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Abstract

We explicitly construct an extractor for two independent sources on n bits, each with min-
entropy at least logC n for a large enough constant C. Our extractor outputs one bit and has
error n−Ω(1). The best previous extractor, by Bourgain [Bou05], required each source to have
min-entropy .499n.

A key ingredient in our construction is an explicit construction of a monotone, almost-
balanced boolean function on n bits that is resilient to coalitions of size n1−δ, for any δ > 0.
In fact, our construction is stronger in that it gives an explicit extractor for a generalization of
non-oblivious bit-fixing sources on n bits, where some unknown n − q bits are chosen almost
polylog(n)-wise independently, and the remaining q = n1−δ bits are chosen by an adversary
as an arbitrary function of the n − q bits. The best previous construction, by Viola [Vio14],
achieved q = n1/2−δ.

Our explicit two-source extractor directly implies an explicit construction of a 2(log logN)O(1)

-
Ramsey graph over N vertices, improving bounds obtained by Barak et al. [BRSW12] and
matching independent work by Cohen [Coh16].
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1 Introduction

The area of randomness extraction deals with the problem of obtaining nearly uniform bits from
sources that are only weakly random. This is motivated by the ubiquitous use of randomness in
various branches of computer science like algorithms, cryptography, and more. Further, most appli-
cations require truly random, uncorrelated bits, but most easily-obtainable sources of randomness
do not satisfy these conditions. In particular, pseudorandom generators in practice try to accumu-
late entropy by using thermal noise or clock drift, but then this needs to be purified before using
it to seed a pseudorandom generator; see e.g., [JK99,BH05].

As is standard, we model a weak source on n bits using min-entropy. A source X on n bits is
said to have min-entropy at least k if for any x, Pr[X = x] ≤ 2−k.

Definition 1.1. The min-entropy of a source X is defined to be: H∞(X) = minx(− log(Pr[X =
x])). The min-entropy rate of a source X on {0, 1}n is defined to be H∞(X)/n. Any source X on
{0, 1}n with min-entropy at least k is called an (n, k)-source.

An extractor Ext : {0, 1}n → {0, 1}m is a deterministic function that takes input from a weak
source with sufficient min-entropy and produces nearly uniform bits. Unfortunately, a simple
argument shows that it is impossible to design an extractor to extract even 1 bit for sources
with min-entropy n − 1. To circumvent this difficulty, Santha and Vazirani [SV86], and Chor
and Goldreich [CG88] suggested the problem of designing extractors for two or more independent
sources, each with sufficient min-entropy. When the extractor has access to just two sources, it is
called a two-source extractor. An efficient two-source extractor could be quite useful in practice, if
just two independent sources of entropy can be found.

We use the notion statistical distance to measure the error of the extractor. The statistical
distance between two distributions D1 and D2 over some universal set Ω is defined as |D1 −D2| =
1
2

∑
d∈Ω |Pr[D1 = d] − Pr[D2 = d]|. We say D1 is ε-close to D2 if |D1 − D2| ≤ ε and denote it by

D1 ≈ε D2.

Definition 1.2 (Two-source extractor). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is called a
two-source extractor for min-entropy k and error ε if for any independent (n, k)-sources X and Y

|Ext(X,Y)−Um| ≤ ε,

where Um is the uniform distribution on m bits. Further, Ext is said to be strong in Y if it also
satisfies |(Ext(X,Y),Y)− (Um,Y)| ≤ ε, where Um is independent from Y.

Note that for m = 1, this corresponds to an N ×N matrix with entries in {0, 1} such that every
K ×K submatrix has 1/2± ε fraction of 1’s, where N = 2n and K = 2k.

A simple probabilistic argument shows the existence of 2-source extractors for min-entropy
k ≥ log n+2 log(1/ε)+1. However, in computer science, it is important to construct such functions
explicitly, and this has drawn a lot of attention in the last three decades. Chor and Goldreich
[CG88] used Lindsey’s Lemma to show that the inner-product function is a 2-source extractor for
min-entropy more than n/2. However, no further progress was made for around 20 years, when
Bourgain [Bou05] broke the “half-barrier” for min-entropy, and constructed a 2-source extractor for
min-entropy 0.499n. This remains the best known result prior to this work. Bourgain’s extractor
was based on breakthroughs made in the area of additive combinatorics.

Raz [Raz05] obtained an improvement in terms of total min-entropy, and constructed 2-source
extractors requiring one source with min-entropy more than n/2 and the other source with min-
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entropy O(log n). A different line of work investigated a weaker problem of designing dispersers for
two independent sources due to its connection with Ramsey graphs. We discuss this in Section 1.1.

The lack of progress on constructing two-source extractors motivated researchers to use more
than two sources. Several researchers managed to construct excellent extractors using a constant
number of sources [BIW06,Rao09a,RZ08,Li11,Li13a,Li13b] culminating in Li’s construction of a 3-
source extractor for polylogarithmic min-entropy [Li15c]. Recently Cohen [Coh15] also constructed
a 3-source extractor with one source having min-entropy δn, the second source having min-entropy
O(log n) and the third source having min-entropy O(log log n).

Another direction has been the construction of seeded extractors [NZ96]. A seeded extractor
uses one (n, k)-source and one short seed to extract randomness. There was a lot of inspiring work
over two decades culminating in almost optimal seeded extractors [LRVW03, GUV09, DKSS09].
Such seeded extractors have found numerous applications; see e.g., Shaltiel’s survey [Sha02].

However despite much attention and progress over the last 30 years, it remained open to ex-
plicitly construct two-source extractors for min-entropy rate significantly smaller than 1/2.

Our main result is an explicit two-source extractor for polylogarithmic min-entropy.

Theorem 1 (Main theorem). There exists a constant C > 0 such that for all n ∈ N, there exists a
polynomial time computable construction of a 2-source extractor 2Ext : {0, 1}n × {0, 1}n → {0, 1}
for min-entropy at least logC(n) and error n−Ω(1).

The min-entropy requirement in the above theorem can be taken to be C1(log n)74, where C1

is a large enough constant.

By an argument of Barak [Rao09b], every 2-source extractor is also a strong 2-source extractor
with similar parameters. Thus the extractor 2Ext in Theorem 1 is also a strong 2-source extractor.

Note that an improvement of the output length of the above extractor to c log n bits, for a
large enough constant c, will immediately allow one to extract Ω(k) bits using a standard trick of
composing with a strong-seeded extractor.

Furthermore, improving the error to negligible while outputting many bits would have appli-
cations in cryptography and distributed computing. For example, several researchers have stud-
ied whether cryptographic or distributed computing protocols can be implemented if the players’
randomness is defective [DO03, GSV05, KLRZ08, KLR09]. Kalai et al. [KLRZ08] used C-source
extractors to build network extractor protocols, which allow players to extract private randomness
in a network with Byzantine faults. A better 2-source extractor with negligible error would im-
prove some of those constructions. Kalai, Li, and Rao [KLR09] showed how to construct a 2-source
extractor under computational assumptions, and used it to improve earlier network extractors in
the computational setting; however, their protocols rely on computational assumptions beyond the
2-source extractor, so it would not be clear how to match their results without assumptions.

If we allow the 2-source extractor to run in time poly(n, 1/ε), then our technique in fact gener-
alizes to obtain arbitrary error ε. In particular, we have the following theorem.

Theorem 2. There exists a constant C > 0 such that for all n ∈ N and any ε > 0, there exists a
2-source extractor 2Ext : {0, 1}n×{0, 1}n → {0, 1} computable in time poly(n, 1/ε) for min-entropy
at least logC(n/ε) and error ε.

Subsequent Work: Recently, Li [Li15b] extended our construction to achieve an explicit
strong 2-extractor with output length kα bits, for some small constant α. By our observation
above, this immediately implies a 2-source extractor for min-entropy k ≥ logC

′
n, for some large

enough constant C ′, with output length Ω(k); in fact, the output can be k bits.
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Meka built on our ideas to construct a resilient function matching Altai-Linial [Mek15]. This
improves the min-entropy requirement from C1(log n)74 to C2(log n)18 for polynomially small error
and C3(log n)10 for constant error.

Li also used our construction to build an affine extractor for polylogarithmic min-entropy [Li15a].
In another work, Chattopadhyay and Li [CL16] used components from our construction to construct
extractors for sumset sources, which allowed them to give improved extractors for sources that are
generated by algorithms with access to limited memory.

1.1 Ramsey Graphs

Definition 1.3 (Ramsey graphs). A graph on N vertices is called a K-Ramsey graph if does not
contain any independent set or clique of size K.

It was shown by Erdös in one of the first applications of the probabilistic method that there
exists K-Ramsey graphs for K = 2 logN . By explicit, we mean a polynomial-time algorithm
that determines whether there is an edge between two nodes, i.e., the running time should be
polylogarithmic in the number of nodes.

Frankl and Wilson [FW81] used intersection theorems to construct K-Ramsey graphs on N
vertices, with K = 2O(

√
logN log logN). This remained the best known construction for a long time,

with many other constructions [Alo98,Gro00,Bar06] achieving the same bound. Gopalan [Gop14]
explained why approaches were stuck at this bound, showing that apart from [Bar06], all other
constructions can be seen as derived from low-degree symmetric representations of the OR function.
Finally, subsequent works by Barak et al. [BKS+10,BRSW12] obtained a significant improvement

and gave explicit constructions of K-Ramsey graphs, with K = 22log1−α(logN)
, for some absolute

constant α.

We also define a harder variant of Ramsey graphs.

Definition 1.4 (Bipartite Ramsey graph). A bipartite graph with N left vertices and N right
vertices is called a bipartite K-Ramsey graph if it does not contain any complete K ×K-bipartite
sub-graph or empty K ×K sub-graph.

Explicit bipartite K-Ramsey graphs were known for K =
√
N based on the Hadamard ma-

trix. This was slightly improved to o(
√
N) by Pudlak and Rődl [PR04], and the results of

[BKS+10,BRSW12] in fact constructed bipartite K-Ramsey graphs, and hence achieved the bounds
as mentioned above.

The following lemma is easy to obtain (see e.g.,[BRSW12]).

Lemma 1.5. Suppose that for all n ∈ N there exists a polynomial time computable 2-source extrac-
tor Ext : {0, 1}n × {0, 1}n → {0, 1} for min-entropy k and error ε < 1/2. Let N = 2n and K = 2k.
Then there exists an explicit construction of a bipartite K-Ramsey on N vertices.

Thus, Theorem 1 implies the following.

Theorem 3. There exists a constant C > 0 such that for all large enough n ∈ N, there exists
an explicit construction of a bipartite K-Ramsey graph on 2N vertices, where N = 2n and K =
2(log logN)C .

