
Efficient Low-Redundancy Codes for
Correcting Multiple Deletions∗

Joshua Brakensiek† Venkatesan Guruswami‡ Samuel Zbarsky§

Abstract

We consider the problem of constructing binary codes to recover from k–bit deletions with efficient
encoding/decoding, for a fixed k. The single deletion case is well understood, with the Varshamov-
Tenengolts-Levenshtein code from 1965 giving an asymptotically optimal construction with ≈ 2n/n
codewords of length n, i.e., at most logn bits of redundancy. However, even for the case of two deletions,
there was no known explicit construction with redundancy less than nΩ(1).

For any fixed k, we construct a binary code with ck logn redundancy that can be decoded from k dele-
tions in Ok(n log4 n) time. The coefficient ck can be taken to be O(k2 logk), which is only quadratically
worse than the optimal, non-constructive bound of O(k). We also indicate how to modify this code to
allow for a combination of up to k insertions and deletions.

1 Introduction

A k-bit binary deletion code of length N is some set of strings C ⊆ {0,1}N so that for any c1,c2 ∈ C, the
longest common subsequence of c1 and c2 has length less than N− k. For such a code, a codeword of C
can be uniquely identified from any of its subsequences of length N− k, and therefore such a code enables
recovery from k adversarial/worst-case deletions.

In this work, we are interested in the regime when k is a fixed constant, and the block length N grows.
Denoting by del(N,k) the size of the largest k-bit binary deletion code of length N, it is known that

ak
2N

N2k 6 del(N,k)6 Ak
2N

Nk (1)

for some constants ak > 0 and Ak < ∞ depending only k [Lev66]. New upper bounds on code size for a fixed
number of deletions that improve over [Lev66] were recently obtained in [CK14].

∗This paper was presented at the 2016 ACM-SIAM Symposium on Discrete Algorithms [BGZ16]. A journal version appeared
in IEEE Transactions on Information Theory [BGZ18].
†Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email:

jbrakens@andrew.cmu.edu. Research supported in part by an REU supplement to NSF CCF-0963975.
‡Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Email: guruswami@cmu.edu. Research

supported in part by NSF grants CCF-0963975 and CCF-1422045.
§Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email:

szbarsky@andrew.cmu.edu

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 116 (2015)

For the special case of k = 1, it is known that del(N,1) = Θ(2N/N). The Varshamov-Tenengolts
code [VT65] defined by {

(x1, . . . ,xN) ∈ {0,1}N |
N

∑
i=1

ixi ≡ 0 (mod (N +1))
}

(2)

is known to have size at least 2N/(N + 1), and Levenshtein [Lev66] shows that this code is capable of
correcting a single deletion. An easy to read exposition of the deletion correcting property of the VT code
can be found in the detailed survey on single-deletion-correcting codes [Slo01].

The bound (1) shows that the asymptotic number of redundant bits needed for correcting k-bit deletions
in an N-bit codeword is Θ(k logN) (i.e., one can encode n = N −Θ(k logN) message bits into length N
codewords in a manner resilient to k deletions). Note that the codes underlying this result are obtained by an
exponential time greedy search — an efficient construction of k-bit binary deletion codes with redundancy
approaching O(k logN) was not known, except in the single-deletion case where the VT code gives a solution
with optimal logN +O(1) redundancy.

The simplest code to correct k worst-case deletions is the (k + 1)-fold repetition code, which simply
repeats each bit (k+ 1) times, mapping n message bits to N = (k+ 1)n codewords bits. It thus has k

k+1 N
redundant bits. A generalization of the VT code for the case of multiple deletions was proposed in [HF02]
and later proved to work in [APFC12]. These codes replace the weight i given to the i’th codeword bit in the
check constraint of the VT code (2) by a much larger weight, which even for the k = 2 case is related to the
Fibonacci sequence and thus grows exponentially in i. Therefore, the redundancy of these codes is Ω(N)
even for two deletions, and equals ckN where the constant ck→ 1 as k increases. Some improvements were
made for small k in [PAGFC12], which studied run-length limited codes for correcting insertions/deletions,
but the redundancy remained Ω(N) even for two deletions.

Allowing for Θ(N) redundancy, one can in fact efficiently correct a constant fraction of deletions, as was
shown by Schulman and Zuckerman [SZ99]. This construction was improved and optimized recently in
[GW17], where it was shown that one could correct a fraction ζ > 0 of deletions with O(

√
ζ N) redundant

bits in the encoding. One can deduce codes to correct a constant k number of deletions with redundancy
Ok(
√

N)1 using the methods of [GW17] (we will hint at this in Section 1.2).

In summary, despite being such a natural and basic problem, there were no known explicit codes with
redundancy better than

√
N even to correct from two deletions. Our main result, stated formally as Theo-

rem 1 below, gives an explicit construction with redundancy Ok(logN) for any fixed number k of deletions,
along with a near-linear time decoding algorithm.

