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Abstract

We explicitly construct an extractor for two independent sources on n bits, each with min-
entropy at least logC n for a large enough constant C. Our extractor outputs one bit and has
error n�⌦(1). The best previous extractor, by Bourgain [Bou05], required each source to have
min-entropy .499n.

A key ingredient in our construction is an explicit construction of a monotone, almost-
balanced boolean function on n bits that is resilient to coalitions of size n1��, for any � > 0.
In fact, our construction is stronger in that it gives an explicit extractor for a generalization of
non-oblivious bit-fixing sources on n bits, where some unknown n � q bits are chosen almost
polylog(n)-wise independently, and the remaining q = n1�� bits are chosen by an adversary
as an arbitrary function of the n � q bits. The best previous construction, by Viola [Vio14],
achieved q = n1/2��.

Our explicit two-source extractor directly implies an explicit construction of a 2(log logN)

O(1)

-
Ramsey graph over N vertices, improving bounds obtained by Barak et al. [BRSW12] and
matching independent work by Cohen [Coh15b].
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1 Introduction

The area of randomness extraction deals with the problem of obtaining nearly uniform bits from
sources that are only weakly random. This is motivated by the ubiquitous use of randomness in
various branches of computer science like algorithms, cryptography, and more. Further, most appli-
cations require truly random, uncorrelated bits, but most easily-obtainable sources of randomness
do not satisfy these conditions. In particular, pseudorandom generators in practice try to accumu-
late entropy by using thermal noise or clock drift, but then this needs to be purified before using
it to seed a pseudorandom generator; see e.g., [JK99,BH05].

We model a weak source on n bits using min-entropy. A source X on n bits is said to have
min-entropy at least k if for any x, Pr[X = x]  2�k.

Definition 1.1. The min-entropy of a source X is defined to be: H1(X) = minx(� log(Pr[X =
x])). The min-entropy rate of a source X on {0, 1}n is defined to be H1(X)/n. Any source X on
{0, 1}n with min-entropy at least k is called an (n, k)-source.

An extractor Ext : {0, 1}n ! {0, 1}m is a deterministic function that takes input from a weak
source with su�cient min-entropy and produces nearly uniform bits. Unfortunately, a simple
argument shows that it is impossible to design an extractor to extract even 1 bit for sources with
min-entropy n�1. To get past this di�culty, Santha and Vazirani [SV86], and Chor and Goldreich
[CG88] suggested the problem of designing extractors for two or more independent sources, each
with su�cient min-entropy. When the extractor has access to just two sources, it is called a two-
source extractor. An e�cient two-source extractor could be quite useful in practice, if just two
independent sources of entropy can be found.

We use the notion statistical distance to measure the error of the extractor.

Definition 1.2. The statistical distance between two distributions D
1

and D
2

over some universal
set ⌦ is defined as |D

1

� D
2

| = 1

2

P
d2⌦ |Pr[D

1

= d]�Pr[D
2

= d]|. We say D
1

is ✏-close to D
2

if
|D

1

�D
2

|  ✏ and denote it by D
1

⇡✏ D2

.

Definition 1.3 (Two-source extractor). A function Ext : {0, 1}n ⇥ {0, 1}n ! {0, 1}m is called a
two-source extractor for min-entropy k and error ✏ if for any independent (n, k)-sources X and Y

|Ext(X,Y)�Um|  ✏,

where Um is the uniform distribution on m bits. Further, Ext is said to be strong in Y if it also
satisfies |(Ext(X,Y),Y)� (Um,Y)|  ✏, where Um is independent from Y.

A simple probabilistic argument shows the existence of 2-source extractors for min-entropy
k � 2 log n+10 log(1/✏). However, in computer science, it is important to construct such functions
explicitly, and this has drawn a lot of attention in the last three decades. Chor and Goldreich
[CG88] used Lindsey’s Lemma to show that the inner-product function is a 2-source extractor
for min-entropy more than n/2. However, no progress was made on this problem for around 20
years, when Bourgain [Bou05] broke the “half-barrier” for min-entropy, and constructed a 2-source
extractor for min-entropy 0.499n. This remains the best known result prior to this work. Bourgain’s
extractor was based on breakthroughs made in the area of additive combinatorics.

Raz [Raz05] obtained an improvement in terms of total min-entropy, and constructed 2-source
extractors requiring one source with min-entropy more than n/2 and the other source with min-
entropy O(log n). A di↵erent line of work investigated a weaker problem of designing dispersers for
two independent sources due to its connection with Ramsey graphs. We discuss this in Section 1.1.
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The lack of progress on constructing two-source extractors motivated researchers to use more
than two sources. Several researchers managed to construct excellent extractors using a constant
number of sources [BIW06,Rao09a,RZ08,Li11,Li13a,Li13b] culminating in Li’s construction of a 3-
source extractor for polylogarithmic min-entropy [Li15c]. Recently Cohen [Coh15a] also constructed
a 3-source extractor with one source having min-entropy �n, the second source having min-entropy
O(log n) and the third source having min-entropy O(log log n).

Another direction has been the construction of seeded extractors [NZ96]. A seeded extractor
uses one (n, k)-source and one short seed to extract randomness. There was a lot of inspiring work
over two decades culminating in almost optimal seeded extractors [LRVW03, GUV09, DKSS09].
Such seeded extractors have found numerous applications; see e.g., Shaltiel’s survey [Sha02].

However despite much attention and progress over the last 30 years, it remained open to ex-
plicitly construct two-source extractors for min-entropy rate significantly smaller than 1/2.

Our main result is an explicit two-source extractor for polylogarithmic min-entropy.

Theorem 1 (Main theorem). There exists a constant C > 0 such that for all n 2 N, there exists a
polynomial time computable construction of a 2-source extractor 2Ext : {0, 1}n ⇥ {0, 1}n ! {0, 1}
for min-entropy at least logC(n) and error n�⌦(1). Further, the extractor is strong in the second
source.

The min-entropy requirement in the above theorem can be taken to be C
1

(log n)74, where C
1

is a large enough constant.

We note that an improvement of the output length of the above extractor to c log n bits, for a
large enough constant c, will immediately allow one to extract ⌦(k) bits using a standard trick of
composition with a strong-seeded extractor.

Subsequent Work: Recently, Li [Li15b] extended our construction to achieve an explicit strong
2-extractor with output length k↵ bits, for some small constant ↵. By our observation above,
this immediately implies a 2-source extractor for min-entropy k � logC

0
n, for some large enough

constant C 0, with output length ⌦(k); in fact, the output can be k bits. Li also used our construction
to build an a�ne extractor for polylogarithmic min-entropy [Li15a].

1.1 Ramsey Graphs

Definition 1.4 (Ramsey graphs). A graph on N vertices is called a K-Ramsey graph if does not
contain any independent set or clique of size K.

It was shown by Erdös in one of the first applications of the probabilistic method that there exists
K-Ramsey graphs for K = (2 + o(1)) logN . By explicit, we mean a polynomial-time algorithm
that determines whether there is an edge between two nodes, i.e., the running time should be
polylogarithmic in the number of nodes.

Frankl and Wilson [FW81] used intersection theorems to construct K-Ramsey graphs on N
vertices, with K = 2O(

p
logN log logN). This remained the best known construction for a long time,

with many other constructions [Alo98,Gro00,Bar06]1 achieving the same bound. An explanation
to why these approaches were stuck at this bound was discovered by Gopalan [Gop14], who showed
that apart from [Bar06], all other constructions can be seen as derived from low-degree symmetric
representations of the OR function. Finally, subsequent works by Barak et al. [BKS+10,BRSW12]

1

The construction in [Bar06] achieves a weaker notion of explicitness, and runs in time poly(N) to compute edge

relations.
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obtained a significant improvement and gave explicit constructions of K-Ramsey graphs, with

K = 22
log

1�↵
(logN)

, for some absolute constant ↵.

We also define a harder variant of Ramsey graphs.

Definition 1.5 (Bipartite Ramsey graph). A bipartite graph with N left vertices and N right
vertices is called a bipartite K-Ramsey graph if it does not contain any complete K ⇥K-bipartite
sub-graph or empty K ⇥K sub-graph.

Explicit bipartite K-Ramsey graphs were known for K =
p
N based on the Hadamard ma-

trix. This was slightly improved to o(
p
N) by Pudlak and Rődl [PR04], and the results of

[BKS+10,BRSW12] in fact constructed bipartite K-Ramsey graphs, and hence achieved the bounds
as mentioned above.

The following lemma is easy to obtain, and we refer the reader to [BRSW12] for a proof.

Lemma 1.6. Suppose that for all n 2 N there exists a polynomial time computable 2-source extrac-
tor Ext : {0, 1}n ⇥ {0, 1}n ! {0, 1} for min-entropy k and error ✏ < 1/2. Let N = 2n and K = 2k.
Then there exists an explicit construction of a bipartite K-Ramsey on N vertices.

Thus, as an immediate consequence of Theorem 1, we obtain the following result.

Theorem 2. There exists a constant C > 0 such that for all large enough n 2 N, there exists
an explicit construction of a bipartite K-Ramsey graph on 2N vertices, where N = 2n and K =
2(log logN)

C
.

The parameter K in the above theorem can be taken to be 2C1

(log logN)

74

, where C
1

is a large
enough constant.

Given any bipartite K-Ramsey graph, a simple reduction gives a K/2-Ramsey graph on N
vertices [BKS+10]. As an immediate corollary, we have explicit constructions of Ramsey graphs
with the same bound.

Corollary 1.7. There exists a constant C > 0 such that for all large enough n 2 N, there exists
an explicit construction of a K-Ramsey graph on N vertices, where N = 2n and K = 2(log logN)

C
.

