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Hervé Fournier† Nutan Limaye‡ Meena Mahajan§ Srikanth Srinivasan¶

July 23, 2015

Abstract

We continue the study of the shifted partial derivative measure, introduced by Kayal
(ECCC 2012), which has been used to prove many strong depth-4 circuit lower bounds
starting from the work of Kayal, and that of Gupta et al. (CCC 2013).

We show a strong lower bound on the dimension of the shifted partial derivative space of
the Elementary Symmetric Polynomials of degree d in N variables for d < lgN/ lg lgN . This
extends the work of Nisan and Wigderson (Computational Complexity 1997), who studied
the partial derivative space of these polynomials. Prior to our work, there have been no
results on the shifted partial derivative measure of these polynomials.

Our result implies a strong lower bound for Elementary Symmetric Polynomials in the
homogeneous ΣΠΣΠ model with bounded bottom fan-in. This strengthens (under our degree
assumptions) a lower bound of Nisan and Wigderson who proved the analogous result for
homogeneous ΣΠΣ model (i.e. ΣΠΣΠ formulas with bottom fan-in 1).

Our main technical lemma gives a lower bound for the ranks of certain inclusion-like
matrices.

1 Introduction

1.1 Motivation.

In an influential paper of Valiant [Val79] the two complexity classes VP and VNP were defined,
which can be thought of as algebraic analogues of Boolean complexity classes P and NP, respec-
tively. Whether VP equals VNP or not is one of the most fundamental problems in the study
of algebraic computation. It follows from the work of Valiant [Val79] that a super-polynomial
lower bound for arithmetic circuits computing the Permanent implies VP 6= VNP.

The best known lower bound on uniform polynomials for general arithmetic circuits is
Ω(N lgN) [BS83] which is unfortunately quite far from the desired super-polynomial lower
bound. Over the years, though there has been no stronger lower bound for general arithmetic
circuits, many super-polynomial lower bounds have been obtained for special classes for arith-
metic circuits [NW97, Raz09, Raz06].

A very interesting such subclass of arithmetic circuits is the class of bounded-depth arithmetic
formulas1. The question of proving lower bounds for bounded-depth formulas and in particular

∗This research was supported by IFCPAR/CEFIPRA Project No 4702-1(A) and research grant compA ANR-
13-BS02-0001-01
†IMJ-PRG, Univ Paris Diderot, Paris, France. fournier@math.univ-paris-diderot.fr
‡Department of Computer Science and Engineering, IIT Bombay, Mumbai, India. nutan@cse.iitb.ac.in
§The Institute of Mathematical Sciences, Chennai, India. meena@imsc.res.in
¶Department of Mathematics, IIT Bombay, Mumbai, India. srikanth@math.iitb.ac.in
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depth 3 and 4 formulas has received a lot of attention subsequent to the recent progress in
efficient depth reduction of arithmetic circuits [VSBR83, AV08, Koi12, Tav13]. This sequence of
results essentially implies that “strong enough” lower bounds for depth-4 homogeneous formulas
suffice to separate VP from VNP. More formally, it proves that any sequence {fN}N of
homogeneousN -variate degree d = NO(1) polynomials in VP has depth-4 homogeneous formulas

of size NO(
√
d). Hence, proving an Nω(

√
d) lower bound for depth-4 homogeneous formulas

suffices to separate VP from VNP.
Even more can be said about the depth-4 formulas obtained in the above results. For any

integer parameter t ≤ d, they give a ΣΠΣΠ formula for fN where the layer 1 product gates
(just above the inputs) have fan-in at most t and the layer 3 gates are again Π gates with fan-in
O(d/t). We will refer to such formulas as ΣΠ[O(d/t)]ΣΠ[t] formulas. The depth-reduction results
mentioned above produce a depth-4 homogeneous ΣΠ[O(d/t)]ΣΠ[t] formula of size NO((d/t)+t)

and top fan-in NO(d/t); at t = d
√
de, we get the above depth-reduction result.

The tightness of these results follows from recent progress on lower bounds for the model of
ΣΠ[O(d/t)]ΣΠ[t] circuits. A flurry of results followed the groundbreaking work of Kayal [Kay12],
who augmented the partial derivative method of Nisan and Wigderson [NW97] to devise a new
complexity measure called the shifted partial derivative measure, using which he proved an
exponential lower bound for a special class of depth-4 circuits. Building on this, the first
non-trivial lower bound for ΣΠ[O(d/t)]ΣΠ[t] formulas was proved by Gupta, Kamath, Kayal,
and Saptharishi [GKKS13] for the determinant and permanent polynomials. This was further
improved by Kayal, Saha, and Saptharishi [KSS14] who gave a family of explicit polynomials in
VNP the shifted partial derivative complexity of which was (nearly) as large as possible2 and
hence showed a lower bound of NΩ(d/t) for the top fan-in of ΣΠ[O(d/t)]ΣΠ[t] formulas computing
these polynomials. Later, a similar result for a polynomial in VP was proved in [FLMS14]
and this was subsequently strengthened by Kumar and Saraf [KS14a], who gave a polynomial
computable by homogeneous ΠΣΠ formulas such that any ΣΠ[O(d/t)]ΣΠ[t] formulas computing
it must have top fan-in NΩ(d/t). Finally, using a variant of the shifted partial derivative measure,
Kayal et al. [KLSS14] and Kumar and Saraf [KS14b] were able to prove similar lower bounds
for general depth-4 homogeneous formulas as well.

In this work, we investigate the shifted partial derivative measure of the Elementary Sym-
metric Polynomials, which is a very natural family of polynomials whose complexity has been
the focus of many previous works [NW97, SW01, Shp02, HY11]. Nisan and Wigderson [NW97]
proved tight lower bounds on the depth-3 homogeneous formula complexity of these polyno-
mials. Shpilka and Wigderson [SW01] and Shpilka [Shp02] studied the general (i.e. possibly
inhomogeneous) depth-3 circuit complexity of these polynomials, and showed that for certain
degrees, the O(N2) upper bound due to Ben-Or (see [SW01]) is tight.

Under some degree constraints, we show strong lower bounds on the dimension of the shifted
partial derivative space of these polynomials, which implies that the Elementary symmetric
polynomial on N variables of degree d cannot be computed by a ΣΠ[O(d/t)]ΣΠ[t] circuit of top
fan-in less than NΩ(d/t). This strengthens the result of Nisan and Wigderson [NW97] for these
degree parameters.

By the upper bound of Ben-Or mentioned above, this also gives the first example of an
explicit polynomial with small ΣΠΣ circuits for which such a strong lower bound is known.

1.2 Our Results

We show that, for a suitable range of parameters, the shifted partial derivative measure of the
N -variate elementary symmetric polynomial of degree d — denoted SdN — is large.

2i.e., as large as it can be for a “generic” or “random” polynomial (as explained after Theorem 1).
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Theorem 1. Let α ∈ (0, 1/2) be a constant. Let N, d, k ∈ N be such that 4k ≤ d ≤
α lgN/ lg lgN and k = b d

τ+1c for some odd number τ ≥ 3. Over a field of characteristic

zero, for any δ satisfying α ≤ 1− δ(τ + 1) < 1− δτ ≤ 1− α, and for ` = bN1−δc, the following
holds:

dim〈∂kSdN 〉≤` >
(1− o(1)) ·

(
N+`
`

)
·
(
N−`
k

)
(3N1−δτ/2)k · (d+ 1)τ

.

For any multilinear polynomial F (X) on N variables, the quantity dim〈∂kF 〉≤` is at most the
number of monomial shifts — which is

(
N+`
`

)
— times the number of possible partial derivatives

of order k, which is at most
(
N
k

)
. Our result says that this trivial upper bound is (in some sense)

close to optimal for the polynomial SdN (the (N1−δτ )k factor in the denominator can be made
N εk for any constant ε > 0, see the discussion at the end of the proof of Theorem 2). All
previous lower bound results using the shifted partial derivative method also obtain similar
statements [GKKS13, FLMS14, KS14a, KS14b].

Theorem 1 as stated above is applicable under the restriction that the field over which the
polynomial and the circuits are defined should have characteristic 0. For the sake of simplicity
of the presentation, we first present the proof of this theorem. In fact, we first present the proof
of a further restriction: namely, the case when 2k divides d exactly. This result is stated in
Theorem 5 in Section 3. The techniques presented in the proof can be appropriately modified
in order to overcome the above restrictions. In Section 4, we describe the modifications needed
to carry through the proof when k = bd/(τ + 1)c for some odd number τ ≥ 3, establishing
theorem 1. In Section 5 we state our most general result, i.e. for general parameters and over
any characteristic, Theorem 27, and sketch its proof. Due to the positive characteristic, in
Theorem 27 we incur a loss of k + 1 in the denominator (compared to Theorem 1).

A corollary of our main result is an NΩ(d/t) lower bound on the top fan-in of any
ΣΠ[O(d/t)]ΣΠ[t] formula computing SdN .

Theorem 2. Let ε ∈ (0, 1) be a constant. Let N, d,D, t ∈ N be such that 10t
ε ≤ d ≤ ε lgN

5 lg lgN ,

D ≤ N1−ε. Any ΣΠ[D]ΣΠ[t] circuit of top fan-in s computing SdN satisfies s = NΩ(d/t).

It is worth noting that in most lower bounds of this flavour, the upper product gates have
fanin D bounded by O(d/t). Our lower bound works for potentially much larger values of D.

It is known that for every d ≤ N , SdN has depth-4 formulas of size N2O(
√
d) [SW01, The-

orem 5.2]. A closer look at the construction there shows that the N2O(
√
d) size formulas are

ΣΠ[O(d)]ΣΠ[d] formulas with bottom fanin upto and including d. In contrast, our bound shows
that for small d, if the bottom fanin t is restricted to be a fraction of d, then, even allowing for
much larger D, the top fanin and hence size of an ΣΠ[D]ΣΠ[t] formula shoots up to NΩ(d/t).

As a corollary to Theorem 2, we obtain a lower bound for homogeneous depth-4 circuits
with bounded bottom fan-in.

Corollary 3. Let parameters N, d, t be as in Theorem 2. Any ΣΠ[O(d/t)]ΣΠ[t] computing SdN
must have top fan-in at least NΩ(d/t). In particular, any homogeneous ΣΠΣΠ circuit C with
bottom fan-in bounded by t computing SdN must have top fan-in at least NΩ(d/t).

