
An improved bound on the fraction of correctable deletions

Boris Bukh∗ Venkatesan Guruswami†

Abstract

We consider codes over fixed alphabets against worst-case symbol deletions. For any fixed k > 2,
we construct a family of codes over alphabet of size k with positive rate, which allow efficient recovery
from a worst-case deletion fraction approaching 1− 2

k+1 . In particular, for binary codes, we are able to
recover a fraction of deletions approaching 1/3. Previously, even non-constructively the largest deletion
fraction known to be correctable with positive rate was 1−Θ(1/

√
k), and around 0.17 for the binary

case.
Our result pins down the largest fraction of correctable deletions for k-ary codes as 1−Θ(1/k), since

1− 1/k is an upper bound even for the simpler model of erasures where the locations of the missing
symbols are known.

Closing the gap between 1/3 and 1/2 for the limit of worst-case deletions correctable by binary
codes remains a tantalizing open question.

1 Introduction

This work concerns error-correcting codes capable of correcting worst-case deletions. Specifically, consider
a fixed alphabet [k] def

= {1,2, . . . ,k}, and suppose we transmit a sequence of n symbols from [k] over a channel
that can adversarially delete an arbitrary fraction p of symbols, resulting in a subsequence of length (1− p)n
being received at the other end. The location of the deleted symbols are unknown to the receiver. The goal
is to design a code C ⊆ [k]n such that every c ∈C can be uniquely recovered from any of its subsequences
caused by up to pn deletions. Equivalently, for c 6= c′ ∈C, the length of the longest common subsequence
of c,c′, which we denote by LCS(c,c′), must be less than (1− p)n.

In this work, we are interested in the question of correcting as large a fraction p of deletions as possible
with codes of positive rate (bounded away from 0 for n→ ∞). That is, we would like |C| > exp(Ωk(n)) so
that the code incurs only a constant factor redundancy (this factor could depend on k, which we think of as
fixed).

Denote by p∗(k) the limit superior of all p ∈ [0,1] such that there is a positive rate code family over
alphabet [k] that can correct a fraction p of deletions. The value of p∗(k) is not known for any value of k.
Clearly, p∗(k)6 1−1/k — indeed, one can delete all but n/k occurrences of the most frequent symbol in a
word to leave one of k possible subsequences, and therefore only trivial codes with k codewords can correct
a fraction 1−1/k of deletions. This trivial limit remains the best known upper bound on p∗(k). We note that

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Email:
bbukh@math.cmu.edu. Supported in part by U.S. taxpayers through NSF grant DMS-1201380.

†Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. Email: guruswami@cmu.edu. Supported
in part by NSF grants CCF-1422045 and CCF-0963975.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 117 (2015)

this upper bound holds even for the simpler model of erasures where the locations of the missing symbols
are known at the receiver (this follows from the so-called Plotkin bound in coding theory).

Whether the trivial upper bound p∗(k) 6 1− 1/k can be improved, or whether there are in fact codes
capable of correcting deletion fractions approaching 1− 1/k is an outstanding open question concerning
deletion codes and the combinatorics of longest common subsequences. Perhaps the most notable of these
is the k = 2 (binary) case. The current best lower bound on p∗(2) is around 0.17. This bound comes from
the random code, in view of the fact that the expected LCS of two random words in {0,1}n is at most
0.8263n [7]. As the LCS of two random words in {0,1}n is at least 0.788, one cannot prove any lower
bound on p∗(2) better than 0.22 using the random code. Kiwi, Loebl, and Matoušek [6] showed that, as
k→ ∞, we have E[LCS(c,c′)] ∼ 2√

k
n for two random words c,c′ ∈ [k]n. This was used in [5] to deduce

p∗(k)> 1−O(1/
√

k).

The above discussion only dealt with the existence of deletion codes. Turning to explicit and efficiently
decodable constructions, Schulman and Zuckerman [10] constructed constant-rate binary codes which are
efficiently decodable from a small constant fraction of worst-case deletions. This was improved in [5]; in
the new codes, the rate approaches 1. Specifically, it was shown that one can correct a fraction ζ > 0 of
deletions with rate about 1−O(

√
ζ). In terms of correcting a larger fraction of deletions, codes that are

efficiently decodable from a fraction 1− γ of errors over a poly(1/γ) sized alphabet were also given in [5].

Our focus in this work is exclusively on the worst-case model of deletions. For random deletions, it
is known that reliable communication at positive rate is possible for deletion fractions approaching 1 even
in the binary case. We refer the reader interested in coding against random deletions to the survey by
Mitzenmacher [8].

1.1 Our results

Here we state our results informally, omitting the precise computational efficiency guarantees, and omitting
the important technical properties of constructed codes related to the “span” of common subsequences (see
Section 2 for the definition). The precise statements are in Subsection 4.2 and in Section 5.

