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Abstract

An arithmetic circuit is a directed acyclic graph in which the operations are {+,×}. In this
paper, we exhibit several connections between learning algorithms for arithmetic circuits and
other problems. In particular, we show that:

1. Efficient learning algorithms for arithmetic circuit classes imply explicit exponential lower
bounds.

2. General circuits and formulas can be learned efficiently with membership and equivalence
queries iff they can be learned efficiently with membership queries only.

3. Low-query, learning algorithms for certain classes of circuits imply explicit rigid matrices.

4. Learning algorithms for multilinear depth-3 and depth-4 circuits must compute square
roots.

1 Introduction

Revealing a hidden function from a set of examples is a natural and basic problem referred to
as learning. The purpose of this paper is to serve as a guide for learning arithmetic circuits by
pointing out approaches one must avoid or take with care. We achieve this goal by showing a
relation between learning and other problems related to arithmetic circuits.

1.1 Arithmetic Circuits

Arithmetic circuits is the standard computational model for computing polynomials. A circuit C
in the variables X = {x1, . . . , xn} over the field F is a labelled directed acyclic graph. The inputs
(nodes of in-degree zero) are labelled by variables from X or by constants from the field. The
internal nodes are labelled by + or ×, computing the sum and product, resp., of the polynomials
on the tails of incoming edges (subtraction is obtained using the constant −1). A formula is a
circuit whose nodes have out-degree one (namely, a tree). The output of a circuit (formula) is the
polynomial computed at the output node. The size of a circuit (formula) is the number of gates in
it. The depth of the circuit (formula) is the length of a longest path between the output node and
an input node.

A circuit is multilinear if the inputs to its multiplication gates are variable-disjoint. A circuit
is set-multilinear if there exists a partition of the variables X1 ∪ . . . ∪X` such that the inputs to
all the multiplication gates cannot contain variables for the same set. Particular examples of set-
multilinear polynomials are the Permanent and the Determinant. Finally, we shall say that C is an
(n, s, d)-circuit if it is an n-variate arithmetic circuit of size s and of degree at most d. Sometimes
we shall think of an arithmetic circuit and of the polynomial that it computes as the same objects.
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1.2 Arithmetic Circuit Classes

In this paper we will usually refer to a class of arithmetic circuits C. It should be thought or as
either the class of general circuits or formulas, of as some restricted class. In particular, we will be
interested in the following classes:

• s-sparse polynomial is a polynomial that has at most s (non-zero) monomials.

• Depth-3 ΣΠΣ(k) circuits computes polynomials of the form C(x̄) =
∑k

i=1

∏di
j=1 Lij(x̄) where

Lij-s are linear forms.

• Depth-4 ΣΠΣΠ(k) circuits computes polynomials of the form C(x̄) =
∑k

i=1

∏di
j=1 Pij(x̄) where

Pij-s are sparse polynomials.

• Read-once Oblivious Algebraic Branching Programs (ABPs) compute polynomials of the form
C(x̄) = v̄t · Dn(xσ(n)) · Dn−1(xσ(n−1)) · . . . · D1(xσ(1)) · ū when each Di(z) is a matrix and
σ : [n]→ [n] is permutation.

1.3 Exact Learning

Angluin’s Exact Learning model consists of a (computationally-bounded) learner and an (all-
powerful) teacher. The learner’s goal is to output a target function f from a given function class
C. To do so, the learner is allowed to query the value f(x̄) on any input x̄ (membership query).
In addition, the learner is also allowed to propose a hypothesis f̂ and ask the teacher whether it
is equivalent to f (equivalence query). If this is indeed the case, the learner has achieved his goal.
Otherwise, the teacher presents the learner with a counterexample ā for which f(ā) 6= f̂(ā). We
say that a function class C is exactly learnable if there exists a learner which given any f ∈ C, in
time polynomial in n and |f | (the size of f in the representation scheme) outputs a hypothesis f̂
such that f(x̄) = f̂(x̄) for all x̄, using membership and equivalence queries.

1.4 Polynomial Identity Testing

Let C be a class of arithmetic circuits defined over some field F. The polynomial identity testing
problem (PIT for short) for C is the question of deciding whether a given circuit form C computes
the identically zero polynomial. This question can be considered both in the white-box and the
black-box models. In the white-box model, the circuit is given to us as an input. In the black-box
model, we can only access the polynomial computed by the circuit using (membership) queries. It
is easy to see that a black-box PIT algorithm is equivalent to a “hitting set”. That is, a set of
points H such that for every C ∈ C: C ≡ 0 iff C|H ≡ 0.

The importance of this fundamental problem stems from its many applications. For example,
the deterministic primality testing algorithm of [AKS04] and the fast parallel algorithm for perfect
matching of [MVV87] are based on solving PIT problems.

PIT has a well-known randomized algorithm [Sch80, Zip79, DL78] by evaluating the circuit at a
random point. However, we are interested in the problem of obtaining efficient deterministic algo-
rithms for it. This question has received a lot of attention recently but its deterministic complexity
is still far from being well-understood. For a more detailed discussion, we refer the reader to the
excellent survey [SY10].
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1.5 Polynomial Reconstruction

The reconstruction problem for arithmetic circuits can be seen as an algebraic analog of the learning
problem. Given a black-box (i.e. oracle), access to a degree d polynomial P ∈ F[x1, x2, . . . , xn]
computable by an arithmetic circuit of size s from a circuit class C, output a circuit from C ∈ C
that computes P . More generally, the algorithm is allowed to output a circuit of size poly(s)
and a formal degree at most poly(d). Similar to the learning scenario, an efficient reconstruction
algorithm must run in time polynomial in n, s, d.

