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Abstract

We present a deterministic algorithm that counts the number of satisfying assignments for
any de Morgan formula F of size at most n3−16ε in time 2n−nε · poly(n), for any small constant
ε > 0. We do this by derandomizing the randomized algorithm mentioned by Komargodski et al.
(FOCS, 2013) and Chen et al. (CCC, 2014). Our result uses the tight “shrinkage in expectation”
result of de Morgan formulas by H̊astad (SICOMP, 1998) as a black-box, and improves upon the
result of Chen et al. (MFCS, 2014) that gave deterministic counting algorithms for de Morgan
formulas of size at most n2.63.

Our algorithm generalizes to other bases of Boolean gates giving a 2n−nε · poly(n) time
counting algorithm for formulas of size at most nΓ+1−O(ε), where Γ is the shrinkage exponent
for formulas using gates from the basis.
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1 Introduction

A de Morgan formula is a binary tree in which each leaf is labeled with a literal from {x1, . . . , xn,
¬x1, . . . ,¬xn} and each internal node is labeled with either a Boolean AND or OR gate. Such a tree
naturally describes a Boolean function on n variables by propagating values from leaves to root,
and returning the root’s value. The formula size is the number of leaves in the tree; for a Boolean
function f : {0, 1}n → {0, 1} we denote by L(f) the minimal size formula which computes f .

The shrinkage of de Morgan formulas under random restriction was first used by Subbotovskaya
[Sub61] to prove an Ω(n3/2) lower bound for the formula size of the n-way parity function. A
long line of works [Sub61, PZ93, IN93, H̊as98, Tal14] showed that any de Morgan formula shrinks
by a factor of O(p2) under random restrictions, keeping each variable “alive” with probability p,
and fixing it to a random bit otherwise. This yields an Ω(n2) lower bound on the size of any
de Morgan formula computing the n-way parity. In addition, using the aforementioned shrinkage
result, the explicit function A : {0, 1}n → {0, 1} constructed by Andreev [And87] has formula size
Ω(n3/ log2+o(1) n). This is the best known formula size lower bound for an explicit function.

In recent years, shrinkage results yielded many other applications concerning de Morgan for-
mulas: pseudorandom generators [IMZ12], average case lower bounds [KR13, KRT13, CKK+14],
#SAT algorithms [San10, CKK+14, CKS14], compression algorithms [CKK+14], and Fourier con-
centration results [IK14]. In some of these applications, the results are meaningful for functions
computed by de Morgan formulas of size O(n2.99), indicating that the shrinkage results were ex-
ploited to the fullest.

Designing #SAT (and SAT) algorithms for restricted families of circuits/formulas is a funda-
mental challenge in computational complexity. In this work, we consider #SAT algorithms for
de Morgan formulas, i.e. algorithms that count the number of satisfying assignments to a given
formula. Santhanam [San10] gave a #SAT algorithm for de Morgan formulas of linear size, that
runs in time 2n−Ω(n). Seto and Tamaki [ST13] gave an algorithm with a similar running time for
linear size formulas over the full binary basis. Chen et al. [CKK+14] gave a #SAT algorithm for

formulas of size n2.49, which runs in time 2n−n
Ω(1)

. They used the suboptimal O(p3/2) shrinkage
result of Subbotovskaya [Sub61], since it guarantees that the formula shrinks with respect to a
greedy process that picks at each step the heaviest variable (i.e., the variable that appears in the
maximum number of leaves).

Let us briefly sketch their strategy. At first, they pre-compute for all formulas of size at most
n1−ε, the number of satisfying assignments in exp(O(n1−ε log n)) time, and store these values in
a look-up table. Given a larger formula, their algorithm deterministically picks at each step the
heaviest variable, branches according to its two possible values, simplifies both formulas, and applies
recursion. The recursion stops whenever we reach a formula of size smaller than n1−ε, in which
case we return the pre-computed value.