By the above depth reduction results, this lower bound is tight up to the constant factor in
the exponent. Before our work, [NW97] proved a lower bound for SdN of NΩ(d) for all d, however
with respect to ΣΠΣ circuits (i.e. the case t = 1).

1.3 Techniques

The analysis of the shifted partial derivative measure for any polynomial essentially requires
the analysis of the rank of a matrix arising from the shifted partial derivative space. In this

3



work, we analyse the matrix arising from the shifted partial derivative space of the symmetric
polynomials.

Our analysis is quite different from previous works (such as [FLMS14, KLSS14, KS14b]),
which are based on either monomial counting (meaning that we find a large identity or upper
triangular submatrix inside our matrix) or an analytic inequality of Alon [Alo09]. Neither of
these techniques seems to be applicable in our case. This is already visible from the work of
Nisan and Wigderson [NW97], who analyse the partial derivative matrix (without shifts) of the
elementary symmetric polynomials. This matrix turns out to be the well-known Disjointness
matrix, defined as follows: for fixed parameters N, s, t ∈ N such that s + t ≤ N , the rows and
columns of this matrix are labelled by subsets of [N ] of size s and t respectively; the (S, T )
entry in the matrix is 1 if S ∩ T = ∅ and 0 otherwise.3 It is known (see [KN97] for example)
that this matrix is full rank (i.e. has rank equal to the minimum of the number of rows and
columns) in characteristic 0 and almost full rank in other characteristics [Wil90]. However, it
is not clear how to use either of the two techniques mentioned above to prove this result.

In our analysis of the shifted partial derivative space, to block diagonalize our matrix4 into
matrices each of which is a more complicated version of the Inclusion matrix (similar to the
Disjointness matrix mentioned above and also known to be full rank), and lower bound its rank
by using a technique that, to the best of our knowledge, has not been used in this context
before. We give a brief overview of our technique in the next section.

Disjointness and inclusion matrices arise naturally in other branches of theoretical computer
science such as Boolean circuit complexity [Raz87], communication complexity [KN97, Chapter
2] and also in combinatorics [Wil90, KS05]. Therefore, we believe that our analysis of the
Inclusion-like matrix arising from the symmetric polynomial may find other applications.

1.4 Organisation of the paper

In Section 2, we set up basic notation, fix the main parameters, and give a high-level outline
of our proof of Theorem 5. In Section 3 we give the details of the actual proof. The formula
size lower bound from Theorem 2 is established in Section 6. Recall that Theorem 5 is stated
over fields of characteristic zero when some parameters exhibit some divisibility property (which
makes the combinatorics nicer). The way to handle more general parameters is explained in
Section 4. In Section 5 we describe how to extend our results to arbitrary fields.

2 Proving Theorem 5: High-level outline

2.1 Notation

For a positive integer n, we let [n] = {1, . . . , n}. Let X = {x1, . . . , xN}. For A ⊆ [N ] we define
XA =

∏
i∈A xi. The elementary symmetric polynomial of degree d over the set of variables X

is defined as SdN (X) =
∑

A⊆[N ],|A|=dXA, and is abbreviated with SdN .
For k, ` ∈ N and a multivariate polynomial f ∈ F[x1, . . . , xn], we define

〈∂kf〉≤` = span

{
xj11 . . . xjnn ·

∂kf

∂xi11 . . . ∂x
in
n

∣∣∣∣∣ i1 + . . .+ in = k, j1 + . . .+ jn ≤ `

}
.

Our complexity measure is the dimension of this space, i.e., dim(〈∂kf〉≤`)[Kay12, GKKS13].

For a monomial m =
∏N
i=1 x

ni
i , deg(m) = n1 + n2 + . . . + nN is the total degree of m.

We denote by degxi(m) the degree of the variable xi in m (here degxi(m) = ni). We define

3Variants allowing sets of size at most s and t have also been considered.
4Actually, we only work with a carefully chosen submatrix of the overall matrix.
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the support of m as supp(m) = {i ∈ [N ] | ni > 0}. For a monomial m and p > 0, let
suppp(m) = {i ∈ [N ],degxi(m) = p}.

Let M`
N the set of monomials of degree at most ` over the variables X. For integers

n1, . . . , np, let

M`
N (n1, . . . , np) = {m ∈M`

N , |suppi(m)| = ni for i ∈ [p]}.

Given p > 0, a monomial m ∈ M`
N can be uniquely written as m = m̃ ·

∏p
i=1(Xsuppi(m))

i.
We write m ≡ [m̃, S1, . . . , Sp] if Si = suppi(m) for all i ∈ [p] and m = m̃ ·

∏p
i=1(XSi)

i.
For a finite set S, let U(S) denote the uniform distribution over the set S.
We assume that we are working over a field F of characteristic zero. Our results also hold

in non-zero characteristic (see Section 5), but the first step of our proof (Lemma 6) becomes a
little more cumbersome.

2.2 Proof Outline

We want to lower bound dim(〈∂kSdN 〉≤`) for suitable k, `. An alternate way of looking at
the vector space 〈∂kSdN 〉≤` is as follows. We fix some spanning set S for the set of all partial
derivatives of SdN of order k and consider the set P of all the polynomials obtained by multiplying
the polynomials in S with monomials of degree at most `. We define a matrix M whose columns
contain the polynomials in the set P (seen as vectors of coefficients of the various monomials).
Lower bounding dim(〈∂kSdN 〉≤`) is equivalent to lower bounding rank(M).

Our lower bound on dim(〈∂kSdN 〉≤`) proceeds in 3 steps.
Step 1: We choose a suitable subset S of the partial derivative space. It is convenient to
work with a set that is slightly different from the set of partial derivatives themselves. To
understand the advantage of this, consider the simple setting where we are looking at the
partial derivatives of the degree-2 polynomial S2

N of order 1. It is not difficult to show that
the partial derivative with respect to variable xi is ri :=

∑
j 6=i xj . Over characteristic zero, this

set of polynomials is known to be linearly independent. One way to show this is by showing
that each polynomial xi can be written as a linear combination of the rjs; explicitly, one can

write xi = 1
n−1

(∑
j∈[n] rj

)
− ri. Since the xis are distinct monomials, they are clearly linearly

independent and we are done. This illustrates the advantage in moving to a “sparser” basis for
the partial derivative space. We do something like this for larger d and k (Lemma 6).
Step 2: After choosing the set S, we construct the set P of shifts of S (actually, we will only
consider a subset of P) and lower bound the rank of the corresponding matrix M . To do this,
we also prune the set of rows of the matrix M . In other words, we consider a carefully chosen
set of monomialsM and project each polynomial in P down to these monomials. The objective
in doing this is to infuse some structure into the matrix while at the same time preserving its
rank (up to small losses). Having chosen M, we show that the corresponding submatrix can
be block-diagonalized into matrices each of which is described by a simple inclusion pattern
between the (tuples of) sets labelling its rows and columns. This is done in Lemmas 17, 20, 21.
Step 3: The main technical step in the proof is to lower bound the rank of the inclusion pattern
matrix mentioned above with an algebraic trick. We illustrate this technique here with a toy
example. Fix parameters N, s ∈ N with s ≤ N/2 and define the

(
N
s

)
×
(
N
s

)
matrix DisjN,s whose

rows and columns are labelled by sets of size s from the universe [N ] and the (S, T ) entry is 1 if
S ∩ T = ∅ and 0 otherwise. We can similarly also define the

(
N
s

)
×
(
N
s

)
matrix IncN,s similarly

with the only difference being that the (S, T ) entry is 1 if and only if S ⊆ T ; note that IncN,s
is simply the identity matrix with the required dimensions and is hence clearly full rank. It is
also known that DisjN,s is full rank over fields of characteristic 0 (see, e.g. [KN97, Chapter 2]).
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We prove a weaker statement here in order to illustrate our proof method: we show that when
s = o(N), DisjN,s has rank

(
N
s

)
(1− o(1)).

To see this, consider the following alternate way of looking at the above matrices. We identify
the labels of the rows — which are elements of

(
[N ]
s

)
— with their characteristic vectors, which

are elements of the N -dimensional hypercube {0, 1}N of weight exactly s. Each column is
associated with a polynomial p over 0-1 variables y1, . . . , yN such that the entry in the column
at the row labelled by a ∈ {0, 1}N is equal to p(a). Specifically, in the matrix IncN,s, a column
labelled T ⊆ [N ] is associated with the monomial mT =

∏
i∈T yi; it should be clear that this

monomial evaluates to 1 at row a only if a encodes a subset contained in T (which must be T
itself). Similarly, in the matrix DisjN,s the column corresponding to T is associated with the
polynomial qT =

∏
i∈T (1− yi). Now consider the following simple identity:

mT =
∏
i∈T

yi =
∏
i∈T

(1− (1− yi)) =
∑
T ′⊆T

(−1)|T
′|qT ′

The above tells us that the columns of IncN,s are spanned by the set of all column vectors
corresponding to polynomials of the form Q = {qT ′ | |T ′| ≤ s}. Since IncN,s has rank

(
N
s

)
,

the set of column vectors in Q must have rank at least
(
N
s

)
. The subset of these columns

corresponding to |T ′| = s are exactly the columns of DisjN,s. Note that the remaining columns

(corresponding to |T ′| < s) are only
∑

i<s

(
N
i

)
in number and this is only o(

(
N
s

)
) since s = o(N).

Hence, the columns of DisjN,s must have rank at least
(
N
s

)
(1− o(1)).

The main technical lemma (Lemma 25) is a generalization of the above trick to our setting.
Given the matrix whose rank we wish to lower bound (like DisjN,s above), we first find a full-
rank matrix that is closely related to our matrix and then show that the columns of our matrix
can (with the aid of just a few other columns) generate the columns of the full-rank matrix.

2.3 The main parameters

For proving Theorem 1, recall the parameters: α ∈ (0, 1/2), N, d, k satisfying

4k ≤ d ≤ α lgN/ lg lgN, k =

⌊
d

τ + 1

⌋
, τ ≥ 3 odd.

Our parameter choices are any δ satisfying α ≤ 1 − δ(τ + 1) and 1 − δτ ≤ 1 − α, and
` = bN1−δc.