A key difference between learning and reconstruction is that in the reconstruction problem we
seek to output a circuit that computes the target polynomial as a formal sum of monomials and
not just as a function. This poses an implicit requirement that the underlying field F is larger
than the degree of the polynomial it is trying to reconstruct. Otherwise, the algorithm is allowed
to query the polynomial on a sufficiently (polynomially) large extension field. Particular examples
include reconstruction algorithms for sparse polynomials [KS01, LV03], ΣΠΣ(k) circuits [KS09a]
and read-once formulas [BHH95, SV14].

In this regard, a natural question is the dependence of the running time on the field size. Let
log |F| denote the bit-complexity of the coefficients in the underlying polynomials. For finite fields,
the bit-complexity corresponds with the log of the field size. Ideally, we would like the running
time of the algorithm to be polynomial in the bit-complexity, that is poly(log |F|). Unfortunately,
this is not always the case (see e.g. [KS09a]). For a more detailed discussion, we refer the reader
to the excellent survey [SY10].

1.6 Elimination of Equivalence Queries in the Arithmetic Setting

Unlike the Boolean setting, where the equivalence queries are essential (see [Ang87]), in the arith-
metic setting, an efficient black-box PIT algorithm can be used to eliminate them. More specifically,
let H be a hitting set for C and let C ∈ C be the target circuit. Given an equivalence query Ĉ, the
learning algorithm tests if Ĉ|H ≡ C|H, using membership queries to C. If Ĉ(ā) 6= C(ā) for some
ā ∈ H, the algorithm answers the query with ā. Otherwise, the algorithm stops and outputs Ĉ.

Of course, the above works if C is closed under subtraction, that is C − Ĉ ∈ C, since by
definition C ≡ Ĉ iff C|H ≡ Ĉ|H. This is typically the case when the learning algorithm is proper.
For example, Beimel et al. [BBB+00] gave a proper exact learning algorithm for read-once oblivious
ABPs. Later, Forbes & Shpilka [FS13] devised an efficient black-box PIT algorithm for that class
of circuits. As read-once oblivious ABPs are closed under subtraction, this results in a learning
algorithm for read-once oblivious ABPs that uses membership queries only. In the general case,
one can compare Ĉ(ā) and C(ā) at a random point ā, though making the algorithm randomized.

1.7 Circuit Lower Bounds

Attaining explicit lower bounds for both arithmetic and Boolean circuits is one of the biggest
challenges in the theory of computation and has been the focus of much research. It is not hard to
prove lower bounds for polynomials of high degree d. Therefore, the goal is to prove lower bounds
for polynomials of low degree, typically d = poly(n).

So far, the best known lower bounds for arithmetic circuits are Ω(n log d), due to Baur &
Strassen [BS83]. When restricting ourselves to multilinear circuits, we can get better bounds:
Ω(n4/3/ log2 n) for multilinear circuits due to Raz et al. [RSY08], and nΩ(logn) for multilinear
formulas due to Raz [Raz09]. It is an interesting open question to improve any of these bounds.
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1.8 Matrix Rigidity

The notion of matrix rigidity was introduced by Valiant in [Val77]. For r, s ∈ N, we say that a matrix
S is s-sparse if each row of the matrix contains at most s non-zero entries. A matrix A ∈ Fm×n is
(r,s)-rigid if A cannot be written as a sum of two matrices A = L+S such that rank(L) ≤ r and S
is s-sparse. In the same paper, Valiant showed that if a matrix A with m = O(n) is (Ω(n), nε)-rigid
th then the the linear map A · x̄, induced by A, cannot be computed by a circuit of size O(n) and
depth O(log n).

While it is easy to see that a random matrix satisfies the above conditions, a big body of research
was invested in attempts to construct rigid matrices explicitly. Yet, the best known result is due to
Saraf & Yekhanin [SY11] that gives a construction of (n/2, s)-rigid matrices with m = exp(s) · n.
For a further discussion of the work on matrix rigidity, we refer the reader to the excellent survey
[Lok09].

1.9 Square Root Extraction

Given β ∈ F, output α ∈ F such that α2 = β. In addition to being a natural problem, square root
extraction plays an import role in cryptography [GM84, Rab05]. The best known deterministic root
extraction algorithms over the finite fields have polynomial dependence on |F|, i.e. exponential in
the bit-complexity of the coefficients (see e.g. [Sho91, GG99, GKL04, Kay07])1. In other words, the
naive brute-force algorithm is essentially optimal. While in the randomized setting, this dependence
is polynomial in log |F|. In particular, there is no known efficient deterministic root extraction
algorithm when F is large. One reason for that is the two-way connection between modular square
root extraction and finding quadric non-residues. Over fields with characteristic 0 (e.g. Q), both
the deterministic and the randomized complexities are polynomial in log |F| (see e.g. [LLL82]).

1.10 Our Results

We begin with our main result: exact learning algorithms for arithmetic circuit classes imply explicit
exponential lower bounds. The result is obtained by combining and extending the techniques of
[KKO13] with the techniques of [HS80, Agr05].

Theorem 1. Let C be an arithmetic circuit class over the field F. If C is exactly learnable then
for every n ∈ N, there exists an explicit2 multilinear polynomial P ∈ F[x1, x2, . . . , xn] that requires
circuits of size 2Ω(n) from C.

Using the connection between lowers bounds and PIT algorithms [KI04], as well as depth reduc-
tion techniques [AV08], we are able to convert efficient learning algorithms for certain (relatively
general) circuit classes into efficient PIT algorithms.

Theorem 2. Let C ∈ {general circuits, general formulas,ΣΠΣΠ circuits} be an arithmetic circuit
class over the field F. If C is exactly learnable then there exists a quasi-polynomial time black-box
PIT algorithm for the class of general arithmetic circuits.

In the case when the learning algorithm is proper or, more generally, outputs circuits of poly-
nomial degree as its hypotheses, we can eliminate the equivalence queries by implementing the
procedure outlined in Section 1.6.