For simplicity, the above discussion focused on the problem of recovering from deletions alone. One
might want codes to recover from a combination of deletions and insertions (i.e., errors under the edit
distance metric). Levenshtein [Lev66] showed that any code capable of correcting k deletions is in fact also
capable of correcting from any combination of a total of k insertions and deletions. But this only concerns
the combinatorial property underlying correction from insertions/deletions, and does not automatically yield
an algorithm to recover from insertions/deletions based on a deletion-correcting algorithm. For our main
result, we are able to extend our construction to efficiently recover from an arbitrary combination of worst-
case insertions/deletions as long as their total number is at most k.

1We use the notation Ok to indicate that the constant may depend on k.

2

1.1 Our result

In this work, we construct, for each fixed k, a binary code of block length N for correcting k inser-
tions/deletions on which all relevant operations can be done in polynomial (in fact, near-linear) time and
that has O(k2 logk logN) redundancy. We stress that this is the first efficient construction with redundancy
smaller than NΘ(1) even for the 2-bit deletion case. For simplicity of exposition, we go through the details
on how to construct an efficient deletion code, and then indicate how to modify it to turn it into an efficient
deletion/insertion code.

Theorem 1. Fix an integer k> 2, For all sufficiently large n, there exists a code length N 6 n+O(k2 logk logn),
an injective encoding map Enc : {0,1}n→{0,1}N and a decoding map Dec : {0,1}N−k→{0,1}n∪{Fail}
both computable in Ok(n(logn)4) time, such that for all s ∈ {0,1}n and every subsequence s′ ∈ {0,1}N−k

obtained from Enc(s) by deleting k bits, Dec(s′) = s.

Note that the decoding complexity in the above result has a FPT (fixed-parameter tractable) type depen-
dence on k, and a near-linear dependence on n.

Our encoding function in Theorem 1 is non-linear. This is inherent; even to correct a single deletion,
linear codes must have rate at most 1/2 [AGFC07]. The published versions of this paper [BGZ16, BGZ18]
claimed in an appendix that linear k-bit deletion codes must have rate at most≈ 1/(k+1) (which is achieved
by the trivial (k+1)-fold repetition code); this claim is, however, false as pointed out to us by Kuan Cheng
and Xin Li.

1.2 Our approach

We describe at a high level the ideas behind our construction of k-bit binary deletion codes with logarithmic
redundancy. The difficulty with the deletion channel is that we don’t know the location of deletions, and
thus we lose knowledge of which position a bit corresponds to. Towards identifying positions of some
bits in spite of the deletions, we can break a codeword into blocks a1,a2, . . . ,am of length b bits each, and
separate them by introducing dummy buffers (consisting of a long enough run of 0’s, say). If only k bits
are deleted, by looking for these buffers in the received subsequence, we can identify all but O(k) of the
blocks correctly (there are some details one must get right to achieve this, but these are not difficult). If
the blocks are protected against O(k) errors, then we can recover the codeword. This can be achieved by a
“syndrome hash” of O(kb) bits knowledge of which enables correction of those O(k) block errors. In terms
of redundancy, one needs at least m bits for the buffers, and at least Ω(kb) > b bits to correct the errors in
the blocks. As mb = n, such a scheme needs at least Ω(

√
n) redundant bits. Using this approach, one can in

fact achieve ≈
√

kn redundancy; this is implicit in [GW17].

To get lower redundancy, our approach departs from the introduction of explicit buffers, as they use up
too many redundant bits. Our key idea is to use patterns that occur frequently in the string themselves as
implicit buffers, so we have no redundancy wasted for introducing buffers. For example, if the substring
“00110111” occurs frequently in the string, we can use it as a buffer to separate the string into short blocks.
Since an adversary could foil our approach by deleting a bit that is part of an implicit buffer, we use multiple
implicit patterns and form a separate “hash” for each pattern (the hash will protect the intervening blocks
against k errors). Since some strings have very few suitable short patterns (such as the all 0’s string), we
first use a pattern enriching encoding procedure to ensure that there are sufficiently many patterns. The
number of implicit patterns is enough so that less than half of them are corrupted by an adversary for any

3

choice of k deletions. Then, we can decode the string using each pattern and take the majority vote of
the resulting decodings. The final codeword bundles the pattern rich string, a hash describing the pattern
enriching procedure (allowing one to recover the original string from the pattern rich string), and the hash
for each pattern.

The two hashes are protected with a less efficient k-bit deletion code (with o(n) redundancy) and the
decoding procedure begins by recovering them correctly. Consider a pattern p none of whose occurrences
in the pattern rich part of the codeword are affected by the k-bit deletion pattern. Given the correct value
of the hash associated with this pattern p, one can correct the at most k errors in the intervening blocks that
are demarcated by occurrences of p. The algorithm attempts such a recovery procedure for every choice
of p (of certain length), and outputs the string s that occurs as the result in a majority of such decodings;
the existence of such a majority string is guaranteed by the fact that more than half the patterns tried do not
incur any of the k deletions. This implies that s must equal the correct pattern rich portion of the codeword.
Finally, the original message is recovered by inverting the pattern enriching procedure on s using knowledge
of the corresponding portion of the hash.