It seems crucial for their analysis that the shrinkage result: (1) holds with respect to some
deterministic choice of the variables to fix and (2) holds under constructive simplification rules,
which can be computed in polynomial time. While the latter is true for H̊astad’s nearly tight
result [H̊as98], the former is not known to hold. In [CKS14] a deterministic #SAT algorithm for
formulas of size n2.63 was given using the shrinkage result of Paterson and Zwick [PZ93], which

runs in time 2n−n
Ω(1)

as well. The authors used the fact that Paterson and Zwick’s shrinkage result
holds with respect to a greedy choice of variables as well. However, they needed to show that there
are constructive simplification rules under which the shrinkage result holds - which required some
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additional work. Komargodski et al. [KRT13] obtained a “shrinkage with high probability” result
with respect to a combination of greedy and random selection of variables. They observed that
their result, combined with the algorithmic ideas of [CKK+14], implies a zero-error randomized

algorithm for formulas of size n2.99, which runs in time 2n−n
Ω(1)

.
Recently and independently to us, Chen [Che15] gave a 2n−n

Ω(1)
time counting algorithm for

formulas of size n1+Γk−ε over the basis of all unate gates of arity k, where Γk = 1 + 1/(3k − 4).

1.1 Our Results

We present a deterministic #SAT algorithm for formulas of size n2.99 which runs in time 2n−n
Ω(1)

.

Theorem 1.1. Let ε > 0 be a small enough constant. Then, there exists a #SAT algorithm for
formulas of size at most n3−16ε which runs in time 2n−n

ε · poly(n).

Despite the two aforementioned thumb-rules, our algorithm does not assume shrinkage with re-
spect to some deterministic choice of variables, nor does it rely on a set of constructive simplification
rules. It is solely based on: (1) the promise that for any Boolean function f

E
ρ∼Rp

[L(f |ρ)] ≤ c0 · (L(f)p2 + 1)

for some universal constant c0,1 and (2) the decomposition lemma proved by [Tal14] (based on
[IMZ12]). Our result generalizes to formulas over other bases of Boolean gates, as long as the basis
contains the OR and AND gates, and in particular to monotone de Morgan formulas.

Theorem 1.2. Let B be a set of gates which include the OR and AND gates, and denote by Γ the
shrinkage exponent of this basis.2 Let ε > 0 be a small enough constant, then there exists a #SAT
algorithm for formulas over B of size nΓ+1−O(ε) which runs in time 2n−n

ε · poly(n).

We remark it is known that for the {AND,OR} basis 2 ≤ Γ ≤ 1/ log2(
√

5 − 1) ≈ 3.27, and
Paterson and Zwick [PZ93] conjectured the upper bound is tight. In addition, Chockler and Zwick
[CZ01] showed that a finite basis of gates admits a non-trivial shrinkage exponent Γ > 1 if and only
if it consists of unate functions. They derived explicit lower bounds on the shrinkage exponent of
the basis of all unate gates of arity k (denoted Uk), namely Γ ≥ 1 + 1/(3k − 4).

We first describe the randomized algorithm mentioned by [KRT13], based on the algorithm
of [CKK+14]. As mentioned before, one first computes in a table A, the fraction of satisfying
assignments for any formula of size at most n1−ε. Given a larger formula of size O(n3−16ε), the
randomized algorithm works as follows: we shall apply a recursion of depth 1/ε − 7 (assuming
for convenience that 1/ε − 7 is integral). At each step, given a formula F and a set of variables
S on which the formula is supported, we apply the decomposition lemma from [IMZ12, Tal14].
Let ` = n2ε, the decomposition lemma yields an equivalent formula to F which is of the form
H(F1, . . . , Fm) where H is read-once, each Fi is of size ≤ `, and m` = O(L(F )). Next, we pick a
subset SFREE of S such that each variable is selected independently with probability p = n−ε. We
go over all restrictions ρ which keep SFREE alive and fix S \ SFREE. To simplify F |ρ, we simplify

1Where Rp is the distribution of random restrictions which keeps each variable alive with probability p and fixes
it to a random constant with probability 1− p.