The parameter K in the above theorem can be taken to be 2C1(log logN)74
, where C1 is a large

enough constant.
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Given any bipartite K-Ramsey graph, a simple reduction gives a K/2-Ramsey graph on N
vertices [BKS+10]. As an immediate corollary, we have explicit constructions of Ramsey graphs
with the same bound.

Corollary 1.6. There exists a constant C > 0 such that for all large enough n ∈ N, there exists
an explicit construction of a K-Ramsey graph on N vertices, where N = 2n and K = 2(log logN)C .

Independent work: In independent work1, Cohen [Coh16] used the challenge-response mecha-
nism introduced in [BKS+10] with new advances in constructions of extractors to obtain a two-
source disperser for polylogarithmic min-entropy. Using this, he obtained explicit constructions of
bipartite-Ramsey graphs with K = 2(log logN)O(1)

, which matches our result and thus provides an
alternate construction.

1.2 Construction Overview

In this section, we describe our 2-source extractor construction. Since our construction is involved
and uses a lot of components from prior work, we sometimes give informal definitions of these
components for easier presentation. Further, some of the new components that we develop for our
construction are important in their own right, and have applications in other areas. We discuss
these applications in later sections.

An important component in our construction are explicit constructions of seeded extractors.

Definition 1.7 ([NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a seeded extractor for
min-entropy k and error ε if for any source X of min-entropy k, |Ext(X,Ud) −Um| ≤ ε. Ext is
strong if, informally, the output of Ext is close to uniform even conditioned on the seed (with high
probability), i.e., |(Ext(X,Ud),Ud)− (Um,Ud)| ≤ ε, where Um and Ud are independent.

We use explicit constructions of seeded extractors with almost optimal parameters i.e., d =
O(log(n/ε)) and m = Ω(k) [LRVW03,GUV09,DKSS09].

To motivate our construction, first, let’s try to build a 1-source extractor (even though we know
it is impossible). Let X be an (n, k)-source, where k = polylog(n). Let Ext be a strong seeded
extractor designed to extract 1 bit from min-entropy k with error ε. Since, for (1−ε)-fraction of the
seeds, the extractor output is close to uniform, a natural idea is to do the following: cycle over all
the seeds of Ext and concatenate the outputs to obtain a D-bit string Z where most individual bits
are close to uniform. Note that since the seed length of Ext is O(log n), D = poly(n). At this point,
we might hope to take majority of these D bits of Z to obtain a bit is close to uniform. However,
the output of Ext with different seeds may be correlated in arbitrary ways (even if individually the
bits are close to uniform), so this approach doesn’t work.

Our next idea is to try to fix this approach by introducing some independence among the
uniform bits.

Definition 1.8. A distribution D on n bits is t-wise independent if the restriction of D to any t
bits is uniform. Further D is (t, ε)-wise independent if the distribution obtained by restricting D to
any t coordinates is ε-close to uniform.

For example, if we obtain a source Z such that D−D0.49 bits are uniform, and further these bits
are (almost) constant-wise independent, then it is known that the majority function can extract

1Cohen’s work appeared before ours. When his paper appeared, we had an outline of the proof but had not filled
in the details.
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an almost-uniform bit [Vio14]. In an attempt to obtain such a source, we use a strong general-
ization of strong-seeded extractors, called as non-malleable extractors. Dodis and Wichs [DW09]
introduced non-malleable extractors in the context of privacy amplification, and some connections
to constructing extractors for independent sources was shown by Li [Li12a, Li12b]. Informally,
the output of a non-malleable extractor looks uniform even given the seed and the output of the
non-malleable extractor on a correlated seed. We require a slightly more general object.

Definition 1.9. A function nmExt : {0, 1}n×{0, 1}d → {0, 1}m is a (t, k, ε)-non-malleable extractor
if it satisfies the following property: If X is a (n, k)-source and Y is uniform on {0, 1}d, and f1,
. . . , ft are arbitrary functions from d bits to d bits with no fixed points2, then

(nmExt(X,Y),nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)),Y)

≈ε (Um,nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)),Y).

Let nmExt be a (t, k, ε)-non-malleable extractor that outputs 1 bit with seed-legth d, and let
D = 2d. We show in Lemma 3.4, that there exists large subset of seeds S ⊂ {0, 1}d, |S| ≥
(1 − O(

√
ε))D, such that for any t distinct seeds s1, . . . , st in S, |nmExt(X, s1), . . . ,nmExt(X,

st) − Ut| ≤ O(t
√
ε). Thus, we could use our earlier idea of cycling through all seeds, but now

using an explicit non-malleable extractor instead of a strong-seeded extactor. For this, we use
recent constructions of such non-malleable extractors from the work of Chattopadhyay, Goyal and
Li [CGL16] (see Theorem 3.2). Their construction requires min-entropy k = O(t log2(n/ε)) and
seed-length d = O(t2 log2(n/ε)). Thus, we could cycle over all the seeds of nmExt, and produce

a string Z of length D = 2O(t2 log2(n/ε)), such that the i’th bit of Z, Zi = nmExt(X, i). Further,
except for at most O(

√
εD) bits in Z, the remaining bits in Z follow a (t, O(t

√
ε))-wise independent

distribution. We could now try to set parameters such that the majority function extracts a bit
from Z. However, it is easy to check that

√
εD > D1−δ, for any constant δ > 0. Since the majority

function can handle at most
√
D bad bits, this idea fails.

Our next idea is to look for functions that can handle larger number of “bad bits” to extract
from Z. To formalize our ideas, we introduce the notion of resilient functions and non-oblivious
bit-fixng sources.

Ben-Or and Linial [BL85] first studied resilient functions when they introduced the perfect
information model. In the simplest version of this model, there are n computationally unbounded
players that can each broadcast a bit once. At the end, some function is applied to the broadcast
bits. In the collective coin-flipping problem, the output of this function should be a nearly-random
bit. The catch is that some malicious coalition of players may wait to see what the honest players
broadcast before broadcasting their own bits. Thus, a resilient function is one where the bit is
unbiased even if the malicious coalition is relatively large (but not too large). We now introduce
this notion more formally.

Definition 1.10 (Influence of a set). Let f : {0, 1}D → {0, 1} be any Boolean function on variables
x1, . . . , xD. The influence of a set Q ⊆ {x1, . . . , xD} on f , denoted by IQ(f), is defined to be the
probability that f is undetermined after fixing the variables outside Q uniformly at random.

Further, for any integer q define Iq(f) = maxQ⊆{x1,...,xD},|Q|=q IQ(f). More generally, let IQ,D(f)
denote the probability that f is undetermined when the variables outside Q are fixed by sampling
from the distribution D. We define IQ,t(f) = maxD∈Dt IQ,D(f), where Dt is the set of all t-wise inde-
pendent distributions. Similarly, IQ,t,γ(f) = maxD∈Dt,γ IQ,D(f) whereDt,γ is the set of all (t, γ)-wise

2We say that x is a fixed point of a function f if f(x) = x.
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independent distributions. Finally, for any integer q define Iq,t(f) = maxQ⊆{x1,...,xD},|Q|=q IQ,t(f)
and Iq,t,γ(f) = maxQ⊆{x1,...,xD},|Q|=q IQ,t,γ(f).

Definition 1.11 (Resilient Function). Let f : {0, 1}D → {0, 1} be any Boolean function on variables
x1, . . . , xD and q any integer. We say f is (q, ε)-resilient if Iq(f) ≤ ε. More generally, we say f is
t-independent (q, ε)-resilient if Iq,t(f) ≤ ε and f is (t, γ)-independent (q, ε)-resilient if Iq,t,γ(f) ≤ ε.

We now continue with our attempt to extract a bit from the source Z. To formalize our intuition
of constructing an extractor for Z via resilient functions, we define a class of sources that captures
Z, and record a simple lemma which shows that resilient functions are indeed extractors for this
class of sources.

Definition 1.12 (Non-Oblivious Bit-Fixing Sources). A source Z on {0, 1}D is called a (q, t,
γ)-non-oblivious bit-fixing source (NOBF source for short) if there exists a subset of coordinates
Q ⊆ [D] of size at most q such that the joint distribution of the bits indexed by Q = [D] \ Q is
(t, γ)-wise independent. The bits in the coordinates indexed by Q are allowed to depend arbitrarily
on the bits in the coordinates indexed by Q.

Lemma 1.13. Let f : {0, 1}D → {0, 1} be a Boolean function such that for any t-wise independent
distribution D, |Ex∼D[f(x)] − 1

2 | ≤ ε1. Suppose for some q > 0, Iq,t(f) ≤ ε2. Then, f is an
extractor for (q, t, γ)-NOBF sources on D bits with error ε1 + ε2 + γDt.

Thus, it is sufficient for us to construct an explicit resilient functions, since this can be used
to extract from Z. We note that for transforming the source X in to a (q, t, γ)-NOBF source Z
(on D bits) via the non-malleable extractor, the min-entropy required in X is roughly O(t2 log n).
Unfortunately, for t <

√
n, the only known function that is t-independent (q, ε1)-resilient function

is the majority function [Vio14] for t = O(1) and q < D
1
2
−τ , τ > 0.

However, for larger t, there are better known resilient functions. In particular, the iterated
majority function of Ben-Or and Linial handles a larger q = O(D0.63) for t = D, but it is not clear
if it remains resilient for smaller t. Further, Ajtai and Linial showed the existence of functions that
are resilient for q = O(D/ log2D) and t = D. However, their functions are not explicit and require
time DO(D2) to deterministically construct. We note here that by a result in [KKL88], the largest
q one can hope to handle is O(D/ logD).

Our main contribution here is to give explicit constructions of (log(D))O(1)-independent (D1−δ,
D−Ω(1))-resilient functions. In particular, we prove the following theorem.

Theorem 4. There exists a constant c such that for any δ > 0 and every large enough integer
D ∈ N, there exists an efficiently computable monotone Boolean function f : {0, 1}D → {0, 1}
satisfying: For any q > 0, t ≥ c(logD)18,

• f is a depth 4 circuit of size DO(1).

• For any (t, γ)-wise independent distribution D, |Ex∼D[f(x)]− 1
2 | ≤

1
DΩ(1) .

• Iq,t(f) ≤ q/D1−δ.

Our proof of Theorem 4 is based on derandomizing the probabilistic construction of Ajtai-Linial
mentioned above. Further, we also have to argue that Iq,t(f) is bounded (instead of just Iq(f) as
in Ajtai-Linial construction), which requires us to use a breakthrough result of Braverman [Bra10]
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that t-wise independence fools low-depth circuits. However, before outlining these ideas, we first
assume Theorem 4 and try to complete our 2-source extractor construction.

