
Explicit Two-Source Extractors and Resilient

Functions

Eshan Chattopadhyay∗

Department of Computer Science,
Cornell University

eshan@cs.cornell.edu

David Zuckerman†

Department of Computer Science,
University of Texas at Austin

diz@cs.utexas.edu

January 7, 2019

Abstract

We explicitly construct an extractor for two independent sources on n bits, each with min-
entropy at least logC n for a large enough constant C. Our extractor outputs one bit and has
error n−Ω(1). The best previous extractor, by Bourgain, required each source to have min-
entropy .499n.

A key ingredient in our construction is an explicit construction of a monotone, almost-
balanced Boolean function on n bits that is resilient to coalitions of size n1−δ, for any δ > 0.
In fact, our construction is stronger in that it gives an explicit extractor for a generalization of
non-oblivious bit-fixing sources on n bits, where some unknown n − q bits are chosen almost
polylog(n)-wise independently, and the remaining q = n1−δ bits are chosen by an adversary
as an arbitrary function of the n − q bits. The best previous construction, by Viola, achieved
q = n1/2−δ.

Our explicit two-source extractor directly implies an explicit construction of a 2(log logN)O(1)

-
Ramsey graph over N vertices, improving bounds obtained by Barak et al. and matching an
independent work by Cohen.

∗This work was done when the author was a PhD student at the Univeristy of Texas at Austin partially supported
by NSF Grant CCF-1218723 and CCF-1526952.
†Supported by NSF Grants CCF-1218723, CCF-1526952, and CCF-1705028, and a Simons Investigator Award

(#409864).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 5 of Report No. 119 (2015)

mailto:eshan@cs.cornell.edu
mailto:diz@cs.utexas.edu

1 Introduction

We explicitly construct three related combinatorial objects: Ramsey graphs, bipartite Ramsey
graphs, and two-source extractors. We do this by constructing an object that may seem unrelated, a
resilient function. We begin by defining the first three objects and deferring the fourth to Section 1.2.
We start with the combinatorial motivation, and discuss the computer science and randomness
motivation in the next subsection.

In 1930, Ramsey [Ram30] showed that any graph on N nodes has a clique or independent set
of size (log2N)/2. In 1947, Erdös [Erd47] used the probabilistic method to show that there exist
graphs on N nodes with no clique or independent set of size 2 log2N . We call such a graph a
Ramsey graph.

Definition 1.1 (Ramsey graph). An undirected graph on N vertices is called a K-Ramsey graph
if it does not contain any independent set or clique of size K.

It is natural to ask for an explicit construction, and indeed Erdös offered $100 for an explicit
construction achieving K = O(logN). In what follows, we use the strongest computer science
definition of explicit, namely, that there is a polynomial-time algorithm that determines whether
there is an edge between two nodes. Since a node can be described using logN bits, this means
that the algorithm’s running time is polynomial in logN .

Lindsey’s lemma implies that a symmetric Hadamard matrix defines a
√
N -Ramsey graph

on N vertices. There were constructions achieving smaller powers of N , until Frankl and Wil-
son [FW81] used intersection theorems to construct K-Ramsey graphs on N vertices, with K =
2O(
√

logN log logN). This remained the best known construction for a long time, with many other
constructions [Alo98,Gro00,Bar06] achieving the same bound. Gopalan [Gop14] explained why ap-
proaches were stuck at this bound, showing that apart from [Bar06], all other constructions can be
seen as derived from low-degree symmetric representations of the OR function. Finally, subsequent
works by Barak et al. [BKS+10, BRSW12] obtained a significant improvement and gave explicit

constructions of K-Ramsey graphs, with K = 22log1−α(logN)
, for some absolute constant α.

Next we define the related bipartite Ramsey graphs.

Definition 1.2 (Bipartite Ramsey graph). A bipartite graph with N left vertices and N right
vertices is called a bipartite K-Ramsey graph if it does not contain any complete K ×K-bipartite
subgraph or empty K ×K subgraph.

While non-explicit existence bounds for bipartite Ramsey graphs are similar to those for ordi-
nary Ramsey graphs, constructing bipartite Ramsey graphs is harder. In particular, Barak et al.
[BKS+10] showed how to use a given bipartite K-Ramsey graph on two sets of N vertices to con-
struct a 2K-Ramsey graph on N vertices. Moreover, the above constructions of ordinary Ramsey
graphs with K = 2O(

√
logN log logN) do not work in the bipartite setting. In fact, until 2004, the best

known construction was the Hadamard matrix, giving K =
√
N . This was slightly improved to

O(
√
N/2

√
logN) by Pudlak and Rődl [PR04]. Barak et al. [BKS+10,BRSW12] did in fact construct

bipartite K-Ramsey graphs, and hence achieved the bound mentioned above.

Finally, we define two-source extractors. These are like bipartite Ramsey graphs, except now we
require the “right” number of edges between sets of size K, rather than at least one edge and one
non-edge. For reasons that will become clearer in the next section when we discuss the computer
science motivation, the parameter is defined as k = log2K rather than K.

1

Definition 1.3 (2-source extractor, graph formulation). A bipartite graph with N left vertices and
N right vertices is called a (k, ε) two-source extractor if every K×K subgraph contains (1/2±ε)K2

edges, where K = 2k.

Observe that this is equivalent to an N×N matrix over {0, 1} such that every K×K submatrix
has 1/2± ε fraction of 1’s.

Clearly, a (k, ε)-two-source extractor is a bipartite 2k-Ramsey graph if ε < 1/2. Two-source
extractors have been even harder to construct than bipartite Ramsey graphs. A simple probabilis-
tic argument shows the existence of (k, ε)-two-source extractors with k ≥ log n + 2 log(1/ε) + 1.
Chor and Goldreich [CG88] first defined these objects and used Lindsey’s Lemma to show that a
Hadamard matrix is a 2-source extractor for k > n/2. However, no further progress was made
for around 20 years, when Bourgain [Bou05] broke the “half-barrier” and constructed a 2-source
extractor for k = (1/2 − α)n for some small, unspecified α > 0. This remained the best known
result prior to our work.

Our main result is a two-source extractor for k = polylog(n). We think of ε = 1/poly(n) but
state it more generally.

Theorem 1 (Main theorem). There exists a constant C > 0 such that for all n ∈ N, there is a
construction of a (k, ε)-two-source extractor on two sets of 2n vertices with k = logC(n/ε). It is
explicit in that there is an algorithm running in time poly(n/ε) that determines whether there is
an edge between two nodes.

Specifically, we can take k = C1(log n)56, for a large enough constant C1
1. As corollaries, we

get bipartite Ramsey graphs and ordinary Ramsey graphs.

Theorem 2. There exists a constant C > 0 such that for all large enough n ∈ N, there are explicit
constructions of a bipartite K-Ramsey graph on 2N vertices and a Ramsey graph on N vertices,
where N = 2n and K = 2(log logN)C .

Independent work: In independent work, Cohen [Coh16b] used the challenge-response mech-
anism introduced in [BKS+10] with new advances in extractor constructions to obtain explicit

constructions of bipartite Ramsey graphs with K = 2(log logN)O(1)
. This is the same bound that we

achieve. However, Cohen’s construction is not a two-source extractor.

1.1 Randomness Extraction

Here we develop a computational perspective about extracting randomness, which makes the proof
intuition clearer. The area of randomness extraction addresses the problem of obtaining nearly
uniform bits from sources that are only weakly random. This is motivated by the ubiquitous use
of randomness in many branches of computer science. Randomness is essential for cryptography
and distributed computing. Many randomized algorithms, such as those to factor polynomials over
large fields, are faster or simpler than their deterministic counterparts. Scientists and economists
use randomness extensively in Monte Carlo simulations of complex systems like the climate or the
economy.

Almost all of these uses of randomness require uniformly random, uncorrelated bits, but most
easily-obtainable sources of randomness do not satisfy these conditions. In particular, programmers

1In the preliminary version of the work, we required k = C1(logn)74 in Theorem 1. The improved bound in the
current version is a result of recent improvements in constructions of non-malleable extractors, a key component in
our construction that we describe later.

2

in practice try to accumulate entropy by using thermal noise or clock drift, but then this needs to
be purified before using it to seed a pseudorandom generator; see e.g., [JK99,BH05].

As is standard, we model a weak source on n bits using min-entropy. A source X on n bits is
said to have min-entropy at least k if for any x, Pr[X = x] ≤ 2−k.

Definition 1.4. The min-entropy of a source X is H∞(X) = minx(− log(Pr[X = x])). The min-
entropy rate of a source X on {0, 1}n is H∞(X)/n. A source X on {0, 1}n with min-entropy at
least k is called an (n, k)-source.

An extractor Ext : {0, 1}n → {0, 1}m is a deterministic function that takes input from an
unknown weak source with sufficient min-entropy and produces nearly uniform bits. Unfortunately,
a simple argument shows that it is impossible to design an extractor to extract even 1 bit for sources
with min-entropy n−1. Specifically, one of Ext−1(0) or Ext−1(1) has size at least 2n−1. If X is the
uniform distribution on that set, then Ext(X) is always the same fixed value, but X has min-entropy
at least n− 1, contradicting the extractor requirement.

Broadly speaking, there are three approaches to circumvent this difficulty. First, one can add
a small amount of high-quality randomness, called a seed, and extract out a much larger amount.
Second, one can limit consideration to sources that have some structure, defined in algebraic or
computational terms. We take a third approach: assume that there are two or more independent
sources, each with sufficient min-entropy.2 Santha and Vazirani [SV86] suggested this for a different
but related model, and Chor and Goldreich [CG88] suggested it for our current model. A two-source
extractor extracts randomness from two independent sources. An efficient two-source extractor
could be quite useful in practice, if just two independent sources of entropy can be found.

We use the notion statistical distance, or variation distance, to measure the error of the ex-
tractor. The statistical distance between two distributions D1 and D2 over some universal set Ω is
defined as |D1−D2| = 1

2

∑
d∈Ω |Pr[D1 = d]−Pr[D2 = d]|. We say D1 is ε-close to D2 if |D1−D2| ≤ ε

and denote it by D1 ≈ε D2.

Definition 1.5 (Two-source extractor). A function Ext : {0, 1}n × {0, 1}n → {0, 1}m is called a
two-source extractor for min-entropy k and error ε if for any independent (n, k)-sources X and Y,
we have

Ext(X,Y) ≈ε Um,

where Um is the uniform distribution on m bits. Further, Ext is said to be strong in Y if it also
satisfies (Ext(X,Y),Y) ≈ε (Um,Y), where Um is independent from Y.

It is straightforward to verify that this corresponds to the graph-theoretic formulation in Defi-
nition 1.3 when m = 1.

As mentioned above for the case m = 1, a simple probabilistic argument shows the existence of
2-source extractors for min-entropy k ≥ log n + 2 log(1/ε) + 1. However, from a computer science
perspective, it is important that the function Ext be efficiently computable, i.e., polynomial-time
computable. This corresponds to the same notion of explicitness introduced in the graph-theoretic
setting.

This question has drawn a lot of attention in the last three decades. Recapping the history above,
Chor and Goldreich [CG88] used Lindsey’s Lemma to show that the inner-product function is a 2-
source extractor for min-entropy more than n/2. Using additive combinatorics, Bourgain [Bou05]

2The first and third approaches could also be viewed as special cases of the second approach, but we don’t view
this as helpful.

3

broke the “half-barrier” for min-entropy, and constructed a 2-source extractor for min-entropy
0.499n. Raz [Raz05] obtained an improvement in terms of total min-entropy, and constructed 2-
source extractors requiring one source with min-entropy more than n/2 and the other source with
min-entropy C log n.

The lack of progress on constructing two-source extractors motivated researchers to use more
than two sources. Several researchers managed to construct excellent extractors using a constant
number of sources [BIW06,Rao09a,RZ08,Li11,Li13a,Li13b] culminating in Li’s construction of a 3-
source extractor for polylogarithmic min-entropy [Li15]. Recently Cohen [Coh15] also constructed
a 3-source extractor with one source having min-entropy δn, the second source having min-entropy
C log n and the third source having min-entropy C log log n.

Summarizing, despite much attention and progress over the last 30 years, it remained open to
explicitly construct two-source extractors for min-entropy rate significantly smaller than 1/2. Our
main result is an explicit two-source extractor for polylogarithmic min-entropy. We restate our
main theorem in computer science terminology.

Theorem 1 [Main theorem, computer science formulation] There exists a constant C > 0 such
that for all n, k ∈ N and any ε > 0, satisfying logC(n/ε) ≤ k ≤ n, there exists a 2-source extractor
2Ext : {0, 1}n × {0, 1}n → {0, 1} computable in time poly(n, 1/ε) for min-entropy at least k and
error ε.

As mentioned earlier, it is in fact enough to take k = C1(log(n/ε))56 in the above theorem for
a large enough constant C1.

By an argument of Barak [Rao09b], every 2-source extractor outputting 1 bit is also a strong
2-source extractor with similar parameters. Thus the extractor 2Ext in Theorem 1 is also a strong
2-source extractor.

Note that if our extractor is to run in polynomial time, then the error won’t be negligible,
meaning smaller than the reciprocal of any polynomial. Improving the error to negligible while
outputting many bits would have applications in cryptography and distributed computing. For
example, several researchers have studied whether cryptographic or distributed computing protocols
can be implemented if the players’ randomness is defective [DO03,GSV05,KLRZ08,KLR09]. Kalai
et al. [KLRZ08] used C-source extractors to build network extractor protocols, which allow players
to extract private randomness in a network with Byzantine faults. A better 2-source extractor
with negligible error would improve some of those constructions. Kalai, Li, and Rao [KLR09]
showed how to construct a 2-source extractor under computational assumptions, and used it to
improve earlier network extractors in the computational setting; however, their protocols rely on
computational assumptions beyond the 2-source extractor, so it would not be clear how to match
their results without assumptions.

Subsequent Work: There have been many exciting developments after our work. Li [Li16]
extended our construction to achieve an explicit strong 2-source extractor with output length
Ω(k) bits. A sequence of works [Mek17, BDT17, CL16a, Coh16a, Coh17, Li17, Li18] built on our
framework, improving the various components used, to lower the min-entropy requirement of the
2-source extractor (for constant error) to C log n(log log n)/ log log log n.

Li used our construction to build an affine extractor for polylogarithmic min-entropy [Li16]. In
another work, Chattopadhyay and Li [CL16b] used components from our construction to construct
extractors for sumset sources, which allowed them to give improved extractors for sources that are
generated by algorithms with access to limited memory. Ben-Aroya, Doron and Ta-Shma [BDT18]
used components from our work to construct 2-source extractors, when the sources are of unequal
length, and found interesting applications of these extractors to the theory of error-correcting codes.

