The shifted partial derivative complexity of Elementary Symmetric Polynomials*

Hervé Fournier ${ }^{\dagger} \quad$ Nutan Limaye ${ }^{\ddagger}$ Meena Mahajan ${ }^{\S}$ Srikanth Srinivasan ${ }^{〔}$

July 23, 2015

Abstract

We continue the study of the shifted partial derivative measure, introduced by Kayal (ECCC 2012), which has been used to prove many strong depth-4 circuit lower bounds starting from the work of Kayal, and that of Gupta et al. (CCC 2013).

We show a strong lower bound on the dimension of the shifted partial derivative space of the Elementary Symmetric Polynomials of degree d in N variables for $d<\lg N / \lg \lg N$. This extends the work of Nisan and Wigderson (Computational Complexity 1997), who studied the partial derivative space of these polynomials. Prior to our work, there have been no results on the shifted partial derivative measure of these polynomials.

Our result implies a strong lower bound for Elementary Symmetric Polynomials in the homogeneous $\Sigma \Pi \Sigma \Pi$ model with bounded bottom fan-in. This strengthens (under our degree assumptions) a lower bound of Nisan and Wigderson who proved the analogous result for homogeneous $\Sigma \Pi \Sigma$ model (i.e. $\Sigma \Pi \Sigma \Pi$ formulas with bottom fan-in 1).

Our main technical lemma gives a lower bound for the ranks of certain inclusion-like matrices.

1 Introduction

1.1 Motivation.

In an influential paper of Valiant Val79 the two complexity classes VP and VNP were defined, which can be thought of as algebraic analogues of Boolean complexity classes P and NP, respectively. Whether VP equals VNP or not is one of the most fundamental problems in the study of algebraic computation. It follows from the work of Valiant Val79 that a super-polynomial lower bound for arithmetic circuits computing the Permanent implies VP \neq VNP.

The best known lower bound on uniform polynomials for general arithmetic circuits is $\Omega(N \lg N)$ [BS83] which is unfortunately quite far from the desired super-polynomial lower bound. Over the years, though there has been no stronger lower bound for general arithmetic circuits, many super-polynomial lower bounds have been obtained for special classes for arithmetic circuits (NW97, Raz09, Raz06.

A very interesting such subclass of arithmetic circuits is the class of bounded-depth arithmetic formulas ${ }^{1}$. The question of proving lower bounds for bounded-depth formulas and in particular

[^0]depth 3 and 4 formulas has received a lot of attention subsequent to the recent progress in efficient depth reduction of arithmetic circuits VSBR83, AV08, Koi12, Tav13. This sequence of results essentially implies that "strong enough" lower bounds for depth-4 homogeneous formulas suffice to separate VP from VNP. More formally, it proves that any sequence $\left\{f_{N}\right\}_{N}$ of homogeneous N-variate degree $d=N^{O(1)}$ polynomials in VP has depth-4 homogeneous formulas of size $N^{O(\sqrt{d})}$. Hence, proving an $N^{\omega(\sqrt{d})}$ lower bound for depth-4 homogeneous formulas suffices to separate VP from VNP.

Even more can be said about the depth- 4 formulas obtained in the above results. For any integer parameter $t \leq d$, they give a $\Sigma \Pi \Sigma \Pi$ formula for f_{N} where the layer 1 product gates (just above the inputs) have fan-in at most t and the layer 3 gates are again Π gates with fan-in $O(d / t)$. We will refer to such formulas as $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ formulas. The depth-reduction results mentioned above produce a depth-4 homogeneous $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ formula of size $N^{O((d / t)+t)}$ and top fan-in $N^{O(d / t)}$; at $t=\lceil\sqrt{d}\rceil$, we get the above depth-reduction result.

The tightness of these results follows from recent progress on lower bounds for the model of $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ circuits. A flurry of results followed the groundbreaking work of Kayal Kay12], who augmented the partial derivative method of Nisan and Wigderson NW97 to devise a new complexity measure called the shifted partial derivative measure, using which he proved an exponential lower bound for a special class of depth-4 circuits. Building on this, the first non-trivial lower bound for $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ formulas was proved by Gupta, Kamath, Kayal, and Saptharishi GKKS13] for the determinant and permanent polynomials. This was further improved by Kayal, Saha, and Saptharishi [KSS14] who gave a family of explicit polynomials in VNP the shifted partial derivative complexity of which was (nearly) as large as possibl ε^{2} and hence showed a lower bound of $N^{\Omega(d / t)}$ for the top fan-in of $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ formulas computing these polynomials. Later, a similar result for a polynomial in VP was proved in [FLMS14] and this was subsequently strengthened by Kumar and Saraf [KS14a, who gave a polynomial computable by homogeneous $\Pi \Sigma \Pi$ formulas such that any $\Sigma \Pi^{[0(d / t)]} \Sigma \Pi^{[t]}$ formulas computing it must have top fan-in $N^{\Omega(d / t)}$. Finally, using a variant of the shifted partial derivative measure, Kayal et al. [KLSS14] and Kumar and Saraf [KS14b] were able to prove similar lower bounds for general depth-4 homogeneous formulas as well.

In this work, we investigate the shifted partial derivative measure of the Elementary Symmetric Polynomials, which is a very natural family of polynomials whose complexity has been the focus of many previous works NW97, SW01, Shp02, HY11. Nisan and Wigderson NW97] proved tight lower bounds on the depth-3 homogeneous formula complexity of these polynomials. Shpilka and Wigderson SW01 and Shpilka Shp02 studied the general (i.e. possibly inhomogeneous) depth-3 circuit complexity of these polynomials, and showed that for certain degrees, the $O\left(N^{2}\right)$ upper bound due to Ben-Or (see [SW01]) is tight.

Under some degree constraints, we show strong lower bounds on the dimension of the shifted partial derivative space of these polynomials, which implies that the Elementary symmetric polynomial on N variables of degree d cannot be computed by a $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ circuit of top fan-in less than $N^{\Omega(d / t)}$. This strengthens the result of Nisan and Wigderson NW97] for these degree parameters.

By the upper bound of Ben-Or mentioned above, this also gives the first example of an explicit polynomial with small $\Sigma \Pi \Sigma$ circuits for which such a strong lower bound is known.

1.2 Our Results

We show that, for a suitable range of parameters, the shifted partial derivative measure of the N-variate elementary symmetric polynomial of degree d - denoted S_{N}^{d} — is large.

[^1]Theorem 1. Let $\alpha \in(0,1 / 2)$ be a constant. Let $N, d, k \in \mathbb{N}$ be such that $4 k \leq d \leq$ $\alpha \lg N / \lg \lg N$ and $k=\left\lfloor\frac{d}{\tau+1}\right\rfloor$ for some odd number $\tau \geq 3$. Over a field of characteristic zero, for any δ satisfying $\alpha \leq 1-\delta(\tau+1)<1-\delta \tau \leq 1-\alpha$, and for $\ell=\left\lfloor N^{1-\delta}\right\rfloor$, the following holds:

$$
\operatorname{dim}\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell} \geqslant \frac{(1-o(1)) \cdot\binom{N+\ell}{\ell} \cdot\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k} \cdot(d+1)^{\tau}}
$$

For any multilinear polynomial $F(X)$ on N variables, the quantity $\operatorname{dim}\left\langle\partial_{k} F\right\rangle_{\leq \ell}$ is at most the number of monomial shifts - which is $\binom{N+\ell}{\ell}$ - times the number of possible partial derivatives of order k, which is at most $\binom{N}{k}$. Our result says that this trivial upper bound is (in some sense) close to optimal for the polynomial $S_{N}^{d}\left(\right.$ the $\left(N^{1-\delta \tau}\right)^{k}$ factor in the denominator can be made $N^{\varepsilon k}$ for any constant $\varepsilon>0$, see the discussion at the end of the proof of Theorem 22. All previous lower bound results using the shifted partial derivative method also obtain similar statements GKKS13, FLMS14, KS14a, KS14b.

Theorem 1 as stated above is applicable under the restriction that the field over which the polynomial and the circuits are defined should have characteristic 0 . For the sake of simplicity of the presentation, we first present the proof of this theorem. In fact, we first present the proof of a further restriction: namely, the case when $2 k$ divides d exactly. This result is stated in Theorem 5 in Section 3. The techniques presented in the proof can be appropriately modified in order to overcome the above restrictions. In Section 4, we describe the modifications needed to carry through the proof when $k=\lfloor d /(\tau+1)\rfloor$ for some odd number $\tau \geq 3$, establishing theorem 1. In Section 5 we state our most general result, i.e. for general parameters and over any characteristic, Theorem [27, and sketch its proof. Due to the positive characteristic, in Theorem 27 we incur a loss of $k+1$ in the denominator (compared to Theorem 1).

A corollary of our main result is an $N^{\Omega(d / t)}$ lower bound on the top fan-in of any $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ formula computing S_{N}^{d}.
Theorem 2. Let $\varepsilon \in(0,1)$ be a constant. Let $N, d, D, t \in \mathbb{N}$ be such that $\frac{10 t}{\varepsilon} \leq d \leq \frac{\varepsilon \lg N}{5 \lg \lg N}$, $D \leq N^{1-\varepsilon}$. Any $\Sigma \Pi^{[D]} \Sigma \Pi^{[t]}$ circuit of top fan-in s computing S_{N}^{d} satisfies $s=N^{\Omega(d / t)}$.

It is worth noting that in most lower bounds of this flavour, the upper product gates have fanin D bounded by $O(d / t)$. Our lower bound works for potentially much larger values of D.

It is known that for every $d \leq N, S_{N}^{d}$ has depth-4 formulas of size $N 2^{O(\sqrt{d})}$ [SW01, Theorem 5.2]. A closer look at the construction there shows that the $N 2^{O(\sqrt{d})}$ size formulas are $\Sigma \Pi^{[O(d)]} \Sigma \Pi^{[d]}$ formulas with bottom fanin upto and including d. In contrast, our bound shows that for small d, if the bottom fanin t is restricted to be a fraction of d, then, even allowing for much larger D, the top fanin and hence size of an $\Sigma \Pi^{[D]} \Sigma \Pi^{[t]}$ formula shoots up to $N^{\Omega(d / t)}$.

As a corollary to Theorem 2, we obtain a lower bound for homogeneous depth-4 circuits with bounded bottom fan-in.

Corollary 3. Let parameters N, d, t be as in Theorem 2. Any $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ computing S_{N}^{d} must have top fan-in at least $N^{\Omega(d / t)}$. In particular, any homogeneous $\Sigma \Pi \Sigma \Pi$ circuit C with bottom fan-in bounded by t computing S_{N}^{d} must have top fan-in at least $N^{\Omega(d / t)}$.

By the above depth reduction results, this lower bound is tight up to the constant factor in the exponent. Before our work, NW97] proved a lower bound for S_{N}^{d} of $N^{\Omega(d)}$ for all d, however with respect to $\Sigma \Pi \Sigma$ circuits (i.e. the case $t=1$).

1.3 Techniques

The analysis of the shifted partial derivative measure for any polynomial essentially requires the analysis of the rank of a matrix arising from the shifted partial derivative space. In this
work, we analyse the matrix arising from the shifted partial derivative space of the symmetric polynomials.

Our analysis is quite different from previous works (such as [FLMS14, KLSS14, KS14b]), which are based on either monomial counting (meaning that we find a large identity or upper triangular submatrix inside our matrix) or an analytic inequality of Alon [Alo09]. Neither of these techniques seems to be applicable in our case. This is already visible from the work of Nisan and Wigderson [NW97, who analyse the partial derivative matrix (without shifts) of the elementary symmetric polynomials. This matrix turns out to be the well-known Disjointness matrix, defined as follows: for fixed parameters $N, s, t \in \mathbb{N}$ such that $s+t \leq N$, the rows and columns of this matrix are labelled by subsets of $[N]$ of size s and t respectively; the (S, T) entry in the matrix is 1 if $S \cap T=\emptyset$ and 0 otherwise ${ }^{3}$ It is known (see KN97] for example) that this matrix is full rank (i.e. has rank equal to the minimum of the number of rows and columns) in characteristic 0 and almost full rank in other characteristics Wil90. However, it is not clear how to use either of the two techniques mentioned above to prove this result.

In our analysis of the shifted partial derivative space, to block diagonalize our matrix ${ }^{4}$ into matrices each of which is a more complicated version of the Inclusion matrix (similar to the Disjointness matrix mentioned above and also known to be full rank), and lower bound its rank by using a technique that, to the best of our knowledge, has not been used in this context before. We give a brief overview of our technique in the next section.

Disjointness and inclusion matrices arise naturally in other branches of theoretical computer science such as Boolean circuit complexity Raz87, communication complexity KN97, Chapter 2] and also in combinatorics Wil90, KS05]. Therefore, we believe that our analysis of the Inclusion-like matrix arising from the symmetric polynomial may find other applications.

1.4 Organisation of the paper

In Section 2, we set up basic notation, fix the main parameters, and give a high-level outline of our proof of Theorem 5. In Section 3 we give the details of the actual proof. The formula size lower bound from Theorem 2 is established in Section 6. Recall that Theorem 5 is stated over fields of characteristic zero when some parameters exhibit some divisibility property (which makes the combinatorics nicer). The way to handle more general parameters is explained in Section 4. In Section 5 we describe how to extend our results to arbitrary fields.

2 Proving Theorem 5: High-level outline

2.1 Notation

For a positive integer n, we let $[n]=\{1, \ldots, n\}$. Let $X=\left\{x_{1}, \ldots, x_{N}\right\}$. For $A \subseteq[N]$ we define $X_{A}=\prod_{i \in A} x_{i}$. The elementary symmetric polynomial of degree d over the set of variables X is defined as $S_{N}^{d}(X)=\sum_{A \subseteq[N],|A|=d} X_{A}$, and is abbreviated with S_{N}^{d}.

For $k, \ell \in \mathbb{N}$ and a multivariate polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, we define

$$
\left\langle\partial_{k} f\right\rangle_{\leq \ell}=\operatorname{span}\left\{\left.x_{1}^{j_{1}} \ldots x_{n}^{j_{n}} \cdot \frac{\partial^{k} f}{\partial x_{1}^{i_{1}} \ldots \partial x_{n}^{i_{n}}} \right\rvert\, i_{1}+\ldots+i_{n}=k, j_{1}+\ldots+j_{n} \leq \ell\right\}
$$

Our complexity measure is the dimension of this space, i.e., $\operatorname{dim}\left(\left\langle\partial_{k} f\right\rangle \leq \ell\right)$ Kay12, GKKS13.
For a monomial $m=\prod_{i=1}^{N} x_{i}^{n_{i}}, \operatorname{deg}(m)=n_{1}+n_{2}+\ldots+n_{N}$ is the total degree of m. We denote by $\operatorname{deg}_{x_{i}}(m)$ the degree of the variable x_{i} in m (here $\left.\operatorname{deg}_{x_{i}}(m)=n_{i}\right)$. We define

[^2]the support of m as $\operatorname{supp}(m)=\left\{i \in[N] \mid n_{i}>0\right\}$. For a monomial m and $p>0$, let $\operatorname{supp}_{p}(m)=\left\{i \in[N], \operatorname{deg}_{x_{i}}(m)=p\right\}$.