Independent work: In independent work2, Cohen [Coh15b] used the challenge-response mech-
anism introduced in [BKS+10] with new advances in constructions of extractors and obtained a
two-source disperser for polylogarithmic min-entropy. Using this, he obtained explicit constructions
of bipartite-Ramsey graphs with K = 2(log logN)

O(1)

, which matches our result and thus provides an
alternate construction.

1.2 Construction Overview

We now describe a high-level overview of our construction. Our first step is similar to that in Li’s
three-source extractor [Li15c], but our construction is more modular. We compare techniques in
Section 1.3.

First, let’s try to build a 1-source extractor, even though it’s impossible. Let X have min-
entropy k that is polylogarithmic. Let’s cycle over all seeds of a strong extractor SExt that extracts

2

Cohen’s work appeared before ours. When his paper appeared, we had an outline of the proof but had not filled

in the details.
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from min-entropy k with error ", and concatenate the outputs to obtain an D-bit string where most
individual bits are close to uniform. If we take the majority of these D bits we might hope that
the output is close to uniform. However, the outputs with di↵erent seeds may be correlated in
arbitrary ways, so this approach doesn’t work.

We can try to fix this approach by using the new non-malleable extractor of Chattopadhyay,
Goyal, and Li [CGL15]. Such a non-malleable extractor strengthens the strong extractor so that
the output bits are almost t-wise independent as long as we use a seed of length O(t2 log2 n/").
Now if we try applying the majority to the D-bit string it still doesn’t work, even if the uniform bits
were completely independent. This is because an ↵ ⇡ p

" fraction of the bits may not be uniform,
and as this is greater than

p
D, these bad bits may completely bias the majority.

We can therefore look at more “resilient” functions – ones which tolerate more than
p
D bad

bits. In particular, we could hope that the Ajtai-Linial function [AL93] su�ces, since it can tolerate
about D/ log2D bad bits. However, this still doesn’t work, as the parameters are still not strong
enough. (Besides, it can’t work since we’re only using one source.)

We use a trick introduced by Barak et al. [BRSW12], and use the second source to sample
D0 < D bits from the first source, using an extractor-based sample. Now we may have, say, 2↵D0

bad bits, because of sampler errors, but this is still a more favorable function of D0. We then
apply a suitable function f to the output bits, where f is a derandomized monotone version of the
Ajtai-Linial function to get our output.

There are still three issues to resolve. First, we need f to have constant depth, as we will
use Braverman’s result [Bra10] that polylog-wise independence fools AC0. While the Ajtai-Linial
function has constant depth, the only derandomization of Ajtai-Linial that we know, which is
unpublished work by Meka [Mek09], does not.

Second, we need f to be monotone, as we really need a di↵erent function to be in AC0, namely,
the function that tests whether a set of variables Q can influence the function. We only know how
to do this when f is monotone, by checking whether f changes when the variables in Q are all set to
0 versus when they are all set to 1. However, the Ajtai-Linial function and Meka’s derandomization
are not monotone.

Third and related, we need a new way to derandomize Ajtai-Linial to achieve the above con-
straints. Meka’s derandomization uses small versions of Ajtai-Linial and thus cannot be made
monotone without making Ajtai-Linial monotone.

Therefore, most of our work is spent achieving these goals. The Ajtai-Linial function uses a
family of partitions of [n] with the property that for any set of n.99 bad elements in [n], most
partitions contain few blocks with many bad elements. They showed the existence of such a family
using the probabilistic method. We noticed that this property seems related to extractors, in
particular to the alternate view of extractors suggested in [Zuc97] and used, for example, in [TZ04].
Indeed, we use extractors to construct this family explicitly.

An issue that arises immediately is how to use an extractor to construct partitions. We do this
by shifting the outputs of an extractor.

In summary, our new function f is an explicit resilient function, which is interesting in its own
right. We explain some applications of it in Section 1.4 and Section 1.5.

1.3 Comparison with Previous Techniques

As mentioned earlier, Bourgain’s 2-source extractor for min-entropy 0.499n relied on new advances
in additive combinatorics. Following this, Rao [Rao09a] introduced a novel elementary approach
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for extracting from multiple independent sources that just relied on explicit seeded extractors. His
approach was to first convert the independent sources into matrices with many uniformly random
rows, called somewhere-random sources, and then iteratively reduce the number of rows in one
of the somewhere random sources (while still maintaining a good fraction of uniform rows) using
the other somewhere-random sources. This allowed him to construct an explicit extractor for a
constant number of sources with min-entropy n� for any constant � > 0.

In a series of works [Li13b, Li13a, Li15c], Li introduced a new way of iteratively reducing the
number of rows in the somewhere-random sources. His idea was to use a few independent sources
to construct a more structured somewhere-random source with the additional guarantee that the
uniform rows are t-wise independent and then iteratively reduce the number of rows using leader
election protocols from the work of Feige [Fei99]. Using this approach and clever compositions of ex-
tractors, Li [Li15c] constructed an explicit extractor for 3 independent sources with polylogarithmic
min-entropy.

In particular, Li had already shown how to use two sources to obtain a source with almost
polylog-wise independent bits, except for 1/3 of the rows. Using a better seeded extractor in his
construction could make the bad rows at most an n�⌦(1) fraction. Thus, we could have used Li’s
construction to replace our Theorem 3.1. However, the rest of our construction is significantly
di↵erent. Instead of iteratively reducing the number of bits in the non-oblivious source, we directly
construct an explicit function that is an extractor for such sources.

1.4 Resilient Functions

Ben-Or and Linial [BL85] first studied resilient functions when they introduced the perfect informa-
tion model. In the simplest version of this model, there are n computationally unbounded players
that can each broadcast a bit once. At the end, some function is applied to the broadcast bits. In
the collective coin-flipping problem, the output of this function should be a nearly-random bit. The
catch is that some malicious coalition of players may wait to see what the honest players broadcast
before broadcasting their own bits. Thus, a resilient function is one where the bit is unbiased even
if the malicious coalition is relatively large (but not too large).

This model can be generalized to allow many rounds, and has been well studied [BL85,KKL88,
Sak89, AL93, AN93, BN96, RZ01, Fei99, RSZ02]; also see the survey by Dodis [Dod06]. Resilient
functions correspond to 1-round protocols. Thus, our construction of resilient functions directly
implies an e�cient 1-round coin-flipping protocol resilient to coalitions of size n1��, for any � > 0.
The previous best published result for 1-round collective coin flipping was by Ben-Or and Linial
[BL85], who could handle coalitions of size O(n0.63). A non-explicit 1-round collective coin flipping
protocol was given by Ajtai and Linial [AL93], where the size of the coalition could be as large as
O(n/ log2 n). However, to deterministically simulate this protocol requires time at least nO(n2

). In
unpublished work, Meka had achieved similar bounds to us. However, our results extend in ways
that Meka’s doesn’t.

To state our results more formally, we introduce some definitions.

Definition 1.8. Let f : {0, 1}n ! {0, 1} be any boolean function on variables x
1

, . . . , xn. The
influence of a set Q ✓ {x

1

, . . . , xn} on f , denoted by IQ(f), is defined to be the probability that f
is undetermined after fixing the variables outside Q uniformly at random. Further, for any integer
q define Iq(f) = maxQ✓{x

1

,...,xn},|Q|=q IQ(f).

More generally, let IQ,D(f) denote the probability that f is undetermined when the variables out-
side Q are fixed by sampling from the distribution D. We define IQ,t(f) = maxD2Dk

IQ,D(f), where
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Dt is the set of all t-wise independent distributions. Similarly, IQ,t,�(f) = maxD2Dt,� IQ,D(f) where
Dt,� is the set of all (t, �)-wise independent distributions (see Section 2 for definition of a (t, �)-wise
independent distribution). Finally, for any integer q define Iq,t(f) = maxQ✓{x

1

,...,xn},|Q|=q IQ,t(f)
and Iq,t,�(f) = maxQ✓{x

1

,...,xn},|Q|=q IQ,t,�(f).

Definition 1.9. Let f : {0, 1}n ! {0, 1} be any boolean function on variables x
1

, . . . , xn and q
any integer. We say f is (q, ✏)-resilient if Iq(f)  ✏. More generally, we say f is t-independent
(q, ✏)-resilient if Iq,t(f)  ✏ and f is (t, �)-independent (q, ✏)-resilient if Iq,t,�(f)  ✏.

For t <
p
n, the only known function that is t-independent (q, ✏

1

)-resilient function is the

majority function [Vio14] for t = logc(n) and q < n
1

2

�⌧ , ⌧ > 0. The iterated majority function
of Ben-Or and Linial mentioned in the previous section handles a larger q = O(n0.63) for t = n,
but it is not clear if it remains resilient for smaller t. Further, for t = n, Ajtai and Linial showed
the existence of functions that are resilient for q = O(n/ log2 n). However, their functions are not
explicit and require time nO(n2

) to deterministically construct.

Our main contribution here is the following.

Theorem 3. There exists a constant c such that for any � > 0 and every large enough integer
n 2 N, there exists an e�ciently computable monotone boolean function f : {0, 1}n ! {0, 1}
satisfying: For any q > 0, t � c(log n)18 and � < 1/nt+1,

• f is a depth 4 circuit of size nO(1).

• For any (t, �)-wise independent distribution D, |E
x⇠D[f(x)]� 1

2

|  1

n⌦(1)

.

• Iq,t,�(f)  q/n1��.

The following theorem is direct from Theorem 3, even ignoring the t-wise independent part; see
e.g., Lemma 2 in [Dod06].