The following are easy to verify for our choice of parameters:

Fact 4. τ2 = o(`), τ = o(N δ), and τ` = o(N).
Also, (lgN)τ = O(Nα), and N δ(τ+1) = O(N1−α) = o(N).

These facts also hold in the settings of Theorem 5 and Theorem 27,

3 Proving Theorem 1: Details of a simpler case

In this section we first establish establish Theorem 5 given below. This is a restriction of
Theorem 1 to the special case when 2k divides d exactly. This case clearly illustrates all the
ideas and technical constructs used. Small modifications, described in the next section, establish
Theorem 1.
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Theorem 5. Let α ∈ (0, 1/2) be a constant. Let N, d, k ∈ N be such that 4k ≤ d ≤
α lgN/ lg lgN and 2k | d. Over a field of characteristic zero, for τ = d/k − 1, for any δ
satisfying α ≤ 1− δ(τ + 1) < 1− δτ ≤ 1− α, and for ` = bN1−δc, the following holds:

dim〈∂kSdN 〉≤` >
(1− o(1)) ·

(
N+`
`

)
·
(
N−`
k

)
(3N1−δτ/2)k · (d+ 1)τ

.

3.1 Choice of basis: Step 1 of the proof

Lemma 6. Let k ≤ d ≤ N . Over fields of characteristic 0, the vector space spanned by the set
of k-partial derivatives of SdN , that is 〈∂kSdN 〉≤0, contains {pT | T ⊆ [N ], |T | = k} where

pT =
∑

T⊆A⊆[N ],|A|=d−k

XA = XT · Sd−2k
N−k (X \ T )

Proof. If d < 2k then the statement is vacuously true (there is no such pT ). So now assume
that d ≥ 2k.

For any set S ⊆ [N ] of size |S| = k, let rS be the polynomial obtained by deriving SdN
with respect to all the variables in S (once each). Note that rS contains all degree d − k
multilinear monomials that avoid variables xi for i ∈ S. Similarly, for S ⊆ [N ] of size |S| < k,
define the polynomials rS as sums of degree d− k multilinear monomials avoiding xi for i ∈ S.
Correspondingly, define the complementary polynomials: for T ⊆ [N ] with |T | ≤ k, pT consists
of all degree d− k multilinear monomials that include xi (i ∈ T ). Formally, for S, T ⊆ [N ] with
|S|, |T | ≤ k,

rS(x) =
∑

|A|=d−k, A∩S=∅

XA; pT (x) :=
∑

T⊆B⊆[N ],|B|=d−k

XB.

The claim is that linear combinations of the partial derivative polynomials, rS with |S| = k,
generate the polynomials pT (|T | = k). We can show this in two steps.

The first step is to show that the rS′ (|S′| = k) generate the polynomials rS (|S| ≤ k). Fix
any S with |S| = s < k. Let S = {S′ ⊆ [N ] | |S′| = k, S′ ⊇ S}. A simple computation shows
that any monomial that avoids all the variables in S appears in the same positive number M of
all the polynomials rS′ (S′ ∈ S) (in fact, it can be checked that M =

(N−(d−k+s)
k−s

)
, though this

will not be important for us). Hence, we have rS = 1
M

∑
S′∈S rS′ , which shows that rS is indeed

in the span of rS′ (|S′| = k). Note that this step assumes that we are working in characteristic
0.

Finally, once we have rS for all set sizes in [k], we generate pT for |T | = k using inclusion-
exclusion. Let {0, 1}Nt denote the set of all 0-1 vectors of Hamming weight exactly t. We use
the natural correspondence between this set and the set of all subsets of [N ] of size exactly t.

pT (x) =
∑

T⊆B⊆[N ],|B|=d−k

XB

=
∑

y∈{0,1}Nd−k

 ∏
i:yi=1

xi

(∏
i∈T

yi

)
=

∑
y∈{0,1}Nd−k

 ∏
i:yi=1

xi

(∏
i∈T

(1− (1− yi))

)

=
∑

y∈{0,1}Nd−k

 ∏
i:yi=1

xi

∑
S⊆T

(−1)|S|
∏
i∈S

(1− yi)


=
∑
S⊆T

(−1)|S|
∑

y∈{0,1}Nd−k

 ∏
i:yi=1

xi

(∏
i∈S

(1− yi)

)
=
∑
S⊆T

(−1)|S|rS(x).
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This shows that each pT (|T | = k) is a linear combination of the rS (|S| ≤ k) and hence also
of the derivative polynomials rS′ (|S′| = k).

Let P =
{
m · pT

∣∣ T ⊆ [N ], |T | = k,m ∈M`
N , supp(m) ∩ T = ∅

}
. From Lemma 6, P ⊆

〈∂kSdN 〉≤`. Hence, a lower bound on the dimension of span P is also a lower bound on
dim(〈∂kSdN 〉≤`).

3.2 Choice of shifts: Step 2 of the proof

Instead of considering arbitrary shifts m as in the definition of P, we will consider shifts by
monomials m with various values of |suppi(m)| for i ∈ [τ ]. We first present a technical lemma
that is needed to establish the lower bound. It is a concentration bound for support sizes in
random monomials.

Definition 7. For i ∈ [τ ], ŝi denotes the average number of variables with degree exactly i.
That is, ŝi = Em∼U(M`

N ) [|suppi(m)|].

Definition 8 (Good signature). Given m ∈ M`
N , the signature of m, s(m), is the tuple

(s1, . . . , sτ ) such that m ∈ M`
N (s1, . . . , sτ ). We call the signature (s1, . . . , sτ ) a good signa-

ture if for each i ∈ [τ ], we have ŝi/2 ≤ si ≤ 3ŝi/2. Let S0 denote the set of all good signatures.

The following lemma shows that for our choice of parameters, the average values ŝi for
i ∈ [τ + 1] are significantly large, and most monomials in M`

N in fact have good signatures.

Lemma 9. For our choice of the main parameters, the following statements hold:

1. For i ∈ [τ − 1], ŝi
ŝi+1
≥ N δ.

2. For i ∈ [τ ], ŝi = N1−iδ(1− o(1)).

3. Pr[s(m) ∈ S0] = 1− o(1).

Proof. Pick a random monomial of degree at most ` uniformly at random; m ∼ U(M`
N ).

Consider the following random variables.

1. For i ∈ [τ + 1] and j ∈ [N ], Zi,j denotes the 0-1 random variable that is 1 if and only if
the variable xj has degree at least i in m.
Let pi denote Em [Zi,j ]. (The average is the same for all j.)

2. For i ∈ [τ + 1], let Zi =
∑

j∈[N ] Zi,j be the random variable denoting the number of
variables that have degree at least i in m.
Let µi denote Em [Zi]; clearly, µi = Npi.

3. For i ∈ [τ ], the number of variables of degree exactly i is given by Yi := Zi − Zi+1.
Then ŝi = Em [Yi]; clearly, ŝi = µi − µi+1.

Consider pi, the probability that the variable xj has degree at least i in a monomial m ∼
U(M`

N ). We see that any such monomial can be written uniquely as m = m′(xj)
i where m′ is

a monomial of degree at most ` − i in the same set of variables X. Since the number of such
monomials is exactly |M`−i

N |, we have

pi =
|M`−i

N |
|M`

N |
=

(
N+`−i
`−i

)(
N+`
`

)
8



In particular,
µi
µi+1

=
pi
pi+1

=
N + `− i
`− i

≥ N + `

`
= 1 +N δ ≥ N δ

Hence,
ŝi
ŝi+1

=
pi − pi+1

pi+1 − pi+2
≥ pi − pi+1

pi+1
=

pi
pi+1

− 1 ≥ N δ

proving the first part of the lemma.
Next, we use the following fact about binomial coefficients:

Fact 10. For any N, `, i ∈ N such that i < `, we have(
`− i
N + `

)i
≤
(

`− i
N + `− i

)i
≤
(
N+`−i
`−i

)(
N+`
`

) ≤ ( `

N + `

)i
.

By Fact 10, we have

pi ≤
(

`

N + `

)i
≤
(
`

N

)i
≤ N−iδ; µi ≤ N1−iδ; ŝi ≤ µi ≤ N1−iδ.

Also by Fact 10, we have

pi ≥
[(

`− i
`

)(
`

N

)(
N

N + `

)]i
= N−iδ(1− o(1))

[ (
1− i

`

)(
1 + `

N

)]i
≥ N−iδ(1− o(1)) exp

(
−O

(
i2

`
+
i`

N

))
.

By our choice of parameters (Fact 4), we have i2/` ≤ (τ + 1)2/` = o(1) and i`/N = o(1).
Hence, we have

pi ≥ N−iδ(1− o(1)); µi ≥ N1−iδ(1− o(1)); ŝi ≥ µi
(

1− µi+1

µi

)
≥ N1−iδ(1− o(1)).

Putting together the upper and lower bounds proves the second part of the lemma.
In order to prove the third part of the lemma, we use the second moment method. To do

this, we will need to bound the second moment of Zi. In order to do this, we will need the
following claim.

Claim 11. For any distinct j1, j2, we have E [Zi,j1Zi,j2 ] ≤ E [Zi,j1 ]E [Zi,j2 ] = p2
i .

5

The claim is proved below. First, we use this claim to finish the proof. The following
standard analysis will bound the second moment of Zi.

E
[
Z2
i

]
=
∑
j1,j2

E [Zi,j1Zi,j2 ] =
∑
j1

E
[
Z2
i,j1

]
+
∑
j1 6=j2

E [Zi,j1Zi,j2 ]

≤ Npi +
∑
j1 6=j2

p2
i ≤ Npi +N2p2

i = µi + µ2
i ,

where the first inequality follows from the fact that Z2
i,j1

= Zi,j1 and Claim 11.
Hence, we can bound the variance of Zi as follows.

E
[
(Zi − µi)2

]
= E

[
Z2
i

]
− µ2

i ≤ µi.
5This claim posits a weak form of negative dependence on the degrees of distinct variables. It is actually not

too hard to prove much stronger forms of negative dependence which yield stronger probability estimates than
the ones we give here. However, these estimates suffice for our purposes.

9



Thus, by the Chebyshev inequality, we have

Pr[|Zi − µi| > µi/4] ≤
E
[
(Zi − µi)2

]
(µi/4)2

≤ 16

µi
.