4

Ben-Aroya et al. [BCDT18] extended our construction to give explicit constructions of 2-source
condensers3 with exponentially small error.

1.2 Resilient Functions

We assume basic familiarity with circuit complexity in this section. We refer the reader to Sec-
tion 2.6 for a quick recap of relevant notions that are used in this section.

As part of our construction of two-source extractors, we construct new “resilient functions”,
which are interesting in their own right. Ben-Or and Linial [BL85] first studied resilient functions
when they introduced the perfect information model of distributed computation. In the simplest
version of this model, there are n computationally unbounded players that can each broadcast
a bit once. At the end, some function is applied to the broadcast bits. In the collective coin-
flipping problem, the output of this function should be a nearly-random bit. The catch is that
some malicious coalition of players may wait to see what the honest players broadcast before
broadcasting their own bits. Thus, a resilient function is one where the bit is unbiased even if
the malicious coalition is relatively large (but not too large). We now introduce this notion more
formally.

Definition 1.6 (Influence). Let f : {0, 1}n → {0, 1} be any Boolean function on variables x1, . . . ,
xn. The influence of a set Q ⊆ {x1, . . . , xn} on f , denoted by IQ(f), is defined to be the probability
that f is undetermined after fixing the variables outside Q uniformly at random. Further, for any
integer q define Iq(f) = maxQ⊆{x1,...,xn},|Q|=q IQ(f).

Definition 1.7 (Resilient Function). Let f : {0, 1}n → {0, 1} be any Boolean function on variables
x1, . . . , xn and q any integer. We say f is (q, ε)-resilient if Iq(f) ≤ ε.

For example, the PARITY function (which outputs the sum modulo 2 of the input bits) is
not even (1, ε)-resilient for any ε < 1. The constant function f(x) = 0 is (n, 0)-resilient, but
uninteresting; we want a function that is almost balanced in the sense of having probability close
to 1/2 of being 1. The most natural choice here is MAJORITY (which outputs the majority of
its input bits), which is (c

√
n, .01) resilient. Somewhat surprisingly, there are almost-balanced

functions significantly more resilient than MAJORITY. Ben-Or and Linial [BL85] showed that
the iterated majority function is (cnlog3 2, .01)-resilient. Furthermore, Ajtai and Linial showed the
existence of almost-balanced functions that are (cn/ log2 n, .01)-resilient. Kahn, Kalai, and Linial
[KKL88] showed that no function is (ω(n/ log n), .99)-resilient.4

Since the Ajtai-Linial construction is not explicit, it is natural to ask whether we can come close
to this bound explicitly. In unpublished work, Meka showed that for any δ > 0, a suitable iteration
of small Ajtai-Linial functions is (n1−δ, .01)-resilient [Mek09]. While this requires a brute-force
search to find the small Ajtai-Linial function, it is explicit because this function is on few bits.
We derandomize Ajtai-Linial without any small brute-force search. Moreover, our construction is
monotone and is computable by a constant-depth circuit. Neither Ajtai-Linial nor Meka’s construc-
tions have these properties, and both of these properties are necessary for our use in the two-source
extractor construction.

Theorem 3 (Explicit resilient function). For any constant δ ∈ (0, 1) and every large enough integer
n ∈ N, there exists a polynomial-time computable monotone Boolean function f : {0, 1}n → {0, 1}
satisfying:

3the notion of a condensers is weaker than an extractor, and the output is only required to have high-min-entropy
4Recall that f(n) = ω(g(n)) means that limn→∞ f(n)/g(n) =∞.

5

• f is a depth 4 circuit of size nO(1).

• |E[f(x)]− 1
2 | ≤

1
nΩ(1) .

• For any q > 0, we have Iq(f) ≤ q/n1−δ.

1.2.1 Resilient Functions against t-wise Independence

In fact, our two-source extractor construction requires a stronger notion of resiliency, which is also
interesting on its own. This is where we allow the n− q good bits to be chosen from an arbitrary
t-wise independent distribution.

Definition 1.8. A distribution D on n bits is t-wise independent if the restriction of D to any t bits
is uniform. More generally, D is (t, γ)-wise independent if the distribution obtained by restricting
D to any t coordinates is γ-close to uniform.

When D is a (t, γ)-wise distribution, we sometimes informally say that D is an almost t-wise
independent distribution.

Definition 1.9 (Influence, general). Let IQ,D(f) denote the probability that f is undetermined
when the variables outside Q are fixed by sampling from the distribution D. Define IQ,t(f) =
maxD∈Dt IQ,D(f), where Dt is the set of all t-wise independent distributions. Finally, for any
integer q, define Iq,t(f) = maxQ⊆{x1,...,xD},|Q|=q IQ,t(f).

Definition 1.10 (Resilient Function, general). Let f : {0, 1}n → {0, 1} be any Boolean function
on variables x1, . . . , xn and q any integer. We say f is t-independent (q, ε)-resilient if Iq,t(f) ≤ ε.

Viola [Vio14] first studied this model in the context of constructing extractors for circuit sources.

He showed that the majority function is O(1)-independent (q, .01)-resilient for q < D
1
2
−τ , τ > 0. No

other t-independent resilient functions were known for t <
√
n. We show that any almost-balanced

resilient function that is monotone and constant depth remains almost-balanced and resilient with
respect to polylog-wise independence. Therefore, our explicit almost-balanced resilient function
remains almost-balanced and resilient with respect to polylog-wise independence.

Theorem 4. There exists a constant c such that for any constant δ ∈ (0, 1) and every large enough
integer n ∈ N, there exists an efficiently computable monotone Boolean function f : {0, 1}n → {0, 1}
satisfying: For any q > 0, t ≥ c(log n)18,

• f is a depth 4 circuit of size nO(1).

• For any t-wise independent distribution D, |Ex∼D[f(x)]− 1
2 | ≤

1
nΩ(1) .

• Iq,t(f) ≤ q/n1−δ.

Subsequent Work: Meka [Mek17] built on our ideas to give an explicit construction of a mono-
tone almost-balanced resilient function that is polylog-independent cn/ log2 n-resilient, matching
the non-explicit resiliency obtained by Ajtai and Linial (except Ajtai and Linial achieved ordinary
resiliency, not polylog-independent resiliency).

6

1.3 Seeded and Non-Malleable Extractors

Before describing our construction, we define two important ingredients, seeded extractors [NZ96]
and non-malleable extractors [DW09]. A seeded extractor uses one (n, k)-source and a short seed to
extract randomness. Seeded extractors have found numerous applications in seemingly unrelated
areas; see e.g., Shaltiel’s survey [Sha02].

Definition 1.11 ([NZ96]). A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε)-seeded extractor
if for any source X of min-entropy k, we have Ext(X,Ud) ≈ε Um. Ext is strong if we have
(Ext(X,Ud),Ud) ≈ε (Um,Ud), where Um and Ud are independent.

We use explicit constructions of seeded extractors with almost optimal parameters: d = O(log(n/ε))
and m = Ω(k) [LRVW03,GUV09,DKSS09].

Note that Ext being strong implies that the output of Ext is close to uniform even conditioned
on the seed (with high probability). Specifically, we can view a strong extractor as consisting of
D = 2d functions fs : {0, 1}n → {0, 1}m where fs(x) = Ext(x, s). By an averaging argument, the
strong extractor property ensures that for any source X of min-entropy k, for at least 1 −

√
ε of

the seeds s, we have fs(X) ≈√ε Um.

A non-malleable extractor is a strengthening of a strong seeded extractor where these outputs are
not only uniform, but almost t-wise independent. Instead of giving the proper definition as given by
Dodis and Wichs [DW09], here we state the property that we need. Let nmExt : {0, 1}n×{0, 1}d →
{0, 1} be a (t, k, ε)-non-malleable extractor that outputs 1 bit with seed-legnth d, and set D = 2d.
We show in Lemma 2.17, that there exists a large subset of seeds S ⊆ {0, 1}d, |S| ≥ (1−O(

√
ε))D,

such that for any t distinct seeds s1, . . . , st in S, we have

(nmExt(X, s1), . . . ,nmExt(X, st)) ≈δ Ut,

where δ = O(t
√
ε). In other words, if we define fs(x) = nmExt(x, y), then not only are almost all

fs(X) close to uniform, but almost all of them are almost t-wise independent.

Non-malleable extractors are much stronger than seeded extractors; for example, a non-malleable
extractor can’t ignore even one bit of its seed, or else the seeds could be grouped in pairs with the
same functionality. The first constructions [DLWZ14, CRS14, Li12b] worked only for min-entropy
at least .49n. The first construction to break this barrier was in the work of Chattopadhyay, Goyal,
and Li [CGL16] who constructed non-malleable extractors requiring min-entropy k = Ct log2(n/ε)
and seed-length d = O(t2 log2(n/ε)). Subsequently, there have been further improvements and we
use the state-of-art construction from the work of Li [Li18] (see Theorem 2.19). We will end up
needing t to be polylogarithmic, so the min-entropy and seed-length will both be polylogarithmic.

1.4 Construction Overview

Previous Techniques

As mentioned earlier, Bourgain’s 2-source extractor for min-entropy 0.499n relied on new advances
in additive combinatorics. Following this, Rao [Rao09a] introduced a novel elementary approach
for extracting from multiple independent sources that relied on only explicit seeded extractors. His
approach was to first convert the independent sources into matrices with many uniformly random
rows, called somewhere-random sources, and then iteratively reduce the number of rows in one
of the somewhere-random sources (while still maintaining a good fraction of uniform rows) using

7

the other somewhere-random sources. This allowed him to construct an explicit extractor for a
constant number of sources with min-entropy nγ for any constant γ > 0.

In a series of works [Li13b, Li13a, Li15], Li introduced a new way of iteratively reducing the
number of rows in the somewhere-random sources. His idea was to use a few independent sources
to construct a more structured somewhere-random source with the additional guarantee that the
uniform rows are t-wise independent and then iteratively reduce the number of rows using leader
election protocols from the work of Feige [Fei99]. Using this approach and clever compositions of ex-
tractors, Li [Li15] constructed an explicit extractor for 3 independent sources with polylogarithmic
min-entropy.

We note that Li [Li15] had already shown how to use two independent sources to construct
a single string where 2/3 of the bits are close to uniform, and all of these good bits are almost
polylog-wise independent. By using a better seeded extractor, we could obtain a single string where
at least a (1− n−Ω(1)) fraction of the bits are almost polylog-wise independent.

Our Approach

There are three technical parts to our construction.

• First, we show how to use a non-malleable extractor to reduce 2 independent sources X and
Y, each on n bits, to a single string Z on poly(n) bits such that (1 − n−Ω(1))-fraction of
the bits are almost polylog(n)-wise independent. This gives the same reduction as done by
Li [Li15], but our construction is more modular. Li did not use non-malleable extractors,
but instead used alternating extraction in clever ways. Our modularization led to the later
improvements of two-source extractors.

Further, we observe that a (q, t)-resilient function (see Definition 1.10), for appropriate pa-
rameters, is an extractor for the source Z.

We sketch our reduction using a non-malleable extractor and extraction using resilient func-
tions in Subsection 1.4.1.

• Second, we show that a monotone resilient function in AC0 is also resilient when the good bits
are chosen polylog(n)-wise independently. (Recall that a function is in AC0 if it is computable
by a family of polynomial-sized circuits with constant depth, allowing unlimited fan-in AND
and OR gates.) We discuss this in Subsection 1.4.2.

• Third, we show how to construct a monotone resilient function in AC0. This is described in
Subsection 1.4.3.

We note that Li did not use resilient functions, but instead iteratively used leader election
protocols, which is why he obtained a 3-source extractor instead of a 2-source extractor.

1.4.1 A Non-Malleable Extractor and a Resilient Function Give a Two-source Ex-
tractor

To motivate our construction of 2-source extractors, let’s first try to build a 1-source extractor
(even though we know it is impossible). Let X be an (n, k)-source, where k = polylog(n). Let Ext
be a strong seeded extractor designed to extract 1 bit from min-entropy k with error ε, and view it
as D functions fs(x) = Ext(x, s). From the earlier discussion about extractors, the concatenation
of fs(X) over all seeds s gives a D-bit string Z where most individual bits are close to uniform.

8

Note that since the seed length of Ext is O(log n), D = poly(n) (think of the error parameter
ε = 1/nO(1)). At this point, we might hope to take the majority of these D bits of Z to obtain
a bit that is close to uniform. However, the bits fs(X) for different seeds s may be correlated in
arbitrary ways (even if individually the bits are close to uniform), so this approach doesn’t work.

We can try to fix this approach by introducing some independence among the uniform bits.
For example, if we obtain a source Z such that D −D0.49 bits are uniform, and further these bits
are (almost) constant-wise independent, then it is known that the majority function can extract
an almost-uniform bit [Vio14]. In an attempt to obtain such a source, we use a non-malleable
extractor. Let nmExt be a (t, k, ε)-non-malleable extractor that outputs 1 bit with seed-length d,
and let D = 2d. We proceed as in our first attempt, viewing the non-malleable extractor as
D functions fs(x) = Ext(x, s). From the earlier discussion about non-malleable extractors, the
concatenation of fs(X) over all seeds s gives a D-bit string Z where not only are most individual
bits close to uniform, but almost all the bits are also almost t-wise independent. We could now
try to set parameters so that the majority function extracts a bit from Z. However, the majority
function is resilient to at most

√
D bad bits, but the number of bad bits in Z exceeds that (since

D > 1/ε2).

It is therefore natural to use a more resilient function. Specifically, we can use our new explicit
resilient function that is resilient against D1−δ bad bits, even if the good bits are only polylog-wise
independent, for our choice of δ > 0. We can indeed ensure that there are at most D1−δ bad
bits, and that the good bits are almost polylog-wise independent. The problem is that they are
not exactly polylog-wise independent, but almost polylog-wise independent with too large an error.
Specifically, we want to use a lemma of Alon, Goldreich, and Mansour [AGM03] saying that if every
restriction of Z to t bits is γ-close to uniform, then the entire string Z is Dtγ-close to some t-wise
independent distribution. The problem is that Dtγ ≥ 1.

This is where the second source comes in. We use the second source to sample D′ � D
pseudorandom indices T ⊆ [D] in a way that the fraction of bad bits in the projected string ZT
remains almost the same as in Z, with high probability. This can be done using an extractor-based
sampler [Zuc97]. Now we apply Alon-Goldreich-Mansour to conclude that the good bits of ZT
are δ-close to a t-wise independent distribution, where δ = (D′)tγ � 1. Thus, the output of our
2-source extractor is the new resilient function applied to ZT .