Theorem 4. For any constant � > 0, for all n > 0 there exists an e�cient one-round collective
coin-flipping protocol in the perfect information model with n players that is (n1��, n�⌦(1))-resilient.

1.5 Bit-Fixing Sources

Another use of resilient functions is to build extractors for bit-fixing sources. We first formally
define the notion of a deterministic extractor for a class of sources.

Definition 1.10. We say that an e�ciently computable function f : {0, 1}n ! {0, 1}m is a (deter-
ministic) extractor for a class of sources X with error ✏, if for any source X 2 X , |f(X)�Um|  ✏.

Roughly, a bit-fixing source is a source where some subset of the bits are fixed and the remaining
ones chosen in some random way. Usually these remaining bits are chosen uniformly at random,
but in our case they are chosen t-wise independently. Extraction is easier if the fixed bits cannot
depend on the random bits. Such sources are called oblivious bit-fixing sources, and have been
investigated in a line of work [CGH+85,KZ07,GRS06,Rao09b]. The best known explicit extractors
for oblivious sources work for min-entropy at least logC(n) with exponentially small error [Rao09b],
and from arbitrary min-entropy with polynomially small error [KZ07]. They have applications to
cryptography [CGH+85,KZ07].

Resilient functions immediately give an extractor for the more di�cult family of non-oblivious
bit-fixing sources, where the fixed bits may depend on the random bits. While such an extractor
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outputs 1 bit, Kamp and Zuckerman [KZ07] observed that dividing the source into blocks and
applying the function to each block can extract more bits. Using the iterated-majority function of
Ben-Or and Linial [BL85] they obtained an extractor for min-entropy at least n�O(nlog

3

2). They
didn’t use Ajtai-Linial because it is not explicit.

In this work we are interested in designing extractors for a generalization of non-oblivious bit-
fixing sources, where the random bits are guaranteed to be only almost t-wise independent. We
introduce these sources more formally.

Definition 1.11. A distribution D on n bits is t-wise independent if the restriction of D to any t
bits is uniform. Further D is a (t, ✏)-wise independent distribution if the distribution obtained by
restricting D to any t coordinates is ✏-close to uniform.

Definition 1.12. A source X on {0, 1}n is called a (q, t)-non-oblivious bit-fixing source if there
exists a subset of coordinates Q ✓ [n] of size at most q such that the joint distribution of the bits
indexed by Q = [n] \Q is t-wise independent. The bits in the coordinates indexed by Q are allowed
to arbitrarily depend on the bits in the coordinates indexed by Q.

If the joint distribution of the bits indexed by Q is (t, �)-wise independent then X is said to be
a (q, t, �)-non-oblivious bit-fixing source.

For t <
p
n, the only known extractor for this class of sources was by Viola [Vio14], who showed

that the majority function extracts from (q, t)-independent non-oblivious sources on n bits, with

t = logc(n), q = n
1

2

�⌧ for any ⌧ > 0. As an open question, Viola asked how to construct extractors
for this class of sources for larger q. We improve q to n1�� for any � > 0 and obtain the following
theorem.

Theorem 5. There exists a constant c such that for any constant � > 0, and for all n 2 N, there
exists an explicit extractor bitExt : {0, 1}n ! {0, 1} for the class of (q, t, �)-non-oblivious bit-fixing
sources with error n�⌦(1), where q  n1��, t � c log18(n) and �  1/nt+1.

We note that the work of Kahn, Kalai and Linial [KKL88] implies that the largest q one could
hope to handle is O(n/ log n).

1.6 Organization

We introduce some preliminaries in Section 2. In Section 3, we reduce the problem of constructing
extractors for two independent sources to the problem of extracting from (q, t, �)-bit-fixing sources.
We use Section 4 and 5 to prove Theorem 3. We use Section 6 to wrap up the proofs of Theorem
1 and Theorem 5.

2 Preliminaries

We reserve the letter e for the base of the natural logarithm. We use ln(x) for loge(x), and log(x)
for log

2

(x).
We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ✓ [n], we use yS to denote the projection of y to the
coordinates indexed by S.
Without explicitly stating it, we sometimes assume when needed that n is su�ciently large so
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that asymptotic statements imply concrete inequalities, e.g., if ` = o(n) then we may assume that
` < n/10.
A distribution D on {0, 1}n is called a (t, �)-wise independent distribution if the restriction of D to
every t distinct co-ordinates is �-close to Ut.

2.1 Seeded Extractors

Definition 2.1. A function Ext : {0, 1}n⇥ {0, 1}d ! {0, 1}m is a seeded extractor for min-entropy
k and error ✏ if for any source X of min-entropy k, |Ext(X,Ud)�Um|  ✏. Further, Ext is called
a strong-seeded extractor if |(Ext(X,Ud),Ud)�(Um,Ud)|  ✏, where Um and Ud are independent.

We use the following strong seeded extractor constructed by Trevisan [Tre01], with subsequent
improvements by Raz, Reingold and Vadhan [RRV02].

Theorem 2.2 ([Tre01] [RRV02]). For every n, k,m 2 N and ✏ > 0, with m  k  n, there exists
an explicit strong-seeded extractor TExt : {0, 1}n⇥{0, 1}d ! {0, 1}m for min-entropy k and error ✏,

where d = O
⇣
log

2

(n/✏)
log(k/m)

⌘
.

We also use optimal constructions of strong-seeded extractors.

Theorem 2.3 ([GUV09]). For any constant ↵ > 0, and all integers n, k > 0 there exists a
polynomial time computable strong-seeded extractor Ext : {0, 1}n ⇥ {0, 1}d ! {0, 1}m with d =
O(log n+ log(1/✏)) and m = (1� ↵)k.

To ensure that for each x 2 {0, 1}n, Ext(x, s
1

) 6= Ext(x, s
2

) whenever s
1

6= s
2

, we can concate-
nate the seed to the output of Ext.

Corollary 2.4 ([GUV09]). For any constant ↵ > 0, and all integers n, k > 0 there exists a
polynomial time computable seeded extractor Ext : {0, 1}n ⇥ {0, 1}d ! {0, 1}m with d = O(log n +
log(1/✏)) and m = (1� ↵)k. Further for all x 2 {0, 1}n, Ext(x, s

1

) 6= Ext(x, s
2

) whenever s
1

6= s
2

.

2.2 Sampling Using Weak Sources

A well known way of sampling using weak sources uses randomness extractors. We first introduce
a graph-theoretic view of extractors. Any seeded extractor Ext : {0, 1}n ⇥ {0, 1}d ! {0, 1}m can
also be viewed as a (unbalanced) bipartite graph G

Ext

with 2n left vertices (each of degree 2d) and
2m right vertices. We use N (x) to denote the set of neighbours of x in G

Ext

, for any x 2 {0, 1}n.
We call G

Ext

the graph corresponding to Ext.

Theorem 2.5 ([Zuc97]). Let Ext : {0, 1}n⇥{0, 1}d ! {0, 1}m be a seeded extractor for min-entropy
k and error ✏. Let D = 2d. Then for any set R ✓ {0, 1}m,

|{x 2 {0, 1}n : ||N (x) \R|� µRD| > ✏D}| < 2k,

where µR = |R|/2m.

Theorem 2.6 ([Zuc97]). Let Ext : {0, 1}n⇥{0, 1}d ! {0, 1}m be a seeded extractor for min-entropy
k and error ✏. Let {0, 1}d = {r

1

, . . . , rD}, D = 2d. Define Samp(x) = {Ext(x, r
1

), . . . ,Ext(x, rD)}.
Let X be a (n, 2k)-source. Then for any set R ✓ {0, 1}m,

Pr

x⇠X

[||Samp(x) \R|� µRD| > ✏D] < 2�k,

where µR = |R|/2m.
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2.3 An Inequality

We frequently use the following inequality.

Claim 2.7. For any n > 1 and 0  x  n, we have

e�x

✓
1� x2

n

◆

⇣
1� x

n

⌘n  e�x.

2.4 Some Probability Lemmas

Lemma 2.8 ([GRS06]). Let X be a random variable taking values in a set S, and let Y be a
random variable on {0, 1}t. Assume that |(X,Y)� (X,Ut)|  ✏. Then for every y 2 {0, 1}t,

|(X|Y = y)�X|  2t+1✏.

Lemma 2.9 ([Sha08]). Let X
1

,Y
1

be random variables taking values in a set S
1

, and let X
2

,Y
2

be random variables taking values in a set S
2

. Suppose that

1. |X
2

�Y

2

|  ✏
2

.

2. For every s
2

2 S
2

, |(X
1

|X
2

= s
2

)� (Y
1

|Y
2

= s
2

)|  ✏
1

.

Then
|(X

1

,X
2

)� (Y
1

,Y
2

)|  ✏
1

+ ✏
2

.

Using the above results, we record a useful lemma.

Lemma 2.10. Let X
1

, . . . ,Xt be random variables, such that each Xi takes values 0 and 1. Further
suppose that for any subset S = {s

1

, . . . , sr} ✓ [t],

(Xs
1

,Xs
2

. . . ,Xsr) ⇡✏ (U1

,Xs
2

. . . ,Xsr).

Then
(X

1

, . . . ,Xt) ⇡5t✏ Ut.

Proof. We prove this by induction on t. The base case when t = 1 is direct. Thus, suppose t � 2.
It follows that

(Xt,X1

, . . . ,Xt�1

) ⇡✏ (U1

,X
1

, . . . ,Xt�1

).

By an application of Lemma 2.8, for any value of the bit b,

|(X
1

, . . . ,Xt�1

|Xt = b)� (X
1

, . . . ,Xt�1

)|  4✏.