Union bounding over all i ∈ [τ + 1], we have

Pr[∃i, |Zi − µi| > µi/4] ≤ 16
∑

i∈[τ+1]

1

µi
=

16

N

∑
i∈[τ+1]

1

pi

≤ 16

N

∑
i∈[τ+1]

N iδ (1 + o(1)) ≤ 16N (τ+1)δ (1 + o(1))

N

≤ 16 (1 + o(1))

Nα
= o(1)

Thus with probability (1−o(1)) we have |Zi−µi| ≤ µi/4 for all i ∈ [τ ]. When this event occurs,
we see that for all i ∈ [τ ],

|Yi−ŝi| = |Zi−Zi+1−(µi−µi+1)| ≤ µi
4

+
µi+1

4
<
µi
4

(1+N−δ) <
µi
4

(1+o(1)) ≤ ŝi(1 + o(1))

4
<
ŝi
2

for sufficiently large N . So s(m) ∈ S0, which proves the third part of the lemma.
Finally, it remains to prove the Claim.

Proof. (of Claim) Without loss of generality, assume that j1 = 1 and j2 = 2. Then, E [Zi,j1Zi,j2 ]
is the probability that a random m ∼M`

N is divisible by the monomial xi1x
i
2. Such a monomial

m may be uniquely factored as xi1x
i
2m
′ where m′ is a monomial of degree at most `− 2i. Thus,

the probability of this event is precisely

|M`−2i
N |

|M`
N |

=

(
N+`−2i
`−2i

)(
N+`
`

) .

The statement of the claim says that the above quantity may be bounded by p2
i =(

(N+`−i
`−i )

(N+`
` )

)2

. Rearranging, we see that this is equivalent to the following inequality

(
N+`−2i
`−2i

)(
N+`−i
`−i

) ≤ (N+`−i
`−i

)(
N+`
`

) .
Expanding the binomials above and cancelling common terms between the numerators and
denominators, we may rewrite the inequality as(

`− 2i+ 1

N + `− 2i+ 1

)
· · ·
(

`− i
N + `− i

)
≤
(

`− i+ 1

N + `− i+ 1

)
· · ·
(

`

N + `

)
which is easy to verify since each term on the left hand side is upper bounded by the corre-
sponding term on the right hand side. This proves the claim.

This completes the proof of Lemma 9.

Remark 12. By Lemma 9, for any good signature (s1, . . . , sτ ), we have

si
si+1

= Ω(N δ) and sτ = Ω(N1−τδ) = Ω(Nα). Also
|
⋃

(s1,...,sτ ) goodM`
N (s1,...,sτ )|

|M`
N |

= 1− o(1).
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Given a signature (s1, . . . , sτ ), let P(s1, . . . , sτ ) denote the set of polynomials

P(s1, . . . , sτ ) =
{
m · pT

∣∣∣ T ⊆ [N ], |T | = k,m ∈M`
N (s1, . . . , sτ ), supp(m) ∩ T = ∅

}
.

Note that all polynomials in P(s1, . . . , sτ ) are homogeneous of degree at most `+ d− k.

Definition 13. For any signature s = (s1, . . . , sτ ), let ri(s) = si for 1 6 i 6 τ − 1 and
rτ (s) = sτ +k; also, let r(s) =

∑
i ri(s) = (

∑
i si)+k. Usually the signature s will be clear from

context, and we use ri and r instead of ri(s) and r(s) respectively. The matrix M(s1, . . . , sτ )
is the matrix whose columns are indexed by polynomials m · pT ∈ P(s1, . . . , sτ ) and rows by
the monomials w ∈ M`+d−k

N (r1, . . . , rτ ). The coefficient in row w and column m · pT is the
coefficient of the monomial w in the polynomial m · pT .

Note that the columns of M(s1, . . . , sτ ) are simply the polynomials in P(s1, . . . , sτ ) projected
to the monomials that label the rows. In particular, a lower bound on the rank of M(s1, . . . , sτ )
implies a lower bound on the rank of the vector space spanned by P(s1, . . . , sτ ).

It is not too hard to see that M(s1, . . . , sτ ) has |P(s1, . . . , sτ )| columns but only |P(s1,...,sτ )|
(sτ+kk )

rows. Hence, the rank of the matrix is no more than the number of rows in the matrix. The
following lemma, proved in Section 3.3, shows a lower bound that is quite close to this trivial
upper bound.

Lemma 14. With parameters as above, for any good signature s = (s1, . . . , sτ ),

rank(M(s1, . . . , sτ )) >
|P(s1, . . . , sτ )|(

sτ+k
k

) (1− o(1)).

Since P(s1, . . . , sτ ) ⊆ P ⊆ 〈∂kf〉≤`, the above immediately yields a lower bound on
dim(〈∂kf〉≤`). Our final lower bound, which further improves this, is proved by considering
polynomials corresponding to a set of signatures.

Definition 15. Given a set of signatures S, define M`
N (S) =

⋃
s∈SM`

N (s) and P(S) =⋃
s∈S P(s). Also define the matrix M(S) as follows: the columns of M(S) are labelled by

polynomials q ∈ P(S) and the rows by monomials w ∈
⋃
s∈SM

`+d−k
N (r1(s), . . . , rτ (s)). The

(w, q)th entry is the coefficient of w in q.

Note that a lower bound on the rank of M(S) immediately lower bounds the dimension of
the space spanned by P(S) and hence also dim〈∂kSdN 〉≤`.

Definition 16. A set of signatures S is well-separated if given any distinct signatures s =
(s1, . . . , sτ ) and s′ = (s′1, . . . , s

′
τ ) from S, maxi∈[τ ] |si − s′i| > d+ 1.

To analyze the rank of M(S), we observe that for a well-separated set of signatures S, the
matrix M(S) is block-diagonalizable with |S| blocks, where the blocks are the matrices M(s)
for s ∈ S. Since we already have a lower bound on the ranks of M(s) (for good s), this will
allow us to obtain a lower bound on the rank of M(S) as well.

Lemma 17. Let S be a well-separated set of signatures. Then, the matrix M(S) is block-
diagonalizable with blocks M(s) for s ∈ S.

Proof. The proof is straightforward. Since the rows and columns of M(S) are labelled by el-
ements of

⋃
s∈SM

`+d−k
N (r1(s), . . . , rτ (s)) and

⋃
s∈S P(s) respectively, we can group them in

blocks in a natural way: corresponding to each s ∈ S, we consider the rows corresponding
to M`+d−k

N (r1(s), . . . , rτ (s)) and columns corresponding to P(s). This is possible since for

11



s 6= s′, the set of monomials M`+d−k
N (r1(s), . . . , rτ (s)) and M`+d−k

N (r1(s′), . . . , rτ (s′)) are dis-
joint (because the mapping s 7→ (r1(s), . . . , rτ (s)) is one-to-one). Clearly the diagonal block
corresponding to s ∈ S is exactly the matrix M(s).

To argue that the matrix is block-diagonal, consider the entry in row w and column m ·
pT , where for some signatures s, s′ ∈ S, the monomials m,w are in the sets m ∈ M`

N (s)
and w ∈ M`

N (r(s′)). Assume that this entry is 1. Hence for some A ⊆ [N ] of size d − k
containing T , w = m · XA. Thus, any monomial w appearing in q has the property that
||suppi(w)| − |suppi(m)|| ≤ d − k. Thus, for i < τ , |s′i − si| ≤ (d − k) < d, and for i = τ ,
sτ − (d− k) ≤ s′τ + k ≤ sτ + (d− k), hence |s′τ − sτ | ≤ d.

Since S is well-separated, both s, s′ are in S, and for all i ∈ [τ ], |s′i − si| ≤ d, it must be the
case that s′ = s.

This allows us to give a good bound on the matrix M(S) if S is well-separated:

Lemma 18. For a well-separated set S of good signatures,

rank(M(S)) ≥
(1− o(1))

(
N−`
k

)
(3N1−δτ/2)k

· |M`
N (S)|.

Proof.

rank(M(S)) =
∑
s∈S

rank(M(s)) (by Lemma 17, block-diagonalizability)

≥
∑
s∈S

|P(s)|(
sτ+k
k

)(1− o(1)) (by Lemma 14).

Consider the numerator, the number of columns in M(s). For each monomial m, the set T

generating column m · pT can be chosen in
(N−|supp(m)|

k

)
ways. So |P(s)| ≥ |M`

N (s)|
(
N−`
k

)
.

Next consider the denominator. Using the fact k = o(lgN) (Fact 4), while sτ ≥ ŝτ/2 =
Ω(N1−δτ ) and ŝτ ≤ N1−δτ from Lemma 9, we have(

sτ + k

k

)
≤ skτ

1− o(1)
≤
(

3ŝτ
2

)k 1

1− o(1)
≤
(

3N1−δτ

2

)k
1

1− o(1)
.

Putting these back into our expression for rank(M(S)), we get

rank(M(S)) ≥
∑
s∈S

|M`
N (s)|

(
N−`
k

)
(3N1−δτ/2)

k
(1− o(1))

=
(1− o(1))

(
N−`
k

)
(3N1−δτ/2)k

|M`
N (S)|.

Finally, we observe that there is a well-separated set S of good signatures such that the
matrix M(S) is quite large. Recall from Definition 8 that S0 is the set of all good signatures.

Proposition 19. There is a well-separated set of good signatures, S ⊆ S0, satisfying

|M`
N (S)| ≥

|M`
N (S0)|

(d+ 1)τ
.
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Proof. Let D be the set D = {0, 1, . . . , d}. Define the mapping f : M`
N (S0) −→ Dτ as

follows: for m ∈ M`
N (S0) with signature s = (s1, . . . , sτ ), set f(m) = (d1, . . . , dτ ) = d where

di ≡ si mod (d+ 1). Then there must be a d̂ ∈ Dτ such that |f−1(d̂)| ≥ |M
`
N (S0)|

(d+1)τ . Define S to

be this set f−1(d̂); it is easy to see that S is well-separated.

3.3 Bounding the rank of M : Step 3 of the proof

We now prove the lower bound on the rank of the matrix M(s1, . . . , sτ ) as claimed in Lemma 14.
We first block diagonalize it with matrices that have a simple combinatorial structure (their
entries are 0 or 1 depending on intersection patterns of the sets that label the rows and columns).
We then lower bound the ranks of these matrices: this is the main technical step in the proof.