1.4.2 A Monotone Resilient Function in AC0 Suffices

The only part missing from the description above is how to construct the resilient function. First,
we show that a monotone resilient function in AC0 is resilient even if the good bits are just polylog-
wise independent. The key ingredient is Braverman’s result that polylog-wise independence fools
AC0 [Bra10].

To elaborate, let f : {0, 1}n → {0, 1} be a monotone resilient function in AC0 that is almost
unbiased. To explain the key observation, let Q ⊆ [n] be any set of input variables, let xQ and xQ
denote the projections of x ∈ {0, 1}n to Q and Q, and write x = xQ ◦ xQ. We observe that there is

another AC0 circuit E that decides whether an input xQ leaves f undetermined, i.e., whether there
exist xQ and yQ such that f(xQ ◦ xQ) 6= f(yQ ◦ xQ). Specifically, since f is monotone, E simply

compares f(0Q ◦ xQ) with f(1Q ◦ xQ). Now Braverman’s result implies that the bias of the circuit
E is roughly the same when XQ is drawn from a polylog-wise independent distribution and when
it is drawn from the uniform distribution. This implies the resiliency of f is almost the same in
these two scenarios.

9

1.4.3 Constructing the Resilient Function

Thus all that remains is to construct a monotone AC0 circuit f , that is almost balanced under the
uniform distribution, and Iq(f) = o(1) for q < D1−δ. The high level idea for this construction is
to derandomize the probabilistic construction of Ajtai-Linial [AL93] using extractors. The tribes
function introduced by Ben-Or and Linial [BL85] is a disjunction taken over AND’s of equi-sized
blocks of variables. The Ajtai-Linial function is essentially a conjunction of non-monotone tribes
functions, with each tribes function using a different partition and the variables in each tribes
function being randomly negated with probability 1/2. Ajtai and Linial choose the partitions using
the probabilistic method.

We sketch informally our ideas to derandomize and monotonize this construction. For each
i ∈ [R], let P i be an equi-partition of [n], n = MB, into blocks of size B. Let P ij denote the j’th

block in P i. Define f as the conjunction of the corresponding monotone tribes:

f(x) =
∧

1≤i≤R

∨
1≤j≤M

∧
`∈P ij

x`.

First, we abstract out properties that these partitions need to satisfy for f to be almost unbiased
and also (n1−δ, ε)-resilient. Informally, we show that

1. If for all i1, i2, j1, j2 with (i1, j1) 6= (i2, j2), |P i1j1 ∩ P
i2
j2
| ≤ 0.9B, then f is almost unbiased,

2. If for any set Q of size q < n1−δ, the number of partitions P i containing a block P ij such that

|P ij ∩Q| > δB/2 is o(R), then f is (n1−δ, ε)-resilient.

An ingredient in the proof of (1) is Janson’s inequality (see Theorem 5.13).

It is important that unlike in Ajtai-Linial and earlier modifications [RZ01], we don’t need to
negate variables, and thus f is monotone.

The second property seems related to the sampler property of extractors captured in Theo-
rem 2.12. However, a sampler or extractor would just give us one subset, whereas we want to
partition the space into subsets. Our main idea here is to use shifts of the subset to create a
partition. Specifically, we construct a family of equi-partitions of [n] = [BM], with each block of a
partition being of size B, from a seeded extractor Ext : {0, 1}r×{0, 1}b → {0, 1}m as follows. Each
Pw corresponds to some w ∈ {0, 1}r. One block of Pw is Pw~0 = {(y,Ext(x, y)) : y ∈ {0, 1}b}. The

other block are shifts of this, i.e., for any s ∈ {0, 1}m, define Pws = {(y,Ext(x, y)⊕ s) : y ∈ {0, 1}b}.
This gives R = 2r partitions of [n] with n = 2m+b.

For any good enough extractor, we show that (2) is satisfied using a basic property of extractors
and an averaging argument. To show that the partitions satisfy (1), we need an additional property
of the extractor, which informally requires us to prove that the intersection of any two arbitrary
shifts of neighbors of any two distinct nodes w1, w2 ∈ {0, 1}r in GExt is bounded. This essentially
is a strong variant of a design extractor of Li [Li12a]. We show that Trevisan’s extractor has this
property. This completes the informal sketch of our resilient function construction. We note that
our actual construction is slightly more complicated and is a depth 4 circuit. The extra layer
enables us to simulate each of the bits x1, . . . , xn having Pr[x1 = 1] close to 1, which we need to
make f almost unbiased.

10

1.5 Organization

We use Section 2 for preliminaries. In Section 3, we use non-malleable extractors to reduce the
problem of constructing 2-source extractors to the problem of constructing a resilient function. In
Section 4 we show that if f is computable by a polynomial sized constant depth monotone circuit,
then in order to prove an upper bound for Iq,t(f), it is in fact enough to upper bound Iq(f).
In Section 5 we explicitly construct such a function f with small Iq(f) that is computable by a
polynomial sized constant depth monotone circuit. We prove Theorem 4 in Section 6. Finally, we
prove Theorem 1 in Section 7.

2 Preliminaries

We reserve the letter e for the base of the natural logarithm. We use ln(x) for loge(x), and log(x)
for log2(x).
We use Um to denote the uniform distribution on {0, 1}m.
For any integer t > 0, [t] denotes the set {1, . . . , t}.
For a string y of length n, and any subset S ⊆ [n], we use yS to denote the projection of y onto the
coordinates indexed by S.
For any binary strings x, y ∈ {0, 1}n, we use ∆(x, y) to denote the Hamming distance.

2.1 An Inequality

We frequently use the following inequality.

Claim 2.1. For any n > 1 and 0 ≤ x ≤ n, we have

e−x
(

1− x2

n

)
≤
(

1− x

n

)n
≤ e−x.

2.2 Some Probability Lemmas

Definition 2.2 ((n, τ)-Bernoulli distribution). A distribution on n bits is an (n, τ)-Bernoulli dis-
tribution, denoted by Ber(n, τ), if each bit is independently set to 1 with probability τ and set to 0
with probability 1− τ .

Lemma 2.3 ([GRS06]). Let X be a random variable taking values in a set S, and let Y be a
random variable on {0, 1}t. Assume that |(X,Y)− (X,Ut)| ≤ ε. Then for every y ∈ {0, 1}t,

|(X|Y = y)−X| ≤ 2t+1ε.

Lemma 2.4 ([Sha08]). Let X1,Y1 be random variables taking values in a set S1, and let X2,Y2

be random variables taking values in a set S2. Suppose that

1. |X2 −Y2| ≤ ε2.

2. For every s2 ∈ S2, |(X1|X2 = s2)− (Y1|Y2 = s2)| ≤ ε1.

Then
|(X1,X2)− (Y1,Y2)| ≤ ε1 + ε2.

11

Using the above results, we record a useful lemma.

Lemma 2.5. Let X1, . . . ,Xt be random variables, such that each Xi takes values 0 and 1. Further
suppose that for any subset S = {s1, . . . , sr} ⊆ [t],

(Xs1 ,Xs2 . . . ,Xsr) ≈ε (U1,Xs2 . . . ,Xsr).

Then
(X1, . . . ,Xt) ≈5tε Ut.

Proof. We prove this by induction on t. The base case when t = 1 is direct. Thus, suppose t ≥ 2.
It follows that

(Xt,X1, . . . ,Xt−1) ≈ε (U1,X1, . . . ,Xt−1).

By an application of Lemma 2.3, for any value of the bit b,

|(X1, . . . ,Xt−1|Xt = b)− (X1, . . . ,Xt−1)| ≤ 4ε.

Further, by the induction hypothesis, we have

|(X1, . . . ,Xt−1)−Ut−1| ≤ 5(t− 1)ε.

Thus, by the triangle inequality for statistical distance, it follows that for any value of the bit b,

|(X1, . . . ,Xt−1|Xt = b)−Ut−1| ≤ (5t− 1)ε.

Using Lemma 2.4 and the fact that |Xt −U1| ≤ ε, it follows that

|(X1, . . . ,Xt)−Ut| ≤ (5t− 1)ε+ ε = 5tε.

This completes the induction, and the lemma follows.

We record a fact about almost t-wise independent distributions.

Theorem 2.6 ([AGM03]). Let D be a (t, γ)-wise independent distribution on {0, 1}n. Then there
exists a t-wise independent distribution that is ntγ-close to D.

2.3 Extractors for NOBF Sources via Resilient Functions

Definition 2.7 (NOBF Sources). A source Z on {0, 1}D is called a (q, t, γ)-non-oblivious bit-fixing
source (NOBF source for short) if there exists a subset of coordinates Q ⊆ [D] of size at most q
such that the joint distribution of the bits indexed by Q = [D] \ Q is (t, γ)-wise independent. The
bits in the coordinates indexed by Q are allowed to depend arbitrarily on the bits in the coordinates
indexed by Q. If γ = 0, we just say it is a (q, t)-NOBF source.

The following is a simple corollary of Theorem 2.6 which states that it is enough to reason about
(q, t)-NOBF sources instead of (q, t, γ)-NOBF sources (on n bits) by paying an additional error of
γnt.

Corollary 2.8. Let X be a (q, t, γ)-NOBF source on n bits. Then, there exists a (q, t)-NOBF
source Y on n bits such that |X−Y| ≤ γnt.

12

We recall a simple connection between the problem of constructing extractors for (q, t, γ)-NOBF
sources and constructing (t, γ)-independent (q, ε1)-resilient functions.

Lemma 2.9. Let f : {0, 1}n → {0, 1} be a Boolean function that is (t, γ)-independent (q, ε1)-
resilient. Further suppose that for any (t, γ)-wise independent distribution D, |Ex∼D[f(x)]− 1

2 | ≤ ε2.
Then f is an extractor for (q, t, γ)-NOBF sources with error ε1 + ε2.

Proof. Let X be a (q, t, γ)-non-oblivious bit-fixing source on n bits. Then X is sampled in the
following way: For some fixed subset Q ⊂ {x1, . . . , xn} of q variables, the variables Q = [n] \Q are
drawn from some fixed (t, γ)-wise independent distribution D1 on n − q bits, and the variables in
Q are chosen arbitrarily depending on the values of the variables in Q.

Let E be the following event: f is determined on fixing the variables in Q by sampling from
D1 and leaving the remaining variables free. Since f is (t, γ)-independent (q, ε1)-resilient, we have
Pr[E] ≥ 1 − ε1. Let D be any (t, γ)-wise independent distribution on n bits whose projection on
to Q matches D1. It follows that ∣∣∣∣Prx∼D[f(x) = 1]− 1

2

∣∣∣∣ ≤ ε2.
We have,

Prx∼D[f(x) = 1] = Prx∼D[f(x) = 1|E]Pr[E] + Prx∼D[f(x) = 1|E]Pr[E]

= Prx∼X[f(x) = 1|E]Pr[E] + Prx∼D[f(x) = 1|E]Pr[E]

= Prx∼X[f(x) = 1] + Pr[E]
(
Prx∼D[f(x) = 1|E]−Prx∼X[f(x) = 1|E]

)
Hence,

|Prx∼D[f(x) = 1]−Prx∼X[f(X) = 1]| ≤ Pr[E] ≤ ε1.

Thus, ∣∣∣∣Prx∼X[f(x) = 1]− 1

2

∣∣∣∣ ≤ ε1 + ε2.

2.4 Seeded Extractors and Samplers

We use the following strong seeded extractor constructed by Trevisan [Tre01], with subsequent
improvements by Raz, Reingold and Vadhan [RRV02].

Theorem 2.10 ([Tre01, RRV02]). There exists a constant λ > 0 such that for every n, k,m ∈ N
and ε > 0, with m ≤ k ≤ n, there exists an explicit strong-seeded extractor TExt : {0, 1}n × {0,
1}d → {0, 1}m for min-entropy k and error ε, where d = λ ·

(
log2(n/ε)
log(k/m)

)
.

We also use optimal constructions of strong-seeded extractors.

Theorem 2.11 ([GUV09]). For any constant α > 0, and all integers n, k > 0 and any ε > 0, there
exists a polynomial time computable strong-seeded extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with
d = O(log n+ log(1/ε)) and m = (1− α)k.

To ensure that for each x ∈ {0, 1}n, Ext(x, s1) 6= Ext(x, s2) whenever s1 6= s2, one can concate-
nate the seed to the output of Ext, though it is no longer strong.

13

2.4.1 Sampling Using Weak Sources

Sampling is a fundamental task in computer science, and a long line of work has been dedicated
to constructing randomness efficient samplers. We require samplers that work with access to weak
sources of randomness. Sipser [Sip88] introduced the notion of dispersers and showed applications
to randomness efficient sampling for one-sided error. We use a technique of sampling for two-sided
error using randomness extractor.

We first introduce a graph-theoretic view of extractors. Any seeded extractor Ext : {0, 1}n ×
{0, 1}d → {0, 1}m can also be viewed as an unbalanced bipartite graph GExt with 2n left vertices
(each of degree 2d) and 2m right vertices. We use N (x) to denote the set of neighbours of x in
GExt. We call GExt the graph corresponding to Ext.

Theorem 2.12 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a seeded extractor for min-
entropy k and error ε. Let D = 2d. Then for any set R ⊆ {0, 1}m,

|{x ∈ {0, 1}n : ||N (x) ∩R| − µRD| > εD}| < 2k+1,

where µR = |R|/2m.

2.4.2 Shift-Design Extractors

We introduce the notion of a shift-design extractor. This generalizes the notion of design extractors
introduced by Li [Li12a]. We first informally discuss the notion of design extractors and our
generalization to shift-design extractors. Given a strong-seeded extractor Ext : {0, 1}n ×{0, 1}d →
{0, 1}m, define the extractor Ext′ that concatenates the seed to the output of Ext (i.e., such that
Ext′(x, y) = Ext(x, y) ◦ y). It is now useful to think in terms of the extractor graph GExt′ (see
Section 2.4.1 where this view is introduced). Ext′ is a design extractor if the collection of 2n sets,
each set corresponding to the set of neighbors N (x) of a vertex x ∈ {0, 1}n on the left in GExt,
form a design (i.e., the pairwise intersection of any two sets is bounded). We extend this to a more
robust notion, and require that the design property holds even under arbitrary ‘shifts’ of the sets.
We now formally define shift-design extractors.