Further, by the induction hypothesis, we have

|(X
1

, . . . ,Xt�1

)�Ut�1

|  5(t� 1)✏.

Thus, by the triangle inequality for statistical distance, it follows that for any value of the bit b,

|(X
1

, . . . ,Xt�1

|Xt = b)�Ut�1

|  (5t� 1)✏.

Using Lemma 2.9 and the fact that |Xt �U

1

|  ✏, it follows that

|(X
1

, . . . ,Xt)�Ut|  (5t� 1)✏+ ✏ = 5t✏.

This completes the induction, and the lemma follows.
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2.5 Extractors for Bit-fixing Sources via Resilient Functions

The following lemma connects the problem of constructing extractors for (q, t, �)-non-oblivious
bit-fixing sources and constructing (t, �)-independent (q, ✏

1

)-resilient functions.

Lemma 2.11. Let f : {0, 1}n ! {0, 1} be a boolean function that is (t, �)-independent (q, ✏
1

)-
resilient. Further suppose that for any (t, �)-wise independent distribution D, |E

x⇠D[f(x)]� 1

2

|  ✏
2

.
Then f is an extractor for (q, t, �)-non-oblivious bit-fixing sources with error ✏

1

+ ✏
2

.

Proof. Let X be a (q, t, �)-non-oblivious bit-fixing source on n bits. Then X is sampled in the
following way: For some fixed subset Q ⇢ {x

1

, . . . , xn} of q variables, the variables Q = [n] \Q are
drawn from some fixed (t, �)-wise independent distribution D

1

on n � q bits, and the variables in
Q are chosen arbitrarily depending on the values of the variables in Q.

Let E be the following event: f is determined on fixing the variables in Q by sampling from
D

1

and leaving the remaining variables free. Since f is (t, �)-independent (q, ✏
1

)-resilient, we have
Pr[E] � 1 � ✏

1

. Let D be any (t, �)-wise independent distribution on n bits whose projection on
to Q matches D

1

. It follows that
����Pr

x⇠D[f(x) = 1]� 1

2

����  ✏
2

.

We have,

Pr

x⇠D[f(x) = 1] = Pr

x⇠D[f(x) = 1|E]Pr[E] +Pr

x⇠D[f(x) = 1|E]Pr[E]

= Pr

x⇠X

[f(x) = 1|E]Pr[E] +Pr

x⇠D[f(x) = 1|E]Pr[E]

= Pr

x⇠X

[f(x) = 1] +Pr[E]
�
Pr

x⇠D[f(x) = 1|E]�Pr

x⇠X

[f(x) = 1|E]
�

Hence,

|Pr

x⇠D[f(x) = 1]�Pr

x⇠X

[f(X) = 1]|  Pr[E]  ✏
1

.

Thus, ����Pr

x⇠X

[f(x) = 1]� 1

2

����  ✏
1

+ ✏
2

.

3 Reducing Two Independent Sources to a (q, t, �)-Independent
Non-Oblivious Bit-Fixing Source

The main result in this section is a reduction from the problem of extracting from two independent
(n, k)-sources to the task of extracting from a single (q, t, �)-non-oblivious bit-fixing source on nO(1)

bits. We formally state the reduction in the following theorem.

Theorem 3.1. There exist constants �, c0 > 0 such that for every n, t > 0 there exists a polynomial
time computable function reduce : {0, 1}n ⇥ {0, 1}n ! {0, 1}D, D = nO(1), satisfying the following
property: if X,Y are independent (n, k)-sources with k � c0t4 log2 n, then

Pr

y⇠Y

[reduce(X,y) is a (q, t, �)-non-oblivious bit-fixing source] � 1� n�!(1)

where q = D1�� and � = 1/Dt+1.
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Li had earlier proved a similar theorem with q = D/3, and his methods would extend to achieve
a similar bound as we achieve.

The � we obtain in Theorem 3.1 is a small constant. Further, it can be shown that for our
reduction method, it is not possible to achieve � > 1/2. Thus, we cannot use the majority function
as the extractor for the resulting (q, t, �)-non-oblivious bit-fixing source.

The reduction in Theorem 3.1 is based on explicit constructions of non-malleable extractors
(introduced in the following section) from the recent work of Chattopadhyay, Goyal and Li [CGL15].

3.1 Non-Malleable Extractors

Non-malleable extractors were introduced by Dodis and Wichs [DW09] as a generalization of the
notion of a strong-seeded extractor. Informally, the output of a non-malleable extractor looks
uniform even given the seed, and the output of the non-malleable extractor on a correlated seed.
We now introduce this notion more formally.

Definition 3.2. A function nmExt : {0, 1}n⇥{0, 1}d ! {0, 1}m is a (t, k, ✏)-non-malleable extractor
if it satisfies the following property: If X is a (n, k)-source and Y is uniform on {0, 1}d, and f

1

,
. . . , ft are arbitrary functions from d bits to d bits with no fixed points3, then

(nmExt(X,Y), nmExt(X, f
1

(Y)), . . . , nmExt(X, ft(Y)),Y)

⇡✏ (Um, nmExt(X, f
1

(Y)), . . . , nmExt(X, ft(Y)),Y).

In a recent work, Chattopadhyay, Goyal and Li [CGL15] constructed an explicit t-non-malleable
extractor for polylogarithmic min-entropy. This is a crucial component in our reduction.

Theorem 3.3 ([CGL15]). There exists a constant c0 > 0 such that for all n, t > 0 there exists an
explicit (t, k, ✏)-non-malleable extractor nmExt : {0, 1}n ⇥ {0, 1}d ! {0, 1}, where k � c0t log2(n/✏)
and d = O

�
t2 log2 (n/✏)

�
.

3.2 The Reduction

In the following lemma, we show a way to reduce extracting from two independent sources to
extracting from a (q, t, �)-non-oblivious bit-fixing source using non-malleable extractors and seeded
extractors in a black-box way. Theorem 3.1 then follows by plugging in explicit constructions of
these components.

Lemma 3.4. Let nmExt : {0, 1}n ⇥ {0, 1}d1 ! {0, 1} be a (t, k, ✏
1

)-non-malleable extractor and
let Ext : {0, 1}n ⇥ {0, 1}d2 ! {0, 1}d1 be a seeded extractor for min-entropy k/2 with error ✏

2

. Let
{0, 1}d2 = {s

1

, . . . , sD
2

}, D
2

= 2d2. Suppose that Ext satisfies the property that for all y 2 {0, 1}n,
Ext(y, s) 6= Ext(y, s0) whenever s 6= s0. Define the function:

reduce(x, y) = nmExt(x,Ext(y, s
1

)) � . . . � nmExt(x,Ext(y, sD
2

)).

Then the following holds: If X and Y are independent (n, k)-sources, then

Pr

y⇠Y

[reduce(X,y) is a (q, t, �)-non-oblivious bit-fixing source] � 1� n�!(1),

where q = (
p
✏
1

+ ✏
2

)D
2

and � = 5t
p
✏
1

.

3

We say that x is a fixed point of a function f if f(x) = x.
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We prove a lemma about t-non-malleable extractors from which Lemma 3.4 is easy to obtain.

Lemma 3.5. Let nmExt : {0, 1}n ⇥ {0, 1}d ! {0, 1} be a (t, k, ✏)-non-malleabale extractor. Let
{0, 1}d = {s

1

, . . . , sD}, D = 2d. Let X be any (n, k)-source. There exists a subset R ✓ {0, 1}d,
|R| � (1�p

✏)D such that for any distinct r
1

, . . . , rt 2 R,

(nmExt(X, r
1

), . . . , nmExt(X, rt)) ⇡
5t
p
✏ Ut.

Proof. Let

BAD = {r 2 {0, 1}d : 9 distinct r
1

, . . . , rt 2 {0, 1}d, 8i 2 [t] ri 6= r, s.t |(nmExt(X, r), nmExt(X, r
1

),

. . . , nmExt(X, rt))� (U
1

, nmExt(X, r
1

), . . . , nmExt(X, rt))| >
p
✏}

We define adversarial functions f
1

, . . . , ft in the following way. For each r 2 BAD, set fi(r) = ri,
i = 1, . . . , t (the fi’s are arbitrarily defined for r /2 BAD, only ensuring that there are no fixed
points). Let Y be uniform on {0, 1}d. It follows that

|(nmExt(X,Y), nmExt(X, f
1

(Y)), . . . , nmExt(X, ft(Y)))�

(U
1

, nmExt(X, f
1

(Y)), . . . , nmExt(X, ft(Y)))| �
p
✏

2d
|BAD|

Thus |BAD|  p
✏2d using the property that nmExt is a (k, t, ✏)-non-malleable extractor. Define

R = {0, 1}d \BAD. Using Lemma 2.10, it follows that R satisfies the required property.

Proof of Lemma 3.4. Let R ✓ {0, 1}d1 be such that for any distinct r
1

, . . . , rt 2 R,

(nmExt(X, r
1

), . . . , nmExt(X, rt)) ⇡
5t
p
✏
1

Ut.

It follows by Lemma 3.5 that |R| � (1�p
✏
1

)D
1

. Define Samp(y) = {Ext(y, s
1

), . . . ,Ext(y, sD
2

)} ⇢
{0, 1}d1 . Using Theorem 2.6, we have

Pr
y⇠Y

[|Samp(y) \R|  (1�p
✏
1

� ✏
2

)D
2

]  2�k/2. (1)

Consider any y such that |Samp(y)\R| � (1�p
✏
1

� ✏
2

)D
2

, and let Z
y

= reduce(X,y). Since the
output bits of nmExt corresponding to seeds in Samp(y) \ R are (t, 5t

p
"
1

)-wise independent, we
have that Z

y

is a ((
p
✏
1

+ ✏
2

)D
2

, t, 5t
p
"
1

)-non-oblivious bit-fixing source on D
2

bits.