Our first result is a construction of codes which are combinatorially capable of correcting a larger fraction
of deletions than was previously known to be possible.

Theorem 1 (Informal). For all integers k > 2, p∗(k) > k−1
k+1 . Furthermore, for any desired ε > 0, there is

an efficiently constructible family of k-ary codes of rate r(k,ε) > 0 such that the LCS of any two distinct
codewords is less than fraction 2

k+1 +ε of the code length. In particular, there are explicit binary codes that
can correct a fraction 1/3− ε of deletions, for any fixed ε > 0.

Note that, together with the trivial upper bound p∗(k) 6 1− 1/k, the result pins down the asymptotics
of 1− p∗(k) to Θ(1/k) as k→ ∞.

In our second result we construct codes with the above guarantee together with an efficient algorithm to
recover from deletions:

Theorem 2 (Informal). For any integer k > 2 and any ε > 0, there is an efficiently constructible family of
k-ary codes of rate r(k,ε)> 0 that can be decoded in polynomial (in fact near-linear) time from a fraction
1− 2

k+1 − ε of deletions.

2

1.2 Our techniques

All our results are based on code concatenations, which use an outer code over a large alphabet with desirable
properties, and then further encode the codeword symbols by a judicious inner code.

The innermost code consists of words of the form (1A2A . . .kA)L/A. Informally, we think of these words
as oscillating with amplitude A (this can be made precise via Fourier transform for example, but we won’t
need it in our analysis). The crucial property, that was observed in [3], is that two such words have a long
common subsequence only if they amplitudes are close. This was property was also exploited in [2] to show
a certain weak limitation of deletion codes, namely that in any set of t > k+ 2 words in [k]n, some two of
them have an LCS at least n

k + c(k, t)n1−1/(t−k−2).

The effective use of these codes as inner codes in a concatenation scheme relies on a property stronger
than absence of long common subsequences between codewords. Informally, the property amounts to ab-
sence of long common subsequences between subwords of codewords. For the precise notion, consult the
definition of a span in the next section and the statement of Theorem 3 in the following section. Using this,
we are able to show that if the outer code has a small LCS value, then the LCS of the concatenated code
approaches a fraction 2

k+1 of the block length.

For the outer code, the simplest choice is the random code. This gives the existential result (Theorem 8).
Using the explicit construction of codes to correct a large fraction of deletions over fixed alphabets from [5]
gives us a polynomial (in fact near-linear) time deterministic construction (Theorem 10). While the outer
code from [5] is also efficiently decodable from deletions, it is not clear how to exploit this to decode the
concatenated code efficiently.

To obtain codes that are also efficiently decodable, we employ another level of concatenation, using
Reed–Solomon codes at the outermost level, and the above explicit concatenated code itself as the inner
code. The combinatorial LCS property of these codes is established similarly, and is in fact easier, as we
may assume (by indexing each position) that all symbols in an outer codeword are distinct, and therefore the
corresponding inner codewords are distinct. To decode the resulting concatenated code, we try to decode
the inner code (by brute-force) for many different contiguous subwords of the received subsequence. A
small fraction of these are guaranteed to succeed in producing the correct Reed–Solomon symbol. The
decoding is then completed via list decoding of Reed–Solomon codes. The approach here is inspired by the
algorithm for list decoding binary codes from a deletion fraction approaching 1/2 in [5]. Our goal here is
to recover the correct message uniquely, but by virtue of the combinatorial guarantee, there can be at most
one codeword with the received word as a subsequence, so we can go over the (short) list and identify the
correct codeword. Note that list decoding is used as an intermediate algorithmic primitive even though our
goal is unique decoding; this is similar to [4] that gave an algorithm to decode certain low-rate concatenated
codes up to half the Gilbert–Varshamov bound via a list decoding approach.

2 Preliminaries

A word is a sequence of symbols from a finite alphabet. For the problems of this paper, only the size of the
alphabet and the length of the word are important. So, we will often use [k] for a canonical k-letter alphabet,
and consider the words indexed by [n]. In this case, a word of length n over alphabet [k] will be denoted
[k]n. We treat symbols in a word as distinguishable. So, if x denotes the second 1 in the word 21011 and we
delete the subword 10, the variable x now refers to the first 1 in the word 211.

3

A subsequence in a word w is any word obtained from w by deleting one or more symbols. In contrast,
a subword is a subsequence made of several consecutive symbols of w. The span of a subsequence w′ in
a word w is the length of the smallest subword containing the subsequence. We denote it by spanw w′, or
simply by spanw′ when no ambiguity can arise.

A common subsequence between words w1 and w2 is a pair of subsequences w′1 in w1 and w′2 in w2 that
are equal as words, i.e., lenw′1 = lenw′2 and w′1[i] = w′2[i] for all i.