1In fact, for fields of size pe this dependence is polynomial in p.
2Computable in time 2O(n).
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Theorem 3. Let C ∈ {general circuits, general formulas,ΣΠΣΠ circuits} be an arithmetic circuit
class over the field F. If C is exactly learnable with hypotheses being general circuits of polynomial
degree then C is learnable with membership queries only in quasi-polynomial time. In addition, if
the algorithm is proper, then C can be reconstructed in quasi-polynomial time.

We see this theorem as evidence that reconstruction is, perhaps, a more natural framework for
learning arithmetic circuits.

Zeev Dvir pointed out that the same techniques can be used to show that “low-query” exact
learning algorithms for a certain class of multilinear polynomials give rise to explicit rigid matrices.

Theorem 4. Let r, s ∈ N. Let C(r,s) be a class of multilinear polynomials of the form:

C(r,s) =
{
P (x̄, ȳ) = x̄t · L · ȳ + x̄t · S · ȳ

∣∣ L, S ∈ Fm×n, rank(L) ≤ r, S is s-sparse.
}

If C(r,s) is exactly learnable with < mn queries, then there exist explicit (r, s)-rigid matrices.

Combined with [Val77], this result has the same flavor as the results of [FK09, KKO13] and
Theorem 1: learning algorithms imply lower bounds. Using the same techniques, one could show
that devising a learning algorithm with < nm queries for the class of linear maps computable by
circuits of size O(n) and depth O(log n) would entail the same lower bounds. We would like to
point out that while the learning algorithms can output the polynomials in any representation, the
bound on the number of queries is tight since any m×n matrix is learnable using mn membership
queries.

On a different note, we study the question of the dependence of the running time of the learn-
ing/reconstruction algorithm on the field size. In [KS09a], a deterministic reconstruction algorithm
for ΣΠΣ(k) circuits was given. The running time of the algorithm has polynomial dependence
on field the size. In addition, in [GKL12], a randomized reconstruction algorithm for multilinear
ΣΠΣΠ(2) circuits was given with polylogarithmic dependence on the field size. Recently, this al-
gorithm was derandomized in [Vol15] preserving the polylogarithmic dependence on the field size.
The only additional assumption was that the algorithm is given a square root oracle3. As we can
implement such an oracle in deterministic poly(|F|) time (see Section 1.9), this results in a determin-
istic reconstruction algorithm with a polynomial dependence on |F|. To the best of our knowledge,
there is no known deterministic reconstruction algorithm for multilinear ΣΠΣΠ(2) circuits with a
sub-polynomial dependence on |F|. Moreover, this still holds true for multilinear ΣΠΣ(2) circuits
and even set-multilinear ΣΠΣ(2) circuits4. Our next theorem suggests an explanation for this state
of affairs. We show that any proper learning/reconstruction algorithm for these classes of circuits
must compute square roots.

Theorem 5. Let k ∈ N. If the class of (set)-multilinear ΣΠΣ(2) or ΣΠΣΠ(2) circuits over the
field F is exactly learnable with hypotheses being multilinear ΣΠΣΠ(k) circuits of polynomial size
then the learning algorithm must compute square roots over F.

Given the state of our current techniques (see Section 1.9), the theorem suggests that any
reconstruction algorithm for these classes of circuits must be either randomized or have a polyno-
mial dependence on the field size. This partially answers an open question of [GKL12] that asks
whether it is possible to remove the polynomial dependence on the field size from the reconstruction
algorithm of [KS09a] even for ΣΠΣ(2) circuits.

3An algorithm that can extract square roots of field elements efficiently.
4The learning algorithm of [BBB+00, KS06] for set-multilinear ΣΠΣ circuits outputs read-once oblivious ABPs

as hypotheses.
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1.11 Techniques

In this Section, we outline the techniques we use to prove our results.

1.11.1 From Exact Learning to Lower Bounds

We combine and extend the techniques of [KKO13] with the techniques of [HS80, Agr05]. Given an
exact learner A, the lower bound of [KKO13] is obtained by running A and diagonalizing against
its queries, thus producing a function that disagrees with the output of A on at least one point.
Applying the same idea naively in the arithmetic setting may result in a polynomial of a high
degree.

In order to maintain the low degree of the polynomial, we use a version of the evaluation matrix
that was defined in [HS80, Agr05]. Given an assignment ā ∈ Fn, the corresponding row M(ā)
of the evaluation matrix is the 2n-length vector containing the evaluations of all the multilinear
monomials on ā (see Definition 2.4). We use the evaluation matrix to ensure that the values of the
polynomial on diagonalizing points remain in a low-rank subspace, when we view the multilinear
polynomials as a vector space over F. Specifically, throughout the execution the algorithm keeps an
evaluation matrix M(S) with independent rows S, that represents the values of the “hard-to-be”
polynomial P .

Given a membership query ā of A, the algorithm first checks if the value of the polynomial
P on ā is predefined by the answers to the previous queries. This is done by checking the linear
dependence between the row vector M(ā) and the rows of M(S). If the value is predefined, the
algorithm computes P (ā) an returns it to A. Otherwise, the algorithm declares P (ā) = 0 and
adds the row vector M(ā) to M(S). Given an equivalence query h of A, the algorithms finds a
point ā ∈ Fn such that the row vector M(ā) is independent of the rows of M(S). Given such
ā, the algorithm diagonalizes against h by declaring P (ā) = h(ā) − 1 and returning ā to A as a
counterexample.

We note that the rank of the matrix M(S) equals to the number q of queries A. Therefore, as
long as q < 2n, there always exists ā ∈ Fn such that row vector M(a) is independent of the rows
M(S). Moreover, we show that such ā actually exists in {0, 1}n. This allows the algorithm to be
independent of the field size and, in particular, handle infinite fields. For more details, see Section
3.