Thus using (1), it follows that with probability at least 1 � 2�k/2 over y ⇠ Y, reduce(X,y) is
a ((

p
✏
1

+ ✏
2

)D
2

, t, 5t
p
✏
1

)-non-oblivious bit-fixing source on D
2

bits.

Proof of Theorem 3.1. We derive Theorem 3.1 from Lemma 3.4 by plugging in explicit non-malleable
extractors and seeded extractors as follows:

1. Let nmExt : {0, 1}n ⇥ {0, 1}d1 ! {0, 1} be an explicit (t, k, ✏
1

)-non-malleable extractor from
Theorem 3.3. Thus d

1

= c
1

t2 log2(n/✏
1

), for some constant c
1

. Such an extractor exists as
long as k � �

1

t log2(n/✏
1

) for some constant �
1

.

2. Let Ext : {0, 1}n ⇥ {0, 1}d ! {0, 1}d1 be the extractor from Corollary 2.4 set to extract from
min-entropy k/2 with error ✏

2

. Thus d = c
2

log(n/✏
2

) for some constant c
2

. Let D = 2d =
(n/✏

2

)c2 . Such an extractor exists as long as k � 3d
1

.

3. We choose ✏
1

, ✏
2

, � such that the following hold:

12



• (
p
✏
1

+ ✏
2

)D  D1��.

• p
✏
1

 1/(5tDt+1).

• �0 = �c
2

< 9/10.

To satisfy the above requirements, we pick ✏
1

, ✏
2

as follows: Let ✏
2

= 1/nC
2 where C

2

is
fixed such that ✏

2

D  D1��/2. Thus, we need to ensure that ✏
2

 1/(2D�). Substituting
D = (n/✏

2

)c2 and simplifying, we have

✏
2

 ✏c2�
2

2nc
2

�

i.e., ✏1�c
2

�
2

 1

2nc
2

�

i.e., ✏
2

 1

(2n)�0/(1��0)
.

We note that 1� �0 > 1/10. Thus, we can choose C
2

= 10.

We now set ✏
1

= 1/nC
1

t, where we choose the constant C
1

such that
p
✏
1

 1/(5tDt+1).
Simplifying, we have

✏
1

 ✏2c2(t+1)

2

25t2n2c
2

(t+1)

 1

25t2n2c
2

(C
2

+1)(t+1)

 1

n23c
2

(t+1)

.

Thus, we can choose C
1

= 24c
2

.

4. We note that for the above choice of parameters, nmExt and Ext indeed work for min-entropy
k � c0t4 log2 n, for some large constant c0.

5. Let {0, 1}d = {s
1

, . . . , sD}.

Define the function:

reduce(x, y) = nmExt(x,Ext(y, s
1

)) � . . . � nmExt(x,Ext(y, sD)).

Let X and Y be independent (n, k)-sources. By Lemma 3.4, it follows that

Pr

y⇠Y

[reduce(X,y) is a (q, t, �)-non-oblivious bit-fixing source] � 1� n�!(1),

where q = (
p
✏
1

+ ✏
2

)D and � = 5t
p
✏
1

. Theorem 3.1 now follows by our choice of parameters.

4 Monotone Constant-Depth Resilient Functions are t-Independent
Resilient

Using the reduction from Section 3, we have now reduced the problem of extracting from two
independent sources to extracting from a (q, t, �)-non-oblivious bit-fixing source. By Lemma 2.11
this translates to constructing a function f with small Iq,t,�(f). We show if f is a constant depth
monotone circuit, then in order to prove an upper bound for Iq,t,�(f), it is in fact enough to upper
bound Iq(f), which is a simpler quantity to handle.

13



Theorem 4.1. There exists a constant b > 0 such that the following holds: Let C : {0, 1}n ! {0, 1}
be a monotone circuit in AC0 of depth d and size m such that |E

x⇠Un [C(x)]� 1

2

|  ✏
1

. Suppose q > 0
is such that Iq(C)  ✏

2

. If t � b(log(5m/✏
3

))3d+6, then Iq,t(C)  ✏
2

+ ✏
3

and Iq,t,�(C)  ✏
2

+ ✏
3

+�nt.
Further, for any distribution D that is (t, �)-wise independent, |Ex⇠D[C(x)]� 1

2

|  ✏
1

+ ✏
3

+ �nt.

We first briefly sketch the main ideas involved in proving the above theorem. The key obser-
vation is the following simple fact: for any set of variables Q, it is possible to check using another
small AC0 circuit E if the function C is undetermined for some setting of the variables outside Q.
This crucially relies on the fact that C is a monotone function. Next, using the result of Braverman
[Bra10] that small AC0 circuits are fooled by bounded independence, we conclude that the bias
of the circuit E is roughly the same when the variables outside Q are drawn from a bounded-
independence distribution, and when they are drawn from the uniform distribution. The result
now follows using the bound on IQ(C).

We now formally prove Theorem 4.1. We recall the result of Braverman [Bra10], which was
recently refined by Tal [Tal14].

Theorem 4.2 ([Bra10] [Tal14]). Let D be any t = t(m, d, ✏)-wise independent distribution on
{0, 1}n. Then for any circuit C 2 AC0 of depth d and size m,

|E
x⇠Un [C(x)]�E

x⇠D[C(x)]|  ✏

where t(m, d, ✏) = O(log(m/✏))3d+3.

We also recall a result about almost t-wise independent distributions.

Theorem 4.3 ([AGM03]). Let D be a (t, �)-wise independent distribution on {0, 1}n. Then there
exists a t-wise independent distribution that is nt�-close to D.

Proof of Theorem 4.1. The bound on E

x⇠D[C(x)] is direct from Theorem 4.2 and Theorem 4.3. We
now proceed to prove the influence property.

Consider any set Q of variables, |Q| = q. Let Q = [n] \ Q. We construct a function EQ : {0,
1}n�q ! {0, 1} such that EQ(y) = 1 if and only if C is undetermined when xQ is set to y. Thus, it
follows that

E

y⇠Un�q [EQ(y)] = Pr

y⇠Un�q [EQ(y) = 1] = IQ(C)  ✏
2

.

Let D be any t-wise independent distribution. We have,

E

y⇠D[EQ(y)] = Pr

y⇠D[EQ(y) = 1] = IQ,D(C).

Thus to prove that IQ,D(C)  ✏
2

+ ✏
3

, it is enough to prove that

|E
y⇠Un�q [EQ(y)]�E

y⇠D[EQ(y)]|  ✏
3

(2)

We construct EQ as follows: Let C
0

be the circuit obtained from C by setting all the variables
in Q to 0. Let C

1

be the circuit obtained from C by setting all the variables in Q to 1. Define
EQ := ¬(C

0

= C
1

). It is easy to check that EQ satisfies the required property (using the fact that
C is monotone). Further EQ can be computed by a circuit in AC0 of depth d+ 2 and size 4m+ 3.
It can be checked that the depth of EQ can be reduced to d + 1 by combining two layers. Thus
(2) now directly follows from Theorem 4.2. The bound on IC,t,�(q) follows from an application of
Theorem 4.3.

14



5 Monotone Boolean functions in AC

0 Resilient to Coalitions

The main result in this section is an explicit construction of a constant depth monotone circuit f
which is resilient to coalitions and is almost balanced under the uniform distribution. This is the
final ingredient in our construction of a 2-source extractor.

Theorem 5.1. For any � > 0, and every large enough integer n, there exists a polynomial time
computable monotone boolean function f : {0, 1}n ! {0, 1} satisfying:

• f is a depth 4 circuit in AC0 of size nO(1).

• ��E
x⇠Un [f(x)]� 1

2

��  1

n⌦(1)

.

• For any q > 0, Iq(f)  q/n1��.

We first prove Theorem 3, which is easy to obtain from the above theorem.

Proof of Theorem 3. Let f : {0, 1}n ! {0, 1} be the function from Theorem 5.1 such that for any

q > 0, Iq(f)  q/n1� �
2 . Also we have that f is monotone and is a depth 4 AC0 circuit.

Fix ✏
3

= 1/n. Thus by Theorem 4.1, it follows that there exists a constant b such that for any
t � b(log(5n/✏

3

))18, q > 0 and �  1/nt+1,

Iq,t,�(f)  1

n
+ ✏

3

+
q

n1� �
2

 q

n1��
.

Further, using Theorem 4.1, for any (t, �)-wise independent distribution D, we have

����Ex⇠D[f(x)]� 1

2

���� 
2

n
+

1

n⌦(1)

.

The remainder of this section is used to prove Thereom 5.1. Our starting point is the work of
Ajtai and Linial [AL93], who proved the existence of functions computable by linear sized depth 3
circuits in AC0 that are resilient to ⌦(n/ log2 n) adversaries. However, this construction is proba-
bilistic, and deterministically finding such functions requires time nO(n2

). Further these functions
are not guaranteed to be monotone (or even unate).

The high level idea is to derandomize the construction of [AL93] using extractors. The tribes
function introduced by Ben-Or and Linial [BL85] is a disjunction taken over AND’s of equi-sized
blocks of variables. The Ajtai-Linial function is essentially a conjunction of non-monotone tribes
functions, with each tribes function using a di↵erent partition and the variables in each tribes
function being randomly negated with probability 1/2, and the partitions are chosen according to
the probabilistic method. They needed the family of partitions to have the property that for any
set Q ✓ [n] of q variables, most partitions would have few blocks with large intersection with Q.