Definition 2.13 (Shift-design extractor). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong-seeded
extractor. Let D = 2d. If for any distinct y, y′ ∈ {0, 1}n, and arbitrary h, h′ ∈ {0, 1}m

|{(z,Ext(y, z)⊕ h) : z ∈ {0, 1}d} ∩ {(z,Ext(y′, z)⊕ h′) : z ∈ {0, 1}d}| ≤ (1− η)D,

then Ext is called an η-shift-design extractor.

We prove that Trevisan’s extractor [Tre01] (see Theorem 2.10) is a shift-design extractor. We
first describe the construction of Trevisan’s extractor. Our proof in fact requires us to reason about
the way a single bit (say, the first bit) of the output is produced, and hence we present a simplified
view of the construction. We refer the reader to Trevisan’s paper [Tre01] for more details on the
construction.

A one-bit version of Trevisan’s extractor: Let r, b be integers, where we set the parameter
b later. Let B = 2b. On inputs y ∈ {0, 1}r and z ∈ {0, 1}b, we describe the construction of the
one-bit version of Trevisan’s extractor TExt : {0, 1}r × {0, 1}b → {0, 1}.

• Fix an asymptotically good binary linear error correcting code C with constant relative rate
α, block length r = r/α and relative minimum distance 1

2 − β with β < 1/10 such that

14

C′ = span{C,~1} is also a code with distance 1/2− β (where ~1 denotes the all 1 string). 5 Let
Enc : {0, 1}r → {0, 1}r be the encoding function of C.

• Let b = log(r), assuming without loss of generality that r is a power of 2.

• The output of TExt is the bit at the z’th coordinate (interpreting the string z as an integer
in [B] the natural way) of the string cy = Enc(y).

Remark 2.14. We use the following fact about the multi-bit version of Trevisan’s extractor (i.e.,
TExt : {0, 1}r × {0, 1}b → {0, 1}m, m > 1): let TExt1 : {0, 1}r × {0, 1}b → {0, 1} be the function
that just outputs the first output bit of TExt. Then TExt1 is exactly the same function as the
one-bit Trevisan extractor described above.

Lemma 2.15. Let TExt : {0, 1}r × {0, 1}b → {0, 1}m be Trevisan extractor from Theorem 2.10.
Then, TExt is a 1

10 -shift-design extractor.

Proof. We first prove the lemma for the case m = 1. It is then straightforward to extend this to
m > 1. Let y, y′ ∈ {0, 1}r, y 6= y′ and h, h′ ∈ {0, 1}. Let cy = Enc(y) and cy′ = Enc(y′).

Consider the case h = h′. From the above description of TExt (for the case m = 1), it follows
that |{z ∈ {0, 1}b : (z,TExt(y, z)) 6= (z,TExt(y′, z))}| = ∆(cy, cy′) ≥ (1

2 − β)B > B/10, using the
fact that cy and cy′ are distinct codewords in C.

Now suppose h 6= h′. It follows that {z ∈ {0, 1}b : (z,TExt(y, z)) 6= (z,TExt(y′, z))} = ∆(cy,
cy′ ⊕~1) ≥ (1

2 − β)B > B/10, using the fact that cy and cy′′ = cy′ ⊕~1 are distinct codewords in C′.
The fact that cy 6= cy′′ can be seen as follows: cy and cy′ are codewords in C and hence cy ⊕ cy′ is a
codeword in C (since it is a linear code). Since ~1 is not a codeword in C, it follows that cy⊕ cy′ 6= ~1.
This completes the proof for the case m = 1.

This extends to the case m > 1 almost immediately in the following way. Let y, y′ ∈ {0, 1}r,
y 6= y′, and h, h′ ∈ {0, 1}m. Let a and a′ be the first bits of h and h′ respectively. Further let TExt1

be the function that outputs the first bit of TExt (i.e, TExt1(y, z) = TExt(y, z)[1]). It follows that

|{(z,TExt(y, z)⊕ h) : z ∈ {0, 1}b} ∩ {(z,TExt(y′, z)⊕ h′) : z ∈ {0, 1}b}| ≤
|{(z,TExt1(y, z)⊕ a) : z ∈ {0, 1}b} ∩ {(z,TExt1(y′, z)⊕ a′) : z ∈ {0, 1}b}| ≤ 9B/10,

where the final inequality, by Remark 2.14, follows from the m = 1 case (for which we have
proved the lemma). This completes the proof.

2.5 Non-Malleable Extractors

Non-malleable extractors were introduced by Dodis and Wichs [DW09] as a generalization of strong-
seeded extractors. We define t-non-malleable extractors, which generalize the notion introduced in
[DW09] (which corresponds to the case t = 2). The work of Cohen, Raz and Segev [CRS14] was
the first to introduce the the notion of t-non-malleable extractors.

5In other words, one can start with any good linear code C′ with block length r that has minimum distance 1
2
− β

and contains ~1. Let {v1, . . . , vr+1} be a basis of C′ with vr+1 = ~1. Now C is defined to be the binary linear code
generated by {v1, . . . , vr}, i.e., C = span{v1, . . . , vr}.

15

Definition 2.16. A function nmExt : {0, 1}n × {0, 1}d → {0, 1}m is a (t, k, ε)-non-malleable ex-
tractor if it satisfies the following property: If X is a (n, k)-source and Y is uniform on {0, 1}d,
and f1, . . . , ft are arbitrary functions from d bits to d bits with no fixed points6, then

(nmExt(X,Y),nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)),Y)

≈ε (Um,nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)),Y).

We prove a lemma that provides a useful alternate view of t-non-malleable extractors.

Lemma 2.17. Let nmExt : {0, 1}n × {0, 1}d → {0, 1} be a (t, k, ε)-non-malleable extractor. Let
{0, 1}d = {s1, . . . , sD}, D = 2d. Let X be any (n, k)-source. There exists a subset R ⊆ {0, 1}d,
|R| ≥ (1−

√
ε)D such that for any distinct r1, . . . , rt ∈ R,

(nmExt(X, r1), . . . ,nmExt(X, rt)) ≈5t
√
ε Ut.

Proof. Let

BAD = {r ∈ {0, 1}d : ∃ distinct r1, . . . , rt ∈ {0, 1}d,
∀i ∈ [t] ri 6= r, s.t |(nmExt(X, r), nmExt(X, r1), . . . ,nmExt(X, rt))−

(U1,nmExt(X, r1), . . . ,nmExt(X, rt))| >
√
ε}

We define adversarial functions f1, . . . , ft as follows. For each r ∈ BAD, set fi(r) = ri, i = 1, . . . , t
(the fi’s are defined arbitrarily for r /∈ BAD, only ensuring that there are no fixed points). Let Y
be uniform on {0, 1}d. It follows that

|(nmExt(X,Y), nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)),Y)−

(U1, nmExt(X, f1(Y)), . . . ,nmExt(X, ft(Y)),Y)| ≥
√
ε

2d
|BAD|

Thus |BAD| ≤
√
ε2d using the property that nmExt is a (k, t, ε)-non-malleable extractor. Define

R = {0, 1}d \BAD. Using Lemma 2.5, it follows that R satisfies the required property.

Remark 2.18. In fact, the above proof gives us something stronger. It shows that for any seed
s ∈ R, and any other t seeds s1, . . . , st (not necessarily in R), we have

|(nmExt(X, s), nmExt(X, s1), . . . ,nmExt(X, st))− (U1, nmExt(X, s1), . . . ,nmExt(X, st))| ≤
√
ε.

However, we do not use this stronger property in our analysis.

The first construction of explicit t-non-malleable extractor for polylogarithmic min-entropy (in
fact, for any min-entropy significantly smaller than n/2) was given by Chattopadhyay, Goyal and
Li [CGL16]. Subsequently, a long line of work improved on their methods and we use the state-of-
the-art non-malleable extractor from the work of Li [Li18].

Theorem 2.19 ([Li18]). There exists a constant c′ > 0 such that for all n, t > 0 there exists an
explicit (t, k, ε)-non-malleable extractor nmExt : {0, 1}n × {0, 1}d → {0, 1}, where

k ≥ c′t
(

log log n+ log(1/ε) log log(1/ε)
log log log(1/ε)

)
and d = O

(
t2 ·
(

log log n+ log(1/ε) log log(1/ε)
log log log(1/ε)

))
.

6We say that x is a fixed point of a function f if f(x) = x.

16

2.6 Boolean Circuits, the Class AC0 and Other Definitions

For the sake of being self-contained, we define Boolean circuits and related notions that we use in
this paper. We refer the reader to the book by Arora and Barak [AB09] for a more comprehensive
introduction to circuit complexity.

Definition 2.20. For an integer n > 0, a Boolean circuit C with n inputs is a directed acyclic
graph with n nodes having in-degree 0 called the input nodes, and one node, called the output node,
having out-degree 0 and in-degree 1. The other nodes are called gates, and are labeled with one of
∧ (logical AND), ∨ (logical OR), or ¬ (logical NOT).

• The fan-in of C is defined to be the maximum in-degree of a node in the graph corresponding
to C.

• The size of C is defined to be the sum of the number of nodes and edges in the graph corre-
sponding to C.

• The gate with an out-edge to the output node is called the root node.

• The depth of a gate is the length of the longest directed path from the gate to the root node.

• The length of the longest directed path from an input node to the root node is defined to be
the depth of the circuit C.

• For the sake of convenience, given an input x = (x1, . . . , xn) ∈ {0, 1}n to the circuit C, we
allow {¬x1, . . . ,¬xn} to be additional input variables available to C. (We still say that C is
a circuit defined on n input bits.)

Boolean functions computed by circuits A Boolean circuit C with n inputs naturally com-
putes an output bit given an input x ∈ {0, 1}n. We use C(x) to denote this output bit. We say that
a function f : {0, 1}n → {0, 1} can be computed by a circuit of size s and depth d if there exists a
Boolean circuit C on n inputs with size at most s and depth at most d such that f(x) = C(x) for
all x ∈ {0, 1}n.

Families of circuits A circuit family {Cn}n∈N of size s(n) and depth d(n) is a sequence of circuits
with Cn being a circuit with n inputs, size at most s(n) and depth at most d(n). We say that a
language L = ∪n≥0Li, Ln ⊆ {0, 1}n is recognized by a circuit family of size s(n) and depth c(n) if
there exists a circuit family {Cn}n∈N of size s(n) and depth d(n) such that for any integer i > 0
and y ∈ {0, 1}i, y ∈ Li iff Ci(y) = 1.

Definition 2.21. The class AC0 consists of all languages recognized by some circuit family {Cn}n∈N
with depth d(n) = O(1), size s(n) = poly(n), and unbounded fan-in. By a slight abuse of notation,
we say that the circuit family circuit {Cn}n∈N is in AC0.

Definition 2.22. A conjunctive normal form (abbrv. CNF) is a depth 2 circuit with an ∧ gate at
the root node and ∨ gates at depth 1. A disjunctive normal form (abbrv. DNF) is a depth 2 circuit
with an ∨ gate at the root node and ∧ gates at depth 1.

Definition 2.23. A Boolean function f : {0, 1}n → {0, 1} is called monotone if for any x ∈ {0, 1}n
and y ∈ {0, 1}n satisfying ∀i ∈ [n], xi ≤ yi, we have f(x) ≤ f(y).

17

2.7 A Simple Lemma

We use the following lemma which shows that a small CNF can simulate a biased bit with high
enough accuracy.

Lemma 2.24. Suppose γ < 9/10. Then for any ν > 0, there exists an explicit size h monotone
CNF C on h bits, where h = O

(
1
ν ln

(
1
ν

))
, such that γ − ν ≤ Prx∼Uh

[C(x) = 0] < γ.

Proof. Let h2 = dlog (2/ν)e, and let h1 be the largest integer such that (1− 2−h2)h1 ≥ 1− γ. Thus,

(1− γ) ≤ (1− 2−h2)h1 ≤ (1− γ)/(1− 2−h2)

< (1− γ)(1 + 21−h2)

≤ (1− γ)(1 + ν)

< 1− γ + ν

and h1 = O(2h2).

Define

C(x) =

h1∧
g1=1

h2∨
g2=1

xg1,g2 .

and h = h1h2 = O(h22h2) = O
(

1
ν log

(
1
ν

))
.

Thus Prx∼Uh
[C(x) = 0] = 1− (1− 2−h2)h1 , and hence

γ − ν ≤ Prx∼Uh
[C(x) = 0] ≤ γ.

3 Reduction to an NOBF Source

The main result in this section is a reduction from the problem of extracting from two independent
(n, k)-sources to the task of extracting from a single (q, t)-NOBF source. We formally state the
reduction in the following theorem.

Theorem 3.1. Let nmExt : {0, 1}n × {0, 1}d1 → {0, 1} be a (t, k, ε1)-non-malleable extractor and
let Ext : {0, 1}n × {0, 1}d2 → {0, 1}d1 be a seeded extractor for min-entropy k/2 with error ε2. Let
{0, 1}d2 = {s1, . . . , sD2}, D2 = 2d2. Suppose that Ext satisfies the property that for all y ∈ {0, 1}n,
Ext(y, s) 6= Ext(y, s′) whenever s 6= s′. Define the function:

reduce(x, y) = nmExt(x,Ext(y, s1)) ◦ . . . ◦ nmExt(x,Ext(y, sD2)).

If X and Y are independent (n, k)-sources, then

Pry∼Y[reduce(X,y) is O(t
√
ε1D

t
2)-close to a (q, t)-NOBF source] ≥ 1− 2 · 2−k/2,

where q = (
√
ε1 + ε2)D2.

Proof. Let R ⊆ {0, 1}d1 be such that for any distinct r1, . . . , rt ∈ R,

(nmExt(X, r1), . . . ,nmExt(X, rt)) ≈5t
√
ε1 Ut.

18

It follows by Lemma 2.17 that |R| ≥ (1 − √ε1)D1. Define Samp(y) = {Ext(y, s1), . . . ,Ext(y,
sD2)} ⊂ {0, 1}d1 . Using Theorem 2.12, we have

Pr
y∼Y

[|Samp(y) ∩R| ≤ (1−
√
ε1 − ε2)D2] ≤ 2 · 2−k/2. (1)

Consider any y such that |Samp(y)∩R| ≥ (1−√ε1− ε2)D2, and let Zy = reduce(X,y). Since the
output bits of nmExt corresponding to seeds in Samp(y) ∩ R are (t, 5t

√
ε1)-wise independent, we

have that Zy is a ((
√
ε1 + ε2)D2, t, 5t

√
ε1)-NOBF source on D2 bits.

Thus using (1), it follows that with probability at least 1−2 ·2−k/2 over y ∼ Y, reduce(X,y) is
a ((
√
ε1 +ε2)D2, t, 5t

√
ε1)-NOBF source on D2 bits. The lemma now follows from Corollary 2.8.