2The shrinkage exponent of a given basis B is the supremum over all α ∈ R+ such that all formulas using gates in
B shrink by a factor of O(pα) under random restrictions sampled from Rp.
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each subformula Fi|ρ, and get F |ρ ≡ H(F1|ρ, . . . , Fm|ρ). We then apply the counting algorithm
recursively on F ′ ≡ H(F1|ρ, . . . , Fm|ρ) and SFREE. At depth 1/ε − 7, we return the number of
satisfying assignments either by querying the table A, in case the restricted formula is of size at
most n1−ε, or otherwise by performing an exhaustive search.

The algorithm works since at any step of the recursion O(p2) = O(n−2ε) shrinkage happens
with probability 1 − exp(−nε). Hence, for almost all recursion paths, we get a formula of size
O(n3−16ε/n2−14ε) < n1−ε. The algorithm takes 2n−n

ε ·poly(n) time, since we enumerate on n−n7ε

variables for 1− exp(−nε) fraction of the paths, and we do a full enumeration for the rest.
One new ingredient we introduce in this paper is an additional pre-computing step that allows

us to be independent of the simplification rules. We pre-compute in a table B for any formula of size
at most n2ε, the smallest formula which is equivalent to it. This can be done in exp(O(n2ε log n))
time. To simplify F |ρ, it is enough to simplify each subformula Fi|ρ using the table B, and get
F |ρ ≡ H(F1|ρ, . . . , Fm|ρ). The modified randomized algorithm is presented next.

Algorithm 1 RandomizedCount(F , S)

Input: a de Morgan formula F on the set of variables S.
Output: The number of satisfying assignment among all 2|S| possible assignments.

1: if L(F ) ≤ n1−ε then return A[F ] · 2|S|.
2: Decompose F into H(F1, . . . , Fm) using the decomposition algorithm on F and ` = n2ε.
3: Pick SFREE to be a random subset of S, where each i ∈ S is picked ind. with probability p.
4: Let SFIX = S \ SFREE.
5: res← 0.
6: for all assignments ρ to SFIX do
7: Simplify each Fi|ρ to F ′i using table B.
8: Let F ′ = H(F ′1, . . . , F

′
m).

9: if L(F ′) < 8c0 · p2L(F ) then
10: res← res+RandomizedCount(F ′, SFREE).
11: else
12: Count via exhaustive search on SFREE the number of satisfying assignments to F ′ and
13: add this number to res.
14: return res.

One thing we swept under the rug is that Algorithm 1 actually does not perform well on all
formulas, and we need to modify it a bit, by making the set SFIX contain all heavy variables that
appear in at least 10 ·

∑m
i=1 L(Fi)/|S| leaves in F1, . . . , Fm. We defer this issue to Section 4, where

we present the deterministic algorithm in full detail.
In order to present a deterministic algorithm, we derandomize Step 3. First, we observe that the

analysis of [KRT13] also works when SFREE is sampled using a n5ε-wise independent distribution,
and such distributions may be sampled using a seed of O(n5ε ·log n) random bits. While this implies
a exp(O(n5ε log n)) time procedure to iterate over all possible seeds, from which most are good (in
the sense that it samples a set SFREE of the right size that ensures shrinkage with high probability),
one still need to be able to check if a given seed is good. To do so, we use the coloring technique
of subformulas introduced by Impagliazzo et al. [IMZ12] to analyze shrinkage of formulas. We
employ this coloring in the actual algorithm in order to check whether a given seed is good. For
each seed, we deterministically check in time exp(O(n5ε)) if SFREE ensures shrinkage, to get overall
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a deterministic algorithm for the entire problem.

2 Preliminaries

We denote by [n] = {1, . . . , n}. We denote by exp(a) = 2a. Recall the definition of a de Morgan
formula from Section 1. A de Morgan formula is called read-once if every variable appears at most
once in the tree.

Definition 2.1 (Restriction). Let f : {0, 1}n → {0, 1} be a Boolean function. A restriction ρ is a
vector of length n of elements from {0, 1, ?}. We denote by f |ρ : {0, 1}n → {0, 1} the function f
restricted according to ρ, defined by

f |ρ(x) = f(y), where yi =

{
xi, ρi = ?