Let \mathcal{M}_{N}^{ℓ} the set of monomials of degree at most ℓ over the variables X. For integers n_{1}, \ldots, n_{p}, let

$$
\mathcal{M}_{N}^{\ell}\left(n_{1}, \ldots, n_{p}\right)=\left\{m \in \mathcal{M}_{N}^{\ell},\left|\operatorname{supp}_{i}(m)\right|=n_{i} \text { for } i \in[p]\right\} .
$$

Given $p>0$, a monomial $m \in \mathcal{M}_{N}^{\ell}$ can be uniquely written as $m=\tilde{m} \cdot \prod_{i=1}^{p}\left(X_{\operatorname{supp}_{i}(m)}\right)^{i}$. We write $m \equiv\left[\tilde{m}, S_{1}, \ldots, S_{p}\right]$ if $S_{i}=\operatorname{supp}_{i}(m)$ for all $i \in[p]$ and $m=\tilde{m} \cdot \prod_{i=1}^{p}\left(X_{S_{i}}\right)^{i}$.

For a finite set S, let $\mathcal{U}(S)$ denote the uniform distribution over the set S.
We assume that we are working over a field \mathbb{F} of characteristic zero. Our results also hold in non-zero characteristic (see Section 5), but the first step of our proof (Lemma 6) becomes a little more cumbersome.

2.2 Proof Outline

We want to lower bound $\operatorname{dim}\left(\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}\right)$ for suitable k, ℓ. An alternate way of looking at the vector space $\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}$ is as follows. We fix some spanning set \mathcal{S} for the set of all partial derivatives of S_{N}^{d} of order k and consider the set \mathcal{P} of all the polynomials obtained by multiplying the polynomials in \mathcal{S} with monomials of degree at most ℓ. We define a matrix M whose columns contain the polynomials in the set \mathcal{P} (seen as vectors of coefficients of the various monomials). Lower bounding $\operatorname{dim}\left(\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}\right)$ is equivalent to lower bounding $\operatorname{rank}(M)$.

Our lower bound on $\operatorname{dim}\left(\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}\right)$ proceeds in 3 steps.
Step 1: We choose a suitable subset \mathcal{S} of the partial derivative space. It is convenient to work with a set that is slightly different from the set of partial derivatives themselves. To understand the advantage of this, consider the simple setting where we are looking at the partial derivatives of the degree-2 polynomial S_{N}^{2} of order 1. It is not difficult to show that the partial derivative with respect to variable x_{i} is $r_{i}:=\sum_{j \neq i} x_{j}$. Over characteristic zero, this set of polynomials is known to be linearly independent. One way to show this is by showing that each polynomial x_{i} can be written as a linear combination of the $r_{j} \mathrm{~s}$; explicitly, one can write $x_{i}=\frac{1}{n-1}\left(\sum_{j \in[n]} r_{j}\right)-r_{i}$. Since the x_{i} s are distinct monomials, they are clearly linearly independent and we are done. This illustrates the advantage in moving to a "sparser" basis for the partial derivative space. We do something like this for larger d and k (Lemma 6).
Step 2: After choosing the set \mathcal{S}, we construct the set \mathcal{P} of shifts of \mathcal{S} (actually, we will only consider a subset of \mathcal{P}) and lower bound the rank of the corresponding matrix M. To do this, we also prune the set of rows of the matrix M. In other words, we consider a carefully chosen set of monomials \mathcal{M} and project each polynomial in \mathcal{P} down to these monomials. The objective in doing this is to infuse some structure into the matrix while at the same time preserving its rank (up to small losses). Having chosen \mathcal{M}, we show that the corresponding submatrix can be block-diagonalized into matrices each of which is described by a simple inclusion pattern between the (tuples of) sets labelling its rows and columns. This is done in Lemmas $17,20,21$, Step 3: The main technical step in the proof is to lower bound the rank of the inclusion pattern matrix mentioned above with an algebraic trick. We illustrate this technique here with a toy example. Fix parameters $N, s \in \mathbb{N}$ with $s \leq N / 2$ and define the $\binom{N}{s} \times\binom{ N}{s}$ matrix $\operatorname{Disj}_{N, s}$ whose rows and columns are labelled by sets of size s from the universe $[N]$ and the (S, T) entry is 1 if $S \cap T=\emptyset$ and 0 otherwise. We can similarly also define the $\binom{N}{s} \times\binom{ N}{s}$ matrix $^{\prime}$ Inc $_{N, s}$ similarly with the only difference being that the (S, T) entry is 1 if and only if $S \subseteq T$; note that $\operatorname{Inc}_{N, s}$ is simply the identity matrix with the required dimensions and is hence clearly full rank. It is also known that $\operatorname{Disj}_{N, s}$ is full rank over fields of characteristic 0 (see, e.g. [KN97, Chapter 2]).

We prove a weaker statement here in order to illustrate our proof method: we show that when $s=o(N), \operatorname{Disj}_{N, s}$ has rank $\binom{N}{s}(1-o(1))$.

To see this, consider the following alternate way of looking at the above matrices. We identify the labels of the rows - which are elements of $\binom{[N]}{s}$ — with their characteristic vectors, which are elements of the N-dimensional hypercube $\{0,1\}^{N}$ of weight exactly s. Each column is associated with a polynomial p over $0-1$ variables y_{1}, \ldots, y_{N} such that the entry in the column at the row labelled by $a \in\{0,1\}^{N}$ is equal to $p(a)$. Specifically, in the matrix Inc $_{N, s}$, a column labelled $T \subseteq[N]$ is associated with the monomial $m_{T}=\prod_{i \in T} y_{i}$; it should be clear that this monomial evaluates to 1 at row a only if a encodes a subset contained in T (which must be T itself). Similarly, in the matrix $\operatorname{Disj}_{N, s}$ the column corresponding to T is associated with the polynomial $q_{T}=\prod_{i \in T}\left(1-y_{i}\right)$. Now consider the following simple identity:

$$
m_{T}=\prod_{i \in T} y_{i}=\prod_{i \in T}\left(1-\left(1-y_{i}\right)\right)=\sum_{T^{\prime} \subseteq T}(-1)^{\left|T^{\prime}\right|} q_{T^{\prime}}
$$

The above tells us that the columns of $\operatorname{Inc}_{N, s}$ are spanned by the set of all column vectors corresponding to polynomials of the form $Q=\left\{q_{T^{\prime}}| | T^{\prime} \mid \leq s\right\}$. Since $\operatorname{Inc}_{N, s}$ has rank $\binom{N}{s}$, the set of column vectors in Q must have rank at least $\binom{N}{s}$. The subset of these columns corresponding to $\left|T^{\prime}\right|=s$ are exactly the columns of $\operatorname{Disj}_{N, s}$. Note that the remaining columns (corresponding to $\left|T^{\prime}\right|<s$) are only $\sum_{i<s}\binom{N}{i}$ in number and this is only $o\left(\binom{N}{s}\right)$ since $s=o(N)$. Hence, the columns of $\operatorname{Disj}_{N, s}$ must have rank at least $\binom{N}{s}(1-o(1))$.

The main technical lemma (Lemma 25) is a generalization of the above trick to our setting. Given the matrix whose rank we wish to lower bound (like $\operatorname{Disj}_{N, s}$ above), we first find a fullrank matrix that is closely related to our matrix and then show that the columns of our matrix can (with the aid of just a few other columns) generate the columns of the full-rank matrix.

2.3 The main parameters

For proving Theorem 1 , recall the parameters: $\alpha \in(0,1 / 2), N, d, k$ satisfying

$$
4 k \leq d \leq \alpha \lg N / \lg \lg N, \quad k=\left\lfloor\frac{d}{\tau+1}\right\rfloor, \quad \tau \geq 3 \text { odd }
$$

Our parameter choices are any δ satisfying $\alpha \leq 1-\delta(\tau+1)$ and $1-\delta \tau \leq 1-\alpha$, and $\ell=\left\lfloor N^{1-\delta}\right\rfloor$.

The following are easy to verify for our choice of parameters:
Fact 4. $\tau^{2}=o(\ell), \tau=o\left(N^{\delta}\right)$, and $\tau \ell=o(N)$.
Also, $(\lg N)^{\tau}=O\left(N^{\alpha}\right)$, and $N^{\delta(\tau+1)}=O\left(N^{1-\alpha}\right)=o(N)$.
These facts also hold in the settings of Theorem 5 and Theorem 27,

3 Proving Theorem 1: Details of a simpler case

In this section we first establish establish Theorem 5 given below. This is a restriction of Theorem 1 to the special case when $2 k$ divides d exactly. This case clearly illustrates all the ideas and technical constructs used. Small modifications, described in the next section, establish Theorem 1 .

Theorem 5. Let $\alpha \in(0,1 / 2)$ be a constant. Let $N, d, k \in \mathbb{N}$ be such that $4 k \leq d \leq$ $\alpha \lg N / \lg \lg N$ and $2 k \mid d$. Over a field of characteristic zero, for $\tau=d / k-1$, for any δ satisfying $\alpha \leq 1-\delta(\tau+1)<1-\delta \tau \leq 1-\alpha$, and for $\ell=\left\lfloor N^{1-\delta}\right\rfloor$, the following holds:

$$
\operatorname{dim}\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell} \geqslant \frac{(1-o(1)) \cdot\binom{N+\ell}{\ell} \cdot\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k} \cdot(d+1)^{\tau}} .
$$

3.1 Choice of basis: Step 1 of the proof

Lemma 6. Let $k \leq d \leq N$. Over fields of characteristic 0 , the vector space spanned by the set of k-partial derivatives of S_{N}^{d}, that is $\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq 0}$, contains $\left\{p_{T}|T \subseteq[N],|T|=k\}\right.$ where

$$
p_{T}=\sum_{T \subseteq A \subseteq[N],|A|=d-k} X_{A}=X_{T} \cdot S_{N-k}^{d-2 k}(X \backslash T)
$$

Proof. If $d<2 k$ then the statement is vacuously true (there is no such p_{T}). So now assume that $d \geq 2 k$.

For any set $S \subseteq[N]$ of size $|S|=k$, let r_{S} be the polynomial obtained by deriving S_{N}^{d} with respect to all the variables in S (once each). Note that r_{S} contains all degree $d-k$ multilinear monomials that avoid variables x_{i} for $i \in S$. Similarly, for $S \subseteq[N]$ of size $|S|<k$, define the polynomials r_{S} as sums of degree $d-k$ multilinear monomials avoiding x_{i} for $i \in S$. Correspondingly, define the complementary polynomials: for $T \subseteq[N]$ with $|T| \leq k, p_{T}$ consists of all degree $d-k$ multilinear monomials that include $x_{i}(i \in T)$. Formally, for $S, T \subseteq[N]$ with $|S|,|T| \leq k$,

$$
r_{S}(x)=\sum_{|A|=d-k, A \cap S=\emptyset} X_{A} ; \quad p_{T}(x):=\sum_{T \subseteq B \subseteq[N],|B|=d-k} X_{B} .
$$

The claim is that linear combinations of the partial derivative polynomials, r_{S} with $|S|=k$, generate the polynomials $p_{T}(|T|=k)$. We can show this in two steps.

The first step is to show that the $r_{S^{\prime}}\left(\left|S^{\prime}\right|=k\right)$ generate the polynomials $r_{S}(|S| \leq k)$. Fix any S with $|S|=s<k$. Let $\mathcal{S}=\left\{S^{\prime} \subseteq[N]| | S^{\prime} \mid=k, S^{\prime} \supseteq S\right\}$. A simple computation shows that any monomial that avoids all the variables in S appears in the same positive number M of all the polynomials $r_{S^{\prime}}\left(S^{\prime} \in \mathcal{S}\right)$ (in fact, it can be checked that $M=\binom{N-(d-k+s)}{k-s}$, though this will not be important for us). Hence, we have $r_{S}=\frac{1}{M} \sum_{S^{\prime} \in S} r_{S^{\prime}}$, which shows that r_{S} is indeed in the span of $r_{S^{\prime}}\left(\left|S^{\prime}\right|=k\right)$. Note that this step assumes that we are working in characteristic 0.

Finally, once we have r_{S} for all set sizes in $[k]$, we generate p_{T} for $|T|=k$ using inclusionexclusion. Let $\{0,1\}_{t}^{N}$ denote the set of all $0-1$ vectors of Hamming weight exactly t. We use the natural correspondence between this set and the set of all subsets of $[N]$ of size exactly t.

$$
\begin{aligned}
p_{T}(x) & =\sum_{T \subseteq B \subseteq[N],|B|=d-k} X_{B} \\
& =\sum_{y \in\{0,1\}_{d-k}^{N}}\left(\prod_{i: y_{i}=1} x_{i}\right)\left(\prod_{i \in T} y_{i}\right)=\sum_{y \in\{0,1\}_{d-k}^{N}}\left(\prod_{i: y_{i}=1} x_{i}\right)\left(\prod_{i \in T}\left(1-\left(1-y_{i}\right)\right)\right) \\
& =\sum_{y \in\{0,1\}_{d-k}^{N}}\left(\prod_{i: y_{i}=1} x_{i}\right)\left(\sum_{S \subseteq T}(-1)^{|S|} \prod_{i \in S}\left(1-y_{i}\right)\right) \\
& =\sum_{S \subseteq T}(-1)^{|S|} \sum_{y \in\{0,1\}_{d-k}^{N}}\left(\prod_{i: y_{i}=1} x_{i}\right)\left(\prod_{i \in S}\left(1-y_{i}\right)\right)=\sum_{S \subseteq T}(-1)^{|S|} r_{S}(x) .
\end{aligned}
$$

This shows that each $p_{T}(|T|=k)$ is a linear combination of the $r_{S}(|S| \leq k)$ and hence also of the derivative polynomials $r_{S^{\prime}}\left(\left|S^{\prime}\right|=k\right)$.

Let $\mathcal{P}=\left\{m \cdot p_{T}\left|T \subseteq[N],|T|=k, m \in \mathcal{M}_{N}^{\ell}, \operatorname{supp}(m) \cap T=\emptyset\right\}\right.$. From Lemma 6, $\mathcal{P} \subseteq$ $\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}$. Hence, a lower bound on the dimension of span \mathcal{P} is also a lower bound on $\operatorname{dim}\left(\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}\right)$.

3.2 Choice of shifts: Step 2 of the proof

Instead of considering arbitrary shifts m as in the definition of \mathcal{P}, we will consider shifts by monomials m with various values of $\left|\operatorname{supp}_{i}(m)\right|$ for $i \in[\tau]$. We first present a technical lemma that is needed to establish the lower bound. It is a concentration bound for support sizes in random monomials.

Definition 7. For $i \in[\tau], \hat{s}_{i}$ denotes the average number of variables with degree exactly i. That is, $\hat{s_{i}}=\mathbb{E}_{m \sim \mathcal{U}\left(\mathcal{M}_{N}^{\ell}\right)}\left[\left|\operatorname{supp}_{i}(m)\right|\right]$.

Definition 8 (Good signature). Given $m \in \mathcal{M}_{N}^{\ell}$, the signature of $m, s(m)$, is the tuple $\left(s_{1}, \ldots, s_{\tau}\right)$ such that $m \in \mathcal{M}_{N}^{\ell}\left(s_{1}, \ldots, s_{\tau}\right)$. We call the signature $\left(s_{1}, \ldots, s_{\tau}\right)$ a good signature if for each $i \in[\tau]$, we have $\hat{s}_{i} / 2 \leq s_{i} \leq 3 \hat{s}_{i} / 2$. Let \mathcal{S}_{0} denote the set of all good signatures.