For words w1,w2, we denote by LCS(w1,w2) the length of the longest common subsequence of w1 and
w2, i.e., the largest j for which there is a common subsequence between w1 and w2 of length j.

A code C of block length n over the alphabet [k] is simply a subset of [k]n. We will also call such codes
as k-ary codes, with binary codes referring to the k = 2 case. The rate of C equals log |C|

k logn .

For a code C ⊆ [k]n, its “LCS value” is defined as the

LCS(C)
def
= max

c1 6=c2∈C
LCS(c1,c2) .

Note that a code C⊆ [k]n is capable of recovering from t worst-case deletions if and only if LCS(C)< n− t.

We define span of a common subsequence (w′1,w
′
2) as

span(w′1,w
′
2)

def
= spanw′1 + spanw′2.

The span will play an important role in our analysis of LCS(C) of the codes C we construct, by virtue of the
fact that if span(w′1,w

′
2)> b · lenw′1 for every common subsequence of w1,w2 ∈ [k]n, then LCS(w1,w2)6 2n

b .
Our result will be based on a construction for which we can take b ≈ k + 1 for long enough common
subsequences of any distinct pair of codewords.

Concatenated codes. Our results heavily use the simple but useful idea of code concatenation. Given
an outer code Cout ⊆ [Q]n, and an injective map τ : [Q]→ [q]m defining the encoding function of an in-
ner code Cin, the concatenated code Cconcat ⊆ [q]nm is obtained by composing these codes as follows. If
(c1,c2, . . . ,cn) ∈ [Q]n is a codeword of Cout, the corresponding codeword in Cconcat is (τ(c1), . . . ,τ(cn)) ∈
[q]nm. The words τ(ci) ∈Cin will be referred to as the inner blocks of the concatenated codeword, with the
i’th block corresponding to the i’th outer codeword symbol.

3 Alphabet reduction for deletion codes

Fix k to be the alphabet size of the desired deletion code. We shall show how to turn words over K-letter
alphabet, for K � k, without large common subsequence into words over k-letter alphabet without large
common subsequence. More specifically, for any ε > 0 and large enough integer K = K(ε), we give a
method to transform a deletion code C1 ⊆ [K]n with LCS(C1)� εn into a deletion code C2 ⊆ [k]N with
LCS(C2) 6

(2
k+1 + ε

)
N. The transformation lets us transform a crude dependence between the alphabet

size of the code C1 and its LCS value (i.e., between K and ε), into a quantitatively strong one, namely
LCS(C2) ≈ 2

k+1 N. The code C2 will in fact be obtained by concatenating C1 with an inner k-ary code with
K codewords, and therefore have the same size as C1. The block length N of C2 will be much larger than n,
but the ratio N/n will be bounded as a function of k,K, and ε . The rate of C2 will thus only be a constant
factor smaller than that of C1.

Specifically, we will prove the following:

4

Theorem 3. Let C1 ⊆ [K]n be a code with LCS(C1) = γn, and let k > 2 be an integer. Then there exists an
integer T = T (K,γ,k) satisfying T 6 32 · (2k/γ)K , and an injective map τ : [K]→ [k]T such that the code
C2 ⊆ [k]N for N = nT obtained by replacing each symbol in codewords of C1 by its image under τ has the
following property: if s is a common subsequence between two distinct codewords c,c′ ∈C2, then

spans > (k+1) lens−4γkN .

In particular, since spans 6 2N, we have LCS(C2)6
(

2+4γk
k+1

)
N <

(2
k+1 +4γ

)
N.

Thus, one can construct codes over a size k alphabet with LCS value approaching 2
k+1 by starting with

an outer code with LCS value γ→ 0 over any fixed size alphabet, and concatenating it with a constant-sized
map. The span property will be useful in concatenated schemes to get longer, efficiently decodable codes.
The key to the above construction is the inner map, described next.

3.1 The construction

We now describe the way to encode symbols from the alphabet [K] as words over [k] that underlies Theo-
rem 3. Let L be constant to be chosen later. For an integer A dividing L, define word of “amplitude A” to
be

fA
def
= (1A2A . . .kA)L/A. (1)

The crucial property of these words is that fA and fB have no long common subsequence if B/A is large
(or small); for the proof see one of [3, 2]. In the present work, we will need an asymmetric version of this
observation — we will need to analyze common subsequences in subwords of fA and fB.

Let R > 2 be an integer to be chosen later. Let Rl = Rl−1. For a word w over alphabet [K] denote by ŵ
the word obtained from w via the substitution

l ∈ [K] 7→ fRl . (2)

to each symbol of w. Note that len ŵ = kL lenw. If a symbol x ∈ ŵ is obtained by expanding symbol y ∈ w,
then we say that y is a parent of x.