ρi, otherwise
.

A p-random restriction is a restriction that is sampled in the following way. For every i ∈ [n],
independently with probability p set ρi = ? and with probability 1−p

2 set ρi to be 0 and 1, respectively.
We denote this distribution of restrictions by Rp.

For a set of variables S ⊆ [n], ρ′ ∈ {0, 1}S naturally describes a restriction of length n by setting
ρi = ρ′i for i ∈ S and ρi = ? otherwise. We abuse notation and interchange ρ′ and ρ.

Probability We state a well known variant of the Chernoff/Hoeffding inequality.

Lemma 2.2 (Chernoff-Hoeffding). Let X =
∑n

i=1Xi be the sum of independent random variables
such that each Xi is in the range [0, b], and E[X] ≤ E. Then Pr[X ≥ 8E] ≤ 2−E/b. In addition,
Pr[X ≤ 2 E[X]/3] ≤ 2−E[X]/18b.

We define (k, p)-wise independent distributions.

Definition 2.3 ((k, p)-wise independent distribution). A distribution D over {0, 1}n is (k, p)-wise
independent if for all distinct i1, . . . , ik ∈ [n] and all a1, . . . , ak ∈ {0, 1},

Pr
X∼D

[(Xi1 , . . . , Xik) = (a1, . . . , ak)] =

k∏
j=1

Pr[Xij = aj ] ,

and for each i ∈ [n] it holds that PrX∼D[Xi = 1] = p.

The following is a classical construction of a (k, p)-wise independent distribution.

Theorem 2.4 ([Jof74]). Let k ≤ n be two natural numbers, and let p ∈ (0, 1] be some power of 1/2.
Then for s = O(k·(log n+log 1/p)), there exists a pseudo random generator Gen : {0, 1}s → {0, 1}n,
computable in poly(n · log 1/p) time, such that the distribution of G’s output on a random input
from {0, 1}s is a (k, p)-wise independent distribution over {0, 1}n.
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Shrinkage Results

Theorem 2.5 ([Tal14]). There exists a universal constant c0 ≥ 1 such that for any Boolean function
f and for any p ∈ (0, 1]:

E
ρ∼Rp

[L(f |ρ)] ≤ c0 · (L(f)p2 + 1)

Definition 2.6. Let B be a set of Boolean gates. The shrinkage exponent of B, denoted by ΓB is
defined to be the supremum over c ∈ R+, such that any formula F of size s using gates from B
shrinks to a formula of expected size O(pcs+ 1) under p-random restrictions.

3 Shrinkage with High Probability

In the rest of the paper, we shall fix a set of Boolean gates, B. For a Boolean function f , we shall
denote by L(f) the minimal number of gates of any formula over B computing f . We shall assume
that the set of gates B contains the binary AND and OR gates. We shall further assume that
formulas over B shrink by a factor of O(pΓ) under p-random restrictions, i.e.

∃c0∀f : E
ρ∼Rp

L(f |ρ) ≤ c0 · (pΓL(f) + 1). (1)

Choosing Γ to be ΓB − δ for any constant δ > 0 makes Eq. (1) valid by the definition of ΓB and, in
some cases, we can even take Γ = ΓB, keeping the validity of Eq. (1). More specifically,

• By Theorem 2.5, the assumption is valid for B = {AND,OR,NOT} and Γ = 2.

• For B = {AND,OR,NOT} it is conjectured that the assumption is valid for Γ = 3.27 ([PZ93]).

• For B = Uk, the set of all unate functions on at most k inputs, the assumption is valid for
Γ = 1 + 1/(3k − 4) ([CZ01]).3

Our results are based only on the two assumptions mentioned above, and may be instantiated with
all aforementioned choices of B.