The following lemma shows that for our choice of parameters, the average values \hat{s}_{i} for $i \in[\tau+1]$ are significantly large, and most monomials in \mathcal{M}_{N}^{ℓ} in fact have good signatures.

Lemma 9. For our choice of the main parameters, the following statements hold:

1. For $i \in[\tau-1], \frac{\hat{s}_{i}}{\hat{s}_{i+1}} \geq N^{\delta}$.
2. For $i \in[\tau], \hat{s}_{i}=N^{1-i \delta}(1-o(1))$.
3. $\operatorname{Pr}\left[s(m) \in \mathcal{S}_{0}\right]=1-o(1)$.

Proof. Pick a random monomial of degree at most ℓ uniformly at random; $m \sim \mathcal{U}\left(\mathcal{M}_{N}^{\ell}\right)$.
Consider the following random variables.

1. For $i \in[\tau+1]$ and $j \in[N], Z_{i, j}$ denotes the $0-1$ random variable that is 1 if and only if the variable x_{j} has degree at least i in m.
Let p_{i} denote $\mathbb{E}_{m}\left[Z_{i, j}\right]$. (The average is the same for all j.)
2. For $i \in[\tau+1]$, let $Z_{i}=\sum_{j \in[N]} Z_{i, j}$ be the random variable denoting the number of variables that have degree at least i in m.
Let μ_{i} denote $\mathbb{E}_{m}\left[Z_{i}\right]$; clearly, $\mu_{i}=N p_{i}$.
3. For $i \in[\tau]$, the number of variables of degree exactly i is given by $Y_{i}:=Z_{i}-Z_{i+1}$.

Then $\hat{s}_{i}=\mathbb{E}_{m}\left[Y_{i}\right]$; clearly, $\hat{s}_{i}=\mu_{i}-\mu_{i+1}$.
Consider p_{i}, the probability that the variable x_{j} has degree at least i in a monomial $m \sim$ $\mathcal{U}\left(\mathcal{M}_{N}^{\ell}\right)$. We see that any such monomial can be written uniquely as $m=m^{\prime}\left(x_{j}\right)^{i}$ where m^{\prime} is a monomial of degree at most $\ell-i$ in the same set of variables X. Since the number of such monomials is exactly $\left|\mathcal{M}_{N}^{\ell-i}\right|$, we have

$$
p_{i}=\frac{\left|\mathcal{M}_{N}^{\ell-i}\right|}{\left|\mathcal{M}_{N}^{\ell}\right|}=\frac{\binom{N+\ell-i}{\ell-i}}{\binom{N+\ell}{\ell}}
$$

In particular, $\frac{\mu_{i}}{\mu_{i+1}}=\frac{p_{i}}{p_{i+1}}=\frac{N+\ell-i}{\ell-i} \geq \frac{N+\ell}{\ell}=1+N^{\delta} \geq N^{\delta}$

$$
\text { Hence, } \quad \frac{\hat{s}_{i}}{\hat{s}_{i+1}}=\frac{p_{i}-p_{i+1}}{p_{i+1}-p_{i+2}} \geq \frac{p_{i}-p_{i+1}}{p_{i+1}}=\frac{p_{i}}{p_{i+1}}-1 \geq N^{\delta}
$$

proving the first part of the lemma.
Next, we use the following fact about binomial coefficients:
Fact 10. For any $N, \ell, i \in \mathbb{N}$ such that $i<\ell$, we have

$$
\left(\frac{\ell-i}{N+\ell}\right)^{i} \leq\left(\frac{\ell-i}{N+\ell-i}\right)^{i} \leq \frac{\binom{N+\ell-i}{\ell-i}}{\binom{N+\ell}{\ell}} \leq\left(\frac{\ell}{N+\ell}\right)^{i} .
$$

By Fact 10, we have

$$
p_{i} \leq\left(\frac{\ell}{N+\ell}\right)^{i} \leq\left(\frac{\ell}{N}\right)^{i} \leq N^{-i \delta} ; \quad \mu_{i} \leq N^{1-i \delta} ; \quad \hat{s}_{i} \leq \mu_{i} \leq N^{1-i \delta}
$$

Also by Fact 10, we have

$$
\begin{aligned}
p_{i} & \geq\left[\left(\frac{\ell-i}{\ell}\right)\left(\frac{\ell}{N}\right)\left(\frac{N}{N+\ell}\right)\right]^{i}=N^{-i \delta}(1-o(1))\left[\frac{\left(1-\frac{i}{\ell}\right)}{\left(1+\frac{\ell}{N}\right)}\right]^{i} \\
& \geq N^{-i \delta}(1-o(1)) \exp \left(-O\left(\frac{i^{2}}{\ell}+\frac{i \ell}{N}\right)\right) .
\end{aligned}
$$

By our choice of parameters (Fact 4), we have $i^{2} / \ell \leq(\tau+1)^{2} / \ell=o(1)$ and $i \ell / N=o(1)$. Hence, we have

$$
p_{i} \geq N^{-i \delta}(1-o(1)) ; \quad \mu_{i} \geq N^{1-i \delta}(1-o(1)) ; \quad \hat{s}_{i} \geq \mu_{i}\left(1-\frac{\mu_{i+1}}{\mu_{i}}\right) \geq N^{1-i \delta}(1-o(1)) .
$$

Putting together the upper and lower bounds proves the second part of the lemma.
In order to prove the third part of the lemma, we use the second moment method. To do this, we will need to bound the second moment of Z_{i}. In order to do this, we will need the following claim.
Claim 11. For any distinct j_{1}, j_{2}, we have $\mathbb{E}\left[Z_{i, j_{1}} Z_{i, j_{2}}\right] \leq \mathbb{E}\left[Z_{i, j_{1}}\right] \mathbb{E}\left[Z_{i, j_{2}}\right]=p_{i}^{2}{ }^{5}$
The claim is proved below. First, we use this claim to finish the proof. The following standard analysis will bound the second moment of Z_{i}.

$$
\begin{aligned}
\mathbb{E}\left[Z_{i}^{2}\right] & =\sum_{j_{1}, j_{2}} \mathbb{E}\left[Z_{i, j_{1}} Z_{i, j_{2}}\right]=\sum_{j_{1}} \mathbb{E}\left[Z_{i, j_{1}}^{2}\right]+\sum_{j_{1} \neq j_{2}} \mathbb{E}\left[Z_{i, j_{1}} Z_{i, j_{2}}\right] \\
& \leq N p_{i}+\sum_{j_{1} \neq j_{2}} p_{i}^{2} \leq N p_{i}+N^{2} p_{i}^{2}=\mu_{i}+\mu_{i}^{2},
\end{aligned}
$$

where the first inequality follows from the fact that $Z_{i, j_{1}}^{2}=Z_{i, j_{1}}$ and Claim 11 .
Hence, we can bound the variance of Z_{i} as follows.

$$
\mathbb{E}\left[\left(Z_{i}-\mu_{i}\right)^{2}\right]=\mathbb{E}\left[Z_{i}^{2}\right]-\mu_{i}^{2} \leq \mu_{i} .
$$

[^3]Thus, by the Chebyshev inequality, we have

$$
\operatorname{Pr}\left[\left|Z_{i}-\mu_{i}\right|>\mu_{i} / 4\right] \leq \frac{\mathbb{E}\left[\left(Z_{i}-\mu_{i}\right)^{2}\right]}{\left(\mu_{i} / 4\right)^{2}} \leq \frac{16}{\mu_{i}}
$$

Union bounding over all $i \in[\tau+1]$, we have

$$
\begin{aligned}
\operatorname{Pr}\left[\exists i,\left|Z_{i}-\mu_{i}\right|>\mu_{i} / 4\right] & \leq 16 \sum_{i \in[\tau+1]} \frac{1}{\mu_{i}}=\frac{16}{N} \sum_{i \in[\tau+1]} \frac{1}{p_{i}} \\
& \leq \frac{16}{N} \sum_{i \in[\tau+1]} N^{i \delta}(1+o(1)) \leq \frac{16 N^{(\tau+1) \delta}(1+o(1))}{N} \\
& \leq \frac{16(1+o(1))}{N^{\alpha}}=o(1)
\end{aligned}
$$

Thus with probability $(1-o(1))$ we have $\left|Z_{i}-\mu_{i}\right| \leq \mu_{i} / 4$ for all $i \in[\tau]$. When this event occurs, we see that for all $i \in[\tau]$,
$\left|Y_{i}-\hat{s}_{i}\right|=\left|Z_{i}-Z_{i+1}-\left(\mu_{i}-\mu_{i+1}\right)\right| \leq \frac{\mu_{i}}{4}+\frac{\mu_{i+1}}{4}<\frac{\mu_{i}}{4}\left(1+N^{-\delta}\right)<\frac{\mu_{i}}{4}(1+o(1)) \leq \frac{\hat{s}_{i}(1+o(1))}{4}<\frac{\hat{s}_{i}}{2}$
for sufficiently large N. So $s(m) \in \mathcal{S}_{0}$, which proves the third part of the lemma.
Finally, it remains to prove the Claim.
Proof. (of Claim) Without loss of generality, assume that $j_{1}=1$ and $j_{2}=2$. Then, $\mathbb{E}\left[Z_{i, j_{1}} Z_{i, j_{2}}\right]$ is the probability that a random $m \sim \mathcal{M}_{N}^{\ell}$ is divisible by the monomial $x_{1}^{i} x_{2}^{i}$. Such a monomial m may be uniquely factored as $x_{1}^{i} x_{2}^{i} m^{\prime}$ where m^{\prime} is a monomial of degree at most $\ell-2 i$. Thus, the probability of this event is precisely

$$
\frac{\left|\mathcal{M}_{N}^{\ell-2 i}\right|}{\left|\mathcal{M}_{N}^{\ell}\right|}=\frac{\binom{N+\ell-2 i}{\ell-2 i}}{\binom{N+\ell}{\ell}}
$$

The statement of the claim says that the above quantity may be bounded by $p_{i}^{2}=$ $\left(\frac{\binom{N+\ell-i}{\ell-i}}{\binom{N+\ell}{\ell}}\right)^{2}$. Rearranging, we see that this is equivalent to the following inequality

$$
\frac{\binom{N+\ell-2 i}{\ell-2 i}}{\binom{N+\ell-i}{\ell-i}} \leq \frac{\binom{N+\ell-i}{\ell-i}}{\binom{N+\ell}{\ell}}
$$

Expanding the binomials above and cancelling common terms between the numerators and denominators, we may rewrite the inequality as

$$
\left(\frac{\ell-2 i+1}{N+\ell-2 i+1}\right) \cdots\left(\frac{\ell-i}{N+\ell-i}\right) \leq\left(\frac{\ell-i+1}{N+\ell-i+1}\right) \cdots\left(\frac{\ell}{N+\ell}\right)
$$

which is easy to verify since each term on the left hand side is upper bounded by the corresponding term on the right hand side. This proves the claim.

This completes the proof of Lemma 9
Remark 12. By Lemma 9, for any good signature $\left(s_{1}, \ldots, s_{\tau}\right)$, we have $\frac{s_{i}}{s_{i+1}}=\Omega\left(N^{\delta}\right)$ and $s_{\tau}=\Omega\left(N^{1-\tau \delta}\right)=\Omega\left(N^{\alpha}\right)$. Also $\frac{\left|\bigcup_{\left(s_{1}, \ldots, s_{\tau}\right) \text { good }} \mathcal{M}_{N}^{\ell}\left(s_{1}, \ldots, s_{\tau}\right)\right|}{\left|\mathcal{M}_{N}^{\ell}\right|}=1-o(1)$.

Given a signature $\left(s_{1}, \ldots, s_{\tau}\right)$, let $\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)$ denote the set of polynomials

$$
\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)=\left\{m \cdot p_{T}\left|T \subseteq[N],|T|=k, m \in \mathcal{M}_{N}^{\ell}\left(s_{1}, \ldots, s_{\tau}\right), \operatorname{supp}(m) \cap T=\emptyset\right\}\right.
$$

Note that all polynomials in $\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)$ are homogeneous of degree at most $\ell+d-k$.
Definition 13. For any signature $s=\left(s_{1}, \ldots, s_{\tau}\right)$, let $r_{i}(s)=s_{i}$ for $1 \leqslant i \leqslant \tau-1$ and $r_{\tau}(s)=s_{\tau}+k$; also, let $r(s)=\sum_{i} r_{i}(s)=\left(\sum_{i} s_{i}\right)+k$. Usually the signature s will be clear from context, and we use r_{i} and r instead of $r_{i}(s)$ and $r(s)$ respectively. The matrix $M\left(s_{1}, \ldots, s_{\tau}\right)$ is the matrix whose columns are indexed by polynomials $m \cdot p_{T} \in \mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)$ and rows by the monomials $w \in \mathcal{M}_{N}^{\ell+d-k}\left(r_{1}, \ldots, r_{\tau}\right)$. The coefficient in row w and column $m \cdot p_{T}$ is the coefficient of the monomial w in the polynomial $m \cdot p_{T}$.

Note that the columns of $M\left(s_{1}, \ldots, s_{\tau}\right)$ are simply the polynomials in $\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)$ projected to the monomials that label the rows. In particular, a lower bound on the rank of $M\left(s_{1}, \ldots, s_{\tau}\right)$ implies a lower bound on the rank of the vector space spanned by $\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)$.

It is not too hard to see that $M\left(s_{1}, \ldots, s_{\tau}\right)$ has $\left|\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)\right|$ columns but only $\left.\frac{\left|\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)\right|}{\left(s_{\tau}+k\right.}\right)$ rows. Hence, the rank of the matrix is no more than the number of rows in the matrix. The following lemma, proved in Section 3.3, shows a lower bound that is quite close to this trivial upper bound.

Lemma 14. With parameters as above, for any good signature $s=\left(s_{1}, \ldots, s_{\tau}\right)$,

$$
\operatorname{rank}\left(M\left(s_{1}, \ldots, s_{\tau}\right)\right) \geqslant \frac{\left|\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)\right|}{\binom{s_{\tau}+k}{k}}(1-o(1))
$$

Since $\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right) \subseteq \mathcal{P} \subseteq\left\langle\partial_{k} f\right\rangle_{\leq \ell}$, the above immediately yields a lower bound on $\operatorname{dim}\left(\left\langle\partial_{k} f\right\rangle_{\leq \ell}\right)$. Our final lower bound, which further improves this, is proved by considering polynomials corresponding to a set of signatures.

Definition 15. Given a set of signatures \mathcal{S}, define $\mathcal{M}_{N}^{\ell}(\mathcal{S})=\bigcup_{s \in \mathcal{S}} \mathcal{M}_{N}^{\ell}(s)$ and $\mathcal{P}(\mathcal{S})=$ $\bigcup_{s \in \mathcal{S}} \mathcal{P}(s)$. Also define the matrix $M(\mathcal{S})$ as follows: the columns of $M(\mathcal{S})$ are labelled by polynomials $q \in \mathcal{P}(\mathcal{S})$ and the rows by monomials $w \in \bigcup_{s \in \mathcal{S}} \mathcal{M}_{N}^{\ell+d-k}\left(r_{1}(s), \ldots, r_{\tau}(s)\right)$. The (w, q) th entry is the coefficient of w in q.