Using the connection between lowers bounds and PIT algorithms [KI04], as well as depth
reduction techniques [AV08], we are able to convert efficient exact learning algorithms into efficient
black-box PIT algorithms. Later on, we use the PIT algorithms to eliminate the equivalence queries.

1.11.2 From Exact Learning to Square Roots

For every α ∈ F, we construct a family of polynomials {Pnα (x̄)}n∈N computable by set-multilinear
ΣΠΣ(2) circuits, that can be evaluated efficiently given α2 (without the knowledge of α). However,
for a constant k and sufficiently large n, every (set)-multilinear ΣΠΣ(k) or even polynomial-size
ΣΠΣΠ(k) circuit that computes Pnα must have a factor of the form xj±α in one of its multiplication
gates. Consequently, any proper exact learning/reconstruction algorithm A for these classes of
circuits must extract square roots. Moreover, we show how to use such an A as an oracle, in order
to actually compute a square root given α2 = β ∈ F.
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1.12 Related Work

Fortnow & Klivans [FK09] initiated a body of work dedicated to the study of the relations between
learning algorithms and circuit lower bounds. In the same paper it was shown that an efficient
exact learning algorithm for a Boolean circuit class C implies that the complexity class EXPNP

requires circuits of super-polynomial size from C. Following a line of improvements, Klivans et al.
[KKO13] replaced EXPNP by DTIME(nω(1)). In the arithmetic setting, the best result [FK09] gives
super-polynomial lower bounds against the complexity class ZPEXPRP.

Our improvement, therefore, is two-fold: First, we obtain a quantitative improvement replac-
ing ZPEXPRP by a subclass EXP and getting an exponential lower bound as opposed to super-
polynomial. Second, our lower bound is more structured and constructive since we give an explicit
multilinear polynomial, while the result of [FK09] is existential.

Bshouty et al. [BHH95] gave deterministic exact learning and randomized reconstruction algo-
rithms for read-once formulas with addition, multiplication and division gates. Their algorithm is
assumed to be given a square root oracle. They also show that any reconstruction algorithm for
read-once formulas with these operations must compute square roots. Recently, Shpilka & Volkovich
[SV14] gave a deterministic reconstruction algorithm for read-once formulas with addition and mul-
tiplication gates (no division) which has a polynomial dependence on log(|F|). This demonstrates
that the need for square root extraction is not necessarily if we choose to deal with polynomi-
als rather than rational functions. However, using the ideas of Section 5 with the techniques of
[AvMV15, SV15], one could show that any reconstruction algorithm for read-twice formulas or even
sums of read-once formulas with addition and multiplication gates must compute square roots.

Several other results [Val84, KV94, KS09b, GH11] exhibit a two-way connection between learn-
ing and cryptography: basing the hardness of learning on cryptography and constructing crypto-
graphic primitives based on the hardness of learning.

1.13 Organization

The paper is organized as follows: We begin by some basic definitions and notation in Section 2,
where we also introduce our main tool. In Section 3, we prove our main result (Theorem 1): exact
learning algorithm for arithmetic circuit classes imply explicit exponential lower bounds, as well
as Theorems 2 and 3. Next in Section 4, we show how the techniques can be modified to prove
Theorem 4. In Section 5, we show that proper learning algorithm for certain circuit classes must
compute square roots, thus proving Theorem 5. We conclude with discussion & open questions in
Section 6. In Appendix A, we show that PAC and Exact Learning models are essentially equivalent
for Arithmetic Circuits. For that reason we are not, considering the PAC model in our paper.

2 Preliminaries

For a positive integer n, we denote [n] = {1, . . . , n}. For a polynomial P (x1, . . . , xn), a variable xi
and a field element α, we denote with P |xi=α the polynomial resulting from setting xi = α. Given
a subset I ⊆ [n] and an assignment ā ∈ Fn, we define P |x̄I=āI to be the polynomial resulting from
setting xi = ai for every i ∈ I. We often denote variables interchangeably by their index or by their

label: i versus xi. For v̄ ∈ Nn we define āv̄
∆
=

n∏
i=1

avii , when 00 ∆
= 1.
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2.1 Matrices

In this section we give definitions related to matrices and prepare the ground for our main tool.
For more details about matrices, we refer the reader to [HJ91].

Lemma 2.1. Let A ∈ Fn×m and v̄ ∈ Fn. There exists an algorithm that given A and v̄ solves the
system A · b̄ = v̄ using poly(n,m) field operations. That is, the algorithm returns a solution if one
exists, or b̄ = ⊥ otherwise.

Definition 2.2 (Tensor Product). Let A ∈ Fm×n and B ∈ Fk×`. Then the tensor product of A
and B, A⊗B ∈ Fmk×n` is defined as:

A⊗B =

a11B . . . a1nB
...

...
a1mB . . . amnB

 .
Fact 2.3. rank(A⊗B) = rank(A) · rank(B).

We now introduce our main tool - the evaluation matrix. This tool has been previous used in
[HS80] and [Agr05] to show that efficient black-box PIT algorithms imply circuit lower bounds. In
this paper we will focus on evaluation matrices for multilinear polynomials. Let n ∈ N and ā ∈ Fn.
A row of such matrix is a (row) vector of length 2n listing the evaluations of all n-variate multilinear
monomials to ā. Formally:

Definition 2.4 (Evaluation Matrix). Let ā ∈ Fn and v̄ ⊆ {0, 1}n. We define M(ā) ∈ F1×2n as
M(ā)1,v̄ = āv̄. We now extend the definition to sets of assignments.

Let S ⊆ Fn. We define M(S) ∈ F|S|×2n as M(S)ā = M(ā) for ā ∈ S, when M(∅) ∈ F1×2n ∆
= 0̄.