1.3 Deletion codes and synchronization protocols

A related problem to correcting under edit distance is the problem of synchronizing two strings that are
nearby in edit distance or document exchange [CPSV00]. The model here is that Alice holds a string
x ∈ {0,1}n and Bob holds an arbitrary string y at edit distance at most k from x — for simplicity let us
consider the deletions only case so that y ∈ {0,1}n−k is a subsequence of x. The existential result for
deletion codes implies that there is a short message g(x) ∈ {0,1}O(k logn) that Alice can send to Bob, which
together with y enables him to recover x (this is also a special case of a more general communication problem
considered in [Orl93]). However, the function g takes exponential time to compute. We note that if we had
an efficient algorithm to compute g with output length O(k logn), then one can also get deletion codes with
small redundancy by protecting g(x) with a deletion code (that is shorter and therefore easier to construct).
Indeed, this is in effect what our approach outline above does, but only when x is a pattern rich string. Our
methods don’t yield a deterministic protocol for this problem when x is arbitrary, and constructing such a
protocol with no(1) communication was open until Belazzougui [Bel15] constructed a deterministic protocol
with O(k2 + k log2(n)) redundancy. See the next section for more details.

If we allow randomization, sending a random hash value h(x) of O(k logn) bits will allow Bob to cor-
rectly identify x among all possible supersequences of y; however, this will take nO(k) time. Randomized
protocols that enable Bob to efficiently recover x in near-linear time are known, but these require larger
hashes of size O(k log2 n log∗ n) [Jow12] or O(k log(n/k) logn) [IMS05]. Very recently, a randomized pro-
tocol with a O(k2 logn) bound on the number of bits transmitted was given in [CGK16]. But the use of
randomness makes these synchronization protocols unsuitable for the application to deletion codes in the
adversarial model.

1.4 Subsequent Work

After posting of the preliminary version of this paper [BGZ16], new results in the field of deletion codes
have been found which either improve upon or complement our work.

Belazzougui [Bel15] found a determiinstic polynomial time algorithm for the document exchange prob-
lem for k deletions with a message of length O(k2 + k log2(n)). Most significantly, in this protocol, the

4

number of deletions k can be as large a O(n1/3). The protocol is essentially a derandomization of the
message length O(k log2(n)) protocol of [IMS05]. The hashes are derandomized using a deterministic sam-
pling procedure of Vishkin [Vis91]. By tacking onto the original string this message (protecting it with the
(k+ 1)-repetition code), achieves an efficient deterministic insertion/deletion code with message length of
O(k3 + k2 log2(n)).

Quite recently, Belazzougui and Zhang [BZ16] found near-optimal efficient randomized constructions
for a variety of problems related to the deletion channel when k = O(nc) for some constant c > 0. For the
document exchange problem, their procedure only needs O(k(logO(1)(k)+ log(n)) bits. There results also
extend into the “sketching” problem, where Alice and Bob both generate hashes and send them to a third
party which then computes all the necessary edits between the two strings, and the “streaming problem,”
where the edit distance is to be computed with as little memory as possible under the condition Alice’s
string and then Bob’s string are read in a stream. In particular, each of models these use (k log(n))O(1)

communication.

Since these latter constructions are randomized, our result is still the best-known deterministic deletion
code in the regime k is a constant.

1.5 Organization

In Section 2, we define the notation and describe some simple or well-known codes which will be used
throughout the paper. Section 3 demonstrates how to efficiently encode and decode pattern rich strings
against k-bit deletions using a hashing procedure. Section 4 describes how to efficiently encode any string as
a pattern rich string. Section 5 combines the results of the previous sections to prove Theorem 1. Section 6
describes how to modify the code so that it works efficiently on the k-bit insertion and deletion channel.
Section 7 suggests what would need to be done to improve redundancy past O(k2 logk logn) using our
methods.

2 Preliminaries

A subsequence of a string x is any string obtained from x by deleting one or more symbols. In contrast, a
substring is a subsequence made of several consecutive symbols of x.

Definition 1. Let k be a positive integer. Let σk : {0,1}n→ 2{0,1}
n−k

be the function which maps a binary
string s of length n to the set of all subsequences of s of length n− k. That is, σk(s) is the set of all possible
outputs through the k-bit deletion channel.

Definition 2. Two n-bit strings s1 and s2 are k-confusable if and only if σk(s1)∩σk(s2) 6= /0.

We now state and develop some basic ingredients that our construction builds upon. Specifically, we
will see some simple constructions of hash functions such that the knowledge hash(x) and an arbitrary
string y ∈ σk(x) allows one to reconstruct x. Our final deletion codes will use these basic hash functions,
which are either inefficient in terms of size or complexity, to build hashes that are efficient both in terms of
size and computation time. These will then be used to build deletion codes, after protecting those hashes
themselves with some redundancy to guard against k deletions, and then including them also as part of the
codeword.