Such a property seems related to the property of extractors captured in Theorem 2.5. However,
extractors don’t obviously yield partitions. We construct a family of partitions from an extractor
by shifting the extractor outputs to cover the entire set of outputs. We also suitably modify
the construction to ensure that the resulting function is monotone, which is crucial in light of
Theorem 4.1.
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For any good enough extractor, we show that the influence of Q is small. To show that our
function is approximately balanced, we need an additional property of the extractor, which is
essentially a strong variant of the design extractor of Li [Li12]. We show that Trevisan’s extractor
has this property.

We initially construct a depth 3 circuit which works, but then the inputs have to be chosen
from independent Bernoulli distributions where the probability p of 1 is very di↵erent from 1/2.
By observing that we can approximate this Bernoulli distribution with a CNF on uniform bits, we
obtain a depth 4 circuit which works for uniformly random inputs.

5.1 Our Construction and Main Lemmas

Construction 1: Let Ext : {0, 1}r ⇥ {0, 1}b ! {0, 1}m be a strong-seeded extractor set to extract
from min-entropy k = 2�r with error ✏  �/4 set such that b = �

1

m, �
1

= �/20, and output length
m = �r. Assume that Ext is such that ✏ > 1/M �

1 . Let R = 2r, B = 2b, M = 2m and K = 2k. Let
s = BM . Thus s = M1+�

1 .

Let {0, 1}r = {v
1

, . . . , vR}. We define a collection of R equi-partitions of [s], P = {P v
1 , . . . ,

P vR} in the following way: Let G
Ext

be the bipartite graph corresponding to Ext and let N (x), for
any x 2 {0, 1}r, denote the neighbours of x in G

Ext

. For some v 2 {0, 1}r, let N (v) = {z
1

, . . . , zB}.
For each w 2 {0, 1}m, the set {(j, zj � w) : j 2 {0, 1}b} is defined to be a block in P v, where �
denotes the bit-wise XOR of the two strings. Note that P v indeed forms an equi-partition of [s]
with M blocks of size B.

Define the function f
Ext

: {0, 1}s ! {0, 1} as:

f
Ext

(y) =
^

1iR

_

1jM

^

`2P i
j

y`.

Let

� =
lnM � ln ln(R/ ln 2)

B
.

We prove the following lemmas from which the proof of Theorem 5.1 is straightforward. We
first introduce some definitions.

Definition 5.2 ((n, ⌧)-Bernoulli distribution). A distribution on n bits is called an (n, ⌧)-Bernoulli
distribution, denoted by Ber(n, ⌧), if each bit is independently set to 1 with probability ⌧ and set to
0 with probability 1� ⌧ .

Lemma 5.3. Let Ext : {0, 1}r ⇥ {0, 1}b ! {0, 1}m be the extractor used in Construction 1. For
any constant ✏

1

> 0, let (1 � B�✏
1)�  p

1

 �. Then there exists a constant � > 0 such that for
any q > 0,

Iq,Ber(s,1�p
1

)

(f
Ext

)  q

s1��
.

The following generalizes the notion of a design extractor which was introduced by Li [Li12].

Definition 5.4 (Shift-design extractor). Let Ext : {0, 1}n ⇥ {0, 1}d ! {0, 1}m be a strong-seeded
extractor. Let D = 2d. If for any distinct x, x0 2 {0, 1}n, and arbitrary y, y0 2 {0, 1}m

|{(h,Ext(x, h)� y) : h 2 {0, 1}d} \ {(h,Ext(x0, h)� y0) : h 2 {0, 1}d}|  (1� ⌘)D,

then Ext is called an ⌘-shift-design extractor.
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Lemma 5.5. Let Ext : {0, 1}r⇥{0, 1}b ! {0, 1}m be the extractor used in Construction 1. Suppose
Ext is a 1

10

-shift-design extractor. For any constant ✏
1

> 0, let (1 � B�✏
1)�  p

1

 �. Then, the
following holds: ����Ey⇠Ber(s,1�p

1

)

[f
Ext

(y)]� 1

2

����  B�⌦(1).

Lemma 5.6. Let TExt : {0, 1}r ⇥ {0, 1}b ! {0, 1}m be the Trevisan extractor from Theorem 2.2
with parameters as in Construction 1. Then, TExt is a 1

10

-shift-design extractor.

Lemma 5.7. Suppose � < 9/10. Then for any ⌫ > 0, there exists an explicit monotone CNF C on
h bits of size h, where h = O

�
1

⌫ ln
�
1

⌫

��
, such that � � ⌫  Pr

x⇠Uh
[C(x) = 0] < �.

We first show how to derive Theorem 5.1 from the above lemmas.

Proof of Theorem 5.1. Let TExt : {0, 1}r⇥{0, 1}b ! {0, 1}m be the Trevisan extractor from Theo-
rem 2.2 with parameters as in Construction 1: k = 2�r,m = �r, �

1

= �/20 and ✏ = 2��
2

p
r where �

2

is chosen appropriately such that the seed length of TExt from Theorem 2.2 is (for some constant
�)

b =
� log2(r/✏)

log(k/m)
=

� log2(r/2��
2

p
r)

log 2
= �(�2

2

r + log2 r + 2�
2

p
r log r) = �

1

�r = �
1

m.

Thus, indeed M��
1 < ✏ < �/4.

We now fix the parameter r as follows. Let the parameter ⌫ in Lemma 5.7 be set to �/B✏
1 ,

where ✏
1

= �/4 and let C be the size h monotone CNF circuit guaranteed by Lemma 5.7, where
h < B1+2✏

1 . Thus, (1�B�✏
1)�  Pr

x⇠Uh
[C(x) = 0] < �.

Choose the largest integer r such that for m = �r, we have n0 = sh = BMh < n. It follows
that for this choice of r, n0 = ⌦(n). We construct our function on n0 bits. The size of the coalition
is at most n1�� = (n0)1��0 , where �0 = � � o(1). Thus, we may assume n = n0 = BMh and � = �0.
Thus n = BMh < M1+�

1

+(1+2✏
1

)�
1 and B = n⌦(1).

We now use Construction 1 and construct the function f
TExt

: {0, 1}s ! {0, 1}, where we
instantiate Ext with extractor TExt as set up above. Let f be the function derived from f

TExt

by replacing each variable yi by a copy of the monotone CNF C set up above. Since TExt is a
polynomial time function, f

TExt

can be constructed in polynomial time. Thus f is computable by
a polynomial time algorithm. Further, f is an O(RMBh) = nO(1) sized monotone circuit in AC0

of depth 4.

We observe that,

s1�
�
2 = (MB)1�

�
2

> (MB)(1+
�
2

)(1��)

> (MB3)1�� (since M �/2 > B2)

� (MBh)1�� = n1��.

Thus the above calculation and Lemma 5.7 yields that

In1��(f)  I

s1�
�
2 ,Ber(s,1�p

1

)

(f
TExt

).

Using Lemma 5.3, it follows that

Iq,Ber(s,1�p
1

)

(f
Ext

)  q

s1�
�
2

<
q

n1��
.
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We now bound the bias of f . By Lemma 5.6, we have that TExt is a 1

10

-shift-design extractor.
Thus by Lemma 5.5, we have

����Ey⇠Ber(s,1�p
1

)

[f
TExt

(y)]� 1

2

����  B�⌦(1) = n�⌦(1).

Finally, using Lemma 5.7, it follows that
����Ex⇠Un [f(x)]�

1

2

���� 
1

n⌦(1)

.

Proof of Lemma 5.6. To prove that TExt is a 1

10

-shift-design extractor, we first recall the construc-
tion of the Trevisan extractor TExt : {0, 1}r ⇥ {0, 1}b ! {0, 1}m.

For any input y 2 {0, 1}r, we describe the construction of the Trevisan extractor [Tre01,RRV02]
to obtain the first bit of the output since this is enough for the purpose of this proof. Fix an
asymptotically good binary linear error correcting code C0 with constant relative rate ↵, block
length r = (r + 1)/↵, and relative distance 1

2

� �, where � < ✏. Further assume that C0 contains

the all 1’s string ~1. Let {v
1

, . . . , vr+1

} be a basis of C 0 with vr+1

= ~1. Let C be the binary linear
code generated by {v

1

, . . . , vr} i.e., C = span{v
1

, . . . , vr}. It follows that C does not contain ~1,
has relative rate ↵(1 � 1

r ) > 0.9↵ and relative distance 1

2

� �. Let Enc : {0, 1}r ! {0, 1}r be the
encoding function of C.

Further fix a subset S
1

⇢ [b] of size log(r̄). Then the first bit of the output of TExt on input y
and seed z is the bit at the zS

1

’th coordinate of the string cy = Enc(y). Thus, as we cycle over all
seeds z, each bit of the string cy appears equally often.

For any x 2 {0, 1}r, define

T 0

x = {(h,TExt(x, h)
[1]

) : h 2 {0, 1}b}, T 1

x = {(h,TExt(x, h)
[1]

� 1) : h 2 {0, 1}b}.

Let x, x0 be any two distinct r bit strings. It follows by our argument above, and the fact that C 0

is a linear code with distance 1

2

� � containing ~1 that |T b
1

x \ T b
2

x0 |  (1
2

+ �)B < 0.9B for any two
bits b

1

and b
2

.

Let y, y0 2 {0, 1}m. Let the first bit of y be b
1

and the first bit of y0 be b
2

. Thus,

|{(h,TExt(x, h)� y) : h 2 {0, 1}b} \ {(h,TExt(x0, h)� y0) : h 2 {0, 1}b}|  |T b
1

x \ T b
2

x0 |  0.9B.