Claim 3.1. Let p ∈ (0, 1], and let H,X1, . . . , Xt be disjoint sets of variables. Let f1, . . . , ft be
Boolean functions, where each fi can be computed by a formula of size at most ` := 1/pΓ on the
variables Xi and H. We say that a set S is good for f1, . . . , ft if

Pr
ρ∈{0,1}S

[
t∑
i=1

L(fi|ρ) ≥ 16tc0

]
< exp(−t/`) . (2)

Then, Pr[S is good for f1, . . . , ft] ≥ 1− exp(−t/`), where S is chosen to include H and to include
any i ∈

⋃
j Xj with probability p, independently at random.

3Unlike the result of Chen [Che15], we use the shrinkage result for Uk as a black-box. Thus, our result holds also
for the true value of Γ, which may possibly be larger than 1 + 1/(3k − 4).
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Proof. Let PS := Prρ∈{0,1}S
[∑t

i=1 L(fi|ρ) ≥ 8t · c0 · (pΓ`+ 1)
]
. Then, by splitting the expectation

according to the variables in H and the variables outside H we get

E
S

[PS ] = E
S

Pr
ρ∈{0,1}S

[
t∑
i=1

L(fi|ρ) ≥ 8t · c0 · (pΓ`+ 1)

]

= E
ρ′∈{0,1}H

Pr
S,ρ′′∈{0,1}S\H

[
t∑
i=1

L(fi|ρ′◦ρ′′) ≥ 8t · c0 · (pΓ`+ 1)

]
.

Next, note that after we fixed ρ′, the functions f1|ρ′ , . . . , ft|ρ′ are defined on independent sets of
variables. Each L(fi|ρ′◦ρ′′) ≤ ` surely, and its expectation under S and ρ′′ is at most c0(pΓ`+ 1) by
Eq. (1). Thus, using Chernoff/Hoeffding’s bound (Lemma 2.2), for any assignment ρ′ to H,

Pr
S,ρ′′∈{0,1}S\H

[
t∑
i=1

L(fi|ρ′◦ρ′′) ≥ 8t · c0 · (pΓ`+ 1)

]
≤ exp(−t · c0 · (pΓ`+ 1)/`) ≤ exp(−2t/`) .

Thus, ES [PS ] ≤ exp(−2t/`). By Markov’s inequality PrS [PS ≥ exp(−t/`)] ≤ exp(−t/`). Since
Pr[S is good] is the complement event, we complete the proof.

4 The Algorithm

In this section, we shall refer to the following parameters. Let n be the number of input variables
of the (original) formula. Let ε > 0 be some small constant, p = n−ε, ` = 1/pΓ, and k = `2nε. Let
c1, c2 be large constants to be specified later.

Enumerating formulas: For the next two algorithms, we use the fact that any formula of size s
on n variables may be encoded by a binary string of length O(s log n): we may encode the formula
tree using a pre-order tree traversal, specifying for each node which gate or literal it is by O(log n)
bits. This encoding allows reconstruction of the tree in linear time, trivially. Hence, to go over all
formulas of size s, one may iterate over all binary strings of length at most O(s · log n), interpret
them as tree traversals, and apply the reconstruction (the reconstruction will fail on strings that
do not encode formulas, but we shall still encounter all possible formulas during the enumeration).

Algorithm 2 Pre-Computing A

1: for all formulas F of size at most n1−ε do
2: A[F ]← the fraction of satisfying assignments to F .

By the above discussion, Algorithm 2 may run in time exp(O(n1−ε · log n)): the enumeration
goes over exp(O(n1−ε · log n)) many formulas, where each such formula is supported only on at
most n1−ε variables. Hence, we can find the fraction of satisfying assignments to each such formula
by a exp(O(n1−ε)) time exhaustive search.
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Algorithm 3 Pre-Computing B

1: for all formulas F of size at most ` do
2: Let S be the variables appearing in F .
3: for all formulas F ′ of size at most ` on S, ordered by size do
4: if F ′ ≡ F then
5: B[F ]← F ′, and break (terminate inner for loop).