Note that a lower bound on the rank of $M(\mathcal{S})$ immediately lower bounds the dimension of the space spanned by $\mathcal{P}(\mathcal{S})$ and hence also $\operatorname{dim}\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}$.

Definition 16. A set of signatures \mathcal{S} is well-separated if given any distinct signatures $s=$ $\left(s_{1}, \ldots, s_{\tau}\right)$ and $s^{\prime}=\left(s_{1}^{\prime}, \ldots, s_{\tau}^{\prime}\right)$ from $\mathcal{S}, \max _{i \in[\tau]}\left|s_{i}-s_{i}^{\prime}\right| \geqslant d+1$.

To analyze the rank of $M(\mathcal{S})$, we observe that for a well-separated set of signatures \mathcal{S}, the matrix $M(\mathcal{S})$ is block-diagonalizable with $|\mathcal{S}|$ blocks, where the blocks are the matrices $M(s)$ for $s \in \mathcal{S}$. Since we already have a lower bound on the ranks of $M(s)$ (for good s), this will allow us to obtain a lower bound on the rank of $M(\mathcal{S})$ as well.

Lemma 17. Let \mathcal{S} be a well-separated set of signatures. Then, the matrix $M(\mathcal{S})$ is blockdiagonalizable with blocks $M(s)$ for $s \in \mathcal{S}$.

Proof. The proof is straightforward. Since the rows and columns of $M(\mathcal{S})$ are labelled by elements of $\bigcup_{s \in \mathcal{S}} \mathcal{M}_{N}^{\ell+d-k}\left(r_{1}(s), \ldots, r_{\tau}(s)\right)$ and $\bigcup_{s \in \mathcal{S}} \mathcal{P}(s)$ respectively, we can group them in blocks in a natural way: corresponding to each $s \in \mathcal{S}$, we consider the rows corresponding to $\mathcal{M}_{N}^{\ell+d-k}\left(r_{1}(s), \ldots, r_{\tau}(s)\right)$ and columns corresponding to $\mathcal{P}(s)$. This is possible since for
$s \neq s^{\prime}$, the set of monomials $\mathcal{M}_{N}^{\ell+d-k}\left(r_{1}(s), \ldots, r_{\tau}(s)\right)$ and $\mathcal{M}_{N}^{\ell+d-k}\left(r_{1}\left(s^{\prime}\right), \ldots, r_{\tau}\left(s^{\prime}\right)\right)$ are disjoint (because the mapping $s \mapsto\left(r_{1}(s), \ldots, r_{\tau}(s)\right)$ is one-to-one). Clearly the diagonal block corresponding to $s \in \mathcal{S}$ is exactly the matrix $M(s)$.

To argue that the matrix is block-diagonal, consider the entry in row w and column m. p_{T}, where for some signatures $s, s^{\prime} \in \mathcal{S}$, the monomials m, w are in the sets $m \in \mathcal{M}_{N}^{\ell}(s)$ and $w \in \mathcal{M}_{N}^{\ell}\left(r\left(s^{\prime}\right)\right)$. Assume that this entry is 1 . Hence for some $A \subseteq[N]$ of size $d-k$ containing $T, w=m \cdot X_{A}$. Thus, any monomial w appearing in q has the property that $\left|\left|\operatorname{supp}_{i}(w)\right|-\right| \operatorname{supp}_{i}(m) \| \leq d-k$. Thus, for $i<\tau,\left|s_{i}^{\prime}-s_{i}\right| \leq(d-k)<d$, and for $i=\tau$, $s_{\tau}-(d-k) \leq s_{\tau}^{\prime}+k \leq s_{\tau}+(d-k)$, hence $\left|s_{\tau}^{\prime}-s_{\tau}\right| \leq d$.

Since \mathcal{S} is well-separated, both s, s^{\prime} are in \mathcal{S}, and for all $i \in[\tau],\left|s_{i}^{\prime}-s_{i}\right| \leq d$, it must be the case that $s^{\prime}=s$.

This allows us to give a good bound on the matrix $M(\mathcal{S})$ if \mathcal{S} is well-separated:
Lemma 18. For a well-separated set \mathcal{S} of good signatures,

$$
\operatorname{rank}(M(\mathcal{S})) \geq \frac{(1-o(1))\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k}} \cdot\left|\mathcal{M}_{N}^{\ell}(\mathcal{S})\right|
$$

Proof.

$$
\begin{aligned}
\operatorname{rank}(M(\mathcal{S})) & =\sum_{s \in \mathcal{S}} \operatorname{rank}(M(s)) \quad \text { (by Lemma } 17, \text { block-diagonalizability) } \\
& \geq \sum_{s \in \mathcal{S}} \frac{|\mathcal{P}(s)|}{\binom{s_{\tau}+k}{k}}(1-o(1)) \quad \text { (by Lemma 14). }
\end{aligned}
$$

Consider the numerator, the number of columns in $M(s)$. For each monomial m, the set T generating column $m \cdot p_{T}$ can be chosen in $\binom{N-|\operatorname{supp}(m)|}{k}$ ways. So $|\mathcal{P}(s)| \geq\left|\mathcal{M}_{N}^{\ell}(s)\right|\binom{N-\ell}{k}$.

Next consider the denominator. Using the fact $k=o(\lg N)$ (Fact 4), while $s_{\tau} \geq \hat{s}_{\tau} / 2=$ $\Omega\left(N^{1-\delta \tau}\right)$ and $\hat{s}_{\tau} \leq N^{1-\delta \tau}$ from Lemma 9, we have

$$
\binom{s_{\tau}+k}{k} \leq \frac{s_{\tau}^{k}}{1-o(1)} \leq\left(\frac{3 \hat{s}_{\tau}}{2}\right)^{k} \frac{1}{1-o(1)} \leq\left(\frac{3 N^{1-\delta \tau}}{2}\right)^{k} \frac{1}{1-o(1)}
$$

Putting these back into our expression for $\operatorname{rank}(M(\mathcal{S}))$, we get

$$
\begin{aligned}
\operatorname{rank}(M(\mathcal{S})) & \geq \sum_{s \in \mathcal{S}} \frac{\left.\left|\mathcal{M}_{N}^{\ell}(s)\right| \begin{array}{c}
N-\ell \\
k
\end{array}\right)}{\left(3 N^{1-\delta \tau} / 2\right)^{k}}(1-o(1)) \\
& =\frac{(1-o(1))\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k}}\left|\mathcal{M}_{N}^{\ell}(\mathcal{S})\right|
\end{aligned}
$$

Finally, we observe that there is a well-separated set \mathcal{S} of good signatures such that the matrix $M(\mathcal{S})$ is quite large. Recall from Definition 8 that \mathcal{S}_{0} is the set of all good signatures.

Proposition 19. There is a well-separated set of good signatures, $\mathcal{S} \subseteq \mathcal{S}_{0}$, satisfying

$$
\left|\mathcal{M}_{N}^{\ell}(\mathcal{S})\right| \geq \frac{\left|\mathcal{M}_{N}^{\ell}\left(\mathcal{S}_{0}\right)\right|}{(d+1)^{\tau}}
$$

Proof. Let D be the set $D=\{0,1, \ldots, d\}$. Define the mapping $f: \mathcal{M}_{N}^{\ell}\left(\mathcal{S}_{0}\right) \longrightarrow D^{\tau}$ as follows: for $m \in \mathcal{M}_{N}^{\ell}\left(\mathcal{S}_{0}\right)$ with signature $s=\left(s_{1}, \ldots, s_{\tau}\right)$, set $f(m)=\left(d_{1}, \ldots, d_{\tau}\right)=d$ where $d_{i} \equiv s_{i} \bmod (d+1)$. Then there must be a $\hat{d} \in D^{\tau}$ such that $\left|f^{-1}(\hat{d})\right| \geq \frac{\left|\mathcal{M}_{N}^{\ell}\left(\mathcal{S}_{0}\right)\right|}{(d+1)^{\tau}}$. Define \mathcal{S} to be this set $f^{-1}(\hat{d})$; it is easy to see that \mathcal{S} is well-separated.

3.3 Bounding the rank of M : Step 3 of the proof

We now prove the lower bound on the rank of the matrix $M\left(s_{1}, \ldots, s_{\tau}\right)$ as claimed in Lemma 14 . We first block diagonalize it with matrices that have a simple combinatorial structure (their entries are 0 or 1 depending on intersection patterns of the sets that label the rows and columns). We then lower bound the ranks of these matrices: this is the main technical step in the proof.

Lemma 20. Fix any signature $\left(s_{1}, \ldots, s_{\tau}\right)$. The entry of $M\left(s_{1}, \ldots, s_{\tau}\right)$ in row $w \equiv$ $\left[\tilde{w}, R_{1}, \ldots, R_{\tau}\right]$ and column $m \cdot p_{T}$ with $m \equiv\left[\tilde{m}, S_{1}, \ldots, S_{\tau}\right]$ belongs to $\{0,1\}$ and is not zero if and only if $\tilde{w}=\tilde{m}$ and the following system is satisfied:

$$
\left\{\begin{array}{l}
T \subseteq R_{1} \\
S_{1} \subseteq R_{1} \cup R_{2} \\
S_{2} \subseteq R_{2} \cup R_{3} \\
\vdots \\
S_{\tau-1} \subseteq R_{\tau-1} \cup R_{\tau} \\
S_{\tau} \subseteq R_{\tau}
\end{array}\right.
$$

Moreover, the system above implies that $T \cup S_{1} \cup \ldots \cup S_{\tau}=R_{1} \cup \ldots \cup R_{\tau}$.
Proof. The entry in row w and column $m \cdot p_{T}$ belongs to $\{0,1\}$ and is not zero if and only if there exists $A \subseteq[N]$ such that $T \subseteq A,|A|=d-k$ and $X_{A} \cdot m=w$. Assume there is such an A.

Say $w \equiv\left[\tilde{w}, R_{1}, \ldots, R_{\tau}\right]$ and $m \equiv\left[\tilde{m}, S_{1}, \ldots, S_{\tau}\right]$. Let $\bar{m}=\prod_{i=1}^{\tau}\left(X_{S_{i}}\right)^{i}$ and $\bar{w}=\prod_{i=1}^{\tau}\left(X_{R_{i}}\right)^{i}$ be the degree at most τ parts of m and w respectively.

Note that $\operatorname{deg}(\bar{w})-\operatorname{deg}(\bar{m})=\sum_{i=1}^{\tau} i r_{i}-\sum_{i=1}^{\tau} i s_{i}=\tau k=d-k$ by our choice of parameters r_{τ} and k. Putting this together with the fact that $w=X_{A} \cdot m$ for $|A|=d-k$, we see that X_{A} can only 'contribute' to the "degree at most τ " part of m : formally, $\bar{w}=X_{A} \cdot \bar{m}$ and hence, $\tilde{w}=\tilde{m}$.

Further, since $X_{A} \cdot \bar{m}=X_{A \backslash T} X_{T} \prod_{i=1}^{\tau}\left(X_{S_{i}}\right)^{i}=\prod_{i=1}^{\tau}\left(X_{R_{i}}\right)^{i}=\bar{w}$, and $T \cap\left(S_{1} \cup \ldots \cup S_{\tau}\right)=\emptyset$, we have $T \subseteq R_{1}$. Since X_{A} is multilinear, $S_{i} \subseteq R_{i} \cup R_{i+1}$ for all $i \in[\tau-1] ; S_{\tau} \subseteq R_{\tau}$ is obvious.

Conversely, assume that $\tilde{w}=\tilde{m}$ and the inclusions $T \subseteq R_{1}, S_{i} \subseteq R_{i} \cup R_{i+1}$ for all $i \in[\tau-1]$ and $S_{\tau} \subseteq R_{\tau}$ are satisfied. Then $T \cup S_{1} \cup \ldots \cup S_{\tau} \subseteq R_{1} \cup \ldots \cup R_{\tau}$. Since $\left|T \cup S_{1} \cup \ldots \cup S_{\tau}\right|=$ $k+\sum_{i=1}^{\tau} s_{i}=\sum_{i=1}^{\tau} r_{i}=\left|R_{1} \cup \ldots \cup R_{\tau}\right|$, we get $T \cup S_{1} \cup \ldots \cup S_{\tau}=R_{1} \cup \ldots \cup R_{\tau}$. Let $A_{i}=R_{i} \backslash S_{i}$ for $i \in[\tau]$ and $A=A_{1} \cup \ldots \cup A_{\tau}$. The sets A_{i} are disjoint (because the R_{i} are disjoint). Moreover, $\left|A_{\tau}\right|=\left|R_{\tau} \backslash S_{\tau}\right|=r_{\tau}-s_{\tau}=k$; and by induction, $\left|A_{i}\right|=\left|R_{i} \backslash S_{i}\right|=$ $\left|\left(R_{i} \cup \ldots \cup R_{\tau}\right) \backslash\left(S_{i} \cup \ldots \cup S_{\tau}\right)\right|=\sum_{j=i}^{\tau} r_{j}-\sum_{j=i}^{\tau} s_{j}=k$. Hence $\left|A_{i}\right|=k$ for all $i \in[\tau]$. Then $|A|=\tau k=d-k$. Moreover, $T=A_{1} \subseteq A$. And it holds that $X_{A} \prod_{i=1}^{\tau}\left(X_{S_{i}}\right)^{i}=\prod_{i=1}^{t} a u\left(X_{R_{i}}\right)^{i}$. Since $\tilde{w}=\tilde{m}$, it follows that $X_{A} \cdot m=w$. Hence the entry in row w and column $m \cdot p_{T}$ is 1 .

Lemma 21. Let $\left(s_{1}, \ldots, s_{\tau}\right)$ be any signature. The matrix $M\left(s_{1}, \ldots, s_{\tau}\right)$ is block diagonalizable with blocks of size $\left(\begin{array}{ccc}r_{1} & r & r_{2}\end{array}\right) \times\left(\begin{array}{ccc}r_{\tau}\end{array}\right) \times\left(\begin{array}{ccc}s_{1} & s_{2} & \ldots \\ s_{\tau} & k\end{array}\right)$.

Proof. Recall that $r=s_{1}+\ldots+s_{\tau}+k$ (Definition 13).
Given a monomial \tilde{w} and $R \subseteq[N]$, a block of rows of $M\left(s_{1}, \ldots, s_{\tau}\right)$ is defined by the set of monomials w such that $w \equiv\left[\tilde{w}, R_{1}, \ldots, R_{\tau}\right]$ for some R_{1}, \ldots, R_{τ} satisfying $R_{1} \cup \ldots \cup R_{\tau}=R$.

In the same way, given \tilde{m} and $S \subseteq[N]$, a block of columns is defined by the set of polynomials $m \cdot p_{T}$ such that $m \equiv\left[\tilde{m}, S_{1}, \ldots, S_{\tau}\right]$ for some S_{1}, \ldots, S_{τ} such that $T \cup S_{1} \cup \ldots \cup S_{\tau}=S$.

By Lemma 20, all blocks such that $\tilde{w} \neq \tilde{m}$ or $R \neq S$ are zero. Hence the matrix $M\left(s_{1}, \ldots, s_{\tau}\right)$

To obtain a lower bound on the rank of each block in the block diagonalization, we first establish a technical lemma involving a multinomial inequality.