Proof of Lemma 5.7. Let h
2

= dlog (2/⌫)e, and let h
1

be the largest integer such that (1�2�h
2)h1 �

1� �. Thus,

(1� �)  (1� 2�h
2)h1  (1� �)/(1� 2�h

2)

< (1� �)(1 + 21�h
2)

 (1� �)(1 + ⌫)

< 1� � + ⌫

and h
1

= O(2h2).
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Define

C(x) =
h
1^

g
1

=1

h
2_

g
2

=1

xg
1

,g
2

.

and h = h
1

h
2

= O(h
2

2h2) = O
�
1

⌫ log
�
1

⌫

��
.

Thus Pr

x⇠Uh
[C(x) = 0] = 1� (1� 2�h

2)h1 , and hence

� � ⌫  Pr

x⇠Uh
[C(x) = 0]  �.

We now proceed to prove Lemma 5.3 and Lemma 5.5.

For convenience, define

f i
Ext

(y) =
_

1jM

^

`2P i
j

y`

where i 2 {0, 1}r. Further, let
p
2

= (1� p
1

)B, p
3

= (1� p
2

)M .

We record two easy claims.

Claim 5.8. For any i 2 {0, 1}r, j 2 {0, 1}m, Pr

y⇠Ber(s,1�p
1

)

[
V

`2P i
j
y` = 1] = (1� p

1

)B = p
2

.

Claim 5.9. For any i 2 {0, 1}r, Pr

y⇠Ber(s,1�p
1

)

[f i
Ext

(y) = 0] = (1� p
2

)M = p
3

.

We frequently use the following bounds.

Claim 5.10. The following inequalities hold: Let ✏
2

= ✏
1

/2. Then,

1. lnR�ln ln 2

M

�
1� 1

B✏
2

�  p
2

 lnR�ln ln 2

M

�
1 + 1

B✏
2

�  r
M .

2. 1

2R  � ln 2

R

� �
1� 2r

B✏
2

�  p
3

 � ln 2

R

� �
1 + r

B✏
2

�  0.9
R .

Proof. We have,

p
2

= (1� p
1

)B � (1� �)B � e��B(1� �2B) (by Claim 2.7)

� lnR� ln ln 2

M

✓
1� r2

B

◆
(since � < (lnM)/B < r/B)

We now upper bound p
2

. We have,

p
2

 (1� �(1�B�✏
1))B  e��B(1�B�✏

1

) (by Claim 2.7)

<

✓
lnR� ln ln 2

M

◆
MB�✏

1 <

✓
lnR� ln ln 2

M

◆
e�rB

�✏
1

 lnR� ln ln 2

M

⇣
1 +

r

B✏
1

⌘

Thus,
lnR� ln ln 2

M

✓
1� 1

B✏
2

◆
 p

2

 lnR� ln ln 2

M

✓
1 +

1

B✏
2

◆
,
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since ✏
2

= ✏
1

/2.

Estimating similarly as above, we have

p
3

= (1� p
2

)M

�
✓
1�

✓
lnR� ln ln 2

M

◆✓
1 +

1

B✏
2

◆◆M

�
 
1� (lnR� ln ln 2)2

M

✓
1 +

1

B✏
2

◆
2

!✓
ln 2

R

◆
e

�(lnR�ln ln 2)

B✏
2 (by Claim 2.7)

�
✓
1� 2r2

M

◆✓
ln 2

R

◆
e�r/B✏

2

�
✓
1� 2r2

M

◆✓
ln 2

R

◆⇣
1� r

B✏
2

⌘

�
✓
1� 2r

B✏
2

◆✓
ln 2

R

◆
.

Finally, we have

p
3


✓
1�

✓
lnR� ln ln 2

M

◆✓
1� 1

B✏
2

◆◆M


✓
ln 2

R

◆
1�B�✏

2

(by Claim 2.7)


✓
ln 2

R

◆
2r/B

✏2 
✓
ln 2

R

◆⇣
1 +

r

B✏
2

⌘
.

Thus, ✓
ln 2

R

◆✓
1� 2r

B✏
2

◆
 p

3


✓
ln 2

R

◆
1� r

B


✓
ln 2

R

◆⇣
1 +

r

B✏
2

⌘
.

5.2 Proof of Lemma 5.3 : Bound on Influence of Coalitions on f
Ext

We now proceed to bound the influence of coalitions of variables on f
Ext

.

Claim 5.11. For any i 2 {0, 1}r and q  s1��, Iq,Ber(s,1�p
1

)

(f i
Ext

)  1

R .

Proof. Let Q be any set of variables of size q, q  s1��. There are at most q blocks of P i which
contain a variable from Q. By Claim 5.8, it follows that the probability that for a y sampled from
Ber(s, 1� p

1

), there is no AND gate at depth 1 in f i
Ext

which outputs 1 is at most

(1� p
2

)M�q  p
1� s1��

M
3

 p
3

(2R)
s1��

M (since p
3

> 1/(2R) by Claim 5.10)

 p
3

er/M
�/2

(since s = M1+�
1 < M1+

�
2 /2)

<
1

R
(since p

3

< 0.9/R by Claim 5.10)

Thus the influence of Q is bounded by 1

R .
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Definition 5.12. For any i 2 {0, 1}r and j 2 {0, 1}m, define a block P i
j to be bad with respect to a

subset of variables Q if |P i
j \Q| � 2✏B. Further call a partition P i bad with respect to Q if it has

a block which is bad. Otherwise, P i is good.

Claim 5.13. Consider any subset of variables Q of size q. If q  s1��, then there are less than
KM bad partitions with respect to Q.

Proof. Suppose to the contrary that there are at leastKM bad partitions. It follows by an averaging
argument that there exists j 2 {0, 1}m such that the number of bad blocks among the {P i

j : i 2 {0,
1}r} is at least K. Define the function Extj(x, y) = Ext(x, y) � j. Observe that Extj is a seeded
extractor for min-entropy k with error ✏.

Let Nj(x) denote the set of neighbours of x in the graph corresponding to Extj . It follows that
|{|Nj(x) \ Q| � 2✏B|}| � K. We note that q/M = s1��/M = (MB)1��/M < 1/M �/19 < ✏, since
✏ > 1/M �

1 = 1/M �/20 > 1/M �/19. Thus, we have

|{|Nj(x) \Q| � (✏+ µQ)B}| � K,

where µQ = q/M . However this contradicts Theorem 2.5. Thus the number of bad blocks is
bounded by KM .

Claim 5.14. Let P i be a partition that is good with respect to a subset of variables Q, |Q| = q. If
q  s1��, then IQ,Ber(s,1�p

1

)

(f
Ext

)  q
2s1�� .

Proof. We note that there are at least M � q blocks in P i that do not have any variables from Q.
Each of the remaining blocks have at most 2✏B variables from Q. An assignment of x leaves f i

Ext

undetermined only if: (a) there is no AND gate at depth 1 in f i
Ext

which outputs 1 and (b) There is
at least one block with a variable from Q such that the non-Q variables are all set to 1. These two
events are independent. Further, by Claim 5.11, the probability of (a) is bounded by 1/R. We now
bound the probability of (b). If there are h variables of Q in P i

j , the probability that the non-Q

variables are all 1’s is exactly (1� p
1

)B�h. Thus the probability of event (b) is bounded by

q(1� p
1

)B(1�2✏) = qp1�2✏
2

 qr

M1�2✏
(since p

2

< r/M by Claim 5.10)

=
qr

M1� �
2

(since ✏ < �/4)

<
q

M1� 2�
3

(using r = Mo(1))

<
q

2s1��
(since s = M1+�

1 < M1+

�
4 ).

Thus for any q  s1��,

Iq,Ber(s,1�p
1

)

(f
Ext

)  KM

R
+

q

2s1��
=

1

R1�3�
+

q

2s1��
<

q

s1��
.
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5.3 Proof of Lemma 5.5: Bound on the Bias of f
Ext

We now proceed to show that f
Ext

is almost balanced. For ease of presentation, we slightly abuse
notation and relabel the partitions in Construction 1 as P 1, . . . , PR, where for any i 2 [R], P i

corresponds to the partition P vi with vi being the r bit string for the integer i� 1.

Claim 5.15. There exists a small constant ✏
3

> 0 such that for any i 2 {0, 1}r, Pr

y⇠Ber(s,1�p
1

)

[f i
Ext

(y) =

1] = 1� ↵
R , where 1� 1

B✏
3

 ↵
ln 2

 1 + 1

B✏
3

.

Proof. Directly follows from Claim 5.10.

We now estimate the probability Pr

y⇠Ber(s,1�p
1

)

[f
Ext

(y) = 0]. This is not direct since the f i
Ext

’s
are on the same set of variables, and can be correlated in general. Towards estimating this, we
introduce some definitions.

Definition 5.16. Let P i, P j be two equi-partitions of [s] with blocks of size B. Then (P i, P j) is
said to be pairwise-good if the size of the intersection of any block of P i and any block of P j is at
most 0.9B.

Definition 5.17. Let P 1, . . . , PR be equi-partitions of [s] with blocks of size B. A collection of
partitions P = {P 1, . . . , PR} is pairwise-good if for any distinct i, j 2 {0, 1}r, (P i, P j) is pairwise-
good.

Lemma 5.18. If P is pairwise-good, then |E
y⇠Ber(s,1�p

1

)

[f
Ext

(y)]� 1

2

|  1

B⌦(1)

.