5

We start with an asymptotically optimal hash size which is inefficient to compute. For runtimes, we
adopt the notation Ok(f (n)) to denote that the runtime may depend on a hidden function of k.

Lemma 2. Fix an integer k > 1. There is a hash function hash1 : {0,1}n→{0,1}m for m 6 2k logn+O(1),
computable in Ok(n2k2n) time, such that for all x ∈ {0,1}n, given hash1(x) and an arbitrary y ∈ σk(x), the
string x can be recovered in Ok(n2k2n) time.

Proof. This result follows from an algorithmic modification of the methods of [Lev66]. It is easy to see that
for any n-bit string x, |σk(x)| 6 nk. Additionally, for any (n− k)-bit string y, the number of n-bit strings s
for which y ∈ σk(s) is at most 2k

(n
k

)
6 2nk. Thus, any n-bit string x is confusable with at most 2n2k others

strings. We view this as a graph on {0,1}n, with an edge between two strings if they are confusable. We
just showed that this graph has maximum degree at most 2n2k. Using the standard greedy procedure, one
can (2n2k +1)-color these strings in Ok(n2k2n) time. We can define hash1(x) to be the color of x.

Given such a hash and a (n− k) bit received subsequence y ∈ σk(x), the receiver can in time Ok(n2k2n)
determine the color of all strings s for which y ∈ σk(s). By design, exactly one of these stings s has the color
hash1(x); that is when s = x. So the receiver will be able to successfully decode x, as desired.

We now modify the above result to obtain a larger hash that is however faster to compute (and also
allows faster recovery from deletions).

Lemma 3. Fix an integer k> 1. There is a hash function hash2 : {0,1}n→{0,1}m for m≈ 2kn log logn/ logn
computable in Ok(n2(logn)2k) time, such that for all s ∈ {0,1}n, given hash2(s) and an arbitrary y ∈ σk(s),
the string s can be recovered in Ok(n2(logn)2k) time.

Proof. We describe how to compute hash2(s) for an input s ∈ {0,1}n. Break up the string into consecu-
tive substrings s1, . . . ,sn′ of length dlogne except possibly for sn′ which is of length at most dlogne. For
each of these strings, by Lemma 2 we can compute in Ok(n(logn)2k) time the string hash1(si) of length
∼ 2k log logn. Concatenating each of these hashes, we obtain a hash of length ∼ 2kn log logn/ logn which
takes Ok(n2(logn)2k) time to compute. The decoder can recover the string s′ in Ok(n2(logn)2k) time by
using the following procedure. For each of i ∈ {1, . . . ,n′} if ji and j′i are the starting and ending positions of
si in s, then the substring between positions ji and j′i− k in s′ must be a subsequence of si. Thus, applying
the decoder described in Lemma 2, we can in Ok(n(logn)2k) time recover si. Thus, we can recover s in
Ok(n2(logn)2k) time, as desired.

We will also be using Reed-Solomon codes to correct k symbol errors. For our purposes, it will be
convenient to use a systematic version of Reed-Solomon codes, stated below. The claimed runtime follows
from near-linear time implementations of unique decoding algorithms for Reed-Solomon codes, see for
example [Gao02].

Lemma 4. Let k < n be positive integers, and q be a power of two satisfying n+ 2k 6 q 6 O(n). Then
there exists a map RS : Fn

q→ F2k
q , computable in Ok(n(logn)4) time, such that the set {(x,RS(x)) | x ∈ Fn

q}
is an error-correcting code that can correct k errors in Ok(n(logn)4) time. In particular, given RS(x) and
an arbitrary z at Hamming distance at most k from x, one can compute x in Ok(n(logn)4) time.

6

3 Deletion-correcting hash for mixed strings

In this section, we will construct a short, efficiently computable hash that enables recovery of a string x from
k-deletions, when x is typical in the sense that each short pattern occurs frequently in x (we call such strings
mixed).

3.1 Pattern-rich strings.

We will use n for the length of the (mixed) string to be hashed, and as always k will be the number of
deletions we target to correct. The following parameters will be used throughout:

d = b20000k(logk)2 lognc and (3)

m = dlogk+ log log(k+1)+5e . (4)

It is easy to see that the choice of m satisfies

2m > 2k(2m−1) . (5)

Indeed, we have

2m > 32k log(k+1)

> 2k(15log(k+1))

> 2k(2logk+2loglog(k+1)+11)

> 2k(2m−1) .

We now give the precise definition of mixed strings.

Definition 3. Let p and s be binary strings of length m and n, respectively, such that m < n. Define a p-split
point of s be an index i such that p = sisi+1 . . .si+m−1.

Definition 4. We say that a string s ∈ {0,1}n is k-mixed if for every p ∈ {0,1}m, every substring of s of
length d contains a p-split point. Let Mn be the set of k-mixed strings of length n.

3.2 Hashing of Mixed Strings.

The following is our formal result on a short hash for recovering mixed strings from k deletions.

