J`j : f+k−jK. Consulting eq. (2), we find that

0 = yj − yj = `j(y1, . . . , yj, fk−j(x))− `j(y1, . . . , yj, f+k−j(x)) = `j(0, . . . , 0, fk−j(x)− f+k−j(x)) .

By definition, the linear form `j(z1, . . . , zj) has a nonzero zj-coefficient, implying that fk−j(x) −
f+k−j(x) = 0. This is a contradiction, because fk−j− f+k−j is a nonzero constant polynomial. Therefore
such a point x does not exist, i.e., Xv ∩ Xv′ = ∅.

Theorem 4.4. Let c > 1 be a constant. LetA be a p-pass streaming algorithm with the following guarantee.
For all large enough n and m and all ε ∈ (0, 1

2 ], for all instances of PARTIAL-COVERn,m,ε, with probability
at least 2/3, A returns the value of some α-approximate solution to the instance, where

α <
min{n1/(p+1), ε−1/p}

8c(p + 1)2 . (10)

Then A must use Ω(nc/p3) bits of space. In particular A cannot be semi-streaming.
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Proof. This theorem is analogous to a combination of Theorems 3.4 and 3.8; the proof is along very
similar lines.

We may as well assume that ε−1/p 6 n1/(p+1), because if ε is too small for this to hold, then we
simply consider the weaker problem of (1− ε′)-partial covering, where ε′ = n−p/(p+1).

Pick a sufficiently large prime power q. Put n = qp+1, d = (c− 1)(p + 1) + 1, δ̃ = (2ε)1/p, and
δ = dδ̃qe/q. By our assumption, we have δ̃ > 1/q and δ̃ 6 δ 6 2δ̃.

Combining Theorem 3.5 with Lemmas 4.2 and 4.3 and working through some algebra, we find
that there exists a (p + 1, (δq)p+1(d + p), (δq)pq, b1/δcqd+p(1− 1/q))-edifice T over a universe X
with |X | = n. Using the varieties of T , we encode each instance π of MPJT as a collection I(π) of
subsets of X exactly as in Theorem 3.4 and treat I(π) as an instance of PARTIAL-COVERn,m,ε. As
before, if MPJT (π) = 1, then I(π) admits a total cover using Q1 := p + 1 sets.

For the case MPJT (π) = 0, we refine the argument used for Theorem 3.4 as follows. Let X1 be
the variety of T at the unique leaf, v1, in T |π. As before, the elements of X1 cannot be covered
by sets corresponding to ancestors of v1, and each of the remaining sets in I(π) can cover at
most (δq)p+1(d + p) such elements. Every (1− ε)-partial cover must, in particular, cover at least
|X1| − ε|X | elements of X1. It follows that the cheapest such partial cover uses at least Q0 :=
(|X1| − ε|X |)/((δq)p+1(d + p)) sets. Now,

Q0

Q1
=

|X1| − ε|X |
(δq)p+1(p + d)(p + 1)

>
(δq)pq− εqp+1

(δq)p+1(p + d)(p + 1)
(11)

=
(δq)pq− 1

2 δ̃pqp+1

(δq)p+1c(p + 1)2

>
1

2δc(p + 1)2 (12)

>
1

4(2ε)1/p · c(p + 1)2 >
ε−1/p

8c(p + 1)2 , (13)

where (11) uses the parameters of the edifice T , (12) uses δ̃ 6 δ, and (13) uses δ 6 2δ̃.
Therefore, eq. (10) gives α < Q0/Q1. As in Theorem 3.4, with an approximation this good, A

can be used to determine MPJT (π) and must consequently use Ω(t/p3) bits of space, where t is
the arity of T . Since t = b1/δcqd+p(1− 1/q) = Ω(nc), this space lower bound is Ω(nc/p3).

5 Discussion

We conclude with a more technically detailed description of selected results from previous work,
with the goal of shedding more light on some of our own results.

In the external-memory setting, without a streaming restriction, an eager implementation of
the greedy algorithm involves an inverted index and a priority queue of set sizes. Unfortunately,
this involves arbitrary (non-local) memory accesses, leading to poor performance.

Relaxing the strict greedy requirement, Cormode, Karloff, and Wirth add a set to the solution
if its contribution is at least 1/β times the best [9]. So that all disk accesses are sequential, initially
they allocate sets to “buckets” (files) according to their size, with a bucket for each range [βj, βj+1),
i = 0, . . . , κ, where κ = maxblogβ |Si|c. Starting from j = κ down to 0, as each set in bucket j is
examined, sequentially, set Si is added to Sol only if its contribution is at least βj; otherwise, (i, Si \
C) is appended to the appropriate bucket. This is essentially the same thresholding as Algorithm 1,
with the same pass/approximation tradeoff, but implemented so that the total amount of data
handled is O(β/(β− 1)) times the input size.
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Blelloch, Simhadri, and Tangwongsan solve very large set cover instances on disk and in par-
allel in RAM [5]. They consider situations in which there is less than one word of memory per
element. Their pre-bucketing is much like the geometric ranges of DFG, and their MaNIS scheme
appears to be a randomised, and parallelisable, version of the pass through the sets in a bucket.

The Emek–Rosén scheme [12] is in some sense like DFG in its having a hierarchy of thresholds
that are powers of 2. Its purpose however, is to facilitate partial covers with (item and) set costs.
In the unweighted setting, as each set S is seen, it is deemed to cover some subset T ⊆ S, where
2i 6 |T| < 2i+1, if each element in T was previously covered by some subset of size < 2i, or was
previously uncovered. This is somewhat like all the runs of DFG with β = 2 being folded into one.
In parallel, the scheme records the cheapest set that covers each item (amongst equal-cheapest,
choose the first that occurs in the stream). This step is similar to the folding in Algorithm 2.

We contrast the threshold chosen in our algorithm with that in the Emek–Rosén algorithm. In
our two-pass algorithm (folded into one), τ =

√
n, leading to a 2

√
n approximation (in fact, |Sol| 6√

n(1 + |Opt|)). Once the stream is done, the Emek–Rosén algorithm can choose a threshold τ =
2i. Items that are recorded as covered by some such T ⊆ S, with |T| > τ, are certified to be
covered by S; those “below the threshold” are instead covered by their cheapest set. This way, at
most O(n/τ) T-sets are chosen and O(τw(Opt)) elements are cheapest-set covered. Since such a
cheapest set has cost at most w(Opt), by setting this threshold τ to be approximately εn/w(Opt),
the algorithm returns an O(w(Opt)/ε) weight solution. Of course, we do not know w(Opt), but
it suffices to choose the largest τ so that at most εn elements are cheapest-set covered. When
ε 6 1/

√
n however, it is better to choose τ to leave at most

√
n cheapest-set covered elements,

hence τ = Θ(
√

n/w(Opt)).
This tradeoff allows the Emek–Rosén algorithm to account for set weights. In the unweighted

case, however, our solution has at most
√

n(1 + |Opt|) sets, whereas the Emek–Rosén solution
has at most

√
n(1 + 8|Opt|) sets. As mentioned in Section 4.1, the latter expression can become

arbitrarily close, i.e.,
√

n(1 + (1 + δ)3|Opt|), with space increasing by a factor of O(1/δ).
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