Lemma 5.19. The set of partitions P = {P 1, . . . , PR} in Construction 1 is pairwise-good.

It is clear that the above two lemmas directly imply that |E
y⇠Ber(s,1�p

1

)

[f
Ext

(y)]� 1

2

|  1

B⌦(1)

.

Proof of Lemma 5.19. Let P i
1

j
1

and P i
2

j
2

be any two blocks such that i
1

6= i
2

. We need to prove that

|P i
1

j
1

\ P i
2

j
2

|  0.9B. Recall that P i
1

j
1

= {(z,Ext(i
1

, z) � j
1

) : z 2 {0, 1}b}, and similarly P i
2

j
2

= {(z,
Ext(i

2

, z)� j
2

) : z 2 {0, 1}b}. The bound on |P i
1

j
1

\P i
2

j
2

| now directly follows from the fact that Ext

is a 1

10

-shift-design extractor.

Proof of Lemma 5.18. Let P = {P 1, . . . , PR} be pairwise-good.

Recall that
p
3

= Pr

y⇠Ber(s,1�p
1

)

[f i
Ext

(y) = 0] =
↵

R
.

Let y be sampled from Ber(s, 1� p
1

). Let Ei be the event f i
Ext

(y) = 0. We have,

p = Pr

y⇠Ber(s,1�p
1

)

[f
Ext

(y) = 0] = Pr

2

4
_

1iR

Ei

3

5 .

For 1  c  R, let

Sc =
X

1i
1

<...<icR

Pr

2

4
^

1gc

Eig

3

5 .
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Using the Bonferroni inequalities, it follows that for any even a 2 [R],

aX

c=1

(�1)(c�1)Sc  p 
a+1X

c=1

(�1)(c�1)Sc. (3)

Towards proving a tight bound on p using (3), we prove the following lemma.

Lemma 5.20. There exist constants �
1

,�
2

> 0 such that for any c  s�1, and arbitrary 1  i
1

<
. . . < ic  R, the following holds:

⇣↵
R

⌘c  Pr

2

4
^

1gc

Eig

3

5 
⇣↵
R

⌘c✓
1 +

1

M�
2

◆
.

To prove the above lemma, we recall Janson’s inequality [Jan90,BS89]. We follow the presen-
tation in [AS92].

Theorem 5.21 (Janson’s Inequality [Jan90,BS89,AS92]). Let ⌦ be a finite universal set and let
O be a random subset of ⌦ constructed by picking each h 2 ⌦ independently with probability ph.
Let Q

1

, . . . , Q` be arbitrary subsets of ⌦, and let Ei be the event Qi ✓ O. Define

� =
X

i<j:Qi\Qj 6=;

Pr [Ei ^ Ej ] , D =
Ỳ

i=1

Pr

⇥Ei
⇤
.

Assume that Pr[Ei]  ⌧ for all i 2 [`]. Then

D  Pr

h^
Ei
i
 De

�

1�⌧ .

Proof of Lemma 5.20. We set �
1

= 1/90 with foresight. Without loss of generality suppose ig = g
for g 2 [c]. We use Janson’s inequality with ⌦ = [s], and O constructed by picking each h 2 [s]
with probability 1 � p

1

. Further let Ei,j be the event that P i
j ✓ O. Intuitively, O denotes the set

of coordinates in y that are set to 1 for a sample y from Ber(s, 1� p
1

). With this interpretation,
the event f i

Ext

(y) = 0 exactly corresponds to the event
V

1jM Ei,j . Thus, we have
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2

4
^

1gc

Eg

3

5 = Pr

2

4
^

i2[c],j2{0,1}m
Ei,j
3

5 .

We now estimate D,�, � to apply Janson’s inequality. For any i 2 [c], j 2 {0, 1}m, we have
Pr[Ei,j ] = Pr[P i

j ✓ O] = (1� p
1

)B = p
2

. Note that ⌧ = p
2

< 1

2

. Further

D =
Y

i2[c],j2{0,1}m
Pr

⇥Ei,j
⇤
= (1� p

2

)Mc = pc
3

=
⇣↵
R

⌘c
.

Finally, we have

� =
X
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2
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,j
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2{0,1}m:P
i
1

j
1

\P i
1

j
1

6=;
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1

,j
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^ Ei
2

,j
2

]

23



We observe that any P i
j can intersect at most B blocks of another partition P i0 . Thus, the total

number of blocks that intersect between two partitions P i and P j is bounded by MB = s. Further,
recall that P is pairwise-good. Thus it follows that for any distinct i

1

, i
2

2 [c], and j
1

, j
2

2 {0, 1}m,
|P i

1

j
1

\ P i
2

j
2

|  0.9B. Thus, |P i
1

j
1

[ P i
2

j
2

| � 1.1B and hence for any i
1

< i
2

2 [c], j
1

, j
2

2 {0, 1}m,

Pr[Ei
1

,j
1

^ Ei
2

,j
2

]  (1� p
1

)
11B
10 = p

11

10

2

.

By Claim 5.10, p
2

 r
M . Thus,

� 
✓
c

2

◆
sp

11

10

2

<
s1+2�

1r2

M
11

10

=
(MB)1+2�

1r2

M
11

10

=
B1+2�

1r2

M
1

10

�2�
1

=
M �

1

(1+2�
1

)r2

M
1

10

�2�
1

<
r2

M
1

20

�3�
1

.

Recall �
1

= 1/90. It follows that
� < M��0

,

where �0 = 1/70 .

Invoking Janson’s inequality, we have

⇣↵
R

⌘c  Pr

2

4
^

1gc

Eg

3

5 
⇣↵
R

⌘c
e2M

��0 
✓
1 +

3

M�0

◆⇣↵
R

⌘c
.

This concludes the proof.

Fix a = s�3 (assume that a is even), �
3

= min{�
1

/2,�
2

/1000}, where �
1

,�
2

are the constants
in Lemma 5.20.

The following lemma combined with (3) proves a tight bound on p (recall that p = Pr

y⇠Ber(s,1�p
1

)

[f
Ext

(y) =
0]).

Claim 5.22. e�↵ � 1

M�
2

/2 Pa
c=1

(�1)c�1Sc <
Pa+1

c=1

(�1)c�1Sc  e�↵ + 1

M�
2

/2 .

Proof. For any c  a+ 1, using Lemma 5.20, we have
✓
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R
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✓
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◆
.

We have,
✓
R

c
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R
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=
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and
✓
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R

⌘c
=

R(R� 1) . . . (R� c+ 1)
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✓
1� a2

R

◆
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(by Weierstrass product inequality)
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by our choice of a.

Thus, for any c  a, we have
����Sc � ↵c

c!

���� 
1

M�
2

(4)

It also follows that

Sa+1

 1

a!
+

1

M�
2

<
2

M�
2

, (5)

using a = s�3 .

Finally, by the classical Taylor’s theorem, we have
�����e

�↵ �
aX

c=1

(�1)c�1

↵c

c!

����� <
1

a!
<

1

M�
2

. (6)

Claim 5.22 is now direct from the inequalities (4), (5), (6) and the fact that aM��
2  M��

2

/2.

The next claim is a restatement of Lemma 5.18.

Claim 5.23. |p� 1

2

|  B�⌦(1), where p = Pr

y⇠Ber(s,1�p
1

)

[f
Ext

(y) = 0].

Proof. Using (3) and Claim 5.22, we have

|p� e�↵|  1

M�
2

/2
.

Recall that from Claim 5.15, we have

ln 2

✓
1� 1

B✏
3

◆
 ↵  ln 2

✓
1 +

1

B✏
3

◆
.

Thus, ����e
�↵ � 1

2

���� 
2

B✏
3

and hence, we have ����p�
1

2

���� 
3

B✏
3

.

6 Wrapping Up the Proofs of Theorem 1 and Theorem 5

Proof of Theorem 5. Let f : {0, 1}n ! {0, 1} be the explicit function constructed in Theorem 3
satisfying: For any q > 0, t � c(log n)18 (c is the constant from Theorem 3) and �  1/nt+1,

• Iq(f)  q/n1� �
2
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• For any (t, �)-wise independent distribution D,
��
E

x⇠D[f(x)]� 1

2

��  1

n⌦(1)

.

Using Lemma 2.11, it follows that f is an extractor for (n1��, t, �)-non-oblivious bit-fixing sources
with error 1/n⌦(1).

Proof of Theorem 1. Let reduce : {0, 1}n ⇥ {0, 1}n ! {0, 1}D be the function from Theorem 3.1
with t = c(log n)18, where c is the constant from Theorem 5. Set the constant C = 74 and C

1

= c0,
where c0 is the constant from Theorem 3.1. We note that D = nO(1).

Let bitExt : {0, 1}D ! {0, 1} be the explicit extractor from Theorem 5 set to extract from
(q, t, �)-non-oblivious bit-fixing source on D bits with error 1

n⌦(1)

, where q = D1�� and �  1/Dt+1.

Define
2Ext(x, y) = bitExt(reduce(x, y)).

Let X and Y be any two independent (n, k)-sources, where k � C
1

(log n)C . We prove that

|(2Ext(X,Y),Y)� (U
1

,Y)|  1

n⌦(1)

.

Let Z = reduce(X,Y). It follows by Theorem 3.1 that with probability at least 1 � n�!(1) (over
y ⇠ Y), Z|Y = y is a (q, t, �)-non-oblivious bit-fixing source on M bits. Thus, for each such y,

|bitExt(reduce(X,y))�U

1

|  1

n⌦(1)

.

Thus, we have

|(2Ext(X,Y),Y)� (U
1

,Y)|  1

n!(1)
+

1

n⌦(1)

.
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