Lemma 20. Fix any signature (s1, . . . , sτ ). The entry of M(s1, . . . , sτ ) in row w ≡
[w̃, R1, . . . , Rτ ] and column m · pT with m ≡ [m̃, S1, . . . , Sτ ] belongs to {0, 1} and is not zero if
and only if w̃ = m̃ and the following system is satisfied:

T ⊆ R1

S1 ⊆ R1 ∪R2

S2 ⊆ R2 ∪R3
...
Sτ−1 ⊆ Rτ−1 ∪Rτ
Sτ ⊆ Rτ

Moreover, the system above implies that T ∪ S1 ∪ . . . ∪ Sτ = R1 ∪ . . . ∪Rτ .

Proof. The entry in row w and column m · pT belongs to {0, 1} and is not zero if and only if
there exists A ⊆ [N ] such that T ⊆ A, |A| = d− k and XA ·m = w. Assume there is such an A.

Say w ≡ [w̃, R1, . . . , Rτ ] and m ≡ [m̃, S1, . . . , Sτ ]. Let m =
∏τ
i=1(XSi)

i and w =
∏τ
i=1(XRi)

i

be the degree at most τ parts of m and w respectively.
Note that deg(w)−deg(m) =

∑τ
i=1 iri−

∑τ
i=1 isi = τk = d− k by our choice of parameters

rτ and k. Putting this together with the fact that w = XA ·m for |A| = d− k, we see that XA

can only ‘contribute’ to the “degree at most τ” part of m: formally, w = XA ·m and hence,
w̃ = m̃.

Further, since XA ·m = XA\TXT
∏τ
i=1(XSi)

i =
∏τ
i=1(XRi)

i = w, and T ∩(S1∪ . . .∪Sτ ) = ∅,
we have T ⊆ R1. Since XA is multilinear, Si ⊆ Ri ∪Ri+1 for all i ∈ [τ − 1]; Sτ ⊆ Rτ is obvious.

Conversely, assume that w̃ = m̃ and the inclusions T ⊆ R1, Si ⊆ Ri ∪Ri+1 for all i ∈ [τ − 1]
and Sτ ⊆ Rτ are satisfied. Then T ∪ S1 ∪ . . . ∪ Sτ ⊆ R1 ∪ . . . ∪Rτ . Since |T ∪ S1 ∪ . . . ∪ Sτ | =
k +

∑τ
i=1 si =

∑τ
i=1 ri = |R1 ∪ . . . ∪ Rτ |, we get T ∪ S1 ∪ . . . ∪ Sτ = R1 ∪ . . . ∪ Rτ . Let

Ai = Ri \ Si for i ∈ [τ ] and A = A1 ∪ . . . ∪ Aτ . The sets Ai are disjoint (because the Ri are
disjoint). Moreover, |Aτ | = |Rτ \ Sτ | = rτ − sτ = k; and by induction, |Ai| = |Ri \ Si| =
|(Ri ∪ . . . ∪Rτ ) \ (Si ∪ . . . ∪ Sτ )| =

∑τ
j=i rj −

∑τ
j=i sj = k. Hence |Ai| = k for all i ∈ [τ ]. Then

|A| = τk = d− k. Moreover, T = A1 ⊆ A. And it holds that XA
∏τ
i=1(XSi)

i =
∏t
i=1 au(XRi)

i.
Since w̃ = m̃, it follows that XA ·m = w. Hence the entry in row w and column m · pT is 1.

Lemma 21. Let (s1, . . . , sτ ) be any signature. The matrix M(s1, . . . , sτ ) is block diagonalizable
with blocks of size

(
r

r1 r2 ... rτ

)
×
(

r
s1 s2 ... sτ k

)
.

Proof. Recall that r = s1 + . . .+ sτ + k (Definition 13).
Given a monomial w̃ and R ⊆ [N ], a block of rows of M(s1, . . . , sτ ) is defined by the set of

monomials w such that w ≡ [w̃, R1, . . . , Rτ ] for some R1, . . . , Rτ satisfying R1 ∪ . . . ∪ Rτ = R.
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In the same way, given m̃ and S ⊆ [N ], a block of columns is defined by the set of polynomials
m · pT such that m ≡ [m̃, S1, . . . , Sτ ] for some S1, . . . , Sτ such that T ∪ S1 ∪ . . . ∪ Sτ = S.

By Lemma 20, all blocks such that w̃ 6= m̃ or R 6= S are zero. Hence the matrixM(s1, . . . , sτ )
is diagonal by blocks of size

(
r

r1 r2 ... rτ

)
×
(

r
s1 s2 ... sτ k

)
.

To obtain a lower bound on the rank of each block in the block diagonalization, we first
establish a technical lemma involving a multinomial inequality.

Lemma 22. For a good signature s = (s1, . . . , sτ ), and the corresponding r as in Definition 13,∑
s′1>s1,...,s

′
τ−1>sτ−1

(
r

s′1 s
′
2 . . . s′τ−1 r −

∑τ−1
i=1 s

′
i

)
=

(
r

s1 s2 . . . sτ−1 r −
∑τ−1

i=1 si

)
(1 + o(1)).

Proof. Note that τ = o(N δ) (Fact 4). Also, from the definition of a good signature and from
Remark 12, si = Ω(si+1N

δ) for i ∈ [τ ]. Also, by our choice of parameters k, τ , we have
r − (s1 + . . .+ sτ−1) = sτ + k ∈ O(sτ ), so sτ−1 = Ω((sτ + k)N δ).

Thus for sufficiently large N we can find an absolute constant K > 0 such that

max

{
r − (s1 + . . .+ sτ−1)

sτ−1
,
sτ−1

sτ−2
, · · · , s2

s1

}
≤ K

N δ
≤ 1

20τ
.

Define Sp(b, a1, . . . , ap) =
∑

δ1,...δp∈N

(
b

a1 + δ1 a2 + δ2 . . . ap + δp b−
∑p

i=1(ai + δi)

)
.

The claimed result is a bound on Sτ−1(r, s1, s2, . . . , sτ−1), and is a special case of the fol-
lowing.

Claim 23. Let K be a non-negative real number and p, b, a1, . . . , ap be positive integers such
that b ≥ a1 + · · ·+ ap and

max

{
b− (a1 + . . .+ ap)

ap
,
ap−1

ap−2
, · · · , a2

a1

}
≤ K

N δ
≤ 1

20p
.

Then the following holds:

Sp(b, a1, . . . , ap) 6

(
b

a1 a2 . . . ap b−
∑p

i=1 ai

)(
1 +

5Kp

N δ

)
.

Proof. We prove this by induction on p.
For the base case p = 1, we prove a sightly stronger statement that will be used in the

inductive step, namely:

Claim 24. Let R be a non-negative real number, and a, b be integers with 1 ≤ a ≤ b, satisfying
b−a
a ≤

R
Nδ ≤ 1

20 . Then

S1(b, a) ,
∑
δ′∈N

(
b

a+ δ′

)
6

(
b

a

)(
1 +

2R

N δ

)
.

Proof. By hypothesis, b− a ≤ aR/N δ. Notice that for δ′ > 0:(
b

a+δ′+1

)(
b

a+δ′

) =
b− a− δ′

a+ δ′ + 1
6
b− a
a

6
R

N δ
.
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Hence,

S1(b, a) =
∑
δ′∈N

(
b

a+ δ′

)
6

(
b

a

)(
1 +

∞∑
δ′=1

(
R

N δ

)δ′)
6

(
b

a

)(
1 +

2R

N δ

)
.

Note that Claim 24 implies the base case of induction for Claim 23.
Now let p ≥ 2, and assume that the claim holds for all p′ < p. We have

Sp(b, a1, . . . , ap) =
∑
δ1∈N

(
b

a1 + δ1

)
Sp−1(b− (a1 + δ1), a2, . . . , ap).

Note that for all non-negative δ1,

(b− (a1 + δ1))− (a2 + . . .+ ap) ≤ (b− a1)− (a2 + . . .+ ap) = b− (a1 + a2 + . . .+ ap) ≤ apK/N δ.

Hence the induction hypothesis is applicable to all the Sp−1 terms, giving

Sp(b, a1, . . . , ap) 6
∑
δ1∈N

(
b

a1 + δ1

)(
b− (a1 + δ1)

a2 a3 . . . ap b− (
∑p

i=1 ai)− δ1

)(
1 +

5K(p− 1)

N δ

)
6

∑
δ1∈N

(
b

a1 + δ1

)(
b− a1

a2 a3 . . . ap b−
∑p

i=1 ai

)(
1 +

5K(p− 1)

N δ

)
(because

(
b− (a1 + δ1)

a2 a3 . . . ap b− (
∑p

i=1 ai)− δ1

)
is a decreasing function of δ1.)

=

(
b− a1

a2 a3 . . . ap b−
∑p

i=1 ai

)(
1 +

5K(p− 1)

N δ

) ∑
δ1∈N

(
b

a1 + δ1

)
=

(
b− a1

a2 a3 . . . ap b−
∑p

i=1 ai

)(
1 +

5K(p− 1)

N δ

)
S1(b, a1).

We need to show that Claim 24 is applicable to S1(b, a1). Note that

b− a1

a1
=

b−
∑p

i=1 ai +
∑p

i=2 ai
a1

=
b−

∑p
i=1 ai

a1
+
ap
a1

+ . . .+
a2

a1

=

(
b−

∑p
i=1 ai

ap

)(
ap
ap−1

)
· · ·
(
a2

a1

)
+

(
ap
ap−1

)
· · ·
(
a2

a1

)
+ . . .+

a2

a1

6
p∑
i=1

(KN−δ)i 6
2K

N δ
because K/N δ ≤ 1/20 < 1.

Also,
2K

N δ
≤ 1

10p
≤ 1

20
.

So we can use Claim 24 with R = 2K,a = a1, and b. Continuing our derivation, we get

Sp(b, a1, . . . , ap) 6

(
b− a1

a2 a3 . . . ap b−
∑p

i=1 ai

)(
1 +

5K(p− 1)

N δ

)(
b

a1

)(
1 +

4K

N δ

)
=

(
b

a1 a2 a3 . . . ap b−
∑p

i=1 ai

)(
1 +

5K(p− 1)

N δ

)(
1 +

4K

N δ

)
.

≤
(

b

a1 a2 a3 . . . ap b−
∑p

i=1 ai

)(
1 +

5Kp

N δ

)
15



(using the assumption p ≤ N δ/(20K)).