4 Monotone Constant-Depth Resilient Functions are t-Independent
Resilient

Using the reduction from Section 3, we have now reduced the problem of extracting from two
independent sources to extracting from a (q, t)-NOBF source. By Lemma 2.9, this translates to
constructing a nearly balanced function f with small Iq,t(f).

We show that if f is computable by a polynomial sized constant depth monotone circuit, then
in order to prove an upper bound for Iq,t(f), it is in fact enough to upper bound Iq(f), which is a
simpler quantity to handle.

Theorem 4.1. There exists a constant b > 0 such that the following holds: Let C : {0, 1}n → {0, 1}
be a monotone circuit in AC0 of depth d and size m such that |Ex∼Un [C(x)]− 1

2 | ≤ ε1. Suppose q > 0
is such that Iq(C) ≤ ε2. If t ≥ b(log(m/ε3))3d+6, then Iq,t(C) ≤ ε2 + ε3 and Iq,t,γ(C) ≤ ε2 + ε3 + γnt.
Further, for any distribution D that is (t, γ)-wise independent, |Ex∼D[C(x)]− 1

2 | ≤ ε1 + ε3 + γnt.

We briefly sketched the main ideas of the proof of the above theorem in the introduction. We
proceed to formally prove Theorem 4.1.

A crucial ingredient in our proof is the seminal result of Braverman [Bra10] that polylogarithmic
independence ‘fools’ constant depth circuits. We state the result using refined bounds proved by
Tal [Tal17].

Theorem 4.2 ([Bra10, Tal17]). Let D be any g(m, d, ε)-wise independent distribution on {0, 1}n.
Then for any circuit C ∈ AC0 of depth d and size m,

|Ex∼Un [C(x)]−Ex∼D[C(x)]| ≤ ε

where g(m, d, ε) = O(log(m/ε))3d+3.

Proof of Theorem 4.1. The bound on Ex∼D[C(x)] is direct from Theorem 4.2 and Theorem 2.6. We
now proceed to prove the influence property.

Consider any set Q of variables, |Q| = q. Let Q = [n] \ Q. We construct a function EQ : {0,
1}n−q → {0, 1} such that EQ(y) = 1 if and only if C is undetermined when xQ is set to y. Thus, it
follows that

Ey∼Un−q [EQ(y)] = Pry∼Un−q [EQ(y) = 1] = IQ(C) ≤ ε2.

Let D be any t-wise independent distribution. We have,

Ey∼D[EQ(y)] = Pry∼D[EQ(y) = 1] = IQ,D(C).

19

Thus to prove that IQ,D(C) ≤ ε2 + ε3, it is enough to prove that

|Ey∼Un−q [EQ(y)]−Ey∼D[EQ(y)]| ≤ ε3. (2)

We construct EQ as follows: Let C0 be the circuit obtained from C by setting all variables in Q to 0.
Let C1 be the circuit obtained from C by setting all variables in Q to 1. Define EQ := ¬(C0 = C1).
Since C is monotone, EQ satisfies the required property. Further EQ can be computed by a circuit
in AC0 of depth d + 2 and size 4m + 3. It can be checked that the depth of EQ can be reduced
to d + 1 by combining two layers. Thus (2) now directly follows by applying Theorem 4.2 on the
depth-(d + 1) AC0 circuit EQ noting that t ≥ g(m, d + 1, ε3), where g is the function defined in
Theorem 4.2.

5 A Monotone Resilient Function in AC0

The main result in this section is an explicit construction of a function f which is resilient to coali-
tions, computable by a polynomial sized constant depth monotone circuit, and is almost balanced
under the uniform distribution.

Theorem 3 (restated) For any constant δ ∈ (0, 1), and every large enough integer n, there exists
a polynomial time computable monotone Boolean function f : {0, 1}n → {0, 1} satisfying:

• f is a depth 4 circuit in AC0 of size nO(1).

•
∣∣Ex∼Un [f(x)]− 1

2

∣∣ ≤ 1
nΩ(1) .

• For any q > 0, Iq(f) ≤ q/n1−δ.

We initially construct a depth 3 circuit which works, but then the inputs have to be chosen from
independent Bernoulli distributions where the probability p of 1 is very different from 1/2. By
observing that we can approximate this Bernoulli distribution with a CNF on uniform bits, we
obtain a depth 4 circuit which works for uniformly random inputs, and thus Theorem 3 follows.

We use Section 5.1 to describe the construction of the resilient function that works when the bits
are biased. We use Section 5.2 to set up various parameters and state required relations that these
parameters need to satisfy for our construction to hold. We state the main lemmas in Section 5.3.
We use Sections 5.4, 5.5, 5.6 and 5.7 to prove these lemmas. In Section 5.8, we describe Construction
2 which satisfies Theorem 3. We use Appendix A to provide supplementary material for the proofs
and arguments done in Section 5. In particular, Appendix A provides proofs of various bounds
that are important for our argument to work but involve messy and routine calculations.

5.1 Our Construction

Our starting point is the work of Ajtai and Linial [AL93], who proved the existence of functions
computable by linear sized depth 3 circuits in AC0 that are (Ω(n/ log2 n), ε)-resilient. However,
this construction is probabilistic, and deterministically finding such functions requires time nO(n2).
Further these functions are not guaranteed to be monotone (or even unate7).

7A Boolean function f : {0, 1}n → {0, 1} is unate in a variable xi if there exists b ∈ {0, 1} such that for all
x ∈ {0, 1}n, f(x1, . . . , xi−1, b, xi+1, . . . , xn) ≥ f(x1, . . . , xi−1, 1 − b, xi+1, . . . , xn). f is unate if it is unate in each of
the input variables.

20

We provide intuition of our construction in the introduction. We now present our construction.
We carefully set parameters in Section 5.2. In this section, assume that r, b,m, k, ε are parameters
that are fixed later. Let R = 2r, B = 2b,M = 2m and s = MB.

Construction 1: Let Ext : {0, 1}r × {0, 1}b → {0, 1}m be a 1
10 -shift-design extractor set to

extract from min-entropy k with error ε.
Let {0, 1}r = {v1, . . . , vR}. We define a collection of R equi-partitions of [s], P = {P v1 , . . . ,
P vR} as follows:

• Let GExt be the bipartite graph corresponding to Ext and let N (x), for any x ∈ {0, 1}r,
denote the neighbours of x in GExt.

• For some v ∈ {0, 1}r, let N (v) = {z1, . . . , zB}. Define the partition P v with blocks P vw
for each w ∈ {0, 1}m where

P vw = {(j, zj ⊕ w) : j ∈ {0, 1}b} (3)

(⊕ denotes the bit-wise XOR of the two strings).

Claim 5.1 shows that P v forms an equi-partition of [s] with M blocks, each of size B.
Define the function fExt : {0, 1}s → {0, 1} as:

fExt(y) =
∧

1≤i≤R

∨
1≤j≤M

∧
`∈P ij

y`.

Instantiation of Ext in Construction 1: We set Ext : {0, 1}r × {0, 1}b → {0, 1}m to be
the Trevisan extractor from Theorem 2.10 set to extract from min-entropy k with error ε.

We record a simple claim which shows that each P v defined in Construction 1 is an equi-partition
of [s] = [BM] into blocks of size B.

Claim 5.1. For any v ∈ {0, 1}r, P v (described in Construction 1) is an equi-partition of [s] into
blocks of size B.

Proof. We think of [s] as the product set [B] × [M] and associate [B] with {0, 1}b and [M] with
{0, 1}m in the natural way. We now prove that P v is an equi-partition of {0, 1}b × {0, 1}m. Recall
that for each w ∈ {0, 1}m,

P vw = {(j, zj ⊕ w) : j ∈ {0, 1}b}

is a block of P v (where N (v) = {z1, . . . , zB} as defined in Construction 1). Clearly, for i, j ∈ {0, 1}b,
i 6= j, and any w,w′ ∈ {0, 1}m, (i, zi ⊕ w) 6= (j, zj ⊕ w′). This gives us that each P vw is of size
exactly B.

Now suppose |P vw ∩ P vw′ | > 0 for distinct w,w′ ∈ {0, 1}b. Then it must be the case that there
is a j ∈ {0, 1}b such that (j, zj ⊕ w) = (j, zj ⊕ w′) which is clearly a contradiction since w 6= w′.
Thus, P vw and P vw′ are disjoint sets for distinct w,w′ ∈ {0, 1}m. This completes the proof that P v

is an equi-partition of [s].

21

5.2 Various Parameters and their Relations

The construction in Section 5.1 involves many parameters that need to be set with care. We use
this subsection to introduce parameters and present the way they are set up. Further, we list the
key inequalities that they need to satisfy.

We begin with the simple observation that it is enough to prove Theorem 3 assuming δ ∈ (0,
1/10). This is straightforward since any f satisfying Theorem 3 for δ ∈ (0, 1/10) also satisfies the
theorem for δ ∈ (0, 1). Thus, we assume 0 < δ < 1/10 for the rest of Section 5.

In the remaining parts of Sections 5, we assume that these parameters are set up in the way
specified here. In Appendix A.0.1, we show that Construction 1 described in Section 5.1 can indeed
be instantiated with parameters as specified here.

We now proceed to set up the various parameters:

• Let constants δ ∈ (0, 1/10) and ε1 ∈ (0, 1/10), and any integer r > 0 be given as input
parameters.

• Set k = 2δr, m = k/2.

• Let λ be the constant from Theorem 2.10.

• Let δ2 > 0 be a new parameter that we pick as follows. Define ε = 2−δ2
√
r and b = λ log2(r/ε)

log(k/m) .
Pick any δ2 such that

δ2r/40 ≤ b = λ(δ2
2r + log2 r + 2δ2

√
r log r) ≤ δ2r/20 (4)

• Define δ1 = b/m.

• Let R = 2r, B = 2b, M = 2m and K = 2k.

• Let s = BM . Since B = M δ1 , thus s = M1+δ1 .

• Define γ = lnM−ln ln(R/ ln 2)
B .

• Pick any p1 that satisfies

(1−B−ε1)γ ≤ p1 ≤ γ (5)

• Let p2 = (1− p1)B, p3 = (1− p2)M .

• For convenience, define α = p3R.

The following are the inequalities that the above parameters need to satisfy for our construction to
work:

δ/40 ≤ δ1 ≤ δ/20 (6)

s1−δ/M < ε < δ/4 (7)

22

5.3 Key Lemmas

We now state our key lemmas.

Lemma 5.2. For any constants 0 < δ, ε1 < 1/10, and any integer r > 0, let (1−B−ε1)γ ≤ p1 ≤ γ.
Then for any q > 0,

Iq,Ber(s,1−p1)(fExt) ≤
q

s1−δ .

Lemma 5.3. For any constants 0 < δ, ε1 < 1/10, and any integer r > 0, let (1−B−ε1)γ ≤ p1 ≤ γ.
Then, the following holds: ∣∣∣∣Ey∼Ber(s,1−p1)[fExt(y)]− 1

2

∣∣∣∣ ≤ B−Ω(1).

The proof of Lemma 5.2 is presented in Section 5.5 and the Lemma 5.3 is proved in Section 5.7.

5.4 Preparation for the Proof: Some Definitions and Easy Claims

In this short section, we record a few useful definitions and claims.

Define the following:

f iExt(y) =
∨

1≤j≤M

∧
`∈P ij

y`,

where i ∈ {0, 1}r. Let y be sampled from Ber(s, 1− p1). Define Fi be the event f iExt(y) = 0.

We record the following simple claims which are direct from the above definitions.

Claim 5.4. For any i ∈ {0, 1}r, j ∈ {0, 1}m, Pry∼Ber(s,1−p1)[
∧
`∈P ij

y` = 1] = (1− p1)B = p2.

Claim 5.5. For any i ∈ {0, 1}r, Pr[Fi] = Pry∼Ber(s,1−p1)[f
i
Ext(y) = 0] = (1− p2)M = p3 = α

R .

Claim 5.6. Ey∼Ber(s,1−p1)[fExt(y)] = 1−Pr
[∨

1≤i≤R Fi

]
.

5.5 Proof of Lemma 5.2 : Bound on Influence of Coalitions on fExt

Let Q be any set of variables of size q < s1−δ. We prove that IQ,Ber(s,1−p1)(fExt) ≤ q/s1−δ.
Recall that fExt(x) =

∧
i∈{0,1}r f

i
Ext(x). The following is an easy observation: if for some fixing

of the variables in Q = [n] \ Q, fExt remains undetermined, it must be that at least some f iExt is
undetermined. Thus, by a union bound, we have

IQ,Ber(s,1−p1)(fExt) ≤
∑

i∈{0,1}r
IQ,Ber(s,1−p1)(f

i
Ext). (8)

We first show that for any i ∈ {0, 1}r, IQ,Ber(s,1−p1)(f
i
Ext) ≤

1
R . This follows from a direct calcula-

tion using the structure of f iExt.

Claim 5.7. For any i ∈ {0, 1}r, IQ,Ber(s,1−p1)(f
i
Ext) ≤

1
R .

Proof. The variables in Q can influence the outcome of fExt only if the AND of each block that
does not contain a variable from Q evaluates to 0. There are at most q blocks of P i which contain
a variable from Q, and hence at least M − q blocks with no variables from Q. For a y sampled

23

from Ber(s, 1−p1), the probability that the AND of a block evaluates to 0 is exactly p2. Thus, the
probability that the AND of each block not containing a variable from Q evalues to 0 is at most
(1− p2)M−q. Claim A.3 shows that (1− p2)M−q ≤ 1/R. Thus the influence of Q is bounded by 1

R .

However, just using the bound from the above claim in (8) implies IQ,Ber(s,1−p1)(fExt) ≤ 1 which

is trivial. We show that the influence of the set Q is in fact much smaller than 1
R for most f iExt.

Informally, we prove the following. In Claim 5.10, we show that for most (i.e., 1 − o(1) fraction
of) i ∈ {0, 1}r, the set Q is ‘well-spread’ across the blocks of the partition P i (Definition 5.8 below
makes the notion of well-spread precise). We call such a P i as ‘good’ (with respect to Q). In Claim
5.9 we show that the influence of Q on f iExt (corresponding to a good P i) is in fact smaller than 1

2R
(see Claim 5.9 for the precise bound). The proof now follows using (8). The proof of Claim 5.10
uses the fact that seeded extractors are good samplers (see Section 2.4.1). Claim 5.9 follows from
a direct calculation using the structure of f iExt. We now present the details.