Theorem 5. Fix an integer k > 2. Then for all large enough n, there exists b = O(k2 logk logn) and a
hash function Hmixed : Mn → {0,1}b and a deletion correction function Gmixed : {0,1}n−k × {0,1}b →
{0,1}n ∪ {Fail}, both computable in Ok(n(logn)4) time, such that for any k-mixed s ∈ {0,1}n, and any
s′ ∈ σk(s), we have Gmixed(s′,Hmixed(s)) = s.

Definition 5. If s ∈ {0,1}n, s′ ∈ σk(s), and p ∈ {0,1}m, we say that s′ is p-preserving with respect to s if
there are some 1 6 i1 6 . . .6 ik 6 n such that s′ is obtained from s by deleting si1 , . . . ,sik and:

1. no substring of s equal to p contains any of the bits at positions i j

7

2. s and s′ have an equal number of instances of substrings equal to p

Intuitively, s′ is p-preserving with respect to s if we can obtain s′ from s by deleting k bits without
destroying or creating any instances of the pattern p.

We first prove the following lemma.

Lemma 6. Fix an integer k > 2. Then for sufficiently large n, there exists a hash function

hpattern : Mn×{0,1}m→{0,1}2k(dlogne+1) and deletion correction function

gpattern : {0,1}n−k×{0,1}2k(dlogne+1)×{0,1}m→{0,1}n∪{Fail},
both computable in Ok(n(logn)4) time, such that for every pattern p∈{0,1}m, every k-mixed s∈{0,1}n,

and an arbitrary s′ ∈ σk(s) that is p-preserving with respect to s, one has

gpattern(s′,hpattern(s, p), p) = s .

Proof. We first define the hash function hpattern as follows. Assume we are given a mixed string r ∈Mn

and a pattern p ∈ {0,1}m. Let a1, . . . ,au be the p-split points of r. Then we let strings w0, . . . ,wu be defined
by w0 = r0 · · ·ra1−1, wu = rau · · ·rn−1, and for 1 6 i 6 u− 1, w j = ra j · · ·ra j+1−1. Thus {w j} are the strings
that r is broken into by splitting it at the split points. By the definition of a mixed string, each w j has length
at most d (as defined in (3)).

We let ` j be the length of w j, let v j be w j padded to length d by leading 0’s, and let y j = hash2(v j) as
defined in Lemma 3, with the binary representation of the length of ` j appended. We can compute y j in time
Ok((logn)2(log logn)2k) and y j has length v satisfying

v = O
(

2k(k logk)2 logn
log loglogn

log logn
+ dlogde

)
(6)

< logn

for large enough n.

Let x j be the number whose binary representation is y j. Then based on the length of y j, we have that
x j < n. Let q be the smallest power of 2 that is at least n+2k. We then apply lemma 4 to x = (x1, . . . ,xn) ∈
Fn

q (with all those that are not defined being assigned value 0) to obtain (y1, . . . ,y2k) = RS(x) ∈ F2k
q . For

1 6 j 6 2k, let S j be the binary representation of yk, padded with leading 0’s so that its length is dlogne+1.

Finally, we define the hash value

hpattern(s, p) = S1 · · ·S2k .

Clearly, the length of hpattern(s, p) equals 2k(dlogne+1).

To compute gpattern(s′, h̃, p), where s′ is a subsequence of s that is p-pattern preserving with respect to s,
we split h̃ into 2k equal-length blocks, calling them S1, . . . ,S2k. We compute (x′1, . . . ,x

′
n) from s′ in the same

way that we computed (x1, . . . ,xn) from s when defining hpattern(s, p). Now, assuming h̃ = hpattern(s, p),
there are at most k values of j such that x′j 6= x j, since there are at most k deletions. We can use Lemma 4
and S1, . . . ,S2k to correct these k errors. From a corrected value of x j, we can obtain the value of w′j and
` j. Since ` j is the length of w j, we can use it to remove the proper number of leading zeroes from w′j

8

and obtain w j. Thus we can restore the original s in Ok(n(logn)4 + n(logn)2(log logn)2k) time. Since
(log logn)2k 6 Ok(1)+O(logn),2 the overall decoding time is Ok(n(logn)4).

With the above lemma in place, we are now ready to prove the main theorem of this section.

Proof. (of Theorem 5) Given a mixed string s∈Mn, the hash Hmixed(s) is computed by computing hpattern(s, p)
from Lemma 6 for each pattern p ∈ {0,1}m and concatenating those hashes in order of increasing p. For the
decoding, to compute Gmixed(s′,Hmixed(s)) for a s′ ∈ σk(s), we run gpattern from Lemma 6 on each of the
2m subhashes corresponding to each p ∈ {0,1}m, and then take the majority (we can perform the majority
bitwise so that it runs in Ok(n) time). When deleting a bit from s, at most (2m−1) patterns p are affected
(since at most m are deleted and at most m−1 are created). Thus k deletions will affect at most k(2m−1)
patterns of length m. Since m was chosen such that 2m > 2k(2m−1), we have that s′ is p-preserving with re-
spect to s for a majority of patterns p. Therefore, we will have gpattern(s′,hpattern(s, p), p) = s for a majority
of patterns p, and thus Gmixed reconstructs the string s correctly.