3.2 Analysis

Lemma 4. For a natural number P, let f ∞
A be the (infinite) word

(1A2A . . .kA)∗

Let A,B be natural numbers, and suppose s = (w′1,w
′
2) is a common subsequence between f ∞

A and f ∞
B . Then

spans >
(

k+1− kA
B

)
lens−2(A+B).

Proof. The words f ∞
A and f ∞

B are concatenations of chunks, which are subwords of the form lA and lB

respectively. A chunk in f ∞
A is spanned by subsequence w′1 if the span of w′1 contains at least one symbol

of the chunk. Similarly, we define chunks spanned by w′2 in f ∞
B . We will estimate how many chunks are

spanned by w′1 and by w′2.

5

As a word, a common subsequence is of the form kp1
1 kp2

2 · · ·k
ps
s where kl 6= kl+1 and the exponents

are positive. The subsequence kpl
l spans at least k

⌈
pl−A

A

⌉
+ 1 chunks in f ∞

A . Similarly, kpl
l spans at least

k
⌈

pl−B
B

⌉
+1 chunks in f ∞

B . Therefore the total number of symbols in chunks spanned by kpl
l in both f ∞

A and
in f ∞

B is at least

φ(pl)
def
= A

(
k
⌈

pl−A
A

⌉
+1
)
+B

(
k
⌈

pl−B
B

⌉
+1
)

We then estimate φ(pl) according to whether pl 6 B:

φ(pl)>

k(pl−A)+B if pl 6 B,

k(pl−A)+ k(pl−B)+B if pl > B.

In both cases we have

φ(pl)>

(
k+1− kA

B

)
pl.

Note that the chunks spanned by kpl
l are distinct from chunks spanned by kpl′

l′ for l 6= l′. So, the total
number of symbols in all chunks spanned by subsequence s in both f ∞

A and f ∞
B is least

∑
l

φ(pl)>

(
k+1− kA

B

)
lens.

The total span of s might be smaller since the first and the last chunks in each of f ∞
A and f ∞

B might not be
fully spanned. Subtracting 2(A+B) to account for that gives the stated result.

Let (w′1,w
′
2) be a common subsequence between ŵ1 and ŵ2. We say that the i’th symbol in (w′1,w

′
2)

is well-matched if the parents of w′1[i] and of w′2[i] are equal. A common subsequence is badly-matched if
none of its symbols are well-matched.

Lemma 5. Suppose w1,w2 are words over alphabet [K] and s = (w′1,w
′
2) is a badly-matched common

subsequence between ŵ1 and ŵ2. Then

spanw′1 + spanw′2 >
(

k+1− k
R
− 4RK−1

Lk

)
lens−16RK−1.

Proof. We subdivide the common subsequence s into subsequences s1, . . . ,sr such that, for each i = 1, . . . ,r
and each j = 1,2, the symbols matched by si in w′j belong to the expansion of the same symbol in w j. We
choose the subdivision to be the coarsest with this property. That implies that pairs of symbols of w1 and w2
matched by si and by si+1 are different. In particular, expansions of at least r−4 symbols of w1 and w2 are
fully contained in the spans of w′1 and w′2, and so

Lk(r−4)6 spans.

By the preceding lemma we then have

spans >
(

k+1− k
R

)
lens−4rRK−1 >

(
k+1− k

R

)
lens−4RK−1

(spans
Lk

+4
)
.

The lemma then follows from the collecting together the two terms involving spanw′1 + spanw′2, and then
dividing by 1+4RK−1/Lk.

6

The next step is to drop the assumption in Lemma 5 that the common subsequence is badly-matched.
By doing so we incur an error term involving LCS(w1,w2).

Lemma 6. Suppose w1,w2 are words over alphabet [K] and s = (w′1,w
′
2) is a common subsequence between

ŵ1 and ŵ2. Then

spans >
(

k+1− k
R
− 4RK−1

Lk

)
lens−2Lk(k+1) ·LCS(w,w′)−16RK−1.

Proof. Without loss, the subsequence s is locally optimal, i.e., every alteration of s that increases lens also
increases spans. Define an auxiliary bipartite graph G whose two parts are the symbols in w1 and the
symbols in w2. For each well-matched symbol in s we join the parent symbols in w1 and w2 by an edge.

We may assume that each vertex in G has degree at most 2. Indeed, suppose a symbol x ∈ w is adjacent
to three symbols y1,y2,y3 ∈ w′ with y2 being in between y1 and y3. Then we alter s by first removing all
matches between x and y1,y2,y3, and then completely matching x with y2. The alteration does not increase
spans, and the result is a common subsequence that is at least as long as s, and whose auxiliary graph has
fewer edges. We can then repeat this process until no vertex has degree exceeding 2.

Consider a maximum-sized matching in G. On one hand, it has at most LCS(w,w′) edges. On the other
hand, since the maximum degree of G is at most 2, the maximum-sized matching has at least |E(G)|/2
edges. Hence, |E(G)|6 2LCS(w,w′).