Recall that Z = nmExt(X, 1) ◦ . . . ◦ nmExt(X, D) is a (q, t, γ)-NOBF source on D bits, where

q =
√
εD, γ = O(

√
εt) and D = 2O(t2 log2(n/ε)). We set t = logO(1)(D), and thus we require

H∞(X) = log(O(1))(n/ε). As we observed before, q > D1−δ for any δ > 0. Thus, we cannot directly
apply the function f from Theorem 4 on Z to extract an almost bit. (A more important issue in
directly applying f to Z is that while using Lemma 4.1, we have to bound the term γDt in the
error, which is clearly greater than 1 for the current parameters.) We note that it is not suprising
that f cannot extract from Z since we just used 1 source up to this point.

We now use the second independent source Y to sample a pseudorandom subset T of coordinates
from [D], |T | = D′ = nO(1), such that the fraction of bad bits ZT (the projection of Z to the co-
ordiantes in T ) remains almost the same as that of Z (with high probability). A well known way of
using a weak source to sample a pseudorandom subset was discovered by Zuckerman [Zuc97], and
uses a seeded extractor, with the size of the sample being the total number of seeds and fraction
of bad bits increases at most by the error of the extractor (with high probability). Thus using
known optimal constructions of seeded extractors with seed-length d′ = O(log(n/ε′)), we have
D′ = (n/ε′)O(1). Thus Zt is (q, t, γ)-NOBF source on D′ bits, where q = (

√
ε + ε′)D′, γ = O(

√
εt).

Further, the incurred error on applying f (from Theorem 4) on Zt is (D′)−Ω(1) + γ(D′)t (using
Lemma 4.1). By choosing δ to be a small enough constant, the term ε′D′ can be made smaller than

(D′)1−δ/2. Further, by choosing ε small enough (n−(logn)O(1)
), we can ensure that

√
εD′ < (D′)1−δ/2

and γD′ = (D′)−Ω(1). This completes the description of our 2-source extractor.

We now outline the main ideas in the proof of Theorem 4. We first show that if the function
f is monotone, in AC0 and almost unbiased, then it is enough to bound Iq(f) to show that f
satisfies the conclusions of Theorem 4. The key observation is the following simple fact: for any
set of variables Q, it is possible to check using another small AC0 circuit E if the function f is
undetermined for some setting of the variables outside Q. This crucially relies on the fact that f
is monotone. Next, using the result of Braverman [Bra10] that bounded independence fools small
AC0 circuits, we conclude that the bias of the circuit E is roughly the same when the variables
outside Q are drawn from a bounded-independence distribution, and when they are drawn from
the uniform distribution. The conclusion now follows using the bound on IQ(f).

Thus all that remains is to construct a small monotone AC0 circuit f , that is almost balanced
under the uniform distribution, and Iq(f) = o(1) for q < D1−δ. The high level idea for this
construction is to derandomize the probabilistic construction of Ajtai-Linial [AL93] using extractors.
The tribes function introduced by Ben-Or and Linial [BL85] is a disjunction taken over AND’s of
equi-sized blocks of variables. The Ajtai-Linial function is essentially a conjunction of non-monotone
tribes functions, with each tribes function using a different partition and the variables in each tribes
function being randomly negated with probability 1/2, and the partitions are chosen according to
the probabilistic method. We sketch informally our ideas to derandomize this construction. For
each i ∈ [R], let P i be a equi-partition of [n], n = MB, into blocks of size B. Let P ij denote the

j’th block in P i. Define,

f(x) =
∧

1≤i≤R

∨
1≤j≤M

∧
`∈P ij

x`.

First, we abstract out properties that these partitions need to satisfy for f to be almost unbiased
and also (n1−δ, ε)-resilient. Informally, we show that

1. If for all i1, i2, j1, j2 with (i1, j1) 6= (i2, j2), |P i1j1 ∩ P
i2
j2
| ≤ 0.9B, then f is almost unbiased,
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2. If for any set Q of size q < n1−δ, the number of partitions P i containing a block P ij such that

|P ij ∩Q| > δB/2 is o(R), then f is (n1−δ, ε)-resilient.

An ingredient in the proof of (1) is Janson’s inequality (see Theorem 5.21).

It is important that unlike in Ajtai-Linial and earlier modifications [RZ01], we don’t need to
negate variables, and thus f is monotone.

The second property seems related to the property of extractors captured in Theorem 2.4.
However, it is not obvious how to use such extractors to construct these partitions. We construct a
family of equi-partitions from a seeded extractor Ext : {0, 1}r × {0, 1}b → {0, 1}m as follows. Each
Pw corresponds to some w ∈ {0, 1}r. One block of Pw is Pw~0 = {(y,Ext(x, y)) : y ∈ {0, 1}b}. The

other block are shifts of this, i.e., for any s ∈ {0, 1}m, define Pws = {(y,Ext(x, y)⊕ s) : y ∈ {0, 1}b}.
This gives R = 2r partitions of [n] with n = 2m+b.

For any good enough extractor, we show that (2) is satisfied using a basic property of extractors
and an averaging argument. To show that the partitions satisfy (1), we need an additional property
of the extractor, which informally requires us to prove that the intersection of any two arbitrary
shifts of neighbors of any two distinct nodes w1, w2 ∈ {0, 1}r in GExt is bounded. This essentially
is a strong variant of a design extractor of Li [Li12a]. We show that Trevisan’s extractor has this
property. This completes the informal sketch of our resilient function construction. We note that
our actual construction is slightly more complicated and is a depth 4 circuit. The extra layer
enables us to simulate each of the bits x1, . . . , xn having Pr[x1 = 1] close to 1, which we need to
make f almost unbiased.

1.3 Comparison with Previous Techniques

As mentioned earlier, Bourgain’s 2-source extractor for min-entropy 0.499n relied on new advances
in additive combinatorics. Following this, Rao [Rao09a] introduced a novel elementary approach
for extracting from multiple independent sources that relied on only explicit seeded extractors. His
approach was to first convert the independent sources into matrices with many uniformly random
rows, called somewhere-random sources, and then iteratively reduce the number of rows in one
of the somewhere-random sources (while still maintaining a good fraction of uniform rows) using
the other somewhere-random sources. This allowed him to construct an explicit extractor for a
constant number of sources with min-entropy nγ for any constant γ > 0.

In a series of works [Li13b, Li13a, Li15c], Li introduced a new way of iteratively reducing the
number of rows in the somewhere-random sources. His idea was to use a few independent sources
to construct a more structured somewhere-random source with the additional guarantee that the
uniform rows are t-wise independent and then iteratively reduce the number of rows using leader
election protocols from the work of Feige [Fei99]. Using this approach and clever compositions of ex-
tractors, Li [Li15c] constructed an explicit extractor for 3 independent sources with polylogarithmic
min-entropy.

In particular, Li had already shown how to use two sources to obtain a source with almost
polylog-wise independent bits, except for 1/3 of the rows. Using a better seeded extractor in his
construction could make the bad rows at most an n−Ω(1) fraction. Thus, we could have used Li’s
construction to replace our Theorem 3.1. However, the rest of our construction is significantly
different. Instead of iteratively reducing the number of bits in the non-oblivious source, we directly
construct an explicit function that is an extractor for such sources.
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1.4 Applications to Collective Coin-Flipping

Ben-Or and Linial [BL85] first studied resilient functions when they introduced the perfect informa-
tion model. In the simplest version of this model, there are n computationally unbounded players
that can each broadcast a bit once. At the end, some function is applied to the broadcast bits. In
the collective coin-flipping problem, the output of this function should be a nearly-random bit. The
catch is that some malicious coalition of players may wait to see what the honest players broadcast
before broadcasting their own bits. Thus, a resilient function is one where the bit is unbiased even
if the malicious coalition is relatively large (but not too large).

This model can be generalized to allow many rounds, and has been well studied [BL85,KKL88,
Sak89, AL93, AN93, BN96, RZ01, Fei99, RSZ02]; also see the survey by Dodis [Dod06]. Resilient
functions correspond to 1-round protocols. Thus, our construction of resilient functions directly
implies an efficient 1-round coin-flipping protocol resilient to coalitions of size n1−δ, for any δ > 0.
The previous best published result for 1-round collective coin flipping was by Ben-Or and Linial
[BL85], who could handle coalitions of size O(n0.63). A non-explicit 1-round collective coin flipping
protocol was given by Ajtai and Linial [AL93], where the size of the coalition could be as large as
O(n/ log2 n). However, to deterministically simulate this protocol requires time at least nO(n2). In
unpublished work, Meka had achieved similar bounds to us. However, our results extend in ways
that Meka’s doesn’t.

The following theorem is direct from Theorem 4, even ignoring the t-wise independent part; see
e.g., Lemma 2 in [Dod06].

Theorem 5. For any constant δ > 0, for all n > 0 there exists an efficient one-round collective
coin-flipping protocol in the perfect information model with n players that is (n1−δ, n−Ω(1))-resilient.

1.5 Bit-Fixing Sources

As we discussed before, resilient functions can be used to build extractors for bit-fixing sources.
We first formally define the notion of a deterministic extractor for a class of sources.

Definition 1.14. An efficiently computable function f : {0, 1}n → {0, 1}m is a (deterministic)
extractor for a class of sources X with error ε if, for any source X ∈ X , |f(X)−Um| ≤ ε.

Roughly, a bit-fixing source is a source where some subset of the bits are fixed and the remaining
ones chosen in some random way. Usually these remaining bits are chosen uniformly at random,
but in our case they are chosen t-wise independently. Extraction is easier if the fixed bits cannot
depend on the random bits. Such sources are called oblivious bit-fixing sources, and have been
investigated in a line of work [CGH+85,KZ07,GRS06,Rao09b]. The best known explicit extractors
for oblivious sources work for min-entropy at least logC(n) with exponentially small error [Rao09b],
and from arbitrary min-entropy with polynomially small error [KZ07]. They have applications to
cryptography [CGH+85,KZ07].

Resilient functions immediately give an extractor for the more difficult family of non-oblivious
bit-fixing sources, where the fixed bits may depend on the random bits. While such an extractor
outputs 1 bit, Kamp and Zuckerman [KZ07] observed that dividing the source into blocks and
applying the function to each block can extract more bits. Using the iterated-majority function of
Ben-Or and Linial [BL85] they obtained an extractor for min-entropy at least n−O(nlog3 2). They
didn’t use Ajtai-Linial because it is not explicit.