4 Encoding into Mixed Strings

The previous section describes how to protect mixed strings against deletions. We now turn to the question
of encoding an arbitrary input string s ∈ {0,1}n into a mixed string in Mn.

Definition 6. Let µ : {0,1}n×{0,1}L → {0,1}n be the function which takes a string s of length n and a
string t, called the template, of length L, and outputs the bit-wise XOR of s with t concatenated dn/Le times
and truncated to a string of length n.

We will apply the above function with the parameter choice

L = dm2m(log(n2m)+1)e6 d10000k(logk)2 logne−1 . (7)

Equation 7 follows since for k > 2

dm2m(log(n2m)+1)e6 (logk+ log log(k+1)+6)

(64k log(k+1))(logn+m+1)

6 (8logk)(128k logk)(2logn)

6 d10000k(logk)2(logn)e−1

Notice that for all s ∈ {0,1}n and t ∈ {0,1}L, µ(µ(s, t), t) = s. Notice also that µ is computable in
O(n) time. It is not hard to see that for any s ∈ {0,1}n, the string µ(s, t) for a random template t ∈ {0,1}L

will be k-mixed with high probability. We now show how to find one such template t that is suitable for s,
deterministically in near-linear time.

Lemma 7. There exists a function T : {0,1}n→{0,1}L such that for all s∈ {0,1}n, µ(s,T (s))∈Mn. Also,
T is computable in O(k3(logk)3 n logn) = Ok(n logn) time.

2For instance, (log logn)2k 6 O(22k2
+ logn), because either log logn 6 2k in which case (log logn)2k 6 22k2

, or (log logn)2k 6
(log logn)2logloglogn 6 O(logn).

9

Proof. For a given string s and template t, let r = µ(s, t). We say that a pair (i, p) ∈ {0,1, . . . ,bn/Lc−1}×
{0,1}m is an obstruction if the substring of riL+1 · · ·riL+L does not include the pattern p as a substring. We
will construct t = T (s) so that r has no obstructions, and then r is mixed.

We will choose T (s) algorithmically. For 0 6 j 6 bL/mc−1, at the beginning of step j we will have b j

potential obstructions. Clearly, b0 = bn/Lc2m. At step j, we will specify the values of t jm+1 · · · t jm+m. If we
chose these bits randomly, then E[b j+1] = (1− 2−m)b j. Thus we can check all of the 2m possibilities and
find some way to specify the bits so that b j+1 6 (1−2−m)b j. This will then give us that

bbL/mc 6 (1−2−m)bL/mc(bn/Lc2m)6 e−bL/mc2−m
n2m

which is less than 1 by our choice of L in (7).

Thus we can find a template T (s) with no obstructions in bL/mc steps. The definition of an obstruction
tells us that every substring of r = µ(s,T (s)) of length 2L 6 b20000k(logk)2 lognc = d contains every
pattern of length m, so the string r ∈Mn.

Let us estimate the time complexity of finding T (s). Fix a step j, 0 6 j < bL/mc. Going over all possi-
bilities of t jm+1 · · · t jm+m takes 2m time, and for each estimating the reduction in number of potential obstruc-
tions takes O(n2m) time. The total runtime is thus O(n4mL/m) = O(n8m log(n2m)) = O(k3(logk)3n logn).

5 The Encoding/Decoding Scheme: Proof of Theorem 1

Combining the results from Sections 3 and 4, we can now construct the encoding/decoding functions Enc
and Dec which satisfy Theorem 1. But first, as a warm-up, we consider a simple way to obtain such maps
for codewords of slightly larger length N 6 n+O(k3 logk logn) (i.e., the redundancy has a cubic rather than
quadratic dependence on k). Let s be the message string we seek to encode. First compute t = T (s) and
r = µ(s, t) as per Lemma 7. Then, define the encoding of s as

Enc(s) = 〈r, repk+1(t), repk+1(Hmixed(r) 〉 ,

where Hmixed(·) is the deletion-correcting hash function for mixed strings from Theorem 5, and repk+1
is the (k+ 1)-repetition code which repeats each bit (k+ 1) times. Since Hmixed(r) is the most intensive
computation, Enc(s) can be computed in Ok(n(logn)4) time and its length is

n+(k+1)L+(k+1)|Hmixed(r)|
6 n+(k+1)O(k log2 k logn)+(k+1)O(k2 logk logn)

6 n+O(k3 logk logn).

We now describe the efficient decoding function Dec. Suppose we receive a subsequence s′ ∈ σk(Enc(s)),
First, we can easily decode t and Hmixed(r), since we know the lengths of t and Hmixed(r) beforehand. Also
the first n− k symbols of s′ yield a subsequence r′ of r of length n− k. Then, as shown in Theorem 5, r =
Gmixed(r′,Hmixed(r)) and this can be computed in Ok(n(logn)4) time. Finally, we can compute s = µ(r, t),
so we have successfully decoded the message s from s′, as desired.