We say that ā is independent of S if rank(M(S ∪ {ā})) > rank(M(S)).

To provide additional intuition, we list several important and useful properties of M(S) which
we will apply in our proofs.

Lemma 2.5. Let n ∈ N and S ⊆ Fn. Then we have the following:

1. Let ā ∈ Fn and P ∈ F[x1, x2, . . . , xn] be a multilinear polynomial. Denote by c̄ the vectors of
coefficients of P . Then P (ā) = M(ā) · c̄.

2. ā is independent of S iff M(S)t · b̄ = M(ā)t has no solution.

3. Suppose S = S1 × S2 × · · · × Sn when S1, S2, . . . Sn ⊆ F are of size |Si| = 2 for i ∈ [n]. Then
M(S) = M(S1)⊗M(S2)⊗ · · · ⊗M(Sn).

4. rank (M ({0, 1}n)) = 2n.

5. Suppose |S| < 2n. Then there exists ā ∈ {0, 1}n such that ā is independent of S. Moreover,
given S such ā can be found using poly(n, |S|) field operations.
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Proof. 1. By inspection.

2. rank(M(S ∪ {ā})) > rank(M(S)) iff the (row) vector M(ā) can not be we written as a linear
combination of the rows of M(S).

3. By inspection.

4. M({0, 1}) =

[
1 0
1 1

]
. By the previous part: rank(M({0, 1}n)) = rank(M({0, 1}))n = 2n.

5. Since rank(M(S)) < 2n and rank(M({0, 1}n)) = 2n, the existence of such ā ∈ {0, 1}n follows
from the exchange property of the rank. Therefore, we can find such ā, by going over all the
assignments in {0, 1}n and checking if M(S)t · b̄ = M(ā)t has a solution (using Lemma 2.1).

3 From Learning to Lower Bounds

In this section we prove our main result (Theorem 1): exact learning algorithms for arithmetic
circuit classes imply explicit exponential lower bounds, as well as Theorems 2 and 3. We begin
with our main result.

Input: n ∈ N, ᾱ ∈ Fn, exact learner A via oracle
Output: P (ᾱ).

1 S ← ∅, u - a vector indexed by elements of S;

2 Run A with n, s = 2n/4`, d = n.
/* Answering a membership query. */

3 Given a membership query point ā ∈ Fn by A:
4 Compute b̄ such that M(S)t · b̄ = M(ā)t (using Lemma 2.1);
5 if b̄ = ⊥ then (ā is independent of S)
6 S ← S ∪ {ā}; ū(ā)← 0;
7 Answer ū(ā) to A;

8 else
9 Answer b̄t · ū to A;
/* Answering an equivalence query. */

10 Given an equivalence query hypothesis h(x̄) : Fn → F by A:
11 Find an assignment ā ∈ {0, 1}n independent of S (using by Lemma 2.5);
12 S ← S ∪ {ā}; ū(ā)← h(ā)− 1;
13 Answer ā to A;

/* Completing the matrix to full rank. */

14 while |S| < 2n do
15 Find an assignment ā ∈ {0, 1}n independent of S (using by Lemma 2.5);
16 S ← S ∪ {ā}; ū(ā)← 0;

17 Compute c̄ such that M(S) · c̄ = ū;
18 Output M(ᾱ) · c̄;

Algorithm 1: Hard Polynomial from Exact Learner
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Lemma 3.1. Let C be an arithmetic circuit class over the field F. Suppose there exist an exact
leaner A for C that learns (n, s, d)-circuits from C in time s` when n, d ≤ s. Then for every n ∈ N
in time 2O(n) Algorithm 1 computes a multilinear polynomial P ∈ F[x1, x2, . . . , xn] that requires
circuits of size 2Ω(n) from C, using A as an oracle.

Proof. First, observe that throughout the execution of the algorithm the rows of M(S) are linearly
independent. Indeed, in the beginning S is empty. Going forward, the algorithm adds elements
to S and thus rows to M(S) (in Lines 6, 12 and 14) making sure the rank is increasing (Lemma
2.5). In addition, the algorithm adds elements to S only when |S| < 2n. Indeed, elements are
added following a query from A. Yet, the number of queries it at most s` ≤ 2n/4. Consequently, in
Line 17, |S| = 2n and M(S) is a full rank 2n × 2n matrix. Note the that algorithm computes the
same (final) set S and vector ū in every execution. Let us denote them by Sf and uf , respectively.
Therefore, the exists a unique vector c̄ ∈ F2n such that M(Sf ) · c̄ = ūf .

Next, we claim consistency with the queries to A. Let ā ∈ Fn be a membership query point
by A. Consider S and ū at the time of the query. If ā was independent of S, then ā ∈ Sf and
ūf (ā) = 0. Therefore, M(Sf ) · c̄ = ūf implies that

P (ā) = M(ā) · c̄ = ūf (ā) = 0.

Otherwise, M(S)t · b̄ = M(ā)t for some b̄ ∈ F|S|. As S ⊆ Sf , we can extend the vector b̄ to b̄e ∈ F2n

by adding zeros in the entries indexed by Sf \ S. Observe that

M(Sf )t · b̄e = M(S)t · b̄ and b̄te · ūf = b̄t · ū.

Therefore, we obtain:

P (ā) = M(ā) · c̄ = b̄t ·M(S) · c̄ = b̄te ·M(Sf ) · c̄ = b̄te · ūf = b̄t · ū.

Let h(x̄) : Fn → F be a hypothesis by A and let ā ∈ {0, 1}n be the assignment computed in Line
11. Repeating the previous reasoning we get that:

P (ā) = M(ā) · c̄ = ūf (ā) = h(ā)− 1 6= h(ā).

Finally, suppose P was computable by a circuit of size s from C. By the definition, A should
output a hypothesis h such that h ≡ P . However, as we saw previously, for every hypothesis h by
A there exists an assignment ā ∈ {0, 1}n such that P (ā) 6= h(ā) leading to a contradiction.