Lemma 22. For a good signature $s=\left(s_{1}, \ldots, s_{\tau}\right)$, and the corresponding r as in Definition 13 ,

$$
\sum_{s_{1}^{\prime} \geqslant s_{1}, \ldots, s_{\tau-1}^{\prime} \geqslant s_{\tau-1}}\left(\begin{array}{c}
r \\
s_{1}^{\prime} \\
s_{2}^{\prime} \ldots
\end{array} s_{\tau-1}^{\prime} r-\sum_{i=1}^{\tau-1} s_{i}^{\prime}\right)=\left(\begin{array}{c}
r \\
s_{1} s_{2} \ldots \\
s_{\tau-1} r-\sum_{i=1}^{\tau-1} s_{i}
\end{array}\right)(1+o(1)) .
$$

Proof. Note that $\tau=o\left(N^{\delta}\right)$ (Fact 4). Also, from the definition of a good signature and from Remark 12, $s_{i}=\Omega\left(s_{i+1} N^{\delta}\right)$ for $i \in[\tau]$. Also, by our choice of parameters k, τ, we have $r-\left(s_{1}+\ldots+s_{\tau-1}\right)=s_{\tau}+k \in O\left(s_{\tau}\right)$, so $s_{\tau-1}=\Omega\left(\left(s_{\tau}+k\right) N^{\delta}\right)$.

Thus for sufficiently large N we can find an absolute constant $K>0$ such that

$$
\max \left\{\frac{r-\left(s_{1}+\ldots+s_{\tau-1}\right)}{s_{\tau-1}}, \frac{s_{\tau-1}}{s_{\tau-2}}, \cdots, \frac{s_{2}}{s_{1}}\right\} \leq \frac{K}{N^{\delta}} \leq \frac{1}{20 \tau}
$$

Define $S_{p}\left(b, a_{1}, \ldots, a_{p}\right)=\sum_{\delta_{1}, \ldots \delta_{p} \in \mathbb{N}}\binom{b}{a_{1}+\delta_{1} a_{2}+\delta_{2} \ldots a_{p}+\delta_{p} b-\sum_{i=1}^{p}\left(a_{i}+\delta_{i}\right)}$.
The claimed result is a bound on $S_{\tau-1}\left(r, s_{1}, s_{2}, \ldots, s_{\tau-1}\right)$, and is a special case of the following.
Claim 23. Let K be a non-negative real number and $p, b, a_{1}, \ldots, a_{p}$ be positive integers such that $b \geq a_{1}+\cdots+a_{p}$ and

$$
\max \left\{\frac{b-\left(a_{1}+\ldots+a_{p}\right)}{a_{p}}, \frac{a_{p-1}}{a_{p-2}}, \cdots, \frac{a_{2}}{a_{1}}\right\} \leq \frac{K}{N^{\delta}} \leq \frac{1}{20 p}
$$

Then the following holds:

$$
S_{p}\left(b, a_{1}, \ldots, a_{p}\right) \leqslant\binom{ b}{a_{1} a_{2} \ldots a_{p} b-\sum_{i=1}^{p} a_{i}}\left(1+\frac{5 K p}{N^{\delta}}\right)
$$

Proof. We prove this by induction on p.
For the base case $p=1$, we prove a sightly stronger statement that will be used in the inductive step, namely:
Claim 24. Let R be a non-negative real number, and a, b be integers with $1 \leq a \leq b$, satisfying $\frac{b-a}{a} \leq \frac{R}{N^{\delta}} \leq \frac{1}{20}$. Then

$$
S_{1}(b, a) \triangleq \sum_{\delta^{\prime} \in \mathbb{N}}\binom{b}{a+\delta^{\prime}} \leqslant\binom{ b}{a}\left(1+\frac{2 R}{N^{\delta}}\right)
$$

Proof. By hypothesis, $b-a \leq a R / N^{\delta}$. Notice that for $\delta^{\prime} \geqslant 0$:

$$
\frac{\binom{b}{a+\delta^{\prime}+1}}{\binom{b}{a+\delta^{\prime}}}=\frac{b-a-\delta^{\prime}}{a+\delta^{\prime}+1} \leqslant \frac{b-a}{a} \leqslant \frac{R}{N^{\delta}} .
$$

Hence,

$$
S_{1}(b, a)=\sum_{\delta^{\prime} \in \mathbb{N}}\binom{b}{a+\delta^{\prime}} \leqslant\binom{ b}{a}\left(1+\sum_{\delta^{\prime}=1}^{\infty}\left(\frac{R}{N^{\delta}}\right)^{\delta^{\prime}}\right) \leqslant\binom{ b}{a}\left(1+\frac{2 R}{N^{\delta}}\right) .
$$

Note that Claim 24 implies the base case of induction for Claim 23 ,
Now let $p \geq 2$, and assume that the claim holds for all $p^{\prime}<p$. We have

$$
S_{p}\left(b, a_{1}, \ldots, a_{p}\right)=\sum_{\delta_{1} \in \mathbb{N}}\binom{b}{a_{1}+\delta_{1}} S_{p-1}\left(b-\left(a_{1}+\delta_{1}\right), a_{2}, \ldots, a_{p}\right)
$$

Note that for all non-negative δ_{1},
$\left(b-\left(a_{1}+\delta_{1}\right)\right)-\left(a_{2}+\ldots+a_{p}\right) \leq\left(b-a_{1}\right)-\left(a_{2}+\ldots+a_{p}\right)=b-\left(a_{1}+a_{2}+\ldots+a_{p}\right) \leq a_{p} K / N^{\delta}$.
Hence the induction hypothesis is applicable to all the S_{p-1} terms, giving

$$
\begin{aligned}
& S_{p}\left(b, a_{1}, \ldots, a_{p}\right) \leqslant \sum_{\delta_{1} \in \mathbb{N}}\binom{b}{a_{1}+\delta_{1}}\binom{b-\left(a_{1}+\delta_{1}\right)}{a_{2} a_{3} \ldots a_{p} b-\left(\sum_{i=1}^{p} a_{i}\right)-\delta_{1}}\left(1+\frac{5 K(p-1)}{N^{\delta}}\right) \\
& \leqslant \sum_{\delta_{1} \in \mathbb{N}}\binom{b}{a_{1}+\delta_{1}}\binom{b-a_{1}}{a_{2} \quad a_{3} \ldots a_{p} b-\sum_{i=1}^{p} a_{i}}\left(1+\frac{5 K(p-1)}{N^{\delta}}\right) \\
& \text { (because }\left(\begin{array}{c}
b-\left(a_{1}+\delta_{1}\right) \\
a_{2} \\
a_{3} \ldots
\end{array} a_{p} b-\left(\sum_{i=1}^{p} a_{i}\right)-\delta_{1}\right) \text { is a decreasing function of } \delta_{1} \text {.) } \\
& =\binom{b-a_{1}}{a_{2} a_{3} \ldots a_{p} b-\sum_{i=1}^{p} a_{i}}\left(1+\frac{5 K(p-1)}{N^{\delta}}\right) \sum_{\delta_{1} \in \mathbb{N}}\binom{b}{a_{1}+\delta_{1}} \\
& =\binom{b-a_{1}}{a_{2} \quad a_{3} \ldots a_{p} b-\sum_{i=1}^{p} a_{i}}\left(1+\frac{5 K(p-1)}{N^{\delta}}\right) S_{1}\left(b, a_{1}\right) \text {. }
\end{aligned}
$$

We need to show that Claim 24 is applicable to $S_{1}\left(b, a_{1}\right)$. Note that

$$
\begin{aligned}
\frac{b-a_{1}}{a_{1}} & =\frac{b-\sum_{i=1}^{p} a_{i}+\sum_{i=2}^{p} a_{i}}{a_{1}}=\frac{b-\sum_{i=1}^{p} a_{i}}{a_{1}}+\frac{a_{p}}{a_{1}}+\ldots+\frac{a_{2}}{a_{1}} \\
& =\left(\frac{b-\sum_{i=1}^{p} a_{i}}{a_{p}}\right)\left(\frac{a_{p}}{a_{p-1}}\right) \cdots\left(\frac{a_{2}}{a_{1}}\right)+\left(\frac{a_{p}}{a_{p-1}}\right) \cdots\left(\frac{a_{2}}{a_{1}}\right)+\ldots+\frac{a_{2}}{a_{1}} \\
& \leqslant \sum_{i=1}^{p}\left(K N^{-\delta}\right)^{i} \leqslant \frac{2 K}{N^{\delta}} \text { because } K / N^{\delta} \leq 1 / 20<1 .
\end{aligned}
$$

Also,

$$
\frac{2 K}{N^{\delta}} \leq \frac{1}{10 p} \leq \frac{1}{20}
$$

So we can use Claim 24 with $R=2 K, a=a_{1}$, and b. Continuing our derivation, we get

$$
\left.\begin{array}{rl}
S_{p}\left(b, a_{1}, \ldots, a_{p}\right) & \leqslant\left(\begin{array}{c}
b-a_{1} \\
a_{2} \\
a_{3}
\end{array} \ldots a_{p} b-\sum_{i=1}^{p} a_{i}\right.
\end{array}\right)\left(1+\frac{5 K(p-1)}{N^{\delta}}\right)\binom{b}{a_{1}}\left(1+\frac{4 K}{N^{\delta}}\right) .
$$

(using the assumption $p \leq N^{\delta} /(20 K)$).

This completes the proof of Lemma 22 .
We now lower bound the rank of each block in the block diagonalization.
Lemma 25 (Main Technical lemma). Fix any good signature $\left(s_{1}, \ldots, s_{\tau}\right)$. The rank of any diagonal block of $M\left(s_{1}, \ldots, s_{\tau}\right)$ is $\left(\begin{array}{cc}r & r \\ s_{1} & s_{2}\end{array} \ldots s_{\tau}+k\right)(1-o(1))$.

Proof. Let M^{\prime} be a diagonal block of the matrix $M\left(s_{1}, \ldots, s_{\tau}\right)$. Recall from Lemma 21 that such a diagonal block is defined by a monomial \tilde{w} and a subset $R \subseteq[N]$. Rows of this block are labelled with all monomials $w \equiv\left[\tilde{w}, R_{1}, \ldots, R_{\tau}\right]$ such that $R_{1} \cup \ldots \cup R_{\tau}=R$ and columns of this block are labelled with all polynomials $m \cdot p_{T}$ where $m \equiv\left[\tilde{w}, S_{1}, \ldots, S_{\tau}\right]$ is such that $T \cup S_{1} \cup \ldots \cup S_{\tau}=R$. First, we set up some notation.

For a partition $\tilde{B}=\left(B_{1}, \ldots, B_{p}\right)$ of R, let $\tilde{b}=\left(b_{1}, \ldots, b_{p}\right)$ be the tuple of part sizes, $b_{i}=\left|B_{i}\right|$. We say that \tilde{b} is the signature of \tilde{B}.

We say $\left(a_{1}, \ldots, a_{p}\right) \preceq\left(b_{1}, \ldots, b_{p}\right)$ if $a_{i} \leq b_{i}$ for all $i \in[p]$, and $\left(a_{1}, \ldots, a_{p}\right) \prec\left(b_{1}, \ldots, b_{p}\right)$ if $\left(a_{1}, \ldots, a_{p}\right) \preceq\left(b_{1}, \ldots, b_{p}\right)$ but $\left(a_{1}, \ldots, a_{p}\right) \neq\left(b_{1}, \ldots, b_{p}\right)$.

Define the following collections of partitions of R :

$$
\begin{aligned}
X & =\left\{\tilde{R}=\left(R_{1}, \ldots, R_{\tau}\right) \mid \text { signature }(\tilde{R})=\left(r_{1}, \ldots, r_{\tau}\right)\right\} \\
Y & =\left\{\tilde{S}=\left(S_{1}, \ldots, S_{\tau}, T\right) \mid \operatorname{signature}(\tilde{S})=\left(s_{1}, \ldots, s_{\tau}, k\right)\right\} \\
Z^{\prime} & =\left\{\tilde{Q}=\left(Q_{1}, \ldots, Q_{\tau}\right) \mid \operatorname{signature}(\tilde{Q})=\left(q_{1}, \ldots, q_{\tau}\right) ;\left(s_{1}, \ldots, s_{\tau-1}\right) \preceq\left(q_{1}, \ldots, q_{\tau-1}\right)\right\} \\
Z & =\left\{\tilde{Q}=\left(Q_{1}, \ldots, Q_{\tau}\right) \mid \operatorname{signature}(\tilde{Q})=\left(q_{1}, \ldots, q_{\tau}\right) ;\left(s_{1}, \ldots, s_{\tau-1}\right) \prec\left(q_{1}, \ldots, q_{\tau-1}\right)\right\}
\end{aligned}
$$

Note that $|X|=\left(\begin{array}{cc}r \\ s_{1} s_{2} \ldots & s_{\tau}+k\end{array}\right)$. Also, $Z^{\prime} \backslash Z$ is precisely X. By Lemma $22,\left|Z^{\prime}\right|=|X|(1+o(1))$. Hence $|Z|=|X| \cdot o(1)$.

For any $\tilde{S} \in Y$, define the partition $\tilde{S_{X}}=\left(S_{1}, \ldots, S_{\tau-1}, S_{\tau} \cup T\right) \in X$. We say that \tilde{S} "extends" $\tilde{S_{X}}$.

The rows and columns of M^{\prime} are indexed by elements of X and Y respectively (Lemma 21).
We define two auxiliary matrices M_{1} and M_{2} as follows. The rows and columns of M_{1} are indexed by elements of X. The entries of M_{1} are in $\{0,1\}$ and are defined as follows:

$$
M_{1}\left(\tilde{R}, \tilde{R}^{\prime}\right)= \begin{cases}1 & \text { if } \quad R_{i}^{\prime} \subseteq R_{i} \cup R_{i+1} \text { for each } i \in[\tau-1] \\ 0 & \text { otherwise }\end{cases}
$$

The rows and columns of M_{2} are indexed by elements of X and Z respectively. The entries of M_{2} are in $\{0,1\}$ and are defined as follows:

$$
M_{2}(\tilde{R}, \tilde{Q})= \begin{cases}1 & \text { if } \quad Q_{i} \subseteq R_{i} \cup R_{i+1} \quad \text { for each } i \in[\tau-1] \\ 0 & \text { otherwise }\end{cases}
$$

Let I be the identity matrix with rows and columns indexed by elements of X.
Our proof proceeds as follows:

1. We will show that the columns of M^{\prime} and M_{2} together span the columns of M_{1}; hence $\operatorname{rank}\left(M_{1}\right) \leq \operatorname{rank}\left(M^{\prime}\right)+\operatorname{rank}\left(M_{2}\right)$.
2. We will show that the columns of M_{1} and M_{2} together span the columns of I; hence $\operatorname{rank}(I) \leq \operatorname{rank}\left(M_{1}\right)+\operatorname{rank}\left(M_{2}\right)$.
3. It then follows that

$$
\operatorname{rank}\left(M^{\prime}\right) \geq \operatorname{rank}\left(M_{1}\right)-\operatorname{rank}\left(M_{2}\right) \geq \operatorname{rank}(I)-2 \operatorname{rank}\left(M_{2}\right) \geq|X|-2|Z|=|X|(1-o(1))
$$

which is what we had set out to prove.
For $A \subseteq[\tau]$, define the function $\varphi_{A}: X \times 2^{R} \longrightarrow\{0,1\}$ as follows:

$$
\varphi_{A}(\tilde{R}, S)= \begin{cases}1 & \text { if } S \subseteq \bigcup_{i \in A} R_{i} \\ 0 & \text { otherwise }\end{cases}
$$

Note that if $S=\emptyset$, then $\varphi_{A}(\tilde{R}, S)=1$ for every A and \tilde{R}.
With some abuse of notation, for sets of size 1 or 2 we drop the set notation. eg $\varphi_{i_{1}, i_{2}}(\tilde{R}, j)$ is the same as $\varphi_{\left\{i_{1}, i_{2}\right\}}(\tilde{R},\{j\})$.