Definition 5.8. For any i ∈ {0, 1}r and j ∈ {0, 1}m, define a block P ij to be bad with respect to a

subset of variables Q if |P ij ∩Q| ≥ 2εB. Further call a partition P i bad with respect to Q if it has

a block which is bad. Otherwise, P i is good.

Claim 5.9. Let P i be a partition that is good with respect to a subset of variables Q, |Q| = q. If
q ≤ s1−δ, then IQ,Ber(s,1−p1)(f

i
Ext) ≤

q
2Rs1−δ

.

Proof. We note that there are at least M − q blocks in P i that do not have any variables from Q.
Each of the remaining blocks have at most 2εB variables from Q. An assignment of x leaves f iExt

undetermined only if: (a) there is no AND gate at depth 1 in f iExt which outputs 1 and (b) There
is at least one block with a variable from Q such that the non-Q variables are all set to 1. These
two events are independent. Since there are at least M − q blocks that do not have any variables
from Q, the probability of (a) is bounded by (1− p2)M−q. From the calculation done in Claim 5.7,
we have (1− p2)M−q ≤ 1/R. We now bound the probability of (b). If there are h variables of Q in
P ij , the probability that the non-Q variables are all 1’s is exactly (1−p1)B−h. Thus the probability

of event (b) is bounded by q(1− p1)B(1−2ε). By Claim A.4, we have q(1− p1)B(1−2ε) ≤ q
2s1−δ

. This
completes the proof.

Claim 5.10. Consider any subset of variables Q of size q. If q ≤ s1−δ, then there are less than
2KM bad partitions with respect to Q.

Proof. Suppose to the contrary that there are at least 2KM bad partitions with respect to Q. It
follows by an averaging argument that there exists j ∈ {0, 1}m such that the number of bad blocks
among the {P ij : i ∈ {0, 1}r} is at least 2K. Recall that P ij = {(z,Ext(i, z) ⊕ j) : z ∈ {0, 1}b}.
We now define the function Extj(x, y) = (y,Ext(x, y) ⊕ j). Since we have chosen Ext to be a
strong-seeded extractor (recall that a shift-design extractor is also a strong-seeded extractor, see
Definition 2.13), it follows that Extj is a seeded extractor for min-entropy k with error ε.

Let Nj(i) denote the set of neighbors of i ∈ {0, 1}r in the graph corresponding to Extj . By
construction of Extj , for any i ∈ {0, 1}r, P ij = Nj(i). It follows from the above discussion that

|{i ∈ {0, 1}r : |Nj(i) ∩Q| ≥ 2εB|}| ≥ 2K.

24

Let µQ = q/M . We have,

µQ = q/M ≤ s1−δ/M < ε (using (7))

Thus, we have

|{i ∈ {0, 1}r : |Nj(i) ∩Q| ≥ (ε+ µQ)B}| ≥ |{i ∈ {0, 1}r : |Nj(i) ∩Q| ≥ 2εB|}| ≥ 2K.

However this contradicts Theorem 2.12 used on Extj . Thus the number of bad blocks is bounded
by 2KM .

Thus, we have

IQ,Ber(s,1−p1)(fExt) =
∑

i∈{0,1}r:P i is bad

IQ,Ber(s,1−p1)(fExt)

+
∑

i∈{0,1}r:P i is good

IQ,Ber(s,1−p1)(fExt) (using (8))

≤ (2KM) · 1

R
+

∑
i∈{0,1}r:P i is good

IQ,Ber(s,1−p1)(fExt) (using Claims 5.10, 5.7)

≤ 2KM

R
+R · q

2Rs1−δ (using Claim 5.9)

=
2

R1−3δ
+

q

2s1−δ (since M = Rδ,K = R2δ)

<
q

s1−δ

where the last inequality follows since s = BM = M1+δ1 = Rδ(1+δ1) < R2δ by (6), and hence
2

R1−3δ <
1
s <

q
2s1−δ

. This completes the proof of Lemma 5.2.

5.6 Towards Bounding Bias of fExt

In this section, we take an important step towards proving that fExt is almost balanced with respect
to Ber(s, 1− p1), i.e.,

Ey∼Ber(s,1−p1)[fExt(y)] ≈ 1

2
.

To refresh the reader’s memory, we first recall the construction of fExt and a few other definitions
from Sections 5.1, 5.4. For each v ∈ {0, 1}r, define the partition P v with blocks P vw, w ∈ {0, 1}m
where P vw = {(j, zj ⊕ w) : j ∈ {0, 1}b}. By Claim 5.1, P v forms an equi-partition of [s] with M
blocks of size B. Then,

fvExt(y) =
∨

1≤j≤M

∧
`∈P vj

y`,

where v ∈ {0, 1}r. Finally, we have fExt : {0, 1}s → {0, 1} as:

fExt(y) =
∧

1≤i≤R
f iExt(y).

25

Recall that p2 = (1 − p1)B, p3 = α
R = (1 − p2)M . Further, Fi is the event f iExt(y) = 0, where y

is sampled from Ber(s, 1− p1).

By Claim 5.6, for any v ∈ {0, 1}r, we have p3 = Pry∼Ber(s,1−p1)[f
v
Ext(y) = 0]. Using Claim A.2,

we have p3 ≈ ln 2
R . Thus, if it was the case that the functions f iExt were on disjoint sets of variables,

then one could estimate Pr[fExt = 1] ≈ (1− ln 2
R)R ≈ 1

2 , and conclude that fExt is almost balanced
with respect to Ber(s, 1− p1).

However, the functions fvExt are on the same set of variables, and hence the analysis described
above (assuming independence) breaks down. Our key result in this section is that if the partitions
are ‘pairwise-good’, then in fact the fvExt’s behave as though they are independent in the following

sense: for any c that is not too large and arbitrary 1 ≤ i1 < . . . < ic ≤ R, Pr
[∧

1≤g≤c Fig

]
≈∏

1≤g≤c Pr
[
Fig
]
. We formally state this in Lemma 5.12.

We make the notion of ‘pairwise-good’ precise in Definition 5.11. Roughly, the notion of
pairwise-good corresponds to the requirement that no two blocks from any two partitions have
large intersection. The fact the partitions are pairwise-good follows from the fact that they are
generated using the neighbor graph of a shift-design extractor. We prove this in the next section
(see Lemma 5.15). We now make things more precise.

For ease of presentation, we slightly abuse notation and relabel the partitions in Construction 1
as P 1, . . . , PR, where for any i ∈ [R], P i corresponds to the partition P vi with vi being the r bit
string for the integer i− 1. We use this notation in Section 5.7 as well.

Definition 5.11. Let P i, P j be two equi-partitions of [s] with blocks of size B. Then (P i, P j) is
said to be pairwise-good if the size of the intersection of any block of P i and any block of P j is at
most 0.9B.

A collection of equi-partitions P = {P 1, . . . , PR} is pairwise-good if for any distinct i, j ∈ [R],
(P i, P j) is pairwise-good.

The following is the main result of this section.

Lemma 5.12. There exist constants β1, β2 > 0 such that for any c ≤ sβ1, and arbitrary 1 ≤ i1 <
. . . < ic ≤ R, the following holds:

(α
R

)c
≤ Pr

 ∧
1≤g≤c

Fig

 ≤ (α
R

)c(
1 +

1

Mβ2

)
.

We also recall Janson’s inequality [Jan90,BS89] which will play a crucial role in the proof. We
follow the presentation in [AS92].

Theorem 5.13 (Janson’s Inequality [Jan90, BS89, AS92]). Let Ω be a finite universal set and let
O be a random subset of Ω constructed by picking each h ∈ Ω independently with probability ph.
Let Q1, . . . , Q` be arbitrary subsets of Ω, and let Ei be the event Qi ⊆ O. Define

∆ =
∑

i<j:Qi∩Qj 6=∅

Pr [Ei ∧ Ej] , D =
∏̀
i=1

Pr
[
Ei
]
.

Assume that Pr[Ei] ≤ τ for all i ∈ [`]. Then

D ≤ Pr
[∧
Ei
]
≤ De

∆
1−τ .

26

Proof of Lemma 5.12. Without loss of generality suppose ig = g for g ∈ [c]. We use Janson’s
inequality with Ω = [s], and O constructed by picking each h ∈ [s] with probability 1− p1. Further
let Ei,j be the event that P ij ⊆ O. Intuitively, O denotes the set of coordinates in y that are set

to 1 for a sample y from Ber(s, 1 − p1). With this interpretation, the event f iExt(y) = 0 exactly
corresponds to the event

∧
1≤j≤M Ei,j . Thus, we have

Pr

 ∧
1≤g≤c

Fg

 = Pr

 ∧
i∈[c],j∈{0,1}m

Ei,j

 .
We now estimate D,∆, γ to apply Janson’s inequality. For any i ∈ [c], j ∈ {0, 1}m, we have
Pr[Ei,j] = Pr[P ij ⊆ O] = (1− p1)B = p2. Note that τ = p2 <

1
2 . Further

D =
∏

i∈[c],j∈{0,1}m
Pr
[
Ei,j
]

= (1− p2)Mc = pc3 =
(α
R

)c
.

Finally, we have

∆ =
∑

i1<i2∈[c],j1,j2∈{0,1}m:P
i1
j1
∩P i1j1 6=∅

Pr[Ei1,j1 ∧ Ei2,j2]

≤
(
c

2

)
max

i1<i2∈[c]

∑

j1,j2∈{0,1}m:P
i1
j1
∩P i1j1 6=∅

Pr[Ei1,j1 ∧ Ei2,j2]

We observe that any P i1j1 can intersect at most B blocks of a partition P i2 , where i1 6= i2. Thus,

the total number of pairs of blocks that intersect between two partitions P i1 and P i2 , i1 6= i2, is
bounded by MB = s. Thus, continuing with the estimate, we have

∆ ≤
(
c

2

)
· s · max

i1<i2∈[c],j1,j2∈{0,1}m:P
i1
j1
∩P i2j2 6=∅

{Pr[Ei1,j1 ∧ Ei2,j2]}

Further, recall that P is pairwise-good. Thus it follows that for any distinct i1, i2 ∈ [c], and
j1, j2 ∈ {0, 1}m, |P i1j1 ∩ P

i2
j2
| ≤ 0.9B. Thus, |P i1j1 ∪ P

i2
j2
| ≥ 1.1B and hence for any i1 < i2 ∈ [c], j1,

j2 ∈ {0, 1}m,

Pr[Ei1,j1 ∧ Ei2,j2] ≤ (1− p1)
11B
10 = p

11
10
2 . (9)

Thus,

∆ ≤
(
c

2

)
· s · p

11
10
2 (using (9))

<
1

M
1
20
−3β1

(by Claim A.7)

We set β1 = 1/90. It follows that
∆ < M−β

′
,

where β′ = 1/70 .

27

Invoking Janson’s inequality, we have

(α
R

)c
≤ Pr

 ∧
1≤g≤c

Fg

 ≤ (α
R

)c
e2M−β

′
≤
(

1 +
4

Mβ′

)(α
R

)c
,

where the last inequality follows using the fact that for 0 < θ ≤ 1, eθ ≤ 1 + 2θ. This concludes the
proof.

5.7 Proof of Lemma 5.3: Bound on the Bias of fExt

The following two lemmas directly imply Lemma 5.3.

Lemma 5.14. If P is pairwise-good, |p− 1
2 | ≤ B

−Ω(1), where p = Pry∼Ber(s,1−p1)[fExt(y) = 0].

Lemma 5.15. The set of partitions P = {P 1, . . . , PR} in Construction 1 is pairwise-good.

Lemma 5.12 proved in Section 5.6 is a key component in proving Lemma 5.14. We begin by
proving Lemma 5.15, which is easy to derive from the fact that our construction of P i’s uses
shift-design extractors.

Proof of Lemma 5.15. Let P i1j1 and P i2j2 be any two blocks such that i1 6= i2. We need to prove that

|P i1j1 ∩ P
i2
j2
| ≤ 0.9B. Recall that P i1j1 = {(z,Ext(i1, z) ⊕ j1) : z ∈ {0, 1}b}, and similarly P i2j2 = {(z,

Ext(i2, z)⊕ j2) : z ∈ {0, 1}b}. The bound on |P i1j1 ∩P
i2
j2
| now directly follows from the fact that Ext

is a 1
10 -shift-design extractor.

We use the rest of the section to prove Lemma 5.14.

Proof of Lemma 5.14. Let P = {P 1, . . . , PR} be pairwise-good. We have,

p = Pry∼Ber(s,1−p1)[fExt(y) = 0] = Pr

 ∨
1≤i≤R

Fi

 .
For 1 ≤ c ≤ R, let

Sc =
∑

1≤i1<...<ic≤R
Pr

 ∧
1≤g≤c

Fig

 .
Using the inclusion-exclusion principle, it follows that for any even a ∈ [R],

a∑
c=1

(−1)(c−1)Sc ≤ p ≤
a+1∑
c=1

(−1)(c−1)Sc. (10)

Fix a = sβ3 (assume that a is even), β3 = min{β1/2, β2/2}, where β1, β2 are the constants in
Lemma 5.12. Now the idea is to use Lemma 5.12 to obtain tight estimates for Sc. Combining this
with (10) proves the desired bound on p (recall that p = Pry∼Ber(s,1−p1)[fExt(y) = 0]).

Claim 5.16. e−α − 1
Mβ2/2

≤
∑a

c=1(−1)c−1Sc <
∑a+1

c=1 (−1)c−1Sc ≤ e−α + 1
Mβ2/2

.

28

Proof. For any c ≤ a+ 1, using Lemma 5.12, we have(
R

c

)(α
R

)c
≤ Sc ≤

(
R

c

)(α
R

)c(
1 +

1

Mβ2

)
.

By Claim A.8, it follows that for any c ≤ a,∣∣∣∣Sc − αc

c!

∣∣∣∣ ≤ 1

Mβ2
(11)

Also note that

Sa+1 ≤
1

a!
+

1

Mβ2
<

2

Mβ2
, (12)

using a = sβ3 and the inequality a! ≥ (a/e)a (thus, using s = MB and B > e, we have a! >

Mβ3Mβ3 > Mβ2).

Finally, by the classical Taylor’s theorem and the inequalities above, we have∣∣∣∣∣e−α −
a∑
c=1

(−1)c−1α
c

c!

∣∣∣∣∣ < αa+1

(a+ 1)!
< (αe/(a+ 1))a+1 <

1

Mβ2
. (13)

,

We are now ready to prove Claim 5.16. We have,∣∣∣∣∣
a∑
c=1

(−1)c−1Sc − e−α
∣∣∣∣∣ ≤

∣∣∣∣∣
a∑
c=1

(−1)c−1Sc −
a∑
c=1

(−1)c−1α
c

c!