Remove from s all well-matched symbols to obtain a common subsequence s′. The new subsequence
satisfies

lens′ > lens−Lk · |E(G)|> lens−2Lk ·LCS(w,w′).

It is also clear that s′ is a badly-matched common subsequence. From the previous lemma

spans′ >
(

k+1− k
R
− 4RK−1

Lk

)
lens−2Lk(k+1) ·LCS(w,w′)−16RK−1.

Since spans > spans′, the lemma follows.

We are now ready to prove Theorem 3 by picking parameters suitably.

Proof of Theorem 3. Recall that we are starting with a code C1 ⊆ [K]n with LCS(C1) = γn. Given ε > 0 and
an integer k > 2, pick parameters

R =

⌈
2k
γ

⌉
and L = 16RK−1

⌈
1
γk

⌉
in the construction (1) and (2). Define T = kL and τ : [K]→ [k]T as τ(l) = fRl , and let C2 ⊆ [k]N , where
N = nkL, be the code obtained as in the statement of Theorem 3. Note that T 6 32 · (2k/γ)K by our choice
of parameters.

By Lemma 6, we can conclude that any common subsequence s of two distinct codewords of C2 satisfies

spans > (k+1− γ) lens−2(k+1)γN− γN .

Since lens 6 N and k > 2, the right hand side is at least (k+1) lens−4kγN, as desired.

7

4 Existence and construction of good deletion codes

In this section, we will plug in good “outer” deletion codes over large alphabets into Theorem 3 to derive
codes over alphabet [k] that correct a fraction ≈ (k−1)/(k+1) of deletions.

4.1 Existential claims

We start with “outer” codes over large alphabets guaranteed to exist by the probabilistic method. We use
h(·) to denote the binary entropy function. A similar statement appears in [5], but we include the short proof
for completeness.

Lemma 7. Suppose γ,r > 0 and integer K > 2 satisfy

2r logK +2h(γ)− γ logK < 0.

Then, for all large n, there exists a code with Krn codewords in [K]n such that LCS(w,w′)< γn for all distinct
w,w′ in the code.

Proof. Let w1, . . . ,wKrn be a sequence of words sampled from [K]n independently at random without re-
placement. For any i < j the joint distribution of (wi,w j) is same as of two words independently sampled
from [K]n conditioned on them being distinct. Hence, by the union bound we have

Pr[LCS(wi,w j)> γn]6
(

n
γn

)2

K−γn.

By the second application of the union bound we thus have

Pr[∃w,w′ ∈ C0, LCS(w,w′)> γn]6 K2rn
(

n
γn

)2

K−γn < 1.

As this probability is less than 1, there is a choice of w1, . . . ,wMn such that pairwise LCS is less than γn.

Using the above existential bound in Theorem 3, we now deduce the following.

Theorem 8 (Existence of deletion codes). Fix an integer k > 2. Then for every real number ε > 0, there
is r̃ = (ε/k)O(ε−3) such that for infinitely many N there is a code C ⊆ [k]N of rate at least r̃ and LCS(C) <(2

k+1 + ε
)

N.

Proof. We first apply Lemma 7 with γ = ε/4 and r = γ/6 = ε/24 to get a code C1 ⊆ [K]n for K 6 O(1/ε3)
with LCS(C1) 6 εn/4 and |C1| > Krn. Now applying Theorem 3 to C1 yields a code C2 ⊆ [k]N with
LCS(C2)6

(2
k+1 + ε

)
N. The rate of C2 is at least r/T > (ε/k)O(ε−3) since T 6 (k/ε)O(K).

Remark 1. The exponent O(1/ε3) in the rate can be improved to O(1/εa) for any a > 2. We made the
concrete choice a = 3 for notational convenience.

8

4.2 Efficient deterministic construction

Theorem 8 already shows the existence of positive rate codes over the alphabet [k] which are capable of
correcting a deletion fraction approaching k−1

k+1 , giving our main combinatorial result. We now turn to ex-
plicit constructions of such codes. Given Theorem 3, all that we need is an explicit code family capable
of correcting a deletion fraction approaching 1 over constant-sized alphabets, which is guaranteed by the
following theorem.

Lemma 9 ([5], Thm 3.4). For every γ > 0 there exists an integer K 6 O(1/γ5) such that for infinitely many
block lengths n, one can construct a code C ⊆ [K]n of rate Ω(γ3) and LCS(C)6 γn in time n(logn)poly(1/γ).
Further, the code C can be efficiently encoded and decoded from a fraction (1− γ) of deletions in n ·
(logn)poly(1/γ) time.