Now, we demonstrate how to obtain the improved encoding length of n+O(k2 logk logn). The idea is
to use Lemma 3 to protect t and Hmixed(r) with less redundancy than the naive (k+1)-fold repetition code.

10

Proof. (of Theorem 1) Consider the slightly modified encoding

Enc(s) = 〈r, t, repk+1(hash2(t)), Hmixed(r), (8)

repk+1(hash2(Hmixed(r))) 〉 .

The resulting codeword can be verified to have length O(k2(logk)(logn)) for large enough n; the point is
that hash2() applied to t and Hmixed(r), which are Ok(logn) long strings, will result in strings of length
ok(logn), so we can afford to encode them by the redundancy (k+1) repetition code, without affecting the
dominant Ok(logn) term in the overall redundancy.

Since we know beforehand, the starting and ending positions of each of the five segments in the code-
word (8), we can in O(n) time recover subsequences of r, t, repk+1(hash2(t)), Hmixed(r), and repk+1(hash2(Hmixed(r))
with at most k deletions in each. By decoding the repetition codes, we can recover hash2(t) and hash2(Hmixed(r))
in O(n) time. Then, using the algorithm described in Lemma 3, we can recover t and Hmixed(r) in Ok(n′2(logn′)2k)
time where n′=max(L, |Hmixed(r)|) =O(k2 logk logn). Once t and Hmixed(r) are recovered, we can proceed
as in the previous argument and decode s in Ok(n(logn)4) time, as desired.

6 Efficient Algorithm for Correcting Insertions and Deletions

By a theorem of Levenshtein [Lev66], we have that our code works not only on the k-bit deletion channel
but also on the k-bit insertion and deletion channel. The caveat though with this theorem is that the decoding
algorithm may not be as efficient. In this section, we demonstrate a high-level overview of a proof that, with
some slight modifications, the code we constructed for k deletions can be efficiently decoded on the k-bit
insertion and deletion channel. Although the redundancy will be slightly worse, its asymptotic behavior will
remain the same.

To show that our code works, we argue that suitable modifications of each of our lemmas allow the result
to go through.

• Lemma 2 works for the k-bit insertion and deletion channel by Levenshtein’s result [Lev66]. Since
encoding/decoding were done by brute force the efficiency will not change by much.

• To modify Lemma 3 we show that the code which corrects 3k deletions can also correct k insertions
and k deletions nearly as efficiently. If the codeword transmitted is s1, . . . ,sn′ where each si is of length
at most dlogne then in the received word, if si was supposed to be in positions ia to ib, then positions
ia + k to ib− k must contain bits from si except possibly for k spurious insertions. Using Lemma 2
modified for insertions, we can restore si using brute force, and thus we can restore the original string
with about the same runtime as before.

• Lemma 4 and Lemma 6 do not change because the underlying error-correcting code does not depend
on deletions or insertions.

• Theorem 5 extends because the number of patterns p which are preserved (in the sense of Definition 5)
with respect to a specific pattern of k insertions and deletions is roughly the same as with k deletions.
And, for such a preserved pattern, the associated hash function hpattern allows for correction of ar-
bitrary bounded number of errors in strings between the p-split points, and it doesn’t matter if those
errrors are created by insertions or deletions.

11

• Lemma 7 does not change.

• Theorem 1 needs some modifications. The encoding has the same general structure except we use
the hash functions of the modified lemmas and we use a (3k + 1)-fold repetition code instead of a
(k+1)-fold repetition code. That is, our encoding is

φ(s) = 〈r, t, rep3k+1(hash2(t)), Hmixed(r),

rep3k+1(hash2(Hmixed(r)))〉 .

In the received codeword we can identity each section with up to k bits missing on each side and k
spurious insertions inside. In linear time we can correct the (3k+ 1)-repetition code by taking the
majority vote on each block of length 3k+1. Thus, we will have hash2(t) and hash2(Hmixed(r)) from
which we can obtain t, Hmixed(r), and finally r and s in polynomial (in fact, near-linear) time as in the
deletions-only case.

Thus, we have exhibited an efficient code encoding n bits with O(k2 logk logn) redundancy and which can
be corrected in near-linear time against any combination of insertions and deletions totaling k in number.

7 Concluding remarks

In this paper, we exhibit a first-order asymptotically optimal efficient code for the k-bit deletion channel.
Note that to improve the code length past n+O(k2 logk logn), we would need to modify our hash function
Hmixed(r) so that either it would use shorter hashes for each particular pattern p or it would require using
fewer patterns p. The former would require distributing the hash information between different patterns,
which may not be possible since the patterns do not synchronize with each other. An approach through the
latter route seems unlikely to improve past n+O(k2 logn) since an adversary is able to “ruin” k essentially
independent patterns because the string being transmitted is k-mixed.

Another interesting challenge is to give a deterministic one-way protocol with poly(k logn) communica-
tion for synchronizing a string x∈ {0,1}n with a subsequence y∈σk(x) (the model discussed in Section 1.3).
The crux of our approach is such a protocol when the string x is mixed, but the problem remains open when
x can be an arbitrary n-bit string.