Our main result on extracting from bit-fixing sources is the following.
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Theorem 6. There exists a constant c such that for any constant δ > 0, and for all n ∈ N, there
exists an explicit extractor bitExt : {0, 1}n → {0, 1} for the class of (q, t, γ)-non-oblivious bit-fixing
sources with error n−Ω(1), where q ≤ n1−δ, t ≥ c log18(n) and γ ≤ 1/nt+1.

We note that the work of Kahn, Kalai and Linial [KKL88] implies that the largest q one could
hope to handle is O(n/ log n).

1.6 Organization

We introduce some preliminaries in Section 2. In Section 3, we reduce the problem of constructing
extractors for two independent sources to the problem of extracting from (q, t, γ)-bit-fixing sources.
We use Section 4 and 5 to prove Theorem 4. We use Section 6 to wrap up the proofs of Theorem
1 and Theorem 6. Finally, we present a proof sketch of Theorem 2 in Section 7.

2 Preliminaries

We reserve the letter e for the base of the natural logarithm. We use ln(x) for loge(x), and log(x)
for log2(x).
We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the projection of y onto the
coordinates indexed by S.
Without explicitly stating it, we sometimes assume when needed that n is sufficiently large so
that asymptotic statements imply concrete inequalities, e.g., if ` = o(n) then we may assume that
` < n/10.

2.1 Seeded Extractors

We use the following strong seeded extractor constructed by Trevisan [Tre01], with subsequent
improvements by Raz, Reingold and Vadhan [RRV02].

Theorem 2.1 ([Tre01] [RRV02]). For every n, k,m ∈ N and ε > 0, with m ≤ k ≤ n, there exists
an explicit strong-seeded extractor TExt : {0, 1}n×{0, 1}d → {0, 1}m for min-entropy k and error ε,

where d = O
(

log2(n/ε)
log(k/m)

)
.

We also use optimal constructions of strong-seeded extractors.

Theorem 2.2 ([GUV09]). For any constant α > 0, and all integers n, k > 0 there exists a
polynomial time computable strong-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d =
O(log n+ log(1/ε)) and m = (1− α)k.

To ensure that for each x ∈ {0, 1}n, Ext(x, s1) 6= Ext(x, s2) whenever s1 6= s2, we can concate-
nate the seed to the output of Ext, though it is no longer strong.

Corollary 2.3. For any constant α > 0, and all integers n, k > 0 there exists a polynomial time
computable seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(log n + log(1/ε)) and
m = (1− α)k. Further for all x ∈ {0, 1}n, Ext(x, s1) 6= Ext(x, s2) whenever s1 6= s2.
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2.2 Sampling Using Weak Sources

A well known way of sampling using weak sources uses randomness extractors. We first introduce
a graph-theoretic view of extractors. Any seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m can
also be viewed as an unbalanced bipartite graph GExt with 2n left vertices (each of degree 2d) and
2m right vertices. We use N (x) to denote the set of neighbours of x in GExt. We call GExt the
graph corresponding to Ext.

Theorem 2.4 ([Zuc97]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a seeded extractor for min-entropy
k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩R| − µRD| > εD}| < 2k,

where µR = |R|/2m.

Theorem 2.5 ([Zuc97]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a seeded extractor for min-entropy
k and error ε. Let {0, 1}d = {r1, . . . , rD}, D = 2d. Define
Samp(x) = {Ext(x, r1), . . . ,Ext(x, rD)}. Let X be an (n, 2k)-source. Then for any set R ⊆ {0, 1}m,

Prx∼X[||Samp(x) ∩R| − µRD| > εD] < 2−k,

where µR = |R|/2m.

2.3 An Inequality

We frequently use the following inequality.

Claim 2.6. For any n > 1 and 0 ≤ x ≤ n, we have

e−x
(

1− x2

n

)
≤
(

1− x

n

)n
≤ e−x.

2.4 Some Probability Lemmas

Lemma 2.7 ([GRS06]). Let X be a random variable taking values in a set S, and let Y be a
random variable on {0, 1}t. Assume that |(X,Y)− (X,Ut)| ≤ ε. Then for every y ∈ {0, 1}t,

|(X|Y = y)−X| ≤ 2t+1ε.

Lemma 2.8 ([Sha08]). Let X1,Y1 be random variables taking values in a set S1, and let X2,Y2

be random variables taking values in a set S2. Suppose that

1. |X2 −Y2| ≤ ε2.

2. For every s2 ∈ S2, |(X1|X2 = s2)− (Y1|Y2 = s2)| ≤ ε1.

Then
|(X1,X2)− (Y1,Y2)| ≤ ε1 + ε2.

Using the above results, we record a useful lemma.
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Lemma 2.9. Let X1, . . . ,Xt be random variables, such that each Xi takes values 0 and 1. Further
suppose that for any subset S = {s1, . . . , sr} ⊆ [t],

(Xs1 ,Xs2 . . . ,Xsr) ≈ε (U1,Xs2 . . . ,Xsr).

Then
(X1, . . . ,Xt) ≈5tε Ut.

Proof. We prove this by induction on t. The base case when t = 1 is direct. Thus, suppose t ≥ 2.
It follows that

(Xt,X1, . . . ,Xt−1) ≈ε (U1,X1, . . . ,Xt−1).

By an application of Lemma 2.7, for any value of the bit b,

|(X1, . . . ,Xt−1|Xt = b)− (X1, . . . ,Xt−1)| ≤ 4ε.

Further, by the induction hypothesis, we have

|(X1, . . . ,Xt−1)−Ut−1| ≤ 5(t− 1)ε.

Thus, by the triangle inequality for statistical distance, it follows that for any value of the bit b,

|(X1, . . . ,Xt−1|Xt = b)−Ut−1| ≤ (5t− 1)ε.

Using Lemma 2.8 and the fact that |Xt −U1| ≤ ε, it follows that

|(X1, . . . ,Xt)−Ut| ≤ (5t− 1)ε+ ε = 5tε.

This completes the induction, and the lemma follows.

2.5 Extractors for Bit-fixing Sources via Resilient Functions

The following lemma connects the problem of constructing extractors for (q, t, γ)-non-oblivious
bit-fixing sources and constructing (t, γ)-independent (q, ε1)-resilient functions.

Lemma 2.10. Let f : {0, 1}n → {0, 1} be a boolean function that is (t, γ)-independent (q, ε1)-
resilient. Further suppose that for any (t, γ)-wise independent distribution D, |Ex∼D[f(x)]− 1

2 | ≤ ε2.
Then f is an extractor for (q, t, γ)-non-oblivious bit-fixing sources with error ε1 + ε2.

Proof. Let X be a (q, t, γ)-non-oblivious bit-fixing source on n bits. Then X is sampled in the
following way: For some fixed subset Q ⊂ {x1, . . . , xn} of q variables, the variables Q = [n] \Q are
drawn from some fixed (t, γ)-wise independent distribution D1 on n − q bits, and the variables in
Q are chosen arbitrarily depending on the values of the variables in Q.

Let E be the following event: f is determined on fixing the variables in Q by sampling from
D1 and leaving the remaining variables free. Since f is (t, γ)-independent (q, ε1)-resilient, we have
Pr[E] ≥ 1 − ε1. Let D be any (t, γ)-wise independent distribution on n bits whose projection on
to Q matches D1. It follows that ∣∣∣∣Prx∼D[f(x) = 1]− 1

2

∣∣∣∣ ≤ ε2.
12



We have,

Prx∼D[f(x) = 1] = Prx∼D[f(x) = 1|E]Pr[E] + Prx∼D[f(x) = 1|E]Pr[E]

= Prx∼X[f(x) = 1|E]Pr[E] + Prx∼D[f(x) = 1|E]Pr[E]

= Prx∼X[f(x) = 1] + Pr[E]
(
Prx∼D[f(x) = 1|E]−Prx∼X[f(x) = 1|E]

)
Hence,

|Prx∼D[f(x) = 1]−Prx∼X[f(X) = 1]| ≤ Pr[E] ≤ ε1.

Thus, ∣∣∣∣Prx∼X[f(x) = 1]− 1

2

∣∣∣∣ ≤ ε1 + ε2.

3 Reduction to a NOBF Source

The main result in this section is a reduction from the problem of extracting from two independent
(n, k)-sources to the task of extracting from a single (q, t, γ)-NOBF source on nO(1) bits. We
formally state the reduction in the following theorem.

Theorem 3.1. There exist constants δ, c′ > 0 such that for every n, t > 0 there exists a polynomial
time computable function reduce : {0, 1}n × {0, 1}n → {0, 1}D, D = nO(1), satisfying the following
property: if X,Y are independent (n, k)-sources with k ≥ c′t4 log2 n, then

Pry∼Y[reduce(X,y) is a (q, t, γ)-NOBF source] ≥ 1− n−ω(1)

where q = D1−δ and γ = 1/Dt+1.

Li had earlier proved a similar theorem with q = D/3, and his methods would extend to achieve
a similar bound as we achieve.

The δ we obtain in Theorem 3.1 is a small constant. Further, it can be shown that for our
reduction method, it is not possible to achieve δ > 1/2. Thus, we cannot use the majority function
as the extractor for the resulting (q, t, γ)-NOBF source.

The reduction in Theorem 3.1 is based on explicit constructions of non-malleable extractors
(introduced in the following section) from the recent work of Chattopadhyay, Goyal and Li [CGL16].

3.1 Non-Malleable Extractors

Non-malleable extractors were introduced by Dodis and Wichs [DW09] as a generalization of strong-
seeded extractors. Recently, Chattopadhyay, Goyal and Li [CGL16] constructed an explicit t-non-
malleable extractor for polylogarithmic min-entropy. This is a crucial component in our reduction.

Theorem 3.2 ([CGL16]). There exists a constant c′ > 0 such that for all n, t > 0 there exists an
explicit (t, k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}, where k ≥ c′t log2(n/ε)
and d = O

(
t2 log2 (n/ε)

)
.
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3.2 The Reduction

In the following lemma, we reduce extracting from two independent sources to extracting from
a (q, t, γ)-NOBF source using non-malleable extractors and seeded extractors in a black-box way.
Theorem 3.1 then follows by plugging in explicit constructions of these components.

Lemma 3.3. Let nmExt : {0, 1}n × {0, 1}d1 → {0, 1} be a (t, k, ε1)-non-malleable extractor and
let Ext : {0, 1}n × {0, 1}d2 → {0, 1}d1 be a seeded extractor for min-entropy k/2 with error ε2. Let
{0, 1}d2 = {s1, . . . , sD2}, D2 = 2d2. Suppose that Ext satisfies the property that for all y ∈ {0, 1}n,
Ext(y, s) 6= Ext(y, s′) whenever s 6= s′. Define the function:

reduce(x, y) = nmExt(x,Ext(y, s1)) ◦ . . . ◦ nmExt(x,Ext(y, sD2)).