Similarly, Algorithm 3 may run in time exp(O(` · log n)): the enumeration over F and F ′ each
goes over exp(O(` · log n)) many possibilities, and we can check the equivalence between F and F ′

in time exp(`) · poly(n), by examining F and F ′ under all assignments to S.
Algorithm 4 is described in [Tal14, Claim. 6.2], and is based on the work of [IMZ12]. It runs in

polynomial time in the size of the given formula, and works over any basis of gates which contains
the binary OR and AND gates.

Algorithm 4 Decompose(F ,`)

Input: a formula F and a natural number `
Output: H,F1, . . . , Fm such that F ≡ H(F1, . . . , Fm), Fi is a formula of size at most `, H is a

read-once formula, and m` = O(L(F )).

The next algorithm derandomizes the choice of sets (SFIX, SFREE) in Steps 3 and 4 in Algo-
rithm 1. We color the formulas F1, . . . , Fm in C colors, and say that a set SFIX is good with respect
to some color c ∈ [C], if the set is good as in Claim 3.1 for the formulas colored by the color c. We
denote by fi the Boolean function that the formula Fi computes.

Algorithm 5 FindGoodPartition(F1, . . . , Fm, S)

Input: formulas F1, . . . , Fm, each of size at most ` over the set of variables S. Assuming |S| > k`.
Output: a partition of S to SFIX ∪ SFREE such that |SFREE| ≥ p|S|/2 and

Prρ∈{0,1}SFIX [
∑m

i=1 L(fi|ρ) ≥ c1p
Γ`m] ≤ m · exp(−k/`2)

1: Let h = 10 ·
∑m

i=1 L(Fi)/|S|.
2: Let H be the set of heavy variables that appear in at least h leaves in F1 ∪ . . . ∪ Fm.
3: Let G = (V,E) where V = {1, . . . ,m} and (i, j) ∈ E iff Fi and Fj share a non-heavy variable.
4: Color G’s vertices greedily, such that no edge is monochromatic, and such that each color is

used at most k/` times. Denote by C the number of colors and by V = V1 ∪ · · · ∪ VC the
partition induced by the coloring.

5: Let Gen : {0, 1}O(k·(logn+log 1/p)) → {0, 1}n be the (k, p)-wise independent generator in
Thm. 2.4.

6: for all seeds s ∈ {0, 1}O(k·(logn+log 1/p)) do
7: Let SFIX ← H ∪ {i ∈ S : Gen(s)i = 0}
8: Let SFREE ← S \ SFIX.
9: if |SFREE| > p|S|/2 and SFIX is good for all colors c ∈ [C] then

10: return (SFIX, SFREE).

We remark that Steps 3 and 4 in Algorithm 5 are borrowed from [IMZ12], and were used in the
analysis of [KRT13] to prove that de Morgan formulas shrink with high probability. We implement
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this coloring in the algorithm itself, in order to deterministically check that the partition we got is
good.

Algorithm 6 Count(F , S)

Input: a formula F on the set of variables S.
Output: The number of satisfying assignments for F among all 2|S| possible assignments.

1: if L(F ) ≤ n1−ε then return A[F ] · 2|S|.
2: if |S| ≤ k` then return the number of satisfying assignments by an exhaustive search over all

2|S| possible assignments.

3: Decompose F into H(F1, . . . , Fm) using algorithm 4 on F and `.
4: (SFIX, SFREE)← FindGoodPartition(F1, . . . , Fm, S).
5: res← 0.
6: for all assignments ρ to SFIX do
7: Simplify all Fi|ρ to F ′i using table B.
8: Let F ′ = H(F ′1, . . . , F

′
m).

9: if L(F ′) < c2 · pΓL(F ) then
10: res← res+ Count(F ′, SFREE).
11: else
12: Count via an exhaustive search the number of satisfying assignments to F ′ and
13: add this number to res.
14: return res.

Lemma 4.1 (Algorithm 5 works). Assuming |S| > k`, Algorithm 5 finds in exp(O(k · log n)) time,
a partition S = SFIX ∪ SFREE such that: (1) |SFREE| > p|S|/2 (2) Prρ∈{0,1}SFIX [

∑m
i=1 L(fi|ρ) ≥

c1p
Γ`m] ≤ m · exp(−k/`2).