Since τ is odd and at least 3 , we can express the functions $\varphi_{A}(\cdot, \cdot)$ for singleton sets A in terms of the functions $\varphi_{B}(\cdot, \cdot)$ where $|B|=2$. In particular, for $A=\{1\}$ and for $A=\{\tau\}$, we write

$$
\begin{aligned}
\varphi_{\tau}(\tilde{R}, j) & =1-\varphi_{1,2}(\tilde{R}, j)-\varphi_{3,4}(\tilde{R}, j)-\ldots-\varphi_{\tau-2, \tau-1}(\tilde{R}, j) \\
\text { and } \quad \varphi_{1}(\tilde{R}, j) & =1-\varphi_{2,3}(\tilde{R}, j)-\varphi_{4,5}(\tilde{R}, j)-\ldots-\varphi_{\tau-1, \tau}(\tilde{R}, j) .
\end{aligned}
$$

For $A=\{1\}$ or $A=\{\tau\}$ and $S \subseteq[N]$ we write

$$
\varphi_{A}(\tilde{R}, S)=\prod_{j \in S} \varphi_{A}(\tilde{R}, j)
$$

We use these functions to compactly describe the columns of $M^{\prime}, M_{1}, M_{2}, I$. By definition,

$$
\begin{gathered}
M_{1}\left[\tilde{R}, \tilde{R}^{\prime}\right]=\prod_{i=1}^{\tau-1} \varphi_{i, i+1}\left(\tilde{R}, R_{i}^{\prime}\right) \\
M_{2}[\tilde{R}, \tilde{Q}]=\prod_{i=1}^{\tau-1} \varphi_{i, i+1}\left(\tilde{R}, Q_{i}\right) \\
I\left[\tilde{R}, \tilde{R}^{\prime}\right]=\left(\prod_{i=1}^{\tau} \varphi_{i}\left(\tilde{R}, R_{i}^{\prime}\right)\right)=\left(\prod_{i=1}^{\tau-1} \varphi_{i, i+1}\left(\tilde{R}, R_{i}^{\prime}\right)\right) \varphi_{\tau}\left(\tilde{R}, R_{\tau}^{\prime}\right)=M_{1}\left[\tilde{R}, \tilde{R^{\prime}}\right] \varphi_{\tau}\left(\tilde{R}, R_{\tau}^{\prime}\right)
\end{gathered}
$$

where the second equality follows from the fact that $\tilde{R}, \tilde{R}^{\prime}$ have the same signature. (RHS $=$ $1 \Rightarrow \varphi_{\tau}\left(\tilde{R}, R_{\tau}^{\prime}\right)=\underset{\tilde{R}}{1} \Rightarrow R_{\tau}^{\prime} \subseteq R_{\tau} \Rightarrow R_{\tau}^{\prime}=R_{\tau}$ because the sets are equi-sized. Then RHS $=1$ further $\Rightarrow \varphi_{\tau-1, \tau}\left(\tilde{R}, R_{\tau-1}^{\prime}\right)=1 \Rightarrow R_{\tau-1}^{\prime} \subseteq R_{\tau-1} \cup R_{\tau}$. But $R_{\tau-1}^{\prime}$ is disjoint from $R_{\tau}^{\prime}=R_{\tau}$. So $R_{\tau-1}^{\prime} \subseteq R_{\tau-1}$, and since they are equi-sized, they must be the same. Continuing this way, we conclude $\tilde{R}=\tilde{R}^{\prime}$.)

Starting with Lemma 20.

$$
\begin{aligned}
M^{\prime}[\tilde{R}, \tilde{S}] & =\varphi_{1,2}\left(\tilde{R}, S_{1}\right) \varphi_{2,3}\left(\tilde{R}, S_{2}\right) \ldots \varphi_{\tau-1, \tau}\left(\tilde{R}, S_{\tau-1}\right) \varphi_{\tau}\left(\tilde{R}, S_{\tau}\right) \varphi_{1}(\tilde{R}, T) \\
& =\left(\prod_{i=1}^{\tau-1} \varphi_{i, i+1}\left(\tilde{R}, S_{i}\right)\right)\left(\prod_{j \in S_{\tau}} \varphi_{\tau}(\tilde{R}, j)\right)\left(\prod_{j \in T} \varphi_{1}(\tilde{R}, T)\right) \\
& =\left(\prod_{i=1}^{\tau-1} \varphi_{i, i+1}\left(\tilde{R}, S_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \times\left(\prod_{j \in S_{\tau}}\left[1-\varphi_{1,2}(\tilde{R}, j)-\varphi_{3,4}(\tilde{R}, j)-\ldots-\varphi_{\tau-2, \tau-1}(\tilde{R}, j)\right]\right) \\
& \times\left(\prod_{j \in T}\left[1-\varphi_{2,3}(\tilde{R}, j)-\varphi_{4,5}(\tilde{R}, j)-\ldots-\varphi_{\tau-1, \tau}(\tilde{R}, j)\right]\right) \\
&= \sum^{\operatorname{partition} \tilde{Q}=\left(Q_{1}, \ldots, Q_{\tau-1}, Q_{\tau}\right):} \begin{array}{l}
\forall i \in[\tau-1], S_{i} \subseteq Q_{i} \\
=
\end{array} \sum_{\tilde{Q} \in Z^{\prime}} \alpha_{\tilde{S}, \tilde{Q}} \prod_{i=1}^{\tau-1}(-1)^{\left|Q_{i} \backslash S_{i}\right|} \varphi_{i, i+1}\left(\tilde{R}, Q_{i}\right) \\
& \varphi_{i, i+1}\left(\tilde{R}, Q_{i}\right) .
\end{aligned}
$$

The coefficients $\alpha_{\tilde{S}, \tilde{Q}}$ are all in $\{-1,0,1\}$. Observe that

- The coefficient $\alpha_{\tilde{S_{,}, S_{X}}}$ is 1 , and the corresponding term is precisely $M_{1}\left[\tilde{R}, \tilde{S_{X}}\right]$.
- The coefficient $\alpha_{\tilde{S}, \tilde{Q}}$ is 0 for all $\tilde{Q} \in X \backslash\left\{\tilde{S_{X}}\right\}$. (One of the requirements $S_{i} \subseteq Q_{i}$ must be violated.)
- All other \tilde{Q} are in Z, and the corresponding term is precisely $M_{2}[\tilde{R}, \tilde{Q}]$.

Hence

$$
M^{\prime}[\tilde{R}, \tilde{S}]=M_{1}\left[\tilde{R}, \tilde{S_{X}}\right]+\sum_{\tilde{Q} \in Z} \alpha_{\tilde{S}, \tilde{Q}} M_{2}[\tilde{R}, \tilde{Q}] .
$$

Since the coefficients in this combination do not depend on the row \tilde{R}, we obtain

$$
M^{\prime}[*, \tilde{S}]=M_{1}\left[*, \tilde{S_{X}}\right]+\sum_{\tilde{Q} \in Z} \alpha_{\tilde{S}, \tilde{Q}} M_{2}[*, \tilde{Q}] .
$$

For every $\tilde{R}^{\prime} \in X$, arbitrarily pick any $\tilde{S} \in Y$ extending it. Then

$$
M_{1}\left[*, \tilde{R}^{\prime}\right]=M^{\prime}[*, \tilde{S}]-\sum_{\tilde{Q} \in Z} \alpha_{\tilde{S}, \tilde{Q}} M_{2}[*, \tilde{Q}] .
$$

This completes Step 1.
Starting with I and proceeding in exactly the same way, we obtain

$$
\begin{aligned}
I\left[\tilde{R}, \tilde{R}^{\prime}\right] & =M_{1}\left[\tilde{R}, \tilde{R}^{\prime}\right] \varphi_{\tau}\left(\tilde{R}, R_{\tau}^{\prime}\right) \\
& =M_{1}\left[\tilde{R}, \tilde{R}^{\prime}\right]\left(\prod_{j \in R_{\tau}^{\prime}}\left[1-\varphi_{1,2}(\tilde{R}, j)-\varphi_{3,4}(\tilde{R}, j)-\ldots-\varphi_{\tau-2, \tau-1}(\tilde{R}, j)\right]\right) \\
& =M_{1}\left[\tilde{R}, \tilde{R^{\prime}}\right]+\sum_{\tilde{Q} \in Z} \beta_{\tilde{R}^{\prime}, \tilde{Q}} M_{2}[\tilde{R}, \tilde{Q}]
\end{aligned}
$$

for some coefficients $\beta_{\tilde{R}^{\prime}, \tilde{Q}}$ independent of \tilde{R}. Hence

$$
I\left[*, \tilde{R}^{\prime}\right]=M_{1}\left[*, \tilde{R}^{\prime}\right]+\sum_{\tilde{Q} \in Z} \beta_{\tilde{R}^{\prime}, \tilde{Q}} M_{2}[*, \tilde{Q}] .
$$

This completes Step 2.

Lemma 14 can now be proved using the block-diagonal decomposition (Lemma 21) and the rank lower bound (Lemma 25).

Proof. (of Lemma 14) By Lemma 21, we know that $M\left(s_{1}, \ldots, s_{\tau}\right)$ can be block diagonalized
 diagonalization.

By Lemma 25, we know that each block has rank

$$
\begin{aligned}
& \left.(1-o(1))\left(\begin{array}{ccc}
r \\
r_{1} & r_{2} & \cdots
\end{array}\right) r_{\tau}\right)=(1-o(1))\left(\begin{array}{ccc}
r \\
s_{1} & s_{2} & \cdots
\end{array} s_{\tau}+k\right) \\
& =(1-o(1)) \cdot \frac{1}{\binom{s_{\tau}+k}{k}}\left(\begin{array}{ccc}
r \\
s_{1} s_{2} & \cdots & s_{\tau}
\end{array}\right) \\
& =\frac{1-o(1)}{\binom{s_{\tau}+k}{k}} \cdot(\# \text { of columns in each block })
\end{aligned}
$$

where the first equality is a result of our choice of parameters and the second follows from the combinatorial identity: $\left(\begin{array}{ccc}\begin{array}{ccc}s_{1} & s_{2} & \cdots\end{array} & s_{\tau}+k\end{array}\right)=\frac{1}{\binom{s \tau+k}{k}}\left(\begin{array}{cccc}s_{1} & s_{2} & \cdots & s_{\tau}\end{array}\right)$.

Thus, the rank of the matrix $M\left(s_{1}, \ldots, s_{\tau}\right)$, which is the sum of the ranks of the blocks, is

$$
\begin{aligned}
& \frac{1-o(1)}{\binom{s_{\tau}+k}{k}} \cdot(\# \text { of columns in each block }) \cdot B \\
= & \frac{1-o(1)}{\binom{s_{\tau}+k}{k}} \cdot\left(\# \text { of columns in } M\left(s_{1}, \ldots, s_{\tau}\right)\right) \\
= & \frac{\left|\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)\right|}{\binom{s_{\tau}+k}{k}}(1-o(1)),
\end{aligned}
$$

since $\left|\mathcal{P}\left(s_{1}, \ldots, s_{\tau}\right)\right|$ is the number of columns in $M\left(s_{1}, \ldots, s_{\tau}\right)$.

3.4 Putting it together

We now have all the ingredients to establish that the shifted partial derivative measure of S_{N}^{d} is large.

Theorem 5 (Restated). Let $\alpha \in(0,1 / 2)$ be a constant. Let $N, d, k \in \mathbb{N}$ be such that $4 k \leq$ $d \leq \alpha \lg N / \lg \lg N$ and $2 k \mid d$. Over a field of characteristic zero, for $\tau=d / k-1$, for any δ satisfying $\alpha \leq 1-\delta(\tau+1)<1-\delta \tau \leq 1-\alpha$, and for $\ell=\left\lfloor N^{1-\delta}\right\rfloor$, the following holds:

$$
\operatorname{dim}\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell} \geqslant \frac{(1-o(1)) \cdot\binom{N+\ell}{\ell} \cdot\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k} \cdot(d+1)^{\tau}}
$$

Proof. (of Theorem 5.) By Lemma 6, $\operatorname{dim}\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell} \geq \operatorname{dim}(\operatorname{span}(\mathcal{P}))$. This in turn is at least as large as $\operatorname{rank}(M(\mathcal{S}))$ for any set \mathcal{S} of signatures, since $M(\mathcal{S})$ is a submatrix of the matrix that describes a basis for \mathcal{P}. By Proposition 19, there is a well-separated set of good signatures \mathcal{S} with large $\left|\mathcal{M}_{N}^{\ell}(\mathcal{S})\right|$. Choose such a set. Then

$$
\begin{aligned}
\operatorname{dim}\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell} & \geq \operatorname{dim}(\operatorname{span}(\mathcal{P})) \quad(\text { by Lemma } 6 \\
& \geq \operatorname{rank}(M(\mathcal{S})) \\
& \left.\geq \frac{(1-o(1))\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k}} \cdot\left|\mathcal{M}_{N}^{\ell}(\mathcal{S})\right| \quad \text { (by Lemma } 18\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{(1-o(1))\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k}} \cdot \frac{\left|\mathcal{M}_{N}^{\ell}\left(\mathcal{S}_{0}\right)\right|}{(d+1)^{\tau}} \text { (by Proposition 19) } \\
& \geq \frac{(1-o(1))\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k}} \cdot \frac{\left|\mathcal{M}_{N}^{\ell}\right|(1-o(1))}{(d+1)^{\tau}} \text { (by Lemma 9 and Remark 12) } \\
& =\frac{(1-o(1))\binom{N-\ell}{k}\binom{N+\ell}{\ell}}{\left(3 N^{1-\delta \tau} / 2\right)^{k}(d+1)^{\tau}}
\end{aligned}
$$

4 Modification for the general case of parameters

The proof of Theorem 5 handles the case when d is divisible by $2 k$, and thus, by our choice of τ, d is divisible by $\tau+1$. In this section, we state the modifications which we make to the proof so that it works in a more general setting, and thus prove Theorem 1.

Theorem 1 (Restated). Let $\alpha \in(0,1 / 2)$ be a constant. Let $N, d, k \in \mathbb{N}$ be such that $4 k \leq d \leq$ $\alpha \lg N / \lg \lg N$ and $k=\left\lfloor\frac{d}{\tau+1}\right\rfloor$ for some odd number $\tau \geq 3$. Over a field of characteristic zero, for any δ satisfying $\alpha \leq 1-\delta(\tau+1)<1-\delta \tau \leq 1-\alpha$, and for $\ell=\left\lfloor N^{1-\delta}\right\rfloor$, the following holds:

$$
\operatorname{dim}\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell} \geqslant \frac{(1-o(1)) \cdot\binom{N+\ell}{\ell} \cdot\binom{N-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k} \cdot(d+1)^{\tau}}
$$

Proof Sketch. We follow the proof outline for Theorem 5 .