For the running time, by Lemmas 2.1 and 2.5, the algorithm uses 2O(n) field operations.

Theorem 1 follows as a corollary of the Lemma. Next, we use the connection between lower
bounds and PIT algorithms, and depth reduction techniques to obtain an efficient PIT algorithm,
thus proving Theorem 2. We require the following results.

Lemma 3.2 ([KI04]). Let F be a field. Suppose that for every n ∈ N there exists an explicit
multilinear polynomial P ∈ F[x1, x2, . . . , xn] that requires general circuits of size 2Ω(n). Then there
exists an algorithm that given n, d, s ∈ N in time (nd)O(log s) outputs a hitting set H for general
(n, s, d)-circuits.
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Lemma 3.3 ([AV08]). Let F be a field. Suppose that a multilinear polynomial P ∈ F[x1, x2, . . . , xn]
requires general formulas or ΣΠΣΠ circuits of size 2Ω(n). Then P also requires general circuits of
size 2Ω(n).

Theorem 2 follows as corollary from the following Lemma.

Lemma 3.4. Suppose that the class C ∈ {general circuits, general formulas,ΣΠΣΠ circuits} is
exactly learnable. Then there exists an algorithm that given n, d, s ∈ N in time (nd)O(log s) outputs
a hitting set H for general (n, s, d)-circuits.

Proof. By Theorem 1, for every n ∈ N there exists an explicit multilinear polyno-
mial P ∈ F[x1, x2, . . . , xn] that requires circuits of size 2Ω(n) from C. Since C ∈
{general circuits, general formulas,ΣΠΣΠ circuits}, by Lemma 3.3 each such P ∈ F[x1, x2, . . . , xn]
actually requires general circuits of size 2Ω(n). Finally, by Lemma 3.2 there exists an algorithm
that given n, d, s ∈ N in time (nd)O(log s) outputs a hitting set H for general (n, s, d)-circuits.

We prove Theorem 3 by implementing the procedure outlined in Section 1.6.

Proof of Theorem 3. Let A be an exact learner for C and let C ∈ C be a (n, s, d)-circuit from C
given via oracle access. We run A on C. Given a membership query ā ∈ Fn, we simply answer by
C(ā). Now, suppose that we are given an equivalence query hypothesis Ĉ. By the properties of A,
Ĉ is a (n,poly(s), poly(d))-circuit and so is C − Ĉ. Let H be the hitting set from Lemma 3.4 with
the appropriate parameters. We test if Ĉ|H ≡ C|H using membership queries to C. If Ĉ(ā) 6= C(ā)
for some ā ∈ H, then we answer the query with ā. Otherwise, the we stop and output Ĉ.

4 From Learning to Rigidity

In this section we discuss the proof Theorem 4. In similar fashion to Definition 2.4, we can define
a slightly different evaluation matrix.

Definition 4.1. Let ā ∈ Fm, b̄ ∈ Fn and i ∈ [m], j ∈ [n]. Define M̂(ā, b̄) ∈ F1×mn as M̂(ā, b̄)1,(i,j) =

āi · b̄j. With the extension: for S ⊆ Fn × Fm, M̂(S) ∈ F|S|×mn when M̂(S)(ā,b̄) = M̂(ā, b̄) for

(ā, b̄) ∈ S.

In the spirit of Lemma 2.5, we observe that:

1. Given ā ∈ Fm, b̄ ∈ Fn and a matrix A ∈ Fm×n we have that āt · A · b̄ = M̂(ā, b̄) · v(A), when
v(A) is a vector of length mn containing the entries of A indexed by (i, j).

2. Let S = {(ei, ej)}i∈[m],j∈[n] when ei represents the i-th vector of the standard basis. Then

rank(M̂(S)) = mn.

Given the above, one can use an argument similar to the one in Lemma 3.1 and Algorithm 1
to show that if C(r,s) is exactly learnable with q < mn queries, then the rank of the corresponding
evaluation matrix will be q. Therefore, the algorithm could diagonalize against the output hypoth-
esis (Lines 11 and 12), thus producing a vector which corresponds to a (r, s)-rigid matrix. We leave
the formalization of the proof of Theorem 4 as an exercise for the reader.
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5 From Learning to Square Roots

In this section, we establish a connection between learning and square root extraction, thus proving
Theorem 5.

We begin by formally presenting the models of depth-4 and depth-3 multilinear circuits and
some related definitions. Similar definitions were given in [DS06, SV11, KMSV13].

Definition 5.1. A depth-4 ΣΠΣΠ(k) circuit C has four layers of alternating Σ and Π gates (the
top Σ gate is at level one) and it computes a polynomial of the form

C(x̄) =

k∑
i=1

Fi(x̄) =

k∑
i=1

di∏
j=1

Pij(x̄)

where the Pij(x̄)-s are polynomials computed by the last two layers of ΣΠ gates of the circuit and
are the inputs to the Π gates at the second level.

A multilinear ΣΠΣΠ(k) circuit is a ΣΠΣΠ(k) circuit in which each multiplication gate Fi
computes a multilinear polynomial. The requirement that the Fi-s compute multilinear polynomials
implies that for each i ∈ [n] the polynomials {Pij}j∈[di]

are variable-disjoint. In other words, each
Fi induces a partition of the input variables. Yet in general, different multiplication gates may
induce different partitions. A set-multilinear ΣΠΣΠ(k) circuit is a multilinear ΣΠΣΠ(k) circuit in
which all the Fi-s induce the same partition.

Note that if the circuit is of size s then each Pij is s-sparse. A depth-3 ΣΠΣ(k) circuit can be a
seen a partial case of ΣΠΣΠ(k) circuit in which the polynomials Pij are linear forms (in particular,
n-sparse).