Another intriguing question is whether there is an extension of the Varshamov-Tenengolts (VT) code
for the multiple deletion case, possibly by using higher degree coefficients in the check condition(s) (for
example, perhaps one can pick the code based on ∑

n
i=1 iaxi for a = 0,1,2, . . . ,d for some small constant d).

Note that this would also resolve the above question about a short and efficient deterministic hash for the
synchronization problem. However, for the case of two deletions there are counterexamples for d 6 4, and
it might be the case that no such bounded-degree polynomial hash works even for two deletions.

Acknowledgments

The second author thanks Michael Saks for valuable discussions about the problem of recovering from mul-
tiple deletions and in particular about the possibility of finding a VT-like code for correcting two deletions.
We are grateful to Kuan Cheng and Xin Li for pointing out an error in the appendix of the published versions

12

of our paper [BGZ16, BGZ18], namely that the claim about the rate limitation of linear k-bit deletion codes
is false.

References

[AGFC07] Khaled A.S. Abdel-Ghaffar, Hendrik C. Ferreira, and Ling Cheng. On linear and cyclic codes
for correcting deletions. In Information Theory, 2007. ISIT 2007. IEEE International Sympo-
sium on, pages 851–855, June 2007. 3

[APFC12] Khaled A. S. Abdel-Ghaffar, Filip Paluncic, Hendrik C. Ferreira, and Willem A. Clarke. On
Helberg’s generalization of the levenshtein code for multiple deletion/insertion error correction.
IEEE Transactions on Information Theory, 58(3):1804–1808, 2012. 2

[Bel15] D. Belazzougui. Efficient Deterministic Single Round Document Exchange for Edit Distance.
ArXiv e-prints, November 2015. 4

[BGZ16] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’16, pages 1884–1892, Philadelphia, PA,
USA, 2016. Society for Industrial and Applied Mathematics. 1, 3, 4, 13

[BGZ18] Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Trans. Information Theory, 64(5):3403–3410,
2018. 1, 3, 13

[BZ16] Djamal Belazzougui and Qin Zhang. Edit distance: Sketching, streaming and document ex-
change. In Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 51–60, 2016. 5

[CGK16] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Streaming algorithms for em-
bedding and computing edit distance in the low distance regime. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 712–725, New
York, NY, USA, 2016. ACM. 4

[CK14] Daniel Cullina and Negar Kiyavash. An improvement to Levenshtein’s upper bound on the
cardinality of deletion correcting codes. IEEE Trans. Information Theory, 60(7):3862–3870,
2014. 1

[CPSV00] Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin. Communication
complexity of document exchange. In Proceedings of the 11th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 197–206, 2000. 4

[Gao02] Shuhong Gao. A new algorithm for decoding Reed-Solomon codes. In Communications,
Information and Network Security, V.Bhargava, H.V.Poor, V.Tarokh, and S.Yoon, pages 55–68.
Kluwer, 2002. 6

[GW17] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Trans. Information Theory, 63(4):1961–1970, 2017. 2, 3

13

[HF02] Albertus S. J. Helberg and Hendrik C. Ferreira. On multiple insertion/deletion correcting codes.
IEEE Transactions on Information Theory, 48(1):305–308, 2002. 2

[IMS05] Utku Irmak, Svilen Mihaylov, and Torsten Suel. Improved single-round protocols for remote
file synchronization. In Proceedings of 24th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), pages 1665–1676, 2005. 4, 5

[Jow12] Hossein Jowhari. Efficient communication protocols for deciding edit distance. In 20th Annual
European Symposium on Algorithms, pages 648–658, 2012. 4

[Lev66] V. I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10:707, 1966. 1, 2, 6, 11

[Orl93] Alon Orlitsky. Interactive communication of balanced distributions and of correlated files.
SIAM J. Discrete Math., 6(4):548–564, 1993. Preliminary version in FOCS’91. 4

[PAGFC12] F. Paluncic, Khaled A.S. Abdel-Ghaffar, H.C. Ferreira, and W.A. Clarke. A multiple inser-
tion/deletion correcting code for run-length limited sequences. IEEE Transactions on Informa-
tion Theory, 58(3):1809–1824, March 2012. 2

[Slo01] Neil J. A. Sloane. On single-deletion-correcting codes. In Ohio State University, pages 273–
291, 2001. 2

[SZ99] Leonard J. Schulman and David Zuckerman. Asymptotically good codes correcting insertions,
deletions, and transpositions. IEEE Transactions on Information Theory, 45(7):2552–2557,
Nov 1999. 2

[Vis91] Uzi Vishkin. Deterministic sampling–a new technique for fast pattern matching. SIAM Journal
on Computing, 20(1):22–40, 1991. 5

[VT65] R. R. Varshamov and G. M. Tenengol’ts. Codes which correct single asymmetric errors. Autom.
Remote Control, 26(2):286–290, 1965. 2

14

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