This completes the proof of Lemma 22.

We now lower bound the rank of each block in the block diagonalization.

Lemma 25 (Main Technical lemma). Fix any good signature (s1, . . . , sτ ). The rank of any
diagonal block of M(s1, . . . , sτ ) is

(
r

s1 s2 ... sτ+k

)
(1− o(1)).

Proof. Let M ′ be a diagonal block of the matrix M(s1, . . . , sτ ). Recall from Lemma 21 that
such a diagonal block is defined by a monomial w̃ and a subset R ⊆ [N ]. Rows of this block
are labelled with all monomials w ≡ [w̃, R1, . . . , Rτ ] such that R1 ∪ . . . ∪ Rτ = R and columns
of this block are labelled with all polynomials m · pT where m ≡ [w̃, S1, . . . , Sτ ] is such that
T ∪ S1 ∪ . . . ∪ Sτ = R. First, we set up some notation.

For a partition B̃ = (B1, . . . , Bp) of R, let b̃ = (b1, . . . , bp) be the tuple of part sizes, bi = |Bi|.
We say that b̃ is the signature of B̃.

We say (a1, . . . , ap) � (b1, . . . , bp) if ai ≤ bi for all i ∈ [p], and (a1, . . . , ap) ≺ (b1, . . . , bp) if
(a1, . . . , ap) � (b1, . . . , bp) but (a1, . . . , ap) 6= (b1, . . . , bp).

Define the following collections of partitions of R:

X = {R̃ = (R1, . . . , Rτ ) | signature(R̃) = (r1, . . . , rτ )}
Y = {S̃ = (S1, . . . , Sτ , T ) | signature(S̃) = (s1, . . . , sτ , k)}
Z ′ = {Q̃ = (Q1, . . . , Qτ ) | signature(Q̃) = (q1, . . . , qτ ); (s1, . . . , sτ−1) � (q1, . . . , qτ−1)}
Z = {Q̃ = (Q1, . . . , Qτ ) | signature(Q̃) = (q1, . . . , qτ ); (s1, . . . , sτ−1) ≺ (q1, . . . , qτ−1)}

Note that |X| =
(

r
s1 s2 ... sτ+k

)
. Also, Z ′ \Z is precisely X. By Lemma 22, |Z ′| = |X|(1 + o(1)).

Hence |Z| = |X| · o(1).
For any S̃ ∈ Y , define the partition S̃X = (S1, . . . , Sτ−1, Sτ ∪ T ) ∈ X. We say that S̃

“extends” S̃X .
The rows and columns of M ′ are indexed by elements of X and Y respectively (Lemma 21).
We define two auxiliary matrices M1 and M2 as follows. The rows and columns of M1 are

indexed by elements of X. The entries of M1 are in {0, 1} and are defined as follows:

M1(R̃, R̃′) =

{
1 if R′i ⊆ Ri ∪Ri+1 for each i ∈ [τ − 1]
0 otherwise.

The rows and columns of M2 are indexed by elements of X and Z respectively. The entries
of M2 are in {0, 1} and are defined as follows:

M2(R̃, Q̃) =

{
1 if Qi ⊆ Ri ∪Ri+1 for each i ∈ [τ − 1]
0 otherwise.

Let I be the identity matrix with rows and columns indexed by elements of X.
Our proof proceeds as follows:

1. We will show that the columns of M ′ and M2 together span the columns of M1; hence
rank(M1) ≤ rank(M ′) + rank(M2).

2. We will show that the columns of M1 and M2 together span the columns of I; hence
rank(I) ≤ rank(M1) + rank(M2).
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3. It then follows that

rank(M ′) ≥ rank(M1)− rank(M2) ≥ rank(I)− 2rank(M2) ≥ |X| − 2|Z| = |X|(1− o(1))

which is what we had set out to prove.

For A ⊆ [τ ], define the function ϕA : X × 2R −→ {0, 1} as follows:

ϕA(R̃, S) =

{
1 if S ⊆

⋃
i∈ARi

0 otherwise.

Note that if S = ∅, then ϕA(R̃, S) = 1 for every A and R̃.
With some abuse of notation, for sets of size 1 or 2 we drop the set notation. eg ϕi1,i2(R̃, j)

is the same as ϕ{i1,i2}(R̃, {j}).
Since τ is odd and at least 3, we can express the functions ϕA(·, ·) for singleton sets A in

terms of the functions ϕB(·, ·) where |B| = 2. In particular, for A = {1} and for A = {τ}, we
write

ϕτ (R̃, j) = 1− ϕ1,2(R̃, j)− ϕ3,4(R̃, j)− . . .− ϕτ−2,τ−1(R̃, j)

and ϕ1(R̃, j) = 1− ϕ2,3(R̃, j)− ϕ4,5(R̃, j)− . . .− ϕτ−1,τ (R̃, j).

For A = {1} or A = {τ} and S ⊆ [N ] we write

ϕA(R̃, S) =
∏
j∈S

ϕA(R̃, j).

We use these functions to compactly describe the columns of M ′, M1, M2, I. By definition,

M1[R̃, R̃′] =
τ−1∏
i=1

ϕi,i+1(R̃, R′i) ;

M2[R̃, Q̃] =

τ−1∏
i=1

ϕi,i+1(R̃,Qi)

I[R̃, R̃′] =

(
τ∏
i=1

ϕi(R̃, R
′
i)

)
=

(
τ−1∏
i=1

ϕi,i+1(R̃, R′i)

)
ϕτ (R̃, R′τ ) = M1[R̃, R̃′]ϕτ (R̃, R′τ )

where the second equality follows from the fact that R̃, R̃′ have the same signature. (RHS =
1 ⇒ ϕτ (R̃, R′τ ) = 1 ⇒ R′τ ⊆ Rτ ⇒ R′τ = Rτ because the sets are equi-sized. Then RHS = 1
further ⇒ ϕτ−1,τ (R̃, R′τ−1) = 1 ⇒ R′τ−1 ⊆ Rτ−1 ∪ Rτ . But R′τ−1 is disjoint from R′τ = Rτ . So
R′τ−1 ⊆ Rτ−1, and since they are equi-sized, they must be the same. Continuing this way, we

conclude R̃ = R̃′.)
Starting with Lemma 20,

M ′[R̃, S̃] = ϕ1,2(R̃, S1)ϕ2,3(R̃, S2) . . . ϕτ−1,τ (R̃, Sτ−1)ϕτ (R̃, Sτ )ϕ1(R̃, T )

=

(
τ−1∏
i=1

ϕi,i+1(R̃, Si)

)∏
j∈Sτ

ϕτ (R̃, j)

∏
j∈T

ϕ1(R̃, T )


=

(
τ−1∏
i=1

ϕi,i+1(R̃, Si)

)
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×

∏
j∈Sτ

[
1− ϕ1,2(R̃, j)− ϕ3,4(R̃, j)− . . .− ϕτ−2,τ−1(R̃, j)

]
×

∏
j∈T

[
1− ϕ2,3(R̃, j)− ϕ4,5(R̃, j)− . . .− ϕτ−1,τ (R̃, j)

]
=

∑
partition Q̃ = (Q1, . . . , Qτ−1, Qτ ) :

∀i ∈ [τ − 1], Si ⊆ Qi

τ−1∏
i=1

(−1)|Qi\Si|ϕi,i+1(R̃,Qi)

=
∑
Q̃∈Z′

αS̃,Q̃

τ−1∏
i=1

ϕi,i+1(R̃,Qi).

The coefficients αS̃,Q̃ are all in {−1, 0, 1}. Observe that

• The coefficient αS̃,S̃X is 1, and the corresponding term is precisely M1[R̃, S̃X ].

• The coefficient αS̃,Q̃ is 0 for all Q̃ ∈ X \ {S̃X}. (One of the requirements Si ⊆ Qi must be
violated.)

• All other Q̃ are in Z, and the corresponding term is precisely M2[R̃, Q̃].

Hence
M ′[R̃, S̃] = M1[R̃, S̃X ] +

∑
Q̃∈Z

αS̃,Q̃M2[R̃, Q̃].

Since the coefficients in this combination do not depend on the row R̃, we obtain

M ′[∗, S̃] = M1[∗, S̃X ] +
∑
Q̃∈Z

αS̃,Q̃M2[∗, Q̃].

For every R̃′ ∈ X, arbitrarily pick any S̃ ∈ Y extending it. Then

M1[∗, R̃′] = M ′[∗, S̃]−
∑
Q̃∈Z

αS̃,Q̃M2[∗, Q̃].

This completes Step 1.
Starting with I and proceeding in exactly the same way, we obtain

I[R̃, R̃′] = M1[R̃, R̃′]ϕτ (R̃, R′τ )

= M1[R̃, R̃′]

∏
j∈R′τ

[
1− ϕ1,2(R̃, j)− ϕ3,4(R̃, j)− . . .− ϕτ−2,τ−1(R̃, j)

]
= M1[R̃, R̃′] +

∑
Q̃∈Z

βR̃′,Q̃M2[R̃, Q̃]

for some coefficients βR̃′,Q̃ independent of R̃. Hence

I[∗, R̃′] = M1[∗, R̃′] +
∑
Q̃∈Z

βR̃′,Q̃M2[∗, Q̃].

This completes Step 2.
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Lemma 14 can now be proved using the block-diagonal decomposition (Lemma 21) and the
rank lower bound (Lemma 25).

Proof. (of Lemma 14) By Lemma 21, we know that M(s1, . . . , sτ ) can be block diagonalized
into blocks of size

(
r

r1 r2 ··· rτ
)
×
(

r
s1 s2 ··· sτ k

)
. Let B denote the number of blocks in this block

diagonalization.
By Lemma 25, we know that each block has rank

(1− o(1))

(
r

r1 r2 · · · rτ

)
= (1− o(1))

(
r

s1 s2 · · · sτ + k

)
= (1− o(1)) · 1(

sτ+k
k

)( r

s1 s2 · · · sτ k

)
=

1− o(1)(
sτ+k
k

) · (# of columns in each block)

where the first equality is a result of our choice of parameters and the second follows from the
combinatorial identity:

(
r

s1 s2 ··· sτ+k

)
= 1

(sτ+kk )

(
r

s1 s2 ··· sτ k

)
.