If X and Y are independent (n, k)-sources, then

Pry∼Y[reduce(X,y) is a (q, t, γ)-NOBF source] ≥ 1− n−ω(1),

where q = (
√
ε1 + ε2)D2 and γ = 5t

√
ε1.

We prove a lemma about t-non-malleable extractors from which Lemma 3.3 is easy to obtain.

Lemma 3.4. Let nmExt : {0, 1}n × {0, 1}d → {0, 1} be a (t, k, ε)-non-malleable extractor. Let
{0, 1}d = {s1, . . . , sD}, D = 2d. Let X be any (n, k)-source. There exists a subset R ⊆ {0, 1}d,
|R| ≥ (1−

√
ε)D such that for any distinct r1, . . . , rt ∈ R,

(nmExt(X, r1), . . . ,nmExt(X, rt)) ≈5t
√
ε Ut.

Proof. Let

BAD = {r ∈ {0, 1}d : ∃ distinct r1, . . . , rt ∈ {0, 1}d,
∀i ∈ [t] ri 6= r, s.t |(nmExt(X, r), nmExt(X, r1), . . . ,nmExt(X, rt))−

(U1,nmExt(X, r1), . . . ,nmExt(X, rt))| >
√
ε}

We define adversarial functions f1, . . . , ft as follows. For each r ∈ BAD, set fi(r) = ri, i = 1, . . . , t
(the fi’s are defined arbitrarily for r /∈ BAD, only ensuring that there are no fixed points). Let Y
be uniform on {0, 1}d. It follows that

|(nmExt(X,Y),nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)))−

(U1,nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)))| ≥
√
ε

2d
|BAD|

Thus |BAD| ≤
√
ε2d using the property that nmExt is a (k, t, ε)-non-malleable extractor. Define

R = {0, 1}d \BAD. Using Lemma 2.9, it follows that R satisfies the required property.

of Lemma 3.3. Let R ⊆ {0, 1}d1 be such that for any distinct r1, . . . , rt ∈ R,

(nmExt(X, r1), . . . ,nmExt(X, rt)) ≈5t
√
ε1 Ut.

It follows by Lemma 3.4 that |R| ≥ (1−√ε1)D1. Define Samp(y) = {Ext(y, s1), . . . ,Ext(y, sD2)} ⊂
{0, 1}d1 . Using Theorem 2.5, we have

Pr
y∼Y

[|Samp(y) ∩R| ≤ (1−
√
ε1 − ε2)D2] ≤ 2−k/2. (1)
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Consider any y such that |Samp(y)∩R| ≥ (1−√ε1− ε2)D2, and let Zy = reduce(X,y). Since the
output bits of nmExt corresponding to seeds in Samp(y) ∩ R are (t, 5t

√
ε1)-wise independent, we

have that Zy is a ((
√
ε1 + ε2)D2, t, 5t

√
ε1)-NOBF source on D2 bits.

Thus using (1), it follows that with probability at least 1 − 2−k/2 over y ∼ Y, reduce(X,y) is
a ((
√
ε1 + ε2)D2, t, 5t

√
ε1)-NOBF source on D2 bits.

of Theorem 3.1. We derive Theorem 3.1 from Lemma 3.3 by plugging in explicit non-malleable
extractors and seeded extractors as follows:

1. Let nmExt : {0, 1}n × {0, 1}d1 → {0, 1} be an explicit (t, k, ε1)-non-malleable extractor from
Theorem 3.2. Thus d1 = c1t

2 log2(n/ε1), for some constant c1. Such an extractor exists as
long as k ≥ λ1t log2(n/ε1) for some constant λ1.

2. Let Ext : {0, 1}n × {0, 1}d → {0, 1}d1 be the extractor from Corollary 2.3 set to extract from
min-entropy k/2 with error ε2. Thus d = c2 log(n/ε2) for some constant c2. Let D = 2d =
(n/ε2)c2 . Such an extractor exists as long as k ≥ 3d1.

3. We choose ε1, ε2, δ such that the following hold:

• (
√
ε1 + ε2)D ≤ D1−δ.

• √ε1 ≤ 1/(5tDt+1).

• δ′ = δc2 < 9/10.

To satisfy the above requirements, we pick ε1, ε2 as follows: Let ε2 = 1/nC2 where C2 is fixed
such that ε2D ≤ D1−δ/2. Thus, we need to ensure that
ε2 ≤ 1/(2Dδ). Substituting D = (n/ε2)c2 and simplifying, we have

ε2 ≤ εc2δ2 /2nc2δ

i.e., ε1−c2δ2 ≤ 1/2nc2δ

i.e., ε2 ≤ 1/(2n)δ
′/(1−δ′).

We note that 1− δ′ > 1/10. Thus, we can choose C2 = 10.

We now set ε1 = 1/nC1t, where we choose the constant C1 such that
√
ε1 ≤ 1/(5tDt+1).

Simplifying, we have

ε1 ≤
ε
2c2(t+1)
2

25t2n2c2(t+1)
≤ 1

25t2n2c2(C2+1)(t+1)
≤ 1

n23c2(t+1)
.

Thus, we can choose C1 = 24c2.

4. We note that for the above choice of parameters, nmExt and Ext indeed work for min-entropy
k ≥ c′t4 log2 n, for some large constant c′.

5. Let {0, 1}d = {s1, . . . , sD}.

Define the function:

reduce(x, y) = nmExt(x,Ext(y, s1)) ◦ . . . ◦ nmExt(x,Ext(y, sD)).

Let X and Y be independent (n, k)-sources. By Lemma 3.3, it follows that

Pry∼Y[reduce(X,y) is a (q, t, γ)-NOBF source] ≥ 1− n−ω(1),

where q = (
√
ε1 + ε2)D and γ = 5t

√
ε1. Theorem 3.1 now follows by our choice of parameters.
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4 Monotone Constant-Depth Resilient Functions are t-Independent
Resilient

Using the reduction from Section 3, we have now reduced the problem of extracting from two
independent sources to extracting from a (q, t, γ)-NOBF source. By Lemma 4.1 this translates to
constructing a nearly balanced function f with small Iq,t,γ(f). We show if f is a constant depth
monotone circuit, then in order to prove an upper bound for Iq,t,γ(f), it is in fact enough to upper
bound Iq(f), which is a simpler quantity to handle.

Theorem 4.1. There exists a constant b > 0 such that the following holds: Let C : {0, 1}n → {0, 1}
be a monotone circuit in AC0 of depth d and size m such that |Ex∼Un [C(x)]− 1

2 | ≤ ε1. Suppose q > 0
is such that Iq(C) ≤ ε2. If t ≥ b(log(5m/ε3))3d+6, then Iq,t(C) ≤ ε2 +ε3 and Iq,t,γ(C) ≤ ε2 +ε3 +γnt.
Further, for any distribution D that is (t, γ)-wise independent, |Ex∼D[C(x)]− 1

2 | ≤ ε1 + ε3 + γnt.

We first briefly sketched the main ideas of the proof in the introduction.

We now formally prove Theorem 4.1. We recall the result of Braverman [Bra10], which was
recently refined by Tal [Tal14].

Theorem 4.2 ([Bra10] [Tal14]). Let D be any t = t(m, d, ε)-wise independent distribution on
{0, 1}n. Then for any circuit C ∈ AC0 of depth d and size m,

|Ex∼Un [C(x)]−Ex∼D[C(x)]| ≤ ε

where t(m, d, ε) = O(log(m/ε))3d+3.

We also recall a result about almost t-wise independent distributions.

Theorem 4.3 ([AGM03]). Let D be a (t, γ)-wise independent distribution on {0, 1}n. Then there
exists a t-wise independent distribution that is ntγ-close to D.

of Theorem 4.1. The bound on Ex∼D[C(x)] is direct from Theorem 4.2 and Theorem 4.3. We now
proceed to prove the influence property.

Consider any set Q of variables, |Q| = q. Let Q = [n] \ Q. We construct a function EQ : {0,
1}n−q → {0, 1} such that EQ(y) = 1 if and only if C is undetermined when xQ is set to y. Thus, it
follows that

Ey∼Un−q [EQ(y)] = Pry∼Un−q [EQ(y) = 1] = IQ(C) ≤ ε2.

Let D be any t-wise independent distribution. We have,

Ey∼D[EQ(y)] = Pry∼D[EQ(y) = 1] = IQ,D(C).

Thus to prove that IQ,D(C) ≤ ε2 + ε3, it is enough to prove that

|Ey∼Un−q [EQ(y)]−Ey∼D[EQ(y)]| ≤ ε3. (2)

We construct EQ as follows: Let C0 be the circuit obtained from C by setting all variables in Q to 0.
Let C1 be the circuit obtained from C by setting all variables in Q to 1. Define EQ := ¬(C0 = C1).
Since C is monotone, EQ satisfies the required property. Further EQ can be computed by a circuit
in AC0 of depth d+ 2 and size 4m+ 3. It can be checked that the depth of EQ can be reduced to
d + 1 by combining two layers. Thus (2) now directly follows from Theorem 4.2. The bound on
IC,t,γ(q) follows from an application of Theorem 4.3.
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5 Monotone Boolean functions in AC0 Resilient to Coalitions

The main result in this section is an explicit construction of a constant depth monotone circuit f
which is resilient to coalitions and is almost balanced under the uniform distribution. This is the
final ingredient in our construction of a 2-source extractor.

Theorem 5.1. For any δ > 0, and every large enough integer n, there exists a polynomial time
computable monotone Boolean function f : {0, 1}n → {0, 1} satisfying:

• f is a depth 4 circuit in AC0 of size nO(1).

•
∣∣Ex∼Un [f(x)]− 1

2

∣∣ ≤ 1
nΩ(1) .

• For any q > 0, Iq(f) ≤ q/n1−δ.

We first prove Theorem 4, which follows easily from the above theorem.

Proof of Theorem 4. Let f : {0, 1}n → {0, 1} be the function from Theorem 5.1 such that for any

q > 0, Iq(f) ≤ q/n1− δ
2 . Also we have that f is monotone and is a depth 4 AC0 circuit.

Fix ε3 = 1/n. Thus by Theorem 4.1, it follows that there exists a constant b such that for any
t ≥ b(log(5n/ε3))18, q > 0 ,

Iq,t,γ(f) ≤ ε3 +
q

n1− δ
2

≤ q

n1−δ .