We say that a circuit is minimal if no proper subcircuit of C computes the zero polynomial.
We say that the circuit C is simple if gcd(F1, . . . , Fk) = 1. Saraf & Volkovich showed that the
multiplication gates of a multilinear depth-4 computing the zero polynomial must compute sparse
polynomials. This is referred to as the “Sparsity Bound” for multilinear ΣΠΣΠ(k) circuits. Previ-
ously, Dvir & Shpilka [DS06] proved a similar statement for ΣΠΣ(k) circuits. (See [DS06] for more
details).

Lemma 5.2 ([SV11]). There exists an non-decreasing function ϕ(k, s) such that if C(x̄) =
k∑
i=1

Fi(x̄)

is a simple and minimal, multilinear ΣΠΣΠ(k) circuit of size s computing the zero polynomial, then
for each i ∈ [k] it holds that ‖Fi‖ ≤ ϕ(k, s) and ϕ(k, s) ≤ s5k2.

We now move the proof of Theorem 5.

Definition 5.3. For n ∈ N and α ∈ F we define the polynomials Φα
n(x1, . . . , xn)

∆
=

n∏
i=1

(xi + α),

Pαn (x̄)
∆
= Φα

n(x̄) + Φ−αn (x̄), Qαn(x̄)
∆
= α · Φα

n(x̄)− α · Φ−αn (x̄) and Bα(z)
∆
=

[
z 1
α2 z

]
.

The following lemma ties the above together:

Lemma 5.4. Let n ∈ N and α ∈ F. Then

Bα(xn) ·Bα(xn−1) · . . . ·Bα(x1) ·
[
2
0

]
=

[
Pαn
Qαn

]
.
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Before giving the proof, we remark that the lemma actually shows that the polynomials Pαn
and Qαn are computable by read-once oblivious ABPs. This is not a coincidence. The results of
[BBB+00, KS06] show that set-multilinear ΣΠΣ circuits can be simulated by read-once oblivious
ABPs of small width.

Proof. Fix α ∈ F. The proof is by induction on n. For n = 1 we get Bα(x1) =

[
2x1

2α2

]
=

[
Pα1
Qα1

]
.

Suppose n ≥ 2. By the induction hypothesis:

Bα(xn−1) · . . . ·Bα(x1) ·
[
2
0

]
=

[
Pαn−1

Qαn−1

]
.

Therefore:

Bα(xn) ·Bα(xn−1) · . . . ·Bα(x1) ·
[
2
0

]
= Bα(xn) ·

[
Pαn−1

Qαn−1

]
=

[
xn · Pαn−1 +Qαn−1

α2 · Pαn−1 + xn ·Qαn−1

]
=

[
Pαn
Qαn

]
.

Corollary 5.5. Let n ∈ N and α2 = β ∈ F. Then the polynomial Pαn (x̄) is computable by a
set-multilinear ΣΠΣΠ(2) circuit of size 4n. In addition, given an assignment ā ∈ Fn, Pαn (ā) can
be evaluated using O(n) field operations given β (without the knowledge of α).

Before giving the proof of the main claim of the section, we require the following result that
gives an efficient deterministic factorization algorithm for multilinear sparse polynomials.

Lemma 5.6 ([SV10]). Given a multilinear s-sparse polynomial P ∈ F[x1, x2, . . . , xn] there is a
deterministic algorithm that outputs the irreducible factors, h1, . . . , hk of P using poly(n, s) field
operations. Furthermore, each hi is s-sparse.

Input: β ∈ F, exact learner A via oracle
Output: α such that α2 = β

1 Run A with n = 10`(k + 2)2 · log(`(k + 2)2), s = 4n on Pαn . /* 2n > ϕ
(
k + 2, (8n)`

)
*/

2 Given a membership query point ā ∈ Fn by A:
3 Use Corollary 5.5 to evaluate Pαn (ā);

4 Given an equivalence query hypothesis Ĉ:

5 Test if Ĉ|{0,1}n ≡ Pαn |{0,1}n /* Following the procedure outlined in Section 1.6.

*/

6 Let C =
∑k

i=1 Fi be the output of A;
7 Use Lemma 5.6 to factor all the Fi-s into irreducible factors;
8 For each factor of the form xj + γ: if γ2 = β then Output γ;

Algorithm 2: Square Root Extraction from Exact Learner for multilinear ΣΠΣΠ(2) circuits

Lemma 5.7. Suppose there exists an exact leaner A that learns multilinear ΣΠΣΠ(2) circuits of
size s over F in time T (s, |F|) when n ≤ s, with hypotheses being multilinear ΣΠΣΠ(k) circuits of
size at most s`. Then given β ∈ F in time T (poly(`, k), |F|) · 2poly(`,k) Algorithm 2 outputs α ∈ F
such that α2 = β, using A as an oracle.
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Proof. By Corollary 5.5, A will output a multilinear ΣΠΣΠ(k) circuit of size at most (4n)` com-
puting Pαn . Therefore, the correctness of the algorithm is based on the following claim: There exist
i, j such that xj ±α is an irreducible factor of Fi. Assume for the contradiction that this is not the

case. Consider the following ΣΠΣΠ(k + 2) circuit: C ′
∆
= Φα

n + Φ−αn − F1 − . . . − Fk. By construc-
tion, C ′ ≡ 0. Let C ′′ be the minimal zero subcircuit of C ′ that contains Φα

n. As Φα
n + Φ−αn 6≡ 0,

C ′′ must contain at least one (non-zero) Fi. We now claim that C ′′ is simple. Indeed, the only
irreducible factors of Φα

n are of the form xj + α. However, by assumption none of them is a factor
of Fi. Finally, observe that size of C ′′ is at most (4n)` + (4n) ≤ (8n)`. By Lemma 5.2, Φα

n must be
ϕ
(
k + 2, (8n)`

)
-sparse. That is, 2n ≤ ϕ

(
k + 2, (8n)`

)
, in contradiction to the choice of n.