1. The bounds concerning the parameters (Fact 4) and good signatures (Lemma 9) continue to hold.
2. In Section 2 in Definition 13, we had set the parameters $\left(r_{1}, \ldots, r_{\tau}\right)$ corresponding to a signature $\left(s_{1}, \ldots, s_{\tau}\right)$. Here we modify this slightly. Let g be the loss due to the floor function; $g \triangleq d-k(\tau+1)$. (Note: earlier, we had $g=0$.) We have $0 \leq g \leq \tau$, and $\tau k+g=d-k$. Now, we let $r_{i}=s_{i}$ for $i \in[\tau-2], r_{\tau-1}=s_{\tau-1}-g, r_{\tau}=s_{\tau}+k+g$. It can be verified that with this choice, $\sum_{i=1}^{\tau} r_{i}=\left(\sum_{i=1}^{\tau} s_{i}\right)+k$ and $\sum_{i=1}^{\tau} i r_{i}=\left(\sum_{i=1}^{\tau} i s_{i}\right)+d-k$.
3. We define matrix $M\left(s_{1}, s_{2}, \ldots, s_{\tau}\right)$ as in Definition 13 but with respect the new parameter setting. It is easy to see that Lemma 20 and Lemma 21 hold in this new setting as well, because the proof only uses the fact that $\sum_{i=1}^{\tau} i r_{i}=\sum_{i=1}^{\tau} i s_{i}+d-k$ and $\sum_{i=1}^{\tau} r_{i}=$ $\sum_{i=1}^{\tau} s_{i}+k$.
4. Finally, we note that Lemma 25 holds with a few modifications to the proof. Recall the overall strategy: for partitions X, Y, Z, Z^{\prime} and matrices $M^{\prime}, M_{1}, M_{2}, I$, we had shown $\operatorname{rank}\left(M^{\prime}\right) \geq \operatorname{rank}\left(M_{1}\right)-\operatorname{rank}\left(M_{2}\right) \geq \operatorname{rank}(I)-2 \operatorname{rank}\left(M_{2}\right) \geq|X|-2|Z|=|X|(1-o(1))$.
We now define an additional set \tilde{Y} of partitions as follows:

$$
\tilde{Y}=\left\{\tilde{S}=\left(S_{1}, \ldots, S_{\tau} \cup T\right) \mid \text { signature }(\tilde{S})=\left(s_{1}, \ldots, s_{\tau}+k\right)\right\} .
$$

Notice that $\tilde{Y}=Z \backslash Z^{\prime}$. Let D be the matrix whose rows are labelled by X and columns by \tilde{Y}, and defined in the following way: $D\left[\left(R_{1}, \ldots, R_{\tau}\right),\left(S_{1}, \ldots, S_{\tau-1}, S_{\tau}^{\prime}\right)\right]=1$ if $S_{i} \subseteq$ $R_{i} \cup R_{i+1}$ for all $i \in[\tau-1]$ and $S_{\tau}^{\prime} \subseteq R_{\tau}$; otherwise, it is 0 . ${ }^{6}$ Now our strategy is to show

$$
\operatorname{rank}\left(M^{\prime}\right) \geq \operatorname{rank}\left(M_{1}\right)-\operatorname{rank}\left(M_{2}\right) \geq \operatorname{rank}(D)-2 \operatorname{rank}\left(M_{2}\right)
$$

[^4]$$
\geq|\tilde{Y}|(1-o(1))-2|Z|=|\tilde{Y}|(1-o(1))
$$

The first step (columns of M^{\prime} and M_{2} span those of M_{1}) works exactly as before. So does the second step (columns of M_{1} and M_{2} span those of D): this is because for $\tilde{R}=\left(R_{1}, \ldots, R_{\tau}\right)$ and $\tilde{S}=\left(S_{1}, \ldots, S_{\tau-1}, S_{\tau}^{\prime}\right)$, we have

$$
\begin{aligned}
D[\tilde{R}, \tilde{S}] & =M_{1}[\tilde{R}, \tilde{S}] \varphi_{\tau}\left(\tilde{R}, S_{\tau}^{\prime}\right) \\
& =M_{1}[\tilde{R}, \tilde{S}]\left(\prod_{j \in S_{\tau}^{\prime}}\left[1-\varphi_{1,2}(\tilde{R}, j)-\varphi_{3,4}(\tilde{R}, j)-\ldots-\varphi_{\tau-2, \tau-1}(\tilde{R}, j)\right]\right) .
\end{aligned}
$$

The step showing $\operatorname{rank}\left(M_{2}\right)$ is small follows from Lemma 22 which holds as is, since Z, Z^{\prime} depend only on the signature s and not on how we set r.
We now need one additional step showing that D has rank $|\tilde{Y}|(1-o(1))$, and then we note that $|\tilde{Y}|=\left(\begin{array}{ccc}\begin{array}{cc}s & s \\ s_{1} & s_{2}\end{array} \quad . . & s_{\tau}+k\end{array}\right)$.
First notice that the matrix D has a block diagonal structure. For a given pair of tuples ($R_{1}, R_{2}, \ldots, R_{\tau-2}$) and ($S_{1}, S_{2}, \ldots, S_{\tau-2}$) the block corresponding to this pair is

$$
\left\{(\tilde{R}, \tilde{S}) \left\lvert\, \begin{array}{c}
\exists R_{\tau-1}, R_{\tau}, S_{\tau-1}, S_{\tau}^{\prime} \text { such that } \tilde{R}=\left(R_{1}, R_{2}, \ldots, R_{\tau-2}, R_{\tau-1}, R_{\tau}\right) \\
\text { and } \tilde{S}=\left(S_{1}, S_{2}, \ldots, S_{\tau-2}, S_{\tau-1}, S_{\tau}^{\prime}\right)
\end{array}\right.\right\} .
$$

If ($R_{1}, R_{2}, \ldots, R_{\tau-2}$) $\neq\left(S_{1}, S_{2}, \ldots, S_{\tau-2}\right)$ then any entry of the matrix in the block corresponding to the pair is zero. If $\left(S_{1}, S_{2}, \ldots, S_{\tau-2}\right)=\left(R_{1}, R_{2}, \ldots, R_{\tau-2}\right)$, then in the block defined by this pair, consider sub-blocks where rows are grouped by $R_{\tau-1} \cup R_{\tau}$ and columns by $S_{\tau-1} \cup S_{\tau}^{\prime}$. Again, entries outside the diagonal sub-blocks are all zeroes.
So now consider a sub-block, with $U=R_{\tau-1} \cup R_{\tau}=S_{\tau-1} \cup S_{\tau}^{\prime}$. Each row can be thought of as labelled by R_{τ} (this determines $R_{\tau-1}$ as $U \backslash R_{\tau}$) and each column by S_{τ}^{\prime} (again, this determines $S_{\tau-1}$, where $\left|R_{\tau}\right|=r_{\tau}=s_{\tau}+g+k$, and $\left|S_{\tau}^{\prime}\right|=s_{\tau}+k$. And the entry in the cell labelled by row R_{τ} and column S_{τ}^{\prime} is 1 exactly when $S_{\tau}^{\prime} \subseteq R_{\tau}$. Thus, this sub-block is an inclusion matrix. We use the following theorem to analyze the rank of each sub-block in the matrix Wil90.

Theorem 26 (Wilson Wil90]). Let $W_{a b}^{u}$ be a 0-1 matrix in which each row is labelled by a set of size a from a universe of size u and each column is labelled by a set of size b from the same universe. The (A, B) th entry of the matrix is 1 if and only if $A \subseteq B$. For $a \leq \min \{b, u-b\}$, the rank of the matrix $W_{a b}^{u}$ modulo a prime p is equal to

$$
\sum\binom{u}{i}-\binom{u}{i-1}
$$

where the sum is over indices i such that p does not divide $\binom{b-i}{a-i}$.
When $i=a,\binom{b-i}{a-i}=1$, i.e. this binomial is not divisible by any p. Therefore, for any p, the term corresponding to $i=a$ appears in the summation. Since each term in the summation is non-negative, the rank of $W_{a b}^{u}$ is at least $\binom{u}{a}-\binom{u}{a-1}$. (Note also that this holds over any characteristic, a fact that will be useful in Section 5).
Our sub-blocks are transposes of these matrices $W_{a b}^{u}$, with $u=s_{\tau-1}+s_{\tau}+k, a=s_{\tau}+k$, $b=s_{\tau}+k+g$. Hence each sub-block has rank at least $\binom{s_{\tau-1}+s_{\tau}+k}{s_{\tau}+k}-\binom{s_{\tau-1}+s_{\tau}+k}{s_{\tau}+k-1}$. From Lemma 9, $k, g, s_{\tau}=o\left(s_{\tau-1}\right)$. Hence the rank of each sub-block is at least $\binom{s_{\tau-1}+s_{\tau}+k}{s_{\tau}+k}(1-$
$o(1))$ which is $(1-o(1))$ (number of columns in sub-block). Due to the diagonal structure, we can add up over all the sub-blocks and blocks to get

$$
\operatorname{rank}(D) \geq(1-o(1))(\text { number of columns in } D)=(1-o(1))|\tilde{Y}|
$$

5. Putting together the steps as done in Section 3.4 establishes Theorem 1 .

5 Modified proof for non-zero characteristic

In this section we desribe how to adapt our proof of Theorems 5 and 1 to work over fields with positive characteristic. The bound we obtain is slightly, but not significantly, weaker.

We first observe that the only place in our proofs of Theorems 1 . 5 where we use characteristic zero is Step 1 in the proof of Lemma 6. It is easy to see that all other steps, including the adaptation described in Section 4, are independent of the characteristic.

While working in positive characteristic, we replace Lemma 6 by a different statement. Recall the use of Lemma 6 ; it allowed us to lower-bound $\operatorname{dim}\left(\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}\right)$ by the dimension of $\mathcal{P}=\left\{m \cdot p_{T}\left|T \subseteq[N],|\widehat{T}|=k, m \in \mathcal{M}_{N}^{\ell}, \operatorname{supp}(m) \cap T=\emptyset\right\}\right.$. Here, we consider a somewhat different set \mathcal{P}^{\prime}, and also end up with a $1 /(k+1)$ factor while lower-bounding $\operatorname{dim}\left(\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}\right)$.

Let $N^{\prime}:=N-k$. We work with N^{\prime} variables, with well-chosen $0-1$ settings to the last k variables. Recall that for any set $S \subseteq[N]$ such that $|S| \leq k$, the polynomial $r_{S}(x)$ is defined as follows:

$$
r_{S}(x):=\sum_{A \subseteq[N],|A|=d-k, A \cap S=\emptyset} X_{A}
$$

where $X_{A}:=\prod_{i \in A} x_{i}$. Let \mathcal{D} denote the set $\left\{r_{S}|S \subseteq[N],|S|=k\}\right.$.
Similarly, for any set $S \subseteq\left[N^{\prime}\right]$ such that $|S| \leq k$, define the polynomial $r_{S}^{\prime}(x)$ as follows:

$$
r_{S}^{\prime}(x):=\sum_{A \subseteq\left[N^{\prime}\right],|A|=d-k, A \cap S=\emptyset} X_{A}
$$

In Step 1 of the proof of Lemma 6 we showed that for any $S^{\prime} \subseteq[N]$ with $\left|S^{\prime}\right| \leq k, r_{S^{\prime}}$ is in the span of \mathcal{D}. In the case of non-zero characteristic, we create $k+1$ sets $\mathcal{D}_{0}, \mathcal{D}_{1}, \ldots, \mathcal{D}_{k}$, each of dimension at most \mathcal{D}, and show that for each $S^{\prime} \subseteq\left[N^{\prime}\right]$ with $\left|S^{\prime}\right| \leq k, r_{S^{\prime}}^{\prime}$ is in the union of the sets $\mathcal{D}_{i} \mathrm{~s}$.

For every $0 \leq i \leq k$, let $\pi_{i}:\left\{x_{1}, \ldots, x_{N}\right\} \rightarrow\left\{x_{1}, \ldots, x_{N^{\prime}}\right\} \cup\{0,1\}$ be defined as follows:

$$
\pi_{i}\left(x_{j}\right)= \begin{cases}x_{j} & \text { if } 1 \leq j \leq N^{\prime} \\ 1 & \text { if }\left(N^{\prime}+1\right) \leq j \leq\left(N^{\prime}+i\right) \\ 0 & \text { otherwise }\end{cases}
$$

The map π_{i} naturally extends to a ring homomorphism from $\mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ to $\mathbb{F}\left[x_{1}, \ldots, x_{N^{\prime}}\right]$. For each $0 \leq i \leq k$, let $\mathcal{D}_{i}:=\pi_{i}(\mathcal{D})=\left\{\pi_{i}\left(r_{S}\right) \mid r_{S} \in \mathcal{D}\right\}$.

Consider any $S^{\prime} \subseteq\left[N^{\prime}\right]$ of size at most k. We augment S^{\prime} to a set $S^{\prime \prime} \subseteq[N]$ of size exactly k, using the last k reserved indices, by defining $S^{\prime \prime}=S^{\prime} \cup\left\{N^{\prime}+1, \ldots, N^{\prime}+(k-|S|)\right\}$. (If $\left|S^{\prime}\right|=k$, then $S^{\prime \prime}=S^{\prime}$.) Now the projection $\pi_{k-\left|S^{\prime}\right|}$ applied to the augmented-set-polynomial $r_{S^{\prime \prime}}$ gives back the polynomial $r_{S^{\prime}}^{\prime}$; that is, $r_{S^{\prime}}^{\prime}=\pi_{k-\left|S^{\prime}\right|}\left(r_{S^{\prime \prime}}\right) \in \mathcal{D}_{k-\left|S^{\prime}\right|}$. Therefore we get

$$
\left\{r_{S^{\prime}}^{\prime}\left|S^{\prime} \subseteq\left[N^{\prime}\right],\left|S^{\prime}\right| \leq k\right\} \subseteq \bigcup_{i=1}^{k} \mathcal{D}_{i}\right.
$$

Let $p_{T}^{\prime}(x):=\sum_{T \subseteq B \subseteq\left[N^{\prime}\right],|B|=d-k} X_{B}$. Let P^{\prime} denote $\left\{p_{T}^{\prime}\left|T \subseteq\left[N^{\prime}\right],|T|=k\right\}\right.$. The inclusionexclusion argument in Step 2 of the proof of Lemma 6 works exactly as before, over the set [N^{\prime}], and tells us that P^{\prime} is contained in $\operatorname{span}\left\{r_{S^{\prime}}^{\prime}\left|S^{\prime} \subseteq\left[N^{\prime}\right],\left|S^{\prime}\right| \leq k\right\}\right.$ and therefore, in $\operatorname{span}\left(\cup_{i} \mathcal{D}_{i}\right)$. We define \mathcal{P}^{\prime} to be set of degree (at most) ℓ shifts of P^{\prime}, similar to \mathcal{P} defined in Section 3.1, but restricting even the shifts to variables from $\left[x_{1}, \ldots, x_{N^{\prime}}\right]$.

$$
\mathcal{P}^{\prime}=\left\{m \cdot p_{T}^{\prime}\left|T \subseteq\left[N^{\prime}\right],|T|=k, m \in \mathcal{M}_{N^{\prime}}^{\ell}, \operatorname{supp}(m) \cap T=\emptyset\right\} \subseteq\left\{m \cdot q \mid m \in \mathcal{M}_{N^{\prime}}^{\ell}, q \in P^{\prime}\right\}\right.
$$

Since $P^{\prime} \subseteq \operatorname{span} \cup_{i} \mathcal{D}_{i}$, we get

$$
\begin{aligned}
\mathcal{P}^{\prime} & \subseteq \operatorname{span} \cup_{i=0}^{k}\left\{m \cdot \pi_{i}\left(r_{S}\right) \mid r_{S} \in \mathcal{D}, m \in \mathcal{M}_{N^{\prime}}^{\ell}\right\} \\
& =\operatorname{span} \cup_{i=0}^{k}\left\{\pi_{i}\left(m \cdot r_{S}\right) \mid r_{S} \in \mathcal{D}, m \in \mathcal{M}_{N^{\prime}}^{\ell}\right\} .
\end{aligned}
$$

The equality holds because for monomials $m \in \mathcal{M}_{N^{\prime}}^{\ell}$, for every $0 \leq i \leq k, m=\pi_{i}(m)$.
Now, note that for any finite set $X \subseteq \mathbb{F}\left[x_{1} \ldots, x_{N}\right]$ and a linear map π between vector spaces $\mathbb{F}\left[x_{1}, \ldots, x_{N}\right]$ and $\mathbb{F}\left[x_{1}, \ldots, x_{N-k}\right], \operatorname{dim}(\operatorname{span} \pi(X)) \leq \operatorname{dim}(\operatorname{span} X)$. Therefore, we get that $\operatorname{dim}\left(\operatorname{span}\left\{\pi_{i}\left(m \cdot r_{S}\right) \mid r_{S} \in \mathcal{D}, m \in \mathcal{M}_{N^{\prime}}^{\ell}\right\}\right) \leq \operatorname{dim}\left(\operatorname{span}\left\{m \cdot r_{S} \mid r_{S} \in \mathcal{D}, m \in \mathcal{M}_{N^{\prime}}^{\ell}\right\}\right)$.