Further, using Theorem 4.1, for any t-wise independent distribution D, we have∣∣∣∣Ex∼D[f(x)]− 1

2

∣∣∣∣ ≤ 1

n
+

1

nΩ(1)
.

The remainder of this section is used to prove Thereom 5.1. Our starting point is the work of
Ajtai and Linial [AL93], who proved the existence of functions computable by linear sized depth
3 circuits in AC0 that are (Ω(n/ log2 n), ε)-resilient. However, this construction is probabilistic,
and deterministically finding such functions requires time nO(n2). Further these functions are not
guaranteed to be monotone (or even unate). We provide some intuition of our construction in the
introduction.

We initially construct a depth 3 circuit which works, but then the inputs have to be chosen
from independent Bernoulli distributions where the probability p of 1 is very different from 1/2.
By observing that we can approximate this Bernoulli distribution with a CNF on uniform bits, we
obtain a depth 4 circuit which works for uniformly random inputs.

5.1 Our Construction and Key Lemmas

Construction 1: Let Ext : {0, 1}r × {0, 1}b → {0, 1}m be a strong-seeded extractor set to extract
from min-entropy k = 2δr with error ε ≤ δ/4, b = δ1m, δ1 = δ/20, and output length m = δr.
Assume that Ext is such that ε > 1/M δ1 . Let R = 2r, B = 2b, M = 2m and K = 2k. Let s = BM .
Thus s = M1+δ1 .

Let {0, 1}r = {v1, . . . , vR}. We define a collection of R equi-partitions of [s], P = {P v1 , . . . , P vR}
as follows: Let GExt be the bipartite graph corresponding to Ext and let N (x), for any x ∈ {0, 1}r,
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denote the neighbours of x in GExt. For some v ∈ {0, 1}r, let N (v) = {z1, . . . , zB}. For each
w ∈ {0, 1}m, the set {(j, zj ⊕ w) : j ∈ {0, 1}b} is defined to be a block in P v, where ⊕ denotes the
bit-wise XOR of the two strings. Note that P v indeed forms an equi-partition of [s] with M blocks
of size B.

Define the function fExt : {0, 1}s → {0, 1} as:

fExt(y) =
∧

1≤i≤R

∨
1≤j≤M

∧
`∈P ij

y`.

Let

γ =
lnM − ln ln(R/ ln 2)

B
.

We prove the following lemmas from which the proof of Theorem 5.1 is straightforward. We
first introduce some definitions.

Definition 5.2 ((n, τ)-Bernoulli distribution). A distribution on n bits is an (n, τ)-Bernoulli dis-
tribution, denoted by Ber(n, τ), if each bit is independently set to 1 with probability τ and set to 0
with probability 1− τ .

Lemma 5.3. Let Ext : {0, 1}r × {0, 1}b → {0, 1}m be the extractor used in Construction 1. For
any constant ε1 > 0, let (1 − B−ε1)γ ≤ p1 ≤ γ. Then there exists a constant δ > 0 such that for
any q > 0,

Iq,Ber(s,1−p1)(fExt) ≤
q

s1−δ .

The following generalizes the notion of a design extractor which was introduced by Li [Li12a].

Definition 5.4 (Shift-design extractor). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong-seeded
extractor. Let D = 2d. If for any distinct x, x′ ∈ {0, 1}n, and arbitrary y, y′ ∈ {0, 1}m

|{(h,Ext(x, h)⊕ y) : h ∈ {0, 1}d} ∩ {(h,Ext(x′, h)⊕ y′) : h ∈ {0, 1}d}| ≤ (1− η)D,

then Ext is called an η-shift-design extractor.

Lemma 5.5. Let Ext : {0, 1}r×{0, 1}b → {0, 1}m be the extractor used in Construction 1. Suppose
Ext is a 1

10 -shift-design extractor. For any constant ε1 > 0, let (1 − B−ε1)γ ≤ p1 ≤ γ. Then, the
following holds: ∣∣∣∣Ey∼Ber(s,1−p1)[fExt(y)]− 1

2

∣∣∣∣ ≤ B−Ω(1).

Lemma 5.6. Let TExt : {0, 1}r × {0, 1}b → {0, 1}m be the Trevisan extractor from Theorem 2.1
with parameters as in Construction 1. Then, TExt is a 1

10 -shift-design extractor.

Lemma 5.7. Suppose γ < 9/10. Then for any ν > 0, there exists an explicit size h monotone
CNF C on h bits, where h = O

(
1
ν ln

(
1
ν

))
, such that γ − ν ≤ Prx∼Uh

[C(x) = 0] < γ.

We first show how to derive Theorem 5.1 from the above lemmas.

Proof of Theorem 5.1. Let TExt : {0, 1}r×{0, 1}b → {0, 1}m be the Trevisan extractor from Theo-
rem 2.1 with parameters as in Construction 1: k = 2δr,m = δr, δ1 = δ/20 and ε = 2−δ2

√
r where δ2
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is chosen appropriately such that the seed length of TExt from Theorem 2.1 is (for some constant
λ)

b =
λ log2(r/ε)

log(k/m)
=
λ log2(r/2−δ2

√
r)

log 2
= λ(δ2

2r + log2 r + 2δ2

√
r log r) = δ1δr = δ1m.

Thus, indeed M−δ1 < ε < δ/4.

We now fix the parameter r as follows. Let the parameter ν in Lemma 5.7 be set to γ/Bε1 ,
where ε1 = δ/4 and let C be the size h monotone CNF circuit guaranteed by Lemma 5.7, where
h < B1+2ε1 . Thus, (1−B−ε1)γ ≤ Prx∼Uh

[C(x) = 0] < γ.

Choose the largest integer r such that for m = δr, we have n′ = sh = BMh < n. It follows
that for this choice of r, n′ = Ω(n). We construct our function on n′ bits. The size of the coalition
is at most n1−δ = (n′)1−δ′ , where δ′ = δ − o(1). Thus, we may assume n = n′ = BMh and δ = δ′.
Thus n = BMh < M1+δ1+(1+2ε1)δ1 and B = nΩ(1).

We now use Construction 1 and construct the function fTExt : {0, 1}s → {0, 1}, where we
instantiate Ext with extractor TExt as set up above. Let f be the function derived from fTExt

by replacing each variable yi by a copy of the monotone CNF C set up above. Since TExt is a
polynomial time function, fTExt can be constructed in polynomial time. Thus f is computable by
a polynomial time algorithm. Further, f is an O(RMBh) = nO(1) sized monotone circuit in AC0

of depth 4.

We observe that,

s1− δ
2 = (MB)1− δ

2

> (MB)(1+ δ
2)(1−δ)

> (MB3)1−δ (since M δ/2 > B2)

≥ (MBh)1−δ = n1−δ.

This calculation and Lemma 5.7 yields that

In1−δ(f) ≤ I
s1−

δ
2 ,Ber(s,1−p1)

(fTExt).

Using Lemma 5.3, it follows that

Iq,Ber(s,1−p1)(fExt) ≤
q

s1− δ
2

<
q

n1−δ .

We now bound the bias of f . By Lemma 5.6, we have that TExt is a 1
10 -shift-design extractor.

Thus by Lemma 5.5, we have∣∣∣∣Ey∼Ber(s,1−p1)[fTExt(y)]− 1

2

∣∣∣∣ ≤ B−Ω(1) = n−Ω(1).

Finally, using Lemma 5.7, it follows that∣∣∣∣Ex∼Un [f(x)]− 1

2

∣∣∣∣ ≤ 1

nΩ(1)

.
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Proof of Lemma 5.6. To prove that TExt is a 1
10 -shift-design extractor, we first recall the construc-

tion of the Trevisan extractor TExt : {0, 1}r × {0, 1}b → {0, 1}m.

For any input y ∈ {0, 1}r, we describe the construction of the Trevisan extractor [Tre01,RRV02]
to obtain the first bit of the output since this is enough for the purpose of this proof. Fix an
asymptotically good binary linear error correcting code C′ with constant relative rate α, block
length r = (r + 1)/α, and relative distance 1

2 − β, where β < ε. Further assume that C′ contains

the all 1’s string ~1. Let {v1, . . . , vr+1} be a basis of C ′ with vr+1 = ~1. Let C be the binary linear
code generated by {v1, . . . , vr} i.e., C = span{v1, . . . , vr}. It follows that C does not contain ~1,
has relative rate α(1 − 1

r ) > 0.9α and relative distance 1
2 − β. Let Enc : {0, 1}r → {0, 1}r be the

encoding function of C.
Further fix a subset S1 ⊂ [b] of size log(r̄). Then the first bit of the output of TExt on input y

and seed z is the bit at the zS1 ’th coordinate of the string cy = Enc(y). Thus, as we cycle over all
seeds z, each bit of the string cy appears equally often.

For any x ∈ {0, 1}r, define

T 0
x = {(h,TExt(x, h)[1]) : h ∈ {0, 1}b}, T 1

x = {(h,TExt(x, h)[1] ⊕ 1) : h ∈ {0, 1}b}.

Let x, x′ be any two distinct r bit strings. It follows by our argument above, and the fact that C ′

is a linear code with distance 1
2 − β containing ~1 that |T b1x ∩ T

b2
x′ | ≤ (1

2 + β)B < 0.9B for any two
bits b1 and b2.

Let y, y′ ∈ {0, 1}m. Let the first bit of y be b1 and the first bit of y′ be b2. Thus,

|{(h,TExt(x, h)⊕ y) : h ∈ {0, 1}b} ∩ {(h,TExt(x′, h)⊕ y′) : h ∈ {0, 1}b}| ≤ |T b1x ∩ T
b2
x′ | ≤ 0.9B.

Proof of Lemma 5.7. Let h2 = dlog (2/ν)e, and let h1 be the largest integer such that (1−2−h2)h1 ≥
1− γ. Thus,

(1− γ) ≤ (1− 2−h2)h1 ≤ (1− γ)/(1− 2−h2)

< (1− γ)(1 + 21−h2)

≤ (1− γ)(1 + ν)

< 1− γ + ν

and h1 = O(2h2).

Define

C(x) =

h1∧
g1=1

h2∨
g2=1

xg1,g2 .

and h = h1h2 = O(h22h2) = O
(

1
ν log

(
1
ν

))
.

Thus Prx∼Uh
[C(x) = 0] = 1− (1− 2−h2)h1 , and hence

γ − ν ≤ Prx∼Uh
[C(x) = 0] ≤ γ.

We now proceed to prove Lemma 5.3 and Lemma 5.5.
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For convenience, define

f iExt(y) =
∨

1≤j≤M

∧
`∈P ij

y`

where i ∈ {0, 1}r. Further, let

p2 = (1− p1)B, p3 = (1− p2)M .