Thus, the rank of the matrix M(s1, . . . , sτ ), which is the sum of the ranks of the blocks, is

1− o(1)(
sτ+k
k

) · (# of columns in each block) ·B

=
1− o(1)(
sτ+k
k

) · (# of columns in M(s1, . . . , sτ ))

=
|P(s1, . . . , sτ )|(

sτ+k
k

) (1− o(1)),

since |P(s1, . . . , sτ )| is the number of columns in M(s1, . . . , sτ ).

3.4 Putting it together

We now have all the ingredients to establish that the shifted partial derivative measure of SdN
is large.

Theorem 5 (Restated). Let α ∈ (0, 1/2) be a constant. Let N, d, k ∈ N be such that 4k ≤
d ≤ α lgN/ lg lgN and 2k | d. Over a field of characteristic zero, for τ = d/k − 1, for any δ
satisfying α ≤ 1− δ(τ + 1) < 1− δτ ≤ 1− α, and for ` = bN1−δc, the following holds:

dim〈∂kSdN 〉≤` >
(1− o(1)) ·

(
N+`
`

)
·
(
N−`
k

)
(3N1−δτ/2)k · (d+ 1)τ

.

Proof. (of Theorem 5.) By Lemma 6, dim〈∂kSdN 〉≤` ≥ dim(span(P)). This in turn is at least as
large as rank(M(S)) for any set S of signatures, since M(S) is a submatrix of the matrix that
describes a basis for P. By Proposition 19, there is a well-separated set of good signatures S
with large |M`

N (S)|. Choose such a set. Then

dim〈∂kSdN 〉≤` ≥ dim(span(P)) (by Lemma 6)

≥ rank(M(S))

≥
(1− o(1))

(
N−`
k

)
(3N1−δτ/2)k

· |M`
N (S)| (by Lemma 18)
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≥
(1− o(1))

(
N−`
k

)
(3N1−δτ/2)k

·
|M`

N (S0)|
(d+ 1)τ

(by Proposition 19)

≥
(1− o(1))

(
N−`
k

)
(3N1−δτ/2)k

·
|M`

N |(1− o(1))

(d+ 1)τ
(by Lemma 9 and Remark 12)

=
(1− o(1))

(
N−`
k

)(
N+`
`

)
(3N1−δτ/2)k(d+ 1)τ

.

4 Modification for the general case of parameters

The proof of Theorem 5 handles the case when d is divisible by 2k, and thus, by our choice of
τ , d is divisible by τ + 1. In this section, we state the modifications which we make to the proof
so that it works in a more general setting, and thus prove Theorem 1.

Theorem 1 (Restated). Let α ∈ (0, 1/2) be a constant. Let N, d, k ∈ N be such that 4k ≤ d ≤
α lgN/ lg lgN and k = b d

τ+1c for some odd number τ ≥ 3. Over a field of characteristic zero,

for any δ satisfying α ≤ 1− δ(τ + 1) < 1− δτ ≤ 1−α, and for ` = bN1−δc, the following holds:

dim〈∂kSdN 〉≤` >
(1− o(1)) ·

(
N+`
`

)
·
(
N−`
k

)
(3N1−δτ/2)k · (d+ 1)τ

.

Proof Sketch. We follow the proof outline for Theorem 5.

1. The bounds concerning the parameters (Fact 4) and good signatures (Lemma 9) continue
to hold.

2. In Section 2 in Definition 13, we had set the parameters (r1, . . . , rτ ) corresponding to a
signature (s1, . . . , sτ ). Here we modify this slightly. Let g be the loss due to the floor
function; g , d − k(τ + 1). (Note: earlier, we had g = 0.) We have 0 ≤ g ≤ τ , and
τk+ g = d−k. Now, we let ri = si for i ∈ [τ − 2], rτ−1 = sτ−1− g, rτ = sτ +k+ g. It can
be verified that with this choice,

∑τ
i=1 ri = (

∑τ
i=1 si)+k and

∑τ
i=1 iri = (

∑τ
i=1 isi)+d−k.

3. We define matrix M(s1, s2, . . . , sτ ) as in Definition 13 but with respect the new parameter
setting. It is easy to see that Lemma 20 and Lemma 21 hold in this new setting as well,
because the proof only uses the fact that

∑τ
i=1 iri =

∑τ
i=1 isi + d − k and

∑τ
i=1 ri =∑τ

i=1 si + k.

4. Finally, we note that Lemma 25 holds with a few modifications to the proof. Recall the
overall strategy: for partitions X,Y, Z, Z ′ and matrices M ′,M1,M2, I, we had shown

rank(M ′) ≥ rank(M1)− rank(M2) ≥ rank(I)− 2rank(M2) ≥ |X| − 2|Z| = |X|(1− o(1)).

We now define an additional set Ỹ of partitions as follows:

Ỹ = {S̃ = (S1, . . . , Sτ ∪ T ) | signature(S̃) = (s1, . . . , sτ + k)}.

Notice that Ỹ = Z \ Z ′. Let D be the matrix whose rows are labelled by X and columns
by Ỹ , and defined in the following way: D[(R1, . . . , Rτ ), (S1, . . . , Sτ−1, S

′
τ )] = 1 if Si ⊆

Ri ∪Ri+1 for all i ∈ [τ − 1] and S′τ ⊆ Rτ ; otherwise, it is 0. 6 Now our strategy is to show

rank(M ′) ≥ rank(M1)− rank(M2) ≥ rank(D)− 2rank(M2)

6Note that, in the original parameter setting when g = 0, Ỹ = Z \ Z′ = X and D is the identity matrix I.
When g 6= 0, due to the new setting of parameters, Ỹ 6= X and D is different from I.
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≥ |Ỹ |(1− o(1))− 2|Z| = |Ỹ |(1− o(1)).

The first step (columns of M ′ and M2 span those of M1) works exactly as before. So
does the second step (columns of M1 and M2 span those of D): this is because for
R̃ = (R1, . . . , Rτ ) and S̃ = (S1, . . . , Sτ−1, S

′
τ ), we have

D[R̃, S̃] = M1[R̃, S̃]ϕτ (R̃, S′τ )

= M1[R̃, S̃]

∏
j∈S′τ

[
1− ϕ1,2(R̃, j)− ϕ3,4(R̃, j)− . . .− ϕτ−2,τ−1(R̃, j)

] .

The step showing rank(M2) is small follows from Lemma 22 which holds as is, since Z,Z ′

depend only on the signature s and not on how we set r.

We now need one additional step showing that D has rank |Ỹ |(1 − o(1)), and then we
note that |Ỹ | =

(
s

s1 s2 ... sτ+k

)
.

First notice that the matrix D has a block diagonal structure. For a given pair of tuples
(R1, R2, . . . , Rτ−2) and (S1, S2, . . . , Sτ−2) the block corresponding to this pair is{

(R̃, S̃) | ∃Rτ−1, Rτ , Sτ−1, S
′
τ such that R̃ = (R1, R2, . . . , Rτ−2, Rτ−1, Rτ )

and S̃ = (S1, S2, . . . , Sτ−2, Sτ−1, S
′
τ )

}
.

If (R1, R2, . . . , Rτ−2) 6= (S1, S2, . . . , Sτ−2) then any entry of the matrix in the block cor-
responding to the pair is zero. If (S1, S2, . . . , Sτ−2) = (R1, R2, . . . , Rτ−2), then in the
block defined by this pair, consider sub-blocks where rows are grouped by Rτ−1 ∪Rτ and
columns by Sτ−1 ∪ S′τ . Again, entries outside the diagonal sub-blocks are all zeroes.

So now consider a sub-block, with U = Rτ−1 ∪Rτ = Sτ−1 ∪S′τ . Each row can be thought
of as labelled by Rτ (this determines Rτ−1 as U \Rτ ) and each column by S′τ (again, this
determines Sτ−1, where |Rτ | = rτ = sτ + g + k, and |S′τ | = sτ + k. And the entry in the
cell labelled by row Rτ and column S′τ is 1 exactly when S′τ ⊆ Rτ . Thus, this sub-block is
an inclusion matrix. We use the following theorem to analyze the rank of each sub-block
in the matrix [Wil90].

Theorem 26 (Wilson [Wil90]). Let W u
ab be a 0-1 matrix in which each row is labelled

by a set of size a from a universe of size u and each column is labelled by a set of size b
from the same universe. The (A,B)th entry of the matrix is 1 if and only if A ⊆ B. For
a ≤ min{b, u− b}, the rank of the matrix W u

ab modulo a prime p is equal to

∑(
u

i

)
−
(

u

i− 1

)
where the sum is over indices i such that p does not divide

(
b−i
a−i
)
.

When i = a,
(
b−i
a−i
)

= 1, i.e. this binomial is not divisible by any p. Therefore, for any
p, the term corresponding to i = a appears in the summation. Since each term in the
summation is non-negative, the rank of W u

ab is at least
(
u
a

)
−
(
u
a−1

)
. (Note also that this

holds over any characteristic, a fact that will be useful in Section 5).

Our sub-blocks are transposes of these matrices W u
ab, with u = sτ−1 + sτ + k, a = sτ + k,

b = sτ + k + g. Hence each sub-block has rank at least
(sτ−1+sτ+k

sτ+k

)
−
(sτ−1+sτ+k

sτ+k−1

)
. From

Lemma 9, k, g, sτ = o(sτ−1). Hence the rank of each sub-block is at least
(sτ−1+sτ+k

sτ+k

)
(1−
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o(1)) which is (1−o(1))(number of columns in sub-block). Due to the diagonal structure,
we can add up over all the sub-blocks and blocks to get

rank(D) ≥ (1− o(1))(number of columns in D) = (1− o(1))|Ỹ |.

5. Putting together the steps as done in Section 3.4 establishes Theorem 1.

5 Modified proof for non-zero characteristic

In this section we desribe how to adapt our proof of Theorems 5 and 1 to work over fields with
positive characteristic. The bound we obtain is slightly, but not significantly, weaker.

We first observe that the only place in our proofs of Theorems 1, 5 where we use characteristic
zero is Step 1 in the proof of Lemma 6. It is easy to see that all other steps, including the
adaptation described in Section 4, are independent of the characteristic.