Remark 2. The linear dependence on n in the decoding time can be deduced using fast (n ·poly(logn) time)
unique decoding algorithms for Reed–Solomon codes. The bounds stated in [5] are nO(1)(logn)poly(1/γ) time.

Using the efficiently constructible codes of Lemma 9 in place of random codes as outer codes, we can
get the constructive analog of Theorem 8 with a similar proof. We also record the statement concerning the
span of common subsequences of distinct codewords of our code (which is guaranteed by Theorem 3), as
we will make use of this in the next section on efficiently decodable deletion codes.

Theorem 10 (Constructive deletion codes). Fix an integer k > 2. Then for every real number ε > 0, there is
r̃ =(ε/k)O(ε−3) such that for infinitely many N, we can construct a code C⊆ [k]N in time O(N(logN)poly(1/ε))
such that (i) C has rate at least r̃ and (ii) LCS(C) <

(2
k+1 + ε

)
N; in fact if s is a common subsequence of

two distinct codewords c,c′ ∈C, then spans > (k+1) lens− εkN.

5 Deletion codes with efficient decoding algorithms

We have already shown how to efficiently construct codes over alphabet [k] that are combinatorially capable
of correcting a deletion fraction approaching 1− 2

k+1 . However, it is not so clear how to efficiently recover
the codes in Theorem 10 from deletions. To this end, we now give an alternate explicit construction by con-
catenating codes with large distance for the Hamming metric with good k-ary deletion codes as constructed
in the previous section. As a side benefit, the construction time will be improved as we will need the codes
from Theorem 10 for exponentially smaller block lengths.

5.1 Concatenating Hamming metric codes with deletion codes

We state our concatenation result abstractly below, and then instantiate with appropriate codes later for
explicit constructions. Recall that the relative distance (in Hamming metric) of a code C of block length
n equals the minimum value of ∆(c,c′)/n over all distinct codewords c,c′ ∈ C, where ∆(x,y) denotes the
Hamming distance between two words of the same length.

Lemma 11. Let η ,θ ∈ (0,1]. Let Cout ⊆ [Q]n be code of relative distance in Hamming metric at least
(1−η). Let Cin ⊆ [k]m be a code with nQ codewords, one for each (i,α) ∈ [n]× [Q], such that for any two
distinct codewords c1,c2 ∈Cin and a common subsequence s of c1,c2, we have spans > (k+1) lens−θkm.
Consider the code Cconcat ⊆ [k]N for N = nm obtained as follows: There will be a codeword of Cconcat for

9

each codeword c of Cout, obtained by replacing its i’th symbol ci by the codeword of Cin corresponding to
(i,ci). Then we have

LCS(C)6

(
2

k+1
+2θ +η

)
N .

Proof. This proof is similar to, but simpler than the proofs of Lemmas 5 and 6. It is simpler because in the
present situation a codeword of Cin occurs at most once inside a codeword of Cconcat.

Let c,c′ be two distinct codewords of Cconcat and let σ be a common subsequence of c,c′. Recall that
each codeword of Cconcat can be viewed as a sequence of n (inner) blocks belonging to [k]m, with the i’th
block encoding (as per Cin) the i’th symbol of the outer codeword. Let us break σ into parts based on which
of the n blocks in c,c′ its common symbols come from in some canonical (say greedy) way of forming the
subsequence σ from c,c′). Let σi, j denote the portion of σ formed by using symbols from the i’th block
of c and the j’th block of c′. Let E be the set of pairs (i, j) for which σi, j is not the empty word. If we
were to draw words c and c′ parallel to each other, and draw the pairs in E as edges, then they would be
non-crossing. Therefore, |E| 6 2n. Also, by the construction, the only portions σi, j that are formed out of
the same codeword of Cin are those with i = j and ci = c′i. Thus there are at most ηn such portions, by the
assumed relative distance of Cout. Combining all this, we have

spanσ > ∑
(i, j)∈E

spanσi, j

>

(
∑

(i, j)∈E

(
(k+1) lenσi, j−θkm

))
− (k+1)(ηn)m

> (k+1) lenσ −2θknm− (k+1)ηnm .

Since spanσ 6 2N, we have lenσ <
(2

k+1 +2θ +η
)

N, as desired.

The construction. We now instantiate the above by concatenating Reed–Solomon codes with the codes
from Theorem 10. Fix the desired alphabet size k > 2 and γ > 0.

Let Fq be a large finite field, an integer `= d γq
2 e. Let Cout be the Reed–Solomon encoding code of block

length n = q that maps degree < ` polynomials f ∈ Fq[X] to its evaluations at all points in Fq. Note that its
relative distance is (q− `+1)/q > 1− γ/2.