Proof. We begin by estimating the number of colors in Step 4. Denote by L = ` ·m. The maximal
degree in the graph G is at most `h, since each formula has at most ` non-heavy variables, and
each such variable appears in at most h other formulas. Say a color is active, if at least one vertex
was colored by it and fewer than k/` vertices were colored by it. Observe that when we greedily
color G’s vertices one by one, at each step, at most `h+ 1 colors are active. Hence, the number of
colors C at the end of the coloring process would be at most

C ≤ m

k/`
+ `h+ 1 ≤ L

k
+

10L`

|S|
+ 1 = O

(
L

k

)
,

where we used |S| > k` for the last inequality.
Next, we show that there exists a seed for which the condition in Step 9 is met. We do so by

proving that both the first and second part of the condition hold individually with probability at
least 1− o(1) over a random seed to Gen:

• We show that Pr[|SFREE| > p|S|/2] > 1− o(1). By definition of H, its size is at most |S|/10.
The set SFREE is picked from S \H using a (k, p)-wise distribution. Partition the variables in
S \H into buckets of k/2 variables each, except for the last bucket which will get in addition
the remaining |S| mod (k/2) variables. Thus, each bucket is of size between k/2 and k. For a
bucket with k′ variables, by Chernoff/Hoeffding’s bound and the fact that the distribution of
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Gen’s output is (k, p)-wise independent, the probability to select less than k′p · 2/3 variables
to SFREE is at most exp(−Ω(k′p)) = exp(−Ω(kp)). By union bound, the probability that
there exists a bucket with less than k′p ·2/3 variables is at most poly(n) · exp(−Ω(kp)). Since
kp > nε we get that this probability is o(1). Hence, with probability 1− o(1), the set SFREE

is of size at least p|S \H| · 2
3 ≥ p|S| ·

9
10 ·

2
3 > p|S|/2.

• We show that Pr[SFIX is good for all colors c ∈ [C]] ≥ 1 − o(1). Let c ∈ [C] be some color,
and let Fi1 , . . . , Fit be the formulas with color c, where t ≤ k/`. Without loss of generality,
t = k/`, since otherwise we can add dummy formulas of size 0. Note that the since SFIX

containsH and is chosen using a (k, p)-wise independent distribution, its marginal distribution
to the variables in Fi1 , . . . , Fit is identical to the distribution described in Claim 3.1. Hence,
Claim 3.1 yields Pr[SFIX is good for fi1 , . . . , fit ] ≥ 1 − exp(−k/`2). Using a union bound
with probability at least 1− C · exp(−k/`2), we have that SFIX is good for all colors.

Next, we show that (2) holds once condition 9 is met. Since SFIX is good for all colors

Pr
ρ∈{0,1}SFIX

[
∃c ∈ [C] :

∑
i∈Vc

L(fi|ρ) ≥ 16tc0

]

≤
∑
c∈[C]

Pr
ρ∈{0,1}SFIX

[∑
i∈Vc

L(fi|ρ) ≥ 16tc0

]
(union bound)

< C · exp(−t/`) (Definition of good, Eq. (2))

≤ m · exp(−k/`2) . (t = k/`, C ≤ m)

In the complement event, which happens with probability at least 1−m ·exp(−k/`2), for all c ∈ [C]
it holds that

∑
i∈Vc L(fi|ρ) < 16tc0 = 16(k/`)c0. Hence, using C = O(L/k), we get∑

c∈[C]

∑
i∈Vc

L(fi|ρ) < C · 16c0(k/`) = O(L/`) = O(LpΓ).

We turn to analyzing the time complexity of Algorithm 5. Steps 1-5 are done in poly(n) time.
The for loop in step 6 goes over exp(O(k · log n)) seeds. To check if SFIX is good for a specific
color c ∈ [C], one needs to calculate Prρ {0,1}SFIX [

∑
i∈Vc L(fi|ρ) ≥ 16tc0]. This can be done by

enumerating over all possible assignments to the variables in SFIX which appear in the formulas
{Fi : i ∈ Vc}. and checking under each assignment whether

∑
i∈Vc L(fi|ρ) ≥ 16tc0. By our design,

the number of variables we enumerate on is at most
∑

i∈Vc |Fi| ≤ ` · |Vc| ≤ ` · (k/`) = k, hence the

enumeration takes 2k · poly(n) time.