We record two easy claims.

Claim 5.8. For any i ∈ {0, 1}r, j ∈ {0, 1}m, Pry∼Ber(s,1−p1)[
∧
`∈P ij

y` = 1] = (1− p1)B = p2.

Claim 5.9. For any i ∈ {0, 1}r, Pry∼Ber(s,1−p1)[f
i
Ext(y) = 0] = (1− p2)M = p3.

We frequently use the following bounds.

Claim 5.10. The following inequalities hold: Let ε2 = ε1/2. Then,

1. lnR−ln ln 2
M

(
1− 1

Bε2

)
≤ p2 ≤ lnR−ln ln 2

M

(
1 + 1

Bε2

)
≤ r

M .

2. 1
2R ≤

(
ln 2
R

) (
1− 2r

Bε2

)
≤ p3 ≤

(
ln 2
R

) (
1 + r

Bε2

)
≤ 0.9

R .

Proof. We have,

p2 = (1− p1)B ≥ (1− γ)B ≥ e−γB(1− γ2B) (by Claim 2.6)

≥ lnR− ln ln 2

M

(
1− r2

B

)
(since γ < (lnM)/B < r/B)

We now upper bound p2. We have,

p2 ≤ (1− γ(1−B−ε1))B ≤ e−γB(1−B−ε1 ) (by Claim 2.6)

<

(
lnR− ln ln 2

M

)
MB−ε1 <

(
lnR− ln ln 2

M

)
eδrB

−ε1

≤ lnR− ln ln 2

M

(
1 +

r

Bε1

)

Thus,
lnR− ln ln 2

M

(
1− 1

Bε2

)
≤ p2 ≤

lnR− ln ln 2

M

(
1 +

1

Bε2

)
,

since ε2 = ε1/2.
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Estimating similarly as above, we have

p3 = (1− p2)M

≥
(

1−
(

lnR− ln ln 2

M

)(
1 +

1

Bε2

))M
≥

(
1− (lnR− ln ln 2)2

M

(
1 +

1

Bε2

)2
)(

ln 2

R

)
e
−(lnR−ln ln 2)

Bε2 (by Claim 2.6)

≥
(

1− 2r2

M

)(
ln 2

R

)
e−r/B

ε2

≥
(

1− 2r2

M

)(
ln 2

R

)(
1− r

Bε2

)
≥
(

1− 2r

Bε2

)(
ln 2

R

)
.

Finally, we have

p3 ≤
(

1−
(

lnR− ln ln 2

M

)(
1− 1

Bε2

))M
≤
(

ln 2

R

)1−B−ε2

(by Claim 2.6)

≤
(

ln 2

R

)
2r/B

ε2 ≤
(

ln 2

R

)(
1 +

r

Bε2

)
.

Thus, (
ln 2

R

)(
1− 2r

Bε2

)
≤ p3 ≤

(
ln 2

R

)1− r
B

≤
(

ln 2

R

)(
1 +

r

Bε2

)
.

5.2 Proof of Lemma 5.3 : Bound on Influence of Coalitions on fExt

We now proceed to bound the influence of coalitions of variables on fExt.

Claim 5.11. For any i ∈ {0, 1}r and q ≤ s1−δ, Iq,Ber(s,1−p1)(f
i
Ext) ≤

1
R .

Proof. Let Q be any set of variables of size q, q ≤ s1−δ. There are at most q blocks of P i which
contain a variable from Q. By Claim 5.8, it follows that the probability that for a y sampled from
Ber(s, 1− p1), there is no AND gate at depth 1 in f iExt which outputs 1 is at most

(1− p2)M−q ≤ p1− s
1−δ
M

3

≤ p3(2R)
s1−δ
M (since p3 > 1/(2R) by Claim 5.10)

≤ p3e
r/Mδ/2

(since s = M1+δ1 < M1+ δ
2 /2)

<
1

R
(since p3 < 0.9/R by Claim 5.10)

Thus the influence of Q is bounded by 1
R .
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Definition 5.12. For any i ∈ {0, 1}r and j ∈ {0, 1}m, define a block P ij to be bad with respect to a

subset of variables Q if |P ij ∩Q| ≥ 2εB. Further call a partition P i bad with respect to Q if it has

a block which is bad. Otherwise, P i is good.

Claim 5.13. Consider any subset of variables Q of size q. If q ≤ s1−δ, then there are less than
KM bad partitions with respect to Q.

Proof. Suppose to the contrary that there are at leastKM bad partitions. It follows by an averaging
argument that there exists j ∈ {0, 1}m such that the number of bad blocks among the {P ij : i ∈ {0,
1}r} is at least K. Define the function Extj(x, y) = Ext(x, y) ⊕ j. Observe that Extj is a seeded
extractor for min-entropy k with error ε.

Let Nj(x) denote the set of neighbours of x in the graph corresponding to Extj . It follows that
|{|Nj(x) ∩ Q| ≥ 2εB|}| ≥ K. We note that q/M = s1−δ/M = (MB)1−δ/M < 1/M δ/19 < ε, since
ε > 1/M δ1 = 1/M δ/20 > 1/M δ/19. Thus, we have

|{|Nj(x) ∩Q| ≥ (ε+ µQ)B}| ≥ K,

where µQ = q/M . However this contradicts Theorem 2.4. Thus the number of bad blocks is
bounded by KM .

Claim 5.14. Let P i be a partition that is good with respect to a subset of variables Q, |Q| = q. If
q ≤ s1−δ, then IQ,Ber(s,1−p1)(fExt) ≤ q

2s1−δ
.

Proof. We note that there are at least M − q blocks in P i that do not have any variables from Q.
Each of the remaining blocks have at most 2εB variables from Q. An assignment of x leaves f iExt

undetermined only if: (a) there is no AND gate at depth 1 in f iExt which outputs 1 and (b) There is
at least one block with a variable from Q such that the non-Q variables are all set to 1. These two
events are independent. Further, by Claim 5.11, the probability of (a) is bounded by 1/R. We now
bound the probability of (b). If there are h variables of Q in P ij , the probability that the non-Q

variables are all 1’s is exactly (1− p1)B−h. Thus the probability of event (b) is bounded by

q(1− p1)B(1−2ε) = qp1−2ε
2

≤ qr

M1−2ε
(since p2 < r/M by Claim 5.10)

=
qr

M1− δ
2

(since ε < δ/4)

<
q

M1− 2δ
3

(using r = Mo(1))

<
q

2s1−δ (since s = M1+δ1 < M1+ δ
4 ).

Thus for any q ≤ s1−δ,

Iq,Ber(s,1−p1)(fExt) ≤
KM

R
+

q

2s1−δ =
1

R1−3δ
+

q

2s1−δ <
q

s1−δ .
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5.3 Proof of Lemma 5.5: Bound on the Bias of fExt

We now proceed to show that fExt is almost balanced. For ease of presentation, we slightly abuse
notation and relabel the partitions in Construction 1 as P 1, . . . , PR, where for any i ∈ [R], P i

corresponds to the partition P vi with vi being the r bit string for the integer i− 1.

Claim 5.15. There exists a small constant ε3 > 0 such that for any i ∈ {0, 1}r, Pry∼Ber(s,1−p1)[f
i
Ext(y) =

1] = 1− α
R , where 1− 1

Bε3 ≤
α

ln 2 ≤ 1 + 1
Bε3 .

Proof. Directly follows from Claim 5.10.

We now estimate the probability Pry∼Ber(s,1−p1)[fExt(y) = 0]. This is not direct since the f iExt’s
are on the same set of variables, and can be correlated in general. Towards estimating this, we
introduce some definitions.

Definition 5.16. Let P i, P j be two equi-partitions of [s] with blocks of size B. Then (P i, P j) is
said to be pairwise-good if the size of the intersection of any block of P i and any block of P j is at
most 0.9B.

Definition 5.17. Let P 1, . . . , PR be equi-partitions of [s] with blocks of size B. A collection of
partitions P = {P 1, . . . , PR} is pairwise-good if for any distinct i, j ∈ {0, 1}r, (P i, P j) is pairwise-
good.

Lemma 5.18. If P is pairwise-good, then |Ey∼Ber(s,1−p1)[fExt(y)]− 1
2 | ≤

1
BΩ(1) .

Lemma 5.19. The set of partitions P = {P 1, . . . , PR} in Construction 1 is pairwise-good.

It is clear that the above two lemmas directly imply that |Ey∼Ber(s,1−p1)[fExt(y)]− 1
2 | ≤

1
BΩ(1) .

Proof of Lemma 5.19. Let P i1j1 and P i2j2 be any two blocks such that i1 6= i2. We need to prove that

|P i1j1 ∩ P
i2
j2
| ≤ 0.9B. Recall that P i1j1 = {(z,Ext(i1, z) ⊕ j1) : z ∈ {0, 1}b}, and similarly P i2j2 = {(z,

Ext(i2, z)⊕ j2) : z ∈ {0, 1}b}. The bound on |P i1j1 ∩P
i2
j2
| now directly follows from the fact that Ext

is a 1
10 -shift-design extractor.

Proof of Lemma 5.18. Let P = {P 1, . . . , PR} be pairwise-good.

Recall that
p3 = Pry∼Ber(s,1−p1)[f

i
Ext(y) = 0] =

α

R
.

Let y be sampled from Ber(s, 1− p1). Let Ei be the event f iExt(y) = 0. We have,

p = Pry∼Ber(s,1−p1)[fExt(y) = 0] = Pr

 ∨
1≤i≤R

Ei

 .
For 1 ≤ c ≤ R, let

Sc =
∑

1≤i1<...<ic≤R
Pr

 ∧
1≤g≤c

Eig

 .
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Using the Bonferroni inequalities, it follows that for any even a ∈ [R],

a∑
c=1

(−1)(c−1)Sc ≤ p ≤
a+1∑
c=1

(−1)(c−1)Sc. (3)

Towards proving a tight bound on p using (3), we prove the following lemma.

Lemma 5.20. There exist constants β1, β2 > 0 such that for any c ≤ sβ1, and arbitrary 1 ≤ i1 <
. . . < ic ≤ R, the following holds:

(α
R

)c
≤ Pr

 ∧
1≤g≤c

Eig

 ≤ (α
R

)c(
1 +

1

Mβ2

)
.

To prove the above lemma, we recall Janson’s inequality [Jan90, BS89]. We follow the presen-
tation in [AS92].