∣∣∣∣∣+
1

Mβ2
(using (13))

≤

(
a∑
c=1

∣∣∣∣Sc − αc

c!

∣∣∣∣+
1

Mβ2

)
+

1

Mβ2

≤ a+ 1

Mβ2
(using (11))

Using (12), we also have ∣∣∣∣∣
a+1∑
c=1

(−1)c−1Sc − e−α
∣∣∣∣∣ ≤ a+ 3

Mβ2
.

Finally, using the fact that (a+ 3)M−β2 ≤M−β2/2, it follows that

e−α − 1

Mβ2/2
≤

a∑
c=1

(−1)c−1Sc <

a+1∑
c=1

(−1)c−1Sc ≤ e−α +
1

Mβ2/2
.

We are now very close to proving Lemma 5.14. Using (10) and Claim 5.16, we have

|p− e−α| ≤ 1

Mβ2/2
.

Using Claim A.6, we have ∣∣∣∣e−α − 1

2

∣∣∣∣ ≤ 1

2Bε3
.

Hence, we have
∣∣p− 1

2

∣∣ < 1
2Bε3 + 1

Mβ2/2
= B−Ω(1) since M > B. This concludes the proof.

29

5.8 Proof of Theorem 3

We obtain our resilient function with respect to the uniform distribution by a simple modification
of Construction 1 using the fact that we can simulate biased bits quite accurately via small CNFs
(see Lemma 2.24).

Construction 2: A constant δ ∈ (0, 1/10) and an integer n > 0 are input parameters. We
set ε1 = δ/4. We think of r as an unfixed variable and set up the remaining variables, as in
Construction 1 following the description in Section 5.2. We do not fix the parameter p1 as
yet.
Next, we fix the parameter r as follows. Let the parameter ν in Lemma 2.24 be set to
γ/Bε1 and let C be the size h monotone CNF circuit guaranteed by Lemma 2.24, where
h < B1+2ε1 . Thus, (1−B−ε1)γ ≤ Prx∼Uh

[C(x) = 0] < γ. Choose the largest integer r such
that we have n′ = sh = BMh < n. It follows that for this choice of r, n′ = Ω(n). Set
p1 = Prx∼Uh

[C(x) = 0]. It is immediate that p1 satisfies (5).
Let fExt : {0, 1}s → {0, 1} be the function from Construction 1, with Ext instantiated as in
Construction 1 (using the Trevisan extractor). Define f be the function derived from fExt

by replacing each variable yi by a copy of the monotone CNF C set up above. Thus f is
defined on n′ bits.

We observe that:

• the size of the coalition (denoted by the parameter q) is at most n1−δ = (n′)1−δ′ , where
δ′ = δ − o(1). Thus, we may assume n = n′ = BMh and δ = δ′.

• since TExt is a polynomial time function, fExt can be constructed in polynomial time. Thus
f is computable by a polynomial time algorithm. Further, f is an O(RMBh) = nO(1) sized
monotone circuit in AC0 of depth 4.

The required bounds on the bias of f and on Iq(f) are now straightforward using Lemma 5.3
and Lemma 5.2 respectively, and we omit the details.

6 Proof of Theorem 4

In this short section we prove Theorem 4, which gives an explicit nearly balanced function f with
small Iq,t(f). The proof is almost direct from the results of Sections 4 and 5. Informally, the result
in Section 4 is that if f is a constant depth monotone circuit, then in order to prove an upper
bound for Iq,t(f), it is in fact enough to upper bound Iq(f). In Section 5, we exactly construct
such a constant depth monotone circuit that has small Iq(f). We now present the details.

Fix δ = ν/2. Let f : {0, 1}n → {0, 1} be the function from Theorem 3 such that for any q > 0,
Iq(f) ≤ q/n1−δ. Also we have that f is monotone and can be computed by a depth 4 AC0 circuit
C of size m = poly(n).

Fix ε3 = 1/n. Thus by Theorem 4.1, it follows that there exists a constant b such that for any
t ≥ b(log(m/ε3))18, q > 0 ,

Iq,t(f) ≤ ε3 +
q

n1−δ <
2q

n1−δ <
q

n1−ν ,

where the last inequality uses the fact that δ = ν/2 and hence, assuming n is large enough, nν/2 > 2.

30

We conclude by noting that f is unbiased under any t-wise independent distribution. Using
Theorem 4.1 and the fact that f is computable by a constant depth polyomial sized circuit C that
for any t-wise independent distribution D, we have∣∣∣∣Ex∼D[f(x)]− 1

2

∣∣∣∣ ≤ 1

n
+

1

nΩ(1)
.

7 Proof of Theorem 1

We informally recall Theorem 1. We show that for all n and ε, there exists a 2-source extrac-
tor 2Ext : {0, 1}n × {0, 1}n → {0, 1} computable in time poly(n, 1/ε) for min-entropy at least
C1 logC(n/ε) and error ε.

We set up the required ingredients and parameters as follows:

• Let t, k, ε1 be parameters that we fix later. Let nmExt : {0, 1}n×{0, 1}d1 → {0, 1} be a (t, k,
ε1)-non-malleable extractor from Theorem 2.19. Thus d1 = O(t2 log log n) +O(t2 log(1/ε1)) ·
o(log log(1/ε1)), for some constant c1. For such an extractor to exists, we require k ≥
c′t log log n+ c′t log(1/ε1)) · o(log log(1/ε1)).

• Let Ext : {0, 1}n × {0, 1}d → {0, 1}d1 be the seeded extractor from Theorem 2.11, with the
modification that the seed is concatenated with the output, set to extract from min-entropy
k/2 with error ε2. Thus, d = c2 log(n/ε2), for some constant c2. Let D = 2d = (n/ε2)c2 . Such
an extractor exists for k ≥ 3d1.

• Let t = b(log(D/ε))18, for a large enough constant b.

• Choose δ > 0, such that δ′ = 2δc2 < 9/10.

• Let f : {0, 1}D → {0, 1} be the function from Theorem 4 such that Iq,t(f) ≤ q/D1−δ and for
any t-wise independent distribution D,

∣∣Ev∼D[f(v)]− 1
2

∣∣ ≤ D−β for some small constant β.

• Let ε3 = C3t
√
ε1D

t, for a large enough constant C3.

• Pick ε1, ε2 such that the following inequalities are satisfied:

– D = (n/ε2)c2 ≥ max{(8/ε)1/β, (8/ε)2/δ},
– ε2 ≤ D−2δ/2 = (ε2/n)δ

′
,

–
√
ε1 ≤ 1

4C3tDt+1 .

Thus, we can pick ε2 = min{nε
1
c2β , nε

2
c2δ , 1/nδ

′/(1−δ′)} and ε1 = 1/(4C3tD
t+1)2.

• With this setting of parameters, it can be checked that we require k ≥ C1(log(n/ε))56, for a
large enough constant C1.

Let {0, 1}d2 = {r1, . . . , rD2}. Define

reduce(x, y) = nmExt(x,Ext(y, r1)) ◦ . . . ◦ nmExt(x,Ext(y, rD2))

and
2Ext(x, y) = f(reduce(x, y)).

31

Let X and Y be any two independent (n, k)-sources, where k ≥ C1 logC(n/ε). We prove that

|(2Ext(X,Y),Y)− (U1,Y)| ≤ ε.

Let Z = reduce(X,Y). Theorem 3.1 implies that with probability at least 1−2 ·2−k/2 > 1− ε
2 over

y ∼ Y, the conditional distribution Z|Y = y is ε3-close to a (q, t)-non-oblivious bit-fixing source
on M bits, where by our choice of parameters,

• q = (
√
ε1 + ε2)D < D1−2δ,

• ε3 = C3t
√
ε1D

t < ε/4.

Thus, for each such y,

|f(reduce(X,y))−U1| ≤ ε3 +
q

D1−δ +D−β

≤ ε

4
+D−δ +

ε

8

≤ ε

4
+
ε

8
+
ε

8
=
ε

2
.

Thus, we have
|(2Ext(X,Y),Y)− (U1,Y)| ≤ ε.

We finally note that it is direct from the description of the construction that the extractor runs
in time poly(n, 1/ε). This completes the proof.

Acknowledgments

We thank anonymous referees for helpful comments that led to improvements in the presentation of
the paper. In particular, a referee for the Annals of Mathematics gave detailed valuable comments
and suggestions. We are grateful to Xin Li for an observation which led to our theorem working
with general ε. We also thank Ran Raz for reminding us that every 2-source extractor is strong.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cam-
bridge University Press, 2009.

[AGM03] Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence versus
k-wise independence. Inf. Process. Lett., 88(3):107–110, 2003.

[AL93] Miklós Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica,
13(2):129–145, 1993.

[Alo98] Noga Alon. The Shannon capacity of a union. Combinatorica, 18(3):301–310, 1998.

[AS92] Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992.

[Bar06] Boaz Barak. A Simple Explicit Construction of an nÕ(logn)-Ramsey Graph. Technical
report, Citeseer, 2006.

32

[BCDT18] Avraham Ben-Aroya, Gil Cohen, Dean Doron, and Amnon Ta-Shma. Two-source con-
densers with low error and small entropy gap via entropy-resilient functions. Electronic
Colloquium on Computational Complexity (ECCC), 25:66, 2018.

[BDT17] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. An efficient reduction from
two-source to non-malleable extractors: achieving near-logarithmic min-entropy. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 1185–1194, 2017.

[BDT18] Avraham Ben-Aroya, Dean Doron, and Amnon Ta-Shma. Near-optimal strong dis-
persers, erasure list-decodable codes and friends. Electronic Colloquium on Computa-
tional Complexity (ECCC), 25:65, 2018.

[BH05] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random genera-
tion with applications to/dev/random. In Proceedings of the 12th ACM conference on
Computer and communications security, pages 203–212, 2005.

[BIW06] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using
few independent sources. SIAM J. Comput., 36(4):1095–1118, December 2006.

[BKS+10] Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simu-
lating independence: New constructions of condensers, Ramsey graphs, dispersers, and
extractors. J. ACM, 57(4), 2010.

[BL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and
minima of Banzhaf values. In 26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21-23 October 1985, pages 408–416, 1985.

[Bou05] J. Bourgain. More on the sum-product phenomenon in prime fields and its applications.
International Journal of Number Theory, 01(01):1–32, 2005.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC 0 circuits. J. ACM, 57(5),
2010.

[BRSW12] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2-source dispersers for
no(1) entropy, and Ramsey graphs beating the Frankl-Wilson construction. Annals of
Mathematics, 176(3):1483–1543, 2012. Preliminary version in STOC ’06.

[BS89] Ravi Boppona and Joel Spencer. A useful elementary correlation inequality. Journal
of Combinatorial Theory, Series A, 50(2):305 – 307, 1989.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

[CGL16] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In STOC, 2016.

[CL16a] Eshan Chattopadhyay and Xin Li. Explicit non-malleable extractors, multi-source ex-
tractors, and almost optimal privacy amplification protocols. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hy-
att Regency, New Brunswick, New Jersey, USA, pages 158–167, 2016.

33

[CL16b] Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In STOC, 2016.

[Coh15] Gil Cohen. Local correlation breakers and applications to three-source extractors and
mergers. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Com-
puter Science, 2015.

[Coh16a] Gil Cohen. Making the most of advice: New correlation breakers and their applications.
In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 188–196,
2016.

[Coh16b] Gil Cohen. Two-source dispersers for polylogarithmic entropy and improved Ramsey
graphs. In STOC, 2016.

[Coh17] Gil Cohen. Towards optimal two-source extractors and ramsey graphs. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, pages 1157–1170, 2017.

[CRS14] Gil Cohen, Ran Raz, and Gil Segev. Nonmalleable extractors with short seeds and
applications to privacy amplification. SIAM Journal on Computing, 43(2):450–476,
2014.

[DKSS09] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions to the
method of multiplicities, with applications to Kakeya sets and mergers. In Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science, pages 181–
190, 2009.

[DLWZ14] Yevgeniy Dodis, Xin Li, Trevor D. Wooley, and David Zuckerman. Privacy amplifica-
tion and non-malleable extractors via character sums. SIAM Journal on Computing,
43(2):800–830, 2014.

[DO03] Y. Dodis and R. Oliveira. On extracting private randomness over a public channel.
In RANDOM 2003, 7th International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 252–263, 2003.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In STOC, pages 601–610, 2009.

[Erd47] P. Erdős. Some remarks on the theory of graphs. Bull. Amer. Math. Soc., 53(4):292–294,
04 1947.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science, pages 142–153, 1999.

[FW81] P. Frankl and R.M. Wilson. Intersection theorems with geometric consequences. Com-
binatorica, 1(4):357–368, 1981.

[Gop14] Parikshit Gopalan. Constructing Ramsey graphs from Boolean function representations.
Combinatorica, 34(2):173–206, 2014.

[Gro00] Vince Grolmusz. Low rank co-diagonal matrices and Ramsey graphs. Electr. J. Comb.,
7, 2000.

34

[GRS06] Ariel Gabizon, Ran Raz, and Ronen Shaltiel. Deterministic extractors for bit-fixing
sources by obtaining an independent seed. SIAM J. Comput., 36(4):1072–1094, 2006.

[GSV05] S. Goldwasser, M. Sudan, and V. Vaikuntanathan. Distributed computing with im-
perfect randomness. In P. Fraigniaud, editor, Proceedings of the 19th International
Symposium on Distributed Computing DISC 2005, volume 3724 of Lecture Notes in
Computer Science, pages 288–302. Springer, 2005.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced ex-
panders and randomness extractors from Parvaresh–Vardy codes. J. ACM, 56(4), 2009.

[Jan90] Svante Janson. Poisson approximation for large deviations. Random Structures &
Algorithms, 1(2):221–229, 1990.

[JK99] Benjamin Jun and Paul Kocher. The Intel random number generator. Cryptography
Research Inc. white paper, 1999.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean functions
(extended abstract). In 29th Annual Symposium on Foundations of Computer Science,
White Plains, New York, USA, 24-26 October 1988, pages 68–80, 1988.

[KLR09] Y. Kalai, X. Li, and A. Rao. 2-source extractors under computational assumptions
and cryptography with defective randomness. In Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, pages 617–626, 2009.

[KLRZ08] Y. Kalai, X. Li, A. Rao, and D. Zuckerman. Network extractor protocols. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 654–
663, 2008.

[Li11] Xin Li. Improved constructions of three source extractors. In Proceedings of the 26th
Annual IEEE Conference on Computational Complexity, CCC 2011, San Jose, Cali-
fornia, June 8-10, 2011, pages 126–136, 2011.