Let Cin be a k-ary code with at least q2 codewords constructed in Theorem 10 for ε = γ/4. By the
promised rate of that construction, the block length of Cin can be taken to be m 6 (k/γ)O(γ−3) · logq. Our
final construction will apply Lemma 11 to Cout and Cin with parameters η = γ/2 and θ = γ/4, to get a code
Cconcat ⊆ [k]N for N = qm with LCS(Cconcat)6

(2
k+1 + γ

)
N.

Let us now estimate the construction time. As a function of N, m 6 Ok,γ(logN), and therefore the con-
struction time for Cin becomes Ok,γ(logN(log logN)poly(1/ε)). Together with the q(logq)2 time to construct
a representation of Fq and the Reed–Solomon code, we get an overall construction time of O(N log2 N) for
large enough N. We record this in the following statement.

Theorem 12 (Reed–Solomon + inner deletion codes with better construction time). Fix an integer k > 2.
Then for every real number γ > 0, there is r(k,γ) = (γ/k)O(γ−3) such that for infinitely many and sufficiently
large N, we can construct a code C ⊆ [k]N in time O(N log2 N) such that (i) C has rate at least r(k,γ) and
(ii) LCS(C)<

(2
k+1 + γ

)
N.

10

5.2 Deletion correction algorithm

We now describe an efficient decoding procedure for the codes from Theorem 12. The procedure will
succeed as long as the fraction of deletions is only slightly smaller than 1− 2

k+1 . We describe the basic idea
before giving the formal statement and proof. If we are given a subsequence s of length

(2
k+1 +δ

)
N of some

codeword, then by a simple counting argument, there must be at least δq/2 inner blocks (corresponding
to the inner encodings of the q indexed Reed–Solomon symbols) in which s contains at least

(2
k+1 +

δ

2

)
m

symbols from the corresponding inner codeword. So we can decode the corresponding Reed–Solomon
symbol (by brute-force) if we knew the boundaries of this block. Since we do not know this, the idea
is to try decoding all contiguous chunks of size

(2
k+1 +

δ

4

)
m in s with sufficient granularity (for example,

subsequences beginning at locations which are multiples of δm/4).

This might result in the decoding of several spurious symbols, but there will be enough correct symbols
to list decode the Reed–Solomon code and produce a short list that includes the correct message. By the
combinatorial guarantee, only the correct message will have an encoding containing s as a subsequence.
Therefore, we can prune the list and identity the correct message by re-encoding each candidate message
and checking which one has s has a subsequence. The list decoding step is similar to the one used in [5] for
list decoding binary codes from a fraction of deletions approaching 1/2. Since we have the combinatorial
guarantee that the code can correct a deletion fraction ≈ 1− 2

k+1 , a list decoding algorithm up to this radius
is also automatically a unique decoding algorithm.

Theorem 13 (Explicit and efficiently decodable deletion codes). The concatenated code C ⊆ [k]N con-
structed in Theorem 12 can be efficiently decoded from a fraction

(
1− 2

k+1 −O(γ1/3)
)

of worst-case dele-
tions in N3(logN)O(1) time, for large enough N.

Proof. With hindsight, let δ = 3γ1/3. Suppose we are given a subsequence s of an unknown codeword c ∈C
(encoding the unknown polynomial f of degree < `), where lens>

(2
k+1 +δ

)
N. We claim that the following

decoding algorithm recovers c.

1. T ← /0.

2. [Inner decodings] For each integer j, 0 6 j 6 lens
(δm)/4 , do the following:

(a) Let σ j be the contiguous subsequence of s of length
(2

k+1 +
δ

4

)
m starting at position jb δm

4 c+1.
(b) By a brute-force search over Fq×Fq, find the unique pair (α,β), if any, such that its encoding

under Cin has σ j as a subsequence, and add (α,β) to T . (This pair, if it exists, is unique since
LCS(Cin)<

(2
k+1 +

γ

4

)
m, and δ > γ .)

3. [Reed–Solomon list recovery] Find the list, call it L , of all polynomials p ∈ Fq[X] of degree < `
such that ∣∣∣{(α, p(α)) | α ∈ Fq}∩T

∣∣∣> δq
2

. (3)

4. [Pruning] Find the unique polynomial f ∈L , if any, such that its encoding under C contains s as a
subsequence, and output f .

CORRECTNESS. Break the codeword c∈ [k]nm of the concatenated code C into n (inner) blocks, with the i’th
block bi ∈ [k]m corresponding to the inner encoding of the i’th symbol (αi, f (αi)) of the outer Reed–Solomon
codeword. For some fixed canonical way of forming s out of c, denote by si the portion of s consisting of

11

the symbols in the i’th block bi. Call an index i ∈ [n] good if lensi >
(

2
k+1 +

δ

2

)
m. By a simple counting

argument, there are at least δn/2 values of i ∈ [n] that are good.