Theorem 5.21 (Janson’s Inequality [Jan90, BS89, AS92]). Let Ω be a finite universal set and let
O be a random subset of Ω constructed by picking each h ∈ Ω independently with probability ph.
Let Q1, . . . , Q` be arbitrary subsets of Ω, and let Ei be the event Qi ⊆ O. Define

∆ =
∑

i<j:Qi∩Qj 6=∅

Pr [Ei ∧ Ej ] , D =
∏̀
i=1

Pr
[
Ei
]
.

Assume that Pr[Ei] ≤ τ for all i ∈ [`]. Then

D ≤ Pr
[∧
Ei
]
≤ De

∆
1−τ .

Proof of Lemma 5.20. We set β1 = 1/90 with foresight. Without loss of generality suppose ig = g
for g ∈ [c]. We use Janson’s inequality with Ω = [s], and O constructed by picking each h ∈ [s]
with probability 1 − p1. Further let Ei,j be the event that P ij ⊆ O. Intuitively, O denotes the set
of coordinates in y that are set to 1 for a sample y from Ber(s, 1− p1). With this interpretation,
the event f iExt(y) = 0 exactly corresponds to the event

∧
1≤j≤M Ei,j . Thus, we have

Pr

 ∧
1≤g≤c

Eg

 = Pr

 ∧
i∈[c],j∈{0,1}m

Ei,j

 .
We now estimate D,∆, γ to apply Janson’s inequality. For any i ∈ [c], j ∈ {0, 1}m, we have
Pr[Ei,j ] = Pr[P ij ⊆ O] = (1− p1)B = p2. Note that τ = p2 <

1
2 . Further

D =
∏

i∈[c],j∈{0,1}m
Pr
[
Ei,j
]

= (1− p2)Mc = pc3 =
(α
R

)c
.

Finally, we have

∆ =
∑

i1<i2∈[c],j1,j2∈{0,1}m:P
i1
j1
∩P i1j1 6=∅

Pr[Ei1,j1 ∧ Ei2,j2 ]
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We observe that any P ij can intersect at most B blocks of another partition P i
′
. Thus, the total

number of blocks that intersect between two partitions P i and P j is bounded by MB = s. Further,
recall that P is pairwise-good. Thus it follows that for any distinct i1, i2 ∈ [c], and j1, j2 ∈ {0, 1}m,
|P i1j1 ∩ P

i2
j2
| ≤ 0.9B. Thus, |P i1j1 ∪ P

i2
j2
| ≥ 1.1B and hence for any i1 < i2 ∈ [c], j1, j2 ∈ {0, 1}m,

Pr[Ei1,j1 ∧ Ei2,j2 ] ≤ (1− p1)
11B
10 = p

11
10
2 .

By Claim 5.10, p2 ≤ r
M . Thus,

∆ ≤
(
c

2

)
sp

11
10
2 <

s1+2β1r2

M
11
10

=
(MB)1+2β1r2

M
11
10

=
B1+2β1r2

M
1
10
−2β1

=
M δ1(1+2β1)r2

M
1
10
−2β1

<
r2

M
1
20
−3β1

.

Recall β1 = 1/90. It follows that
∆ < M−β

′
,

where β′ = 1/70 .

Invoking Janson’s inequality, we have

(α
R

)c
≤ Pr

 ∧
1≤g≤c

Eg

 ≤ (α
R

)c
e2M−β

′
≤
(

1 +
3

Mβ′

)(α
R

)c
.

This concludes the proof.

Fix a = sβ3 (assume that a is even), β3 = min{β1/2, β2/1000}, where β1, β2 are the constants
in Lemma 5.20.

The following lemma combined with (3) proves a tight bound on p (recall that p = Pry∼Ber(s,1−p1)[fExt(y) =
0]).

Claim 5.22. e−α − 1
Mβ2/2

≤
∑a

c=1(−1)c−1Sc <
∑a+1

c=1 (−1)c−1Sc ≤ e−α + 1
Mβ2/2

.

Proof. For any c ≤ a+ 1, using Lemma 5.20, we have(
R

c

)(α
R

)c
≤ Sc ≤

(
R

c

)(α
R

)c(
1 +

1

Mβ2

)
.

We have, (
R

c

)(α
R

)c
≤ Rc

c!

αc

Rc

=
αc

c!

and (
R

c

)(α
R

)c
=
R(R− 1) . . . (R− c+ 1)

Rc
αc

c!

≥
(

1− a2

R

)
αc

c!
(by Weierstrass product inequality)

≥
(

1− 1

R1−β2

)
αc

c!
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by our choice of a.

Thus, for any c ≤ a, we have ∣∣∣∣Sc − αc

c!

∣∣∣∣ ≤ 1

Mβ2
(4)

It also follows that

Sa+1 ≤
1

a!
+

1

Mβ2
<

2

Mβ2
, (5)

using a = sβ3 .

Finally, by the classical Taylor’s theorem, we have∣∣∣∣∣e−α −
a∑
c=1

(−1)c−1α
c

c!

∣∣∣∣∣ < 1

a!
<

1

Mβ2
. (6)

Claim 5.22 is now direct from the inequalities (4), (5), (6) and the fact that aM−β2 ≤ M−β2/2.

The next claim is a restatement of Lemma 5.18.

Claim 5.23. |p− 1
2 | ≤ B

−Ω(1), where p = Pry∼Ber(s,1−p1)[fExt(y) = 0].

Proof. Using (3) and Claim 5.22, we have

|p− e−α| ≤ 1

Mβ2/2
.

Recall that from Claim 5.15, we have

ln 2

(
1− 1

Bε3

)
≤ α ≤ ln 2

(
1 +

1

Bε3

)
.

Thus, ∣∣∣∣e−α − 1

2

∣∣∣∣ ≤ 2

Bε3

and hence, we have ∣∣∣∣p− 1

2

∣∣∣∣ ≤ 3

Bε3
.

6 Wrapping Up the Proofs of Theorem 1 and Theorem 6

Proof of Theorem 6. Let f : {0, 1}n → {0, 1} be the explicit function constructed in Theorem 4
satisfying: For any q > 0, t ≥ c(log n)18 (c is the constant from Theorem 4) and γ ≤ 1/nt+1,

• Iq(f) ≤ q/n1− δ
2
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• For any (t, γ)-wise independent distribution D,
∣∣Ex∼D[f(x)]− 1

2

∣∣ ≤ 1
nΩ(1) .

Using Lemma 2.10, it follows that f is an extractor for (n1−δ, t, γ)-non-oblivious bit-fixing sources
with error 1/nΩ(1).

Proof of Theorem 1. Let reduce : {0, 1}n × {0, 1}n → {0, 1}D be the function from Theorem 3.1
with t = c(log n)18, where c is the constant from Theorem 6. Set the constant C = 74 and C1 = c′,
where c′ is the constant from Theorem 3.1. We note that D = nO(1).

Let bitExt : {0, 1}D → {0, 1} be the explicit extractor from Theorem 6 set to extract from
(q, t, γ)-non-oblivious bit-fixing source on D bits with error 1

nΩ(1) , where q = D1−δ and γ ≤ 1/Dt+1.

Define
2Ext(x, y) = bitExt(reduce(x, y)).

Let X and Y be any two independent (n, k)-sources, where k ≥ C1(log n)C . We prove that

|(2Ext(X,Y),Y)− (U1,Y)| ≤ 1

nΩ(1)
.

Let Z = reduce(X,Y). Theorem 3.1 implies that with probability at least 1−n−ω(1) (over y ∼ Y),
the conditional distribution Z|Y = y is a (q, t, γ)-non-oblivious bit-fixing source on M bits. Thus,
for each such y,

|bitExt(reduce(X,y))−U1| ≤
1

nΩ(1)
.

Thus, we have

|(2Ext(X,Y),Y)− (U1,Y)| ≤ 1

nω(1)
+

1

nΩ(1)
.

7 Achieving Smaller Error

We show that it is indeed possible to achieve an extractor with smaller error at the expense of
increasing min-entropy requirement and the running time of the extractor by a slight modification
of our construction.

Informally, we achieve this by using the sources X and Y to generate a much longer string Z
with the property that most of the bits are t-wise independent. This allows us to achieve smaller
error in the reduction, and now applying the extractor for (q, t, γ)-sources developed in Theorem
6, the result follows.

Theorem 7.1 (Theorem 2 restated). There exists a constant C > 0 such that for all n ∈ N and
any ε > 0, there exists a 2-source extractor 2Ext : {0, 1}n × {0, 1}n → {0, 1} computable in time
poly(n, 1/ε) for min-entropy at least logC(n/ε) and error ε.

Proof sketch. We provide the details of the construction and omit the proof since it is very similar
to the proof of Theorem 1.

We set up the required ingredients as follows:

• Let t = b(log(5D/ε))18, where b is the constant from Theorem 4.1.
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• Let nmExt : {0, 1}n × {0, 1}d1 → {0, 1} be a (t, k, ε1)-non-malleable extractor from Theorem
3.2. Thus d1 = c1t

2 log2(n/ε1), for some constant c1. For such an extractor to exists, we
require k ≥ λ1t log2(n/ε1).

• Let Ext : {0, 1}n×{0, 1}d → {0, 1}d1 be the seeded extractor from Theorem 2.3 set to extract
from min-entropy k/2 with error ε2. Thus, d = c2 log(n/ε2), for some constant c2. Let
D = 2d = (n/ε2)c2 . Such an extractor exists for k ≥ 3d1.

• Choose δ > 0, such that δ′ = δc2 < 9/10.

• Let f : {0, 1}D → {0, 1} be the function from Theorem 5.1 such that f is Iq(f) ≤ q/D1− δ
2

and
∣∣Ev∼UD

[f(v)]− 1
2

∣∣ ≤ D−β for some small constant β.

• Pick ε1, ε2 such that the following inequalities are satisfied:

– D = (n/ε2)c2 ≥ max{1/ε1/β, 1/ε2/δ},
– ε2 ≤ D−δ/2 = (ε2/n)δ

′
,

–
√
ε1 ≤ 1

5tDt+1 .

Thus, we can pick ε2 = min{nε
1
c2β , nε

2
c2δ , 1/nδ

′/(1−δ′)} and ε1 = 1/(5tDt+1).

• With this setting of parameters, we require k ≥ (log(n/ε))c
′
, where c′ is a large enough

constant, for nmExt and Ext to work.

Let {0, 1}d2 = {r1, . . . , rD2}. Define

reduce(x, y) = nmExt(x,Ext(y, r1)) ◦ . . . ◦ nmExt(x,Ext(y, rD2))

and
2Ext(x, y) = f(reduce(x, y)).

Using arguments similar to the proof of Theorem 1, it can be shown that 2Ext is an extractor for
min-entropy k with error O(ε). Further, the extractor runs in time poly(n, 1/ε).
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