Theorem 4.2. Algorithm 6 counts the number of satisfying assignments of a given formula F in
time 2n−n

ε · poly(n) assuming L(F ) ≤ nΓ+1−(3Γ2+Γ+2)ε, for a large enough n.

Proof. We start by proving the correctness of Algorithm 6. First, if the condition in step 1 is
met, then by the correctness of the table A, we return the number of satisfying assignments for F
among all 2|S| possible assignments. Second, if the condition in step 2 is met, then we also return
the correct answer trivially. Otherwise, we go over all possible assignments for the variables in
SFIX, and under each assignment ρ, we construct a formula F ′ which is equivalent to F |ρ by the
correctness of the table B and the fact that each Fi is of size at most `. Assuming n is large enough,
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if we reach step 10, then F ′ is of size smaller than the size of F , and we may apply induction and
assume that Count(F ′, SFREE) returns the true number of satisfying assignments for F ′ ≡ F |ρ. If
we reached step 12, then trivially we count the number of satisfying assignments for F ′ ≡ F |ρ.
Thus, the returned value res is correct.

In the remainder of the proof, we upper bound the time complexity. Assume that the algorithm
is invoked with a formula of size at most n1+Γ−Kε, for some constant K to be determined later.
Then, at recursion level d, if reached, we have a formula F supported on S where S is of size at least
(p/2)d · n (using |SFREE| > p|S|/2 in Lemma 4.1) and F is of size at most cd2p

Γdn1+Γ−Kε. So, at
depth d = 1/ε−3Γ−1,4 (or before) condition 1 is met and we terminate, since the size of the formula

is at most cd2
n1+Γ−Kε

nΓε(1/ε−3Γ−1) = O(n1−ε(K−3Γ2−Γ)) < n1−ε for a large enough n, and K = 3Γ2 + Γ + 2.

However, the number of variables left alive is at least (p/2)d·n ≥ Ω(nε(3Γ+1)) > nε for a large enough
n. Thus, the algorithm runs in time poly(n) ≤ 2|S|−n

ε · poly(n) in the d’th level of recursion.
We claim by induction on j = 0, . . . , d that any invocation of the algorithm at depth d− j takes

at most poly(n) ·2|S|−nε time. Based on the above discussion, the claim is true for j = 0. For j ≥ 1,
note that |S| ≥ (p/2)d−1 · n ≥ Ω(nε(3Γ+2)) > k`, hence condition 2 is not met. By Lemma 4.1, we
get in Step 4 a set SFIX, such that

Pr
ρ∈{0,1}SFIX

[
m∑
i=1

L(fi|ρ) ≥ c1p
Γ`m

]
≤ m · exp(−k/`2) .

By the guarantee of Algorithm 4 that `m = O(L(F )), there exists a universal constant c2 such that

Pr
ρ∈{0,1}SFIX

[
m∑
i=1

L(fi|ρ) ≥ c2p
ΓL(F )

]
≤ m · exp(−k/`2) . (3)

We calculate how many steps are spent on bad assignments for SFIX (on which we reach step 12),
and how many are spent on good assignments (on which we reach step 10). By Eq. (3), there are
at most m · 2|SFIX|−k/`2 bad choices for SFIX, each taking 2|SFREE| · poly(n) time. On the other
hand, there are at most 2|SFIX| good choices for SFIX, each taking 2|SFREE|−nε · poly(n) time by the
induction hypothesis. Overall, the entire algorithm takes(

2O(k·logn) + 2|SFIX|+|SFREE|−k/`2 + 2|SFIX|+|SFREE|−nε
)
· poly(n) ≤

(
3 · 2|S|−nε

)
· poly(n)

time, where we used the fact that k = `2nε and that |S| − nε � k · log n .
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