Thus,

$$
\begin{aligned}
\operatorname{dim}\left(\operatorname{span}\left\{\mathcal{P}^{\prime}\right\}\right) & \leq \operatorname{dim}\left(\operatorname{span} \cup_{i=0}^{k}\left\{\pi_{i}\left(m \cdot r_{S}\right) \mid r_{S} \in \mathcal{D}, m \in \mathcal{M}_{N^{\prime}}^{\ell}\right\}\right) \\
& \leq \sum_{i=0}^{k} \operatorname{dim}\left(\operatorname{span}\left\{\pi_{i}\left(m \cdot r_{S}\right) \mid r_{S} \in \mathcal{D}, m \in \mathcal{M}_{N^{\prime}}^{\ell}\right\}\right) \\
& \leq(k+1) \operatorname{dim}\left(\operatorname{span}\left\{m \cdot r_{S} \mid r_{S} \in \mathcal{D}, m \in \mathcal{M}_{N^{\prime}}^{\ell}\right\}\right) \\
& \leq(k+1) \operatorname{dim}\left(\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell}\right) .
\end{aligned}
$$

We can now proceed with the proof of Theorem 5 or 1 exactly as before, using $\operatorname{dim}\left(\operatorname{span} \mathcal{P}^{\prime}\right)$ as our lower bound for $\operatorname{dim}\left(\left\langle\partial_{k} S_{N}^{d}\right\rangle \leq \ell\right)$. For our choice of parameters, recall that $k, d \in o(\lg N)$, so $N^{\prime}=N-k=\Omega(N)$ and $d=o\left(\lg N^{\prime}\right)$ as well. Hence the earlier proof goes through. We have established:

Theorem 27. Let $\alpha \in(0,1 / 2)$ be a constant. Let $N, d, k \in \mathbb{N}$ be such that $4 k \leq d \leq$ $\alpha \lg N / \lg \lg N$ and $k=\left\lfloor\frac{d}{\tau+1}\right\rfloor$ for some odd number $\tau \geq 3$. For any δ satisfying $\alpha \leq 1-\delta(\tau+1)<$ $1-\delta \tau \leq 1-\alpha$, and for $\ell=\left\lfloor N^{1-\delta}\right\rfloor$, the following holds:

$$
\operatorname{dim}\left\langle\partial_{k} S_{N}^{d}\right\rangle_{\leq \ell} \geqslant \frac{\operatorname{dim}\left(\operatorname{span}\left\{\mathcal{P}^{\prime}\right\}\right)}{k+1} \geqslant \frac{(1-o(1))}{k+1} \cdot \frac{\binom{N-k+\ell}{\ell} \cdot\binom{N-k-\ell}{k}}{\left(3 N^{1-\delta \tau} / 2\right)^{k} \cdot(d+1)^{\tau}} .
$$

6 Lower bound on the size of depth four formulas

In this section, we establish the lower bounds claimed in Theorem 2 and Corollary 3. As in GKKS13, we say that a $\Sigma \Pi \Sigma \Pi$ formula C is a $\Sigma \Pi^{[D]} \Sigma \Pi^{[t]}$ formula if the product gates at level 1 (just above the input variables) have fan-in at most t and the product gates at level 3 have fan-in bounded by D.

The following is implicit in [GKKS13] and is stated explicitly in [KSS14.

Lemma 28 (KSS14, Lemma 4). Let P be a polynomial on N variables computed by a $\Sigma \Pi^{[D]} \Sigma \Pi^{[t]}$ circuit of top fan-in s. Then, we have

$$
\operatorname{dim}\left(\left\langle\partial_{k} P\right\rangle_{\leq \ell}\right) \leq s \cdot\binom{D}{k} \cdot\binom{N+\ell+(t-1) k}{\ell+(t-1) k}
$$

We are now ready to prove
Theorem 2 (Restated). Let $\varepsilon \in(0,1)$ be a constant. Let $N, d, D, t \in \mathbb{N}$ be such that $\frac{10 t}{\varepsilon} \leq d \leq$ $\frac{\varepsilon \lg N}{5 \lg \lg N}, D \leq N^{1-\varepsilon}$. Any $\Sigma \Pi^{[D]} \Sigma \Pi^{[t]}$ circuit of top fan-in s computing S_{N}^{d} satisfies $s=N^{\Omega(d / t)}$.

Proof. Assume there exists a $\Sigma^{s} \Pi^{[D]} \Sigma \Pi^{[t]}$ circuit computing S_{N}^{d}.
We first illustrate the proof for one setting: the field has characteristic zero, $\varepsilon=3 / 4$, and $4 t+2$ divides d. Choosing $\alpha=3 / 20, \tau=4 t+1, k=\frac{d}{4 t+2}, \delta=\frac{1}{2 \tau}$, all the conditions for invoking Theorem 5 are met. From Theorem 5 and Lemma 28, when N is large enough, it holds that

$$
s \geq \frac{\binom{N-\ell}{k}}{\binom{D}{k}} \frac{\binom{N+\ell}{\ell}}{\binom{N+\ell+(t-1) k}{\ell+(t-1) k}} \frac{1-o(1)}{\left(3 N^{1-\delta \tau} / 2\right)^{k}(d+1)^{\tau}}
$$

For large enough N, since $k, \ell=o(N)$, we have $\frac{\binom{N-\ell}{k}}{\binom{D}{k}} \geq\left(\frac{N-\ell-k}{D}\right)^{k} \geq\left(\frac{N}{2 D}\right)^{k}$.
Since $k t<d=o(\lg N)$, for large enough N we have

$$
\frac{\binom{N+\ell}{\ell}}{\binom{N+\ell+(t-1) k}{\ell+(t-1) k}} \geq\left(\frac{\ell}{N+\ell}\right)^{k t} \geq\left(\frac{1}{2 N^{\delta}}\right)^{k t} \geq N^{-\delta t k-o(k)}
$$

By Fact 4, $(d+1)^{\tau} \leq(\lg N)^{\tau} \leq N^{\alpha}$.
We are given that $D \leq N^{1-\varepsilon}$.
Putting it all together, we have obtained that asymptotically,

$$
\begin{equation*}
s \geq\left(\frac{N}{2 D \cdot N^{\delta t+o(1)} \cdot\left(3 N^{1-\delta \tau} / 2\right)}\right)^{k} \cdot \frac{1-o(1)}{N^{\alpha}} \geq \frac{1}{N^{\alpha}} \cdot\left(\frac{N}{N^{1-\varepsilon} \cdot N^{1-\delta \tau} \cdot N^{\delta t} \cdot N^{o(1)}}\right)^{k} \tag{1}
\end{equation*}
$$

By our choice of parameters, $1-\delta \tau=1 / 2$. Also, $t \leq \tau / 4$, so $\delta t \leq \delta \tau / 4=1 / 8$. And $1-\varepsilon=1 / 4$. Thus we see that Equation (1) yields a lower bound of $N^{\Omega(k)}=N^{\Omega(d / t)}$.

The above proof idea (with some changes in parameters) can be made to give lower bounds of $N^{\Omega(d / t)}$ for $D \leq N^{1-\varepsilon}$ for any constant $\varepsilon>0$. Firstly, to handle the absence of a divisibility constraint (in the above setting, we had assumed that $4 t+2$ divides d), we should use Theorem 1 instead of Theorem 5. Then, we must choose α, τ, δ appropriately. It can be verified that if we choose $\alpha=\frac{\varepsilon}{5}, \delta=\frac{\varepsilon}{10 t}$, and let τ be the smallest odd integer such that $1-\delta \tau \leq \frac{\varepsilon}{2}$, everything works out.

Finally, to obtain the same result over fields of positive characteristic, we can follow the same outline, replacing the use of Theorem 5 or Theorem 1 by Theorem 27. This Theorem gives a slightly weaker bound for $\operatorname{dim}\left(\left\langle\partial_{k} P\right\rangle_{\leq \ell}\right)$. However, in the asymptotic bound stated in Theorem 2, the degradation of this bound is irrelevant.

Corollary 3 (Restated). Let parameters N, d, t be as in Theorem 2. Any $\Sigma \Pi^{[O(d / t)]} \Sigma \Pi^{[t]}$ computing S_{N}^{d} must have top fan-in at least $N^{\Omega(d / t)}$. In particular, any homogeneous $\Sigma \Pi \Sigma \Pi$ circuit C with bottom fan-in bounded by t computing S_{N}^{d} must have top fan-in at least $N^{\Omega(d / t)}$.

Proof. The first statement is an immediate corollary of Theorem 2 since $d / t \leq d=N^{o(1)}$. The second follows from the first by a standard trick GKKS13: given any homogeneous $\Sigma \Pi \Sigma \Pi$ circuit, we can ensure that the fan-in of the layer 3 product gates is at most $O(d / t)$ by repeatedly multiplying out pairs of polynomials of degree at most $t / 2$ that feed into it. This does not change the top fan-in of the circuit and ensures that the bottom fan-in remains bounded by t. At the end of this procedure, each Π gate on layer 3 has at most 1 polynomial of degree $<t / 2$ feeding into it; homogeneity now entails that the fan-in of the Π-gate must be at most $2 d / t+1$.

References

[Alo09] Noga Alon. Perturbed identity matrices have high rank: Proof and applications. Comb. Probab. Comput., 18(1-2):3-15, March 2009.
[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In $F O C S$, pages 67-75, 2008.
[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput. Sci., 22:317-330, 1983.
[FLMS14] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower bounds for depth 4 formulas computing iterated matrix multiplication. In Symposium on Theory of Computing, STOC, pages 128-135, 2014.
[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the chasm at depth four. In Conference on Computational Complexity (CCC), 2013.
[HY11] Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials. Computational Complexity, 20(3):559-578, 2011.
[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials. Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012.
[KLSS14] Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential lower bound for homogeneous depth four arithmetic formulas. In Foundations of Computer Science (FOCS), 2014.
[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997.
[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci., 448:56-65, 2012.
[KS05] P. Keevash and B. Sudakov. Set systems with restricted cross-intersections and the minimum rank ofinclusion matrices. SIAM Journal on Discrete Mathematics, 18(4):713-727, 2005.
[KS14a] Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic formulas: it's all about the top fan-in. In STOC, pages 136-145, 2014.
[KS14b] Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits. In $F O C S$, pages 364-373, 2014.
[KSS14] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for regular arithmetic formulas. In STOC, pages 146-153, 2014.
[NW97] Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives. Computational Complexity, 6(3):217-234, 1997.
[Raz87] A.A. Razborov. Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Mathematical notes of the Academy of Sciences of the USSR, 41(4):333-338, 1987.
[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing, 2(1):121-135, 2006.
[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of superpolynomial size. J. ACM, 56(2), 2009.
[Shp02] Amir Shpilka. Affine projections of symmetric polynomials. J. Comput. Syst. Sci., 65(4):639-659, 2002.
[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero. Computational Complexity, 10(1):1-27, 2001.
[Tav13] Sébastien Tavenas. Improved bounds for reduction to depth 4 and 3. In Mathematical Foundations of Computer Science (MFCS), 2013.
[Val79] L. G. Valiant. Completeness Classes in Algebra. In 11th ACM symposium on Theory of Computing (STOC), pages 249-261, New York, NY, USA, 1979.
[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel computation of polynomials using few processors. SIAM J. Comput., 12(4):641-644, 1983.
[Wil90] Richard M. Wilson. A diagonal form for the incidence matrices of t-subsets vs. k-subsets. European Journal of Combinatorics, 11(6):609-615, 1990.

[^0]: *This research was supported by IFCPAR/CEFIPRA Project No 4702-1(A) and research grant compA ANR-13-BS02-0001-01
 ${ }^{\dagger}$ IMJ-PRG, Univ Paris Diderot, Paris, France. fournier@math.univ-paris-diderot.fr
 ${ }^{\ddagger}$ Department of Computer Science and Engineering, IIT Bombay, Mumbai, India. nutan@cse.iitb.ac.in
 ${ }^{\S}$ The Institute of Mathematical Sciences, Chennai, India. meena@imsc.res.in
 ${ }^{\text {II }}$ Department of Mathematics, IIT Bombay, Mumbai, India. srikanth@math.iitb.ac.in
 ${ }^{1}$ For $O(1)$ depth, the sizes of formulas and circuits are polynomially related.

[^1]: ${ }^{2}$ i.e., as large as it can be for a "generic" or "random" polynomial (as explained after Theorem 1).

[^2]: ${ }^{3}$ Variants allowing sets of size at most s and t have also been considered.
 ${ }^{4}$ Actually, we only work with a carefully chosen submatrix of the overall matrix.

[^3]: ${ }^{5}$ This claim posits a weak form of negative dependence on the degrees of distinct variables. It is actually not too hard to prove much stronger forms of negative dependence which yield stronger probability estimates than the ones we give here. However, these estimates suffice for our purposes.

[^4]: ${ }^{6}$ Note that, in the original parameter setting when $g=0, \tilde{Y}=Z \backslash Z^{\prime}=X$ and D is the identity matrix I. When $g \neq 0$, due to the new setting of parameters, $\tilde{Y} \neq X$ and D is different from I.