For each good index i ∈ [n], one of the inner decodings in Step 2 will attempt to decode a subsequence
of si, and therefore will find the pair (αi, f (αi)). Since there are at least δq

2 good indices, the condition (3) is
met for the correct f . Using Sudan’s list decoding algorithm for Reed–Solomon codes [11], one can find the
list of all degree 6 ` polynomials p ∈ Fq[X] such that (α, p(α)) ∈T for more than

√
2`|T | field elements

α ∈ Fq. Further, this list will have at most
√

2|T |/` polynomials.

Since |T | 6 4q/δ , if we pick δ so that δq
2 >

√
8`q/δ , the decoding will succeed. Recalling that

`= d γq
2 e, this condition is met for our choice of δ .

RUNTIME. The number of inner decodings performed is O(q/δ) = O(N), and each inner decoding takes
q2(logq)O(1) 6 N2(logN)O(1)) time. The set T has size at most O(q/δ) 6 O(N) for N large enough. The
Reed–Solomon list decoding algorithm on |T |many points can be performed in O(N2) field operations, see
for instance [9]. So the overall running time of the decoder is at most N3 ·poly(logN).

Remark 3. The cubic runtime in the above construction arose because of the brute-force implementation of
the inner decodings. One can recursively use the above concatenated codes themselves as the inner codes, in
place of the codes from Theorem 10. Each of the inner decodings can now be performed in poly(logq) time,
for a total time of N ·poly(logN) for Step 2. By using near-linear time implementations of Reed–Solomon
list decoding [1], one can also perform Step 3 in q · poly(logq) time. Thus one can improve the decoding
complexity to N ·poly(logN).

References

[1] Michael Alekhnovich. Linear diophantine equations over polynomials and soft decoding of Reed-
Solomon codes. IEEE Transactions on Information Theory, 51(7):2257–2265, 2005. http://www.

math.ias.edu/~misha/papers/diophant.ps.

[2] Boris Bukh and Jie Ma. Longest common subsequences in sets of words. SIAM J. Discrete Math.,
28(4):2042–2049, 2014. arXiv:1406.7017.

[3] Boris Bukh and Lidong Zhou. Twins in words and long common subsequences in permutations. Israel
J. Math., page (to appear). arXiv:1307.0088.

[4] Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting Gilbert-Varshamov
bound for low rates. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 756–757, 2004. https://people.csail.mit.edu/indyk/gvf.ps.

[5] Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate regimes. In
Proceeding of RANDOM, page To appear, 2015. arXiv:1411.6667.

[6] Marcos Kiwi, Martin Loebl, and Jir̆ı́ Matous̆ek. Expected length of the longest common subsequence
for large alphabets. Advances in Mathematics, 197:480–498, November 2004. arXiv:math/0308234.

[7] George S. Lueker. Improved bounds on the average length of longest common subsequences. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 130–
131, 2003.

12

http://www.math.ias.edu/~misha/papers/diophant.ps
http://www.math.ias.edu/~misha/papers/diophant.ps
http://arxiv.org/pdf/1406.7017
http://arxiv.org/pdf/1307.0088
https://people.csail.mit.edu/indyk/gvf.ps
http://arxiv.org/pdf/1411.6667
http://arxiv.org/pdf/math/0308234

[8] Michael Mitzenmacher. A survey of results for deletion channels and related synchronization chan-
nels. Probability Surveys, 6:1–33, 2009. http://www.eecs.harvard.edu/~michaelm/TALKS/

DelSurvey.pdf.

[9] Ron M. Roth and Gitit Ruckenstein. Efficient decoding of Reed-Solomon codes beyond half the
minimum distance. IEEE Trans. Inform. Theory, 46(1):246–257, 2000. http://www.cs.technion.
ac.il/~ronny/PUB/rs.pdf.

[10] Leonard Schulman and David Zuckerman. Asymptotically good codes correcting insertions, dele-
tions, and transpositions. IEEE Transactions on Information Theory, 45(7):2552–2557, November
1999. Preliminary version in SODA 1997; http://authors.library.caltech.edu/6720/1/

SCHUieeetit99.pdf.

[11] Madhu Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. J. Complexity,
13(1):180–193, 1997. http://people.csail.mit.edu/madhu/papers/1996/reeds-journ.

pdf.

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://www.eecs.harvard.edu/~michaelm/TALKS/DelSurvey.pdf
http://www.eecs.harvard.edu/~michaelm/TALKS/DelSurvey.pdf
http://www.cs.technion.ac.il/~ronny/PUB/rs.pdf
http://www.cs.technion.ac.il/~ronny/PUB/rs.pdf
http://authors.library.caltech.edu/6720/1/SCHUieeetit99.pdf
http://authors.library.caltech.edu/6720/1/SCHUieeetit99.pdf
http://people.csail.mit.edu/madhu/papers/1996/reeds-journ.pdf
http://people.csail.mit.edu/madhu/papers/1996/reeds-journ.pdf