[Li12a] Xin Li. Design extractors, non-malleable condensers and privacy amplification. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pages 837–
854, 2012.

[Li12b] Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In
Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science,
pages 688–697, 2012.

[Li13a] Xin Li. Extractors for a constant number of independent sources with polylogarithmic
min-entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science, pages 100–109, 2013.

[Li13b] Xin Li. New independent source extractors with exponential improvement. In Pro-
ceedings of the 45th Annual ACM Symposium on Theory of Computing, pages 783–792,
2013.

[Li15] Xin Li. Three-source extractors for polylogarithmic min-entropy. In Proceedings of the
56th Annual IEEE Symposium on Foundations of Computer Science, 2015.

35

[Li16] Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic en-
tropy. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS
2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages
168–177, 2016.

[Li17] Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 1144–1156. ACM, 2017.

[Li18] Xin Li. Non-malleable extractors and non-malleable codes: Partially optimal construc-
tions. CoRR, abs/1804.04005, 2018.

[LRVW03] Chi-Jen Lu, Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Extractors: optimal
up to constant factors. In STOC, pages 602–611, 2003.

[Mek09] Raghu Meka. Explicit coin flipping protocols. Unpublished manuscript, 2009.

[Mek17] Raghu Meka. Explicit resilient functions matching ajtai-linial. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1132–1148, 2017.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.
Sci., 52(1):43–52, 1996.

[PR04] P. Pudlak and V. Rodl. Pseudorandom sets and explicit constructions of Ramsey
graphs, 2004.

[Ram30] Frank P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical
Society, Series 2, 30:264–286, 1930.

[Rao09a] Anup Rao. Extractors for a constant number of polynomially small min-entropy inde-
pendent sources. SIAM J. Comput., 39(1):168–194, 2009.

[Rao09b] Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 24th Annual
IEEE Conference on Computational Complexity, 2009.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing
the error in Trevisan’s extractors. JCSS, 65(1):97–128, 2002.

[RZ01] A. Russell and D. Zuckerman. Perfect-information leader election in log∗ n + O(1)
rounds. JCSS, 63:612–626, 2001.

[RZ08] Anup Rao and David Zuckerman. Extractors for three uneven-length sources. In Ap-
proximation, Randomization and Combinatorial Optimization. Algorithms and Tech-
niques, 11th International Workshop, APPROX 2008, and 12th International Work-
shop, RANDOM 2008, Boston, MA, USA, August 25-27, 2008. Proceedings, pages
557–570, 2008.

[Sha02] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin
of the EATCS, 77:67–95, 2002.

36

[Sha08] Ronen Shaltiel. How to get more mileage from randomness extractors. Random Struct.
Algorithms, 33(2):157–186, 2008.

[Sip88] Michael Sipser. Expanders, randomness, or time versus space. Journal of Computer
and System Sciences, 36(3):379–383, 1988.

[SV86] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from semi-
random sources. Journal of Computer and System Sciences, 33:75–87, 1986.

[Tal17] Avishay Tal. Tight bounds on the Fourier spectrum of AC0. In 32nd Computational
Complexity Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, pages 15:1–15:31,
2017.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages
860–879, 2001.

[Vio14] Emanuele Viola. Extractors for circuit sources. SIAM J. Comput., 43(2):655–672, 2014.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures and
Algorithms, 11:345–367, 1997.

A Auxiliary Material for Section 5

This section contains supplementary material to the proofs and arguments done in Section 5.

A.0.1 Validity of Instantiation of Ext in Construction 1

Claim A.1. The instantiation of Ext in Construction 1 (see Section 5.2) is valid and the parameters
satisfy the inequalities (6) and (7).

Proof. Recall that Ext : {0, 1}r × {0, 1}b → {0, 1}m is set to be the Trevisan extractor. It is set to
extract from min-entropy k with error ε = 2−δ2

√
r with output length m = k/2. By Theorem 2.10,

it follows that the seed length of Ext is

b =
λ log2(r/ε)

log(k/m)
=
λ log2(r/2−δ2

√
r)

log 2
= λ(δ2

2r + log2 r + 2δ2

√
r log r),

where λ is the constant from Theorem 2.10.

By our choice of δ2, we have

δ2r/40 ≤ b = λ(δ2
2r + log2 r + 2δ2

√
r log r) ≤ δ2r/20.

Further, δ1 = b/m. This implies that δ1 = b/m = b/(δr) satisfies δ/40 ≤ δ1 ≤ δ/20 as required in
(6).

Next we claim that M−δ1 < ε < δ/4. Observe that this immediately implies (7) since

s1−δ/M = (MB)1−δ/M < B/M δ = M δ1−δ ≤ 1/M19δ/20 < 1/M δ1 .

Since ε = 2−Ω(
√
r), it follows that ε < δ/4. Further, since m = Ω(r), it follows that ε > 2−δ1m =

M−δ1 .

We conclude by observing that by Lemma 2.15, we have Ext is a 1
10 -shift-design extractor.

37

A.0.2 Useful Bounds for Construction 1

In this section, we assume that the parameters are picked in the way described in Section 5.2 and
prove various bounds that complements arguments and proofs done in Section 5.

We first list some useful inequalities which are direct or almost directly implied by our choice of
parameters and inequalities imposed on them in Section 5.2. We also list a few general inequalities
that we frequently use in calculations. The claims in this section are routine calculations given the
following list of inequalities.

0 < δ, ε1 < 1/10 (14)

δ/40 ≤ δ1 ≤ δ/20 (15)

s1−δ/M < ε < δ/4 (16)

m = δr, r = Mo(1) (17)

b = δ1m (18)

(1−B−ε1)γ ≤ p1 ≤ γ (19)

b = Ω(r). Thus, for any constant ν > 0, Bν > r (20)

γ =
lnM − ln ln(R/ ln 2)

B
, e−γB =

lnR− ln ln 2

M
(21)

γ <
lnM

B
< r/B (22)

For any positive θ ≤ 1, 2θ ≤ 1 + θ (23)

For any positive θ ≤ 1, eθ ≤ 1 + 2θ (24)

For any n > 1 and 0 ≤ x ≤ n, we have e−x
(

1− x2

n

)
≤
(

1− x

n

)n
≤ e−x (25)

Claim A.2. The following inequalities hold: Let ε2 = ε1/2. Then,

1.
p2 ≤

r

M

2.
1

2R
≤
(

ln 2

R

)(
1− 2r

Bε2

)
≤ p3 ≤

(
ln 2

R

)(
1 +

r

Bε2

)
≤ 0.9

R

Proof. We in fact prove the following:

1.
lnR− ln ln 2

M

(
1− 1

Bε2

)
≤ p2 ≤

lnR− ln ln 2

M

(
1 +

1

Bε2

)
≤ r

M

2.
1

2R
≤
(

ln 2

R

)(
1− 2r

Bε2

)
≤ p3 ≤

(
ln 2

R

)(
1 +

r

Bε2

)
≤ 0.9

R

38

We start out by proving bounds on p2. We have,

p2 = (1− p1)B

≥ (1− γ)B (using (19))

≥ e−γB(1− γ2B) (by (25))

=
lnR− ln ln 2

M
(1− γ2B) (using (21))

≥ lnR− ln ln 2

M

(
1− r2

B

)
(using (22))

We now upper bound p2. We have,

p2 = (1− p1)B

≤ (1− γ(1−B−ε1))B (using (19))

≤ e−γB(1−B−ε1) (by (25))

=

(
lnR− ln ln 2

M

)1−B−ε1

(using (21))

<

(
lnR− ln ln 2

M

)
MB−ε1

<

(
lnR− ln ln 2

M

)
eδrB

−ε1
(using (17))

≤ lnR− ln ln 2

M

(
1 +

r

Bε1

)
(using (24) and 2δ < 1)

Thus,
lnR− ln ln 2

M

(
1− 1

Bε2

)
≤ p2 ≤

lnR− ln ln 2

M

(
1 +

1

Bε2

)
,

using ε2 = ε1/2 and (20).

Further, since lnR = r · ln 2 < 0.9r and
(
1 + 1

Bε2

)
< 1.01, it follows that

lnR− ln ln 2

M

(
1 +

1

Bε2

)
< r/M.

39

We now proceed to establish bounds on p3. We have,

p3 = (1− p2)M

≥
(

1−
(

lnR− ln ln 2

M

)(
1 +

1

Bε2

))M
(using the upper bound established on p2)

≥

(
1− (lnR− ln ln 2)2

M

(
1 +

1

Bε2

)2
)(

ln 2

R

)
e
−(lnR−ln ln 2)

Bε2 (by (25))

>

(
1− (lnR− ln ln 2)2

M

(
1 +

1

Bε2

)2
)(

ln 2

R

)
e−r/B

ε2
(since er > R)

>

(
1− 2r2

M

)(
ln 2

R

)
e−r/B

ε2

>

(
1− 2r2

M

)(
ln 2

R

)(
1− r

Bε2

)
(since for any θ ∈ R, eθ ≥ 1 + θ)

≥
(

1− r

B

)(ln 2

R

)(
1− r

Bε2

)
(since M > 2rB using (17) and (18))

≥
(

ln 2

R

)(
1− 2r

Bε2

)
(using (20))

We now prove the upper bound on p3.

p3 ≤
(

1−
(

lnR− ln ln 2

M

)(
1− 1

Bε2

))M
(using the lower bound established on p2)

≤
(

ln 2

R

)1−B−ε2

(by (25))

<

(
ln 2

R

)
RB

−ε2

=

(
ln 2

R

)
2r·B

−ε2

≤
(

ln 2

R

)(
1 +

r

Bε2

)
(using (23), since by (20),

r

Bε2
< 1).

Thus, (
ln 2

R

)(
1− 2r

Bε2

)
≤ p3 ≤

(
ln 2

R

)1− r
B

≤
(

ln 2

R

)(
1 +

r

Bε2

)
.

Using (20), it follows that

1

2R
≤
(

ln 2

R

)(
1− 2r

Bε2

)
≤ p3 ≤

(
ln 2

R

)(
1 +

r

Bε2

)
≤ 0.9

R
.

Claim A.3. (1− p2)M−q ≤ 1
R .

40

Proof. We have,

(1− p2)M−q ≤ p1− s
1−δ
M

3

≤ p3(2R)
s1−δ
M (since p3 >

1

2R
by Claim A.2)

≤ p3e
r/Mδ/2

(since s = M1+δ1 < M1+ δ
2 /2 using (15))

≤ p3(1 +
2r

M δ/2
) (using eθ ≤ 1 + 2θ, if θ ∈ [0, 1])

<
0.9

R
(1 +

2r

M δ/2
) (by Claim A.2)

< 1/R (using (17))

Claim A.4. q(1− p1)B(1−2ε) < q
2s1−δ

.

Proof. We have,

q(1− p1)B(1−2ε) = qp1−2ε
2

≤ qr

M1−2ε
(since p2 < r/M by Claim A.2)

=
qr

M1− δ
2

(since ε < δ/4 using (16))

<
q

M1− 2δ
3

(using (17))

<
q

2s1−δ (since s = M1+δ1 < M1+ δ
4 using (15)).

We record a simple claim that is direct from Claim A.2. Recall that α = p3R (see Section 5).

Claim A.5. There exists a small constant ε3 > 0 such that 1− 1
Bε3 ≤

α
ln 2 ≤ 1 + 1

Bε3 .

Claim A.6.
∣∣e−α − 1

2

∣∣ ≤ 1
2Bε3 .

Proof. Recall that from Claim A.5, we have

ln 2

(
1− 1

Bε3

)
≤ α ≤ ln 2

(
1 +

1

Bε3

)
.

Using this, we have ∣∣∣∣e−α − 1

2

∣∣∣∣ ≤ max {2θ−1 − 1

2
,
1

2
− 2−(θ+1)}

= max {(2θ − 1)/2, (1− 2−θ)/2}
= (2θ − 1)/2 ≤ θ/2.

where the final inequality uses the fact that 2η ≤ 1 + η for any positive η ≤ 1.

Thus, ∣∣∣∣e−α − 1

2

∣∣∣∣ ≤ 1

2Bε3
.

41

Claim A.7. s1+2β1r2

M
11
10

< 1

M
1
20−3β1

, where β1 is the constant from Lemma 5.12.

Proof. We have,

s1+2β1r2

M
11
10

=
(MB)1+2β1r2

M
11
10

(using s = MB)

=
B1+2β1r2

M
1
10
−2β1

=
M δ1(1+2β1)r2

M
1
10
−2β1

(using B = M δ1 by (18))

<
1

M
1
20
−3β1

(using that by (15), δ1 < 1/20; and (17))

Claim A.8. Let a = sβ3 be the parameter used in the proof of Lemma 5.14. For any c ≤ a,∣∣Sc − αc

c!

∣∣ ≤ 1
Mβ2

.

Proof. Recall from the proof of Lemma 5.14 that β3 = min{β1/2, β2/2}, where β1, β2 are constants
defined in Lemma 5.12. We have, (

R

c

)(α
R

)c
≤ Rc

c!

αc

Rc

=
αc

c!

and(
R

c

)(α
R

)c
=
R(R− 1) . . . (R− c+ 1)

Rc
αc

c!

≥
(

1− (c− 1)2

R

)
αc

c!
(using (1− α)(1− β) ≥ 1− α− β, if αβ ≥ 0)

≥
(

1− a2

R

)
αc

c!
(since c ≤ a+ 1)

≥
(

1− 1

R1−β2

)
αc

c!

by our choice of a.

Thus, for any c ≤ a, we have∣∣∣∣Sc − αc

c!

∣∣∣∣ ≤ αc

c!
·
(

1

Mβ2
+

1

R1−β2

)
≤ 1

2

(
1

Mβ2
+

1

R1−β2

)
(since α < 2)

≤ 1

Mβ2
,

where the last inequality uses the fact that R = M1/δ (using (17)), and hence R1−β2 > Mβ2 using
the inequality (1− β2)/β2 > 1 > δ.

42

A.0.3 A Bound for Construction 2

We provide the proof of a bound used in arguing the correctness of Construction 2. The inequalities
listed in the previous section continue to hold, and we use them in proving the following lemma.

Claim A.9. We assume the setup of parameters as described in Construction 2. Then, s1− δ
2 ≥

n1−δ.

Proof. We have

s1− δ
2 = (MB)1− δ

2

> (MB)(1+ δ
2)(1−δ)

> (MB3)1−δ (since M δ/2 > M2δ1 = B2 by (15), (18))

≥ (MBh)1−δ = n1−δ (using h ≤ B1+ δ
2 and n = MBh)

43
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