While working in positive characteristic, we replace Lemma 6 by a different statement.
Recall the use of Lemma 6; it allowed us to lower-bound dim

(
〈∂kSdN 〉≤`

)
by the dimension

of P =
{
m · pT

∣∣ T ⊆ [N ], |T | = k,m ∈M`
N , supp(m) ∩ T = ∅

}
. Here, we consider a somewhat

different set P ′, and also end up with a 1/(k+ 1) factor while lower-bounding dim
(
〈∂kSdN 〉≤`

)
.

Let N ′ := N − k. We work with N ′ variables, with well-chosen 0-1 settings to the last k
variables. Recall that for any set S ⊆ [N ] such that |S| ≤ k, the polynomial rS(x) is defined as
follows:

rS(x) :=
∑

A⊆[N ],|A|=d−k,A∩S=∅

XA,

where XA :=
∏
i∈A xi. Let D denote the set {rS | S ⊆ [N ], |S| = k}.

Similarly, for any set S ⊆ [N ′] such that |S| ≤ k, define the polynomial r′S(x) as follows:

r′S(x) :=
∑

A⊆[N ′],|A|=d−k,A∩S=∅

XA.

In Step 1 of the proof of Lemma 6 we showed that for any S′ ⊆ [N ] with |S′| ≤ k, rS′ is in
the span of D. In the case of non-zero characteristic, we create k + 1 sets D0,D1, . . . ,Dk, each
of dimension at most D, and show that for each S′ ⊆ [N ′] with |S′| ≤ k, r′S′ is in the union of
the sets Dis.

For every 0 ≤ i ≤ k, let πi : {x1, . . . , xN} → {x1, . . . , xN ′} ∪ {0, 1} be defined as follows:

πi(xj) =


xj if 1 ≤ j ≤ N ′,
1 if (N ′ + 1) ≤ j ≤ (N ′ + i),
0 otherwise.

The map πi naturally extends to a ring homomorphism from F[x1, . . . , xN ] to F[x1, . . . , xN ′ ].
For each 0 ≤ i ≤ k, let Di := πi(D) = {πi(rS) | rS ∈ D}.

Consider any S′ ⊆ [N ′] of size at most k. We augment S′ to a set S′′ ⊆ [N ] of size exactly k,
using the last k reserved indices, by defining S′′ = S′∪{N ′+ 1, . . . , N ′+ (k−|S|)}. (If |S′| = k,
then S′′ = S′.) Now the projection πk−|S′| applied to the augmented-set-polynomial rS′′ gives
back the polynomial r′S′ ; that is, r′S′ = πk−|S′|(rS′′) ∈ Dk−|S′|. Therefore we get

{r′S′ | S′ ⊆ [N ′], |S′| ≤ k} ⊆
k⋃
i=1

Di.
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Let p′T (x) :=
∑

T⊆B⊆[N ′],|B|=d−kXB. Let P ′ denote {p′T | T ⊆ [N ′], |T | = k}. The inclusion-

exclusion argument in Step 2 of the proof of Lemma 6 works exactly as before, over the set [N ′],
and tells us that P ′ is contained in span{r′S′ | S′ ⊆ [N ′], |S′| ≤ k} and therefore, in span(∪iDi).
We define P ′ to be set of degree (at most) ` shifts of P ′, similar to P defined in Section 3.1,
but restricting even the shifts to variables from [x1, . . . , xN ′ ].

P ′ =
{
m · p′T

∣∣∣ T ⊆ [N ′], |T | = k,m ∈M`
N ′ , supp(m) ∩ T = ∅

}
⊆ {m · q | m ∈M`

N ′ , q ∈ P ′}.

Since P ′ ⊆ span ∪i Di, we get

P ′ ⊆ span ∪ki=0

{
m · πi(rS) | rS ∈ D,m ∈M`

N ′

}
= span ∪ki=0

{
πi(m · rS) | rS ∈ D,m ∈M`

N ′

}
.

The equality holds because for monomials m ∈M`
N ′ , for every 0 ≤ i ≤ k, m = πi(m).

Now, note that for any finite set X ⊆ F[x1 . . . , xN ] and a linear map π between vector spaces
F[x1, . . . , xN ] and F[x1, . . . , xN−k], dim(span π(X)) ≤ dim(span X). Therefore, we get that

dim
(

span
{
πi(m · rS) | rS ∈ D,m ∈M`

N ′

})
≤ dim

(
span

{
m · rS | rS ∈ D,m ∈M`

N ′

})
.

Thus,

dim
(
span

{
P ′
})
≤ dim

(
span ∪ki=0

{
πi(m · rS) | rS ∈ D,m ∈M`

N ′

})
≤

k∑
i=0

dim
(

span
{
πi(m · rS) | rS ∈ D,m ∈M`

N ′

})
≤ (k + 1)dim

(
span

{
m · rS | rS ∈ D,m ∈M`

N ′

})
≤ (k + 1)dim

(
〈∂kSdN 〉≤`

)
.

We can now proceed with the proof of Theorem 5 or 1 exactly as before, using dim (span P ′)
as our lower bound for dim

(
〈∂kSdN 〉≤`

)
. For our choice of parameters, recall that k, d ∈ o(lgN),

so N ′ = N − k = Ω(N) and d = o(lgN ′) as well. Hence the earlier proof goes through. We
have established:

Theorem 27. Let α ∈ (0, 1/2) be a constant. Let N, d, k ∈ N be such that 4k ≤ d ≤
α lgN/ lg lgN and k = b d

τ+1c for some odd number τ ≥ 3. For any δ satisfying α ≤ 1−δ(τ+1) <

1− δτ ≤ 1− α, and for ` = bN1−δc, the following holds:

dim〈∂kSdN 〉≤` >
dim (span {P ′})

k + 1
>

(1− o(1))

k + 1
·
(
N−k+`

`

)
·
(
N−k−`

k

)
(3N1−δτ/2)k · (d+ 1)τ

.

6 Lower bound on the size of depth four formulas

In this section, we establish the lower bounds claimed in Theorem 2 and Corollary 3. As
in [GKKS13], we say that a ΣΠΣΠ formula C is a ΣΠ[D]ΣΠ[t] formula if the product gates at
level 1 (just above the input variables) have fan-in at most t and the product gates at level 3
have fan-in bounded by D.

The following is implicit in [GKKS13] and is stated explicitly in [KSS14].
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Lemma 28 ([KSS14], Lemma 4). Let P be a polynomial on N variables computed by a
ΣΠ[D]ΣΠ[t] circuit of top fan-in s. Then, we have

dim(〈∂kP 〉≤`) ≤ s ·
(
D

k

)
·
(
N + `+ (t− 1)k

`+ (t− 1)k

)
.

We are now ready to prove

Theorem 2 (Restated). Let ε ∈ (0, 1) be a constant. Let N, d,D, t ∈ N be such that 10t
ε ≤ d ≤

ε lgN
5 lg lgN , D ≤ N1−ε. Any ΣΠ[D]ΣΠ[t] circuit of top fan-in s computing SdN satisfies s = NΩ(d/t).

Proof. Assume there exists a ΣsΠ[D]ΣΠ[t] circuit computing SdN .
We first illustrate the proof for one setting: the field has characteristic zero, ε = 3/4, and

4t+2 divides d. Choosing α = 3/20, τ = 4t+1, k = d
4t+2 , δ = 1

2τ , all the conditions for invoking
Theorem 5 are met. From Theorem 5 and Lemma 28, when N is large enough, it holds that

s ≥
(
N−`
k

)(
D
k

) (
N+`
`

)(N+`+(t−1)k
`+(t−1)k

) 1− o(1)

(3N1−δτ/2)k(d+ 1)τ
.

For large enough N , since k, ` = o(N), we have
(N−`k )
(Dk)

≥
(
N−`−k
D

)k ≥ ( N2D)k.
Since kt < d = o(lgN), for large enough N we have(

N+`
`

)(N+`+(t−1)k
`+(t−1)k

) ≥ ( `

N + `

)kt
≥
(

1

2N δ

)kt
≥ N−δtk−o(k).

By Fact 4, (d+ 1)τ ≤ (lgN)τ ≤ Nα.
We are given that D ≤ N1−ε.
Putting it all together, we have obtained that asymptotically,

s ≥
(

N

2D ·N δt+o(1) · (3N1−δτ/2)

)k
· 1− o(1)

Nα
≥ 1

Nα
·
(

N

N1−ε ·N1−δτ ·N δt ·No(1)

)k
. (1)

By our choice of parameters, 1 − δτ = 1/2. Also, t ≤ τ/4, so δt ≤ δτ/4 = 1/8. And
1− ε = 1/4. Thus we see that Equation (1) yields a lower bound of NΩ(k) = NΩ(d/t).

The above proof idea (with some changes in parameters) can be made to give lower bounds
of NΩ(d/t) for D ≤ N1−ε for any constant ε > 0. Firstly, to handle the absence of a divisibility
constraint (in the above setting, we had assumed that 4t+2 divides d), we should use Theorem 1
instead of Theorem 5. Then, we must choose α, τ, δ appropriately. It can be verified that if we
choose α = ε

5 , δ = ε
10t , and let τ be the smallest odd integer such that 1 − δτ ≤ ε

2 , everything
works out.

Finally, to obtain the same result over fields of positive characteristic, we can follow the
same outline, replacing the use of Theorem 5 or Theorem 1 by Theorem 27. This Theorem
gives a slightly weaker bound for dim(〈∂kP 〉≤`). However, in the asymptotic bound stated in
Theorem 2, the degradation of this bound is irrelevant.

Corollary 3 (Restated). Let parameters N, d, t be as in Theorem 2. Any ΣΠ[O(d/t)]ΣΠ[t] com-
puting SdN must have top fan-in at least NΩ(d/t). In particular, any homogeneous ΣΠΣΠ circuit
C with bottom fan-in bounded by t computing SdN must have top fan-in at least NΩ(d/t).
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Proof. The first statement is an immediate corollary of Theorem 2 since d/t ≤ d = No(1). The
second follows from the first by a standard trick [GKKS13]: given any homogeneous ΣΠΣΠ
circuit, we can ensure that the fan-in of the layer 3 product gates is at most O(d/t) by repeatedly
multiplying out pairs of polynomials of degree at most t/2 that feed into it. This does not change
the top fan-in of the circuit and ensures that the bottom fan-in remains bounded by t. At the
end of this procedure, each Π gate on layer 3 has at most 1 polynomial of degree < t/2 feeding
into it; homogeneity now entails that the fan-in of the Π-gate must be at most 2d/t+ 1.
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