Theorem 5 follows as a corollary.

6 Discussion & Open Questions

In this paper we show several consequences from efficient learnability of various classes of arithmetic
circuits. In particular, we show that efficient exact learning algorithms for general circuits and
formulas imply efficient black-box PIT algorithms for these circuits. The proof goes via constructing
explicit lower bounds and applying the hardness-randomness paradigm of [KI04], which is so far
limited to general circuit/formulas only. Can one give a more direct proof of this implication? In
particular, a proof that will cover a larger family of arithmetic circuit classes? Further more, as
outlined in Section 1.6, efficient black-box PIT algorithms can be used to eliminate equivalence
queries. As a consequence, one might be able to show that a “rich enough” arithmetic circuit class
is effiently learnable iff it is efficiently reconstructible. We note that there is a long standing open
problem to transform explicit lower bounds for a class C into an efficient PIT algorithm for that
class (see e.g. [SY10]). As we show that efficient exact learning algorithms imply explicit lower
bounds, our question might be easier.

Another natural question is: can one devise or explain the lack of progress for reconstruction
algorithms for multilinear formulas with bounded read? We note that there no efficient reconstruc-
tion algorithms even for a sum of two read-once formulas. We would like to point out that using the
ideas of Section 5 with the techniques of [AvMV15, SV15], one could show that any reconstruction
algorithm for read-twice formulas or even sums of read-once formulas must compute square roots.

Finally, can one prove other consequences from efficient learnability of arithmetic circuits? In
particular, can one show that certain learning algorithms imply integer factorization?
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A PAC and Exact Learning are essentially equivalent for Arith-
metic Circuits

In this section we give a formal proof to folklore result. We begin by formally defining the model.
In Valiant’s PAC Learning model, we have a (computationally bounded) learner that is given a

set of samples of the form (x̄, f(x̄)) from some fixed function f ∈ C, where x̄ is chosen according to
some unknown distribution D. Given ε > 0 and δ > 0, the learner’s goal is to output a hypothesis
“functionally close” to f w.h.p. Formally, we say that a function class C is PAC learnable if there
exists a learner which given any f ∈ C, ε > 0 and δ > 0 in time polynomial in n, 1/ε, 1/δ, |f |
outputs with probability 1− ε a hypothesis f̂ such that f̂ is a 1− δ close to f under D. In a more
general model, the learner is allowed membership queries (as in the exact learning model). In this
case, we say that C is PAC learnable with membership queries.

We show that both PAC and Exact learning models are, essentially, equivalent in the arithmetic
setting. In fact we show that if an arithmetic circuit class C is PAC learnable with membership
queries then C is learnable with membership queries only. In addition, if the learning algorithm
is proper and F is sufficiently large then the algorithm actually outputs a circuit from C. The
celebrated result of [Blu94] shows that if one-way functions exist, then this is not the case for
Boolean functions.

It is also known [Ang87] that both randomized and exact learners can be used to obtain a PAC
learner with membership queries.

Definition A.1 (Distance). Let f, g : Fn → F be functions. We define their (relative) distance as

∆(f, g)
∆
= Prā∈Fn [f(ā) 6= g(ā)]. For δ > 0 we say that f is δ-far from g if ∆(f, g) > δ; otherwise

we say that f is δ-close to g.

We give the Schwartz-Zippel Lemma which provides a bound on the number of zeros of a
polynomial.

Lemma A.2 ([Zip79, Sch80]). Let P ∈ F[x1, x2, . . . , xn] be a non-zero polynomial of degree at most
d and let V ⊆ F. Then Pr ā∈V n [P (ā) = 0] ≤ d

|V | .

The following is an important property of low-degree polynomials: Self-Correctability.

Lemma A.3 ([BF90]). Let n, d ∈ N and F be a field of size |F| > d + 2. Let f : Fn → F be
a function that is 1/d-close to a degree d polynomial P ∈ F[x1, x2, . . . , xn]. Then there exists a
randomized algorithm CORRECT that uses poly(n, d) field operations and oracle calls to f such
that for any ā ∈ Fn: Pr[CORRECTf (ā) 6= P (ā)] ≤ 2−10n.

The following is obtained by standard techniques:
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Observation A.4. Let f : Fn → F be a function that is 1/d-close to a degree d polynomial
P ∈ F[x1, x2, . . . , xn] and let C be a Boolean circuit of size s computing f . Then there exists a
circuit Ĉ of size poly(s, n, d) that computes P . Moreover, there is randomized algorithm that given
C output Ĉ with high probability in time poly(s, n, d).

We now give our main claim:

Lemma A.5. Let C be an arithmetic circuit class over the field F. If C is PAC learnable with
membership queries then, C is learnable with membership queries only. In addition, if the learning
algorithm is proper and F = poly(d) is sufficiently large, then C can be reconstructed efficiently.

Proof. Let A be an exact learner for C and let C ∈ C be a (n, s, d)-circuit given via oracle access.
We run A on C with δ = 1/d and ε = 1/n. Whenever A asks for a random sample point, we
pick ā ∈ Fn at random and return (ā, C(ā)). Let h(x̄) : Fn → F be the output of A. We have
that ∆(h,C) ≤ 1/d. We can compute a Boolean Circuit C ′ for h. Applying Observation A.4, in
randomized time poly(n, s, d), we can compute a circuit Ĉ such that Ĉ ≡ C.

If A is proper, h is a (n, poly(s),poly(d))-circuit from C. By Lemma A.2, if h 6≡ C then
∆(h,C) ≥ 1− poly(d)/ |F| which is larger than 1 > d when F = poly(d). Therefore, h ≡ C.
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