
Understanding PPA-Completeness

Xiaotie Deng∗ Jack Edmonds† Zhe Feng‡ Zhengyang Liu§ Qi Qi¶

Zeying Xu∥

Abstract

The search complexity classes PPA and PPAD were proposed by Papadimitriou twenty
years ago for characterizing the computational difficulties of many interesting natural search
problems. While many members in the complete class of PPAD, PPAD-complete, are estab-
lished in the past twenty years, the understanding of the PPA-complete class falls far behind.

We consider the problem of finding a fully colored base triangle on the 2-dimensional Möbius
band under the standard boundary condition, proving it to be PPA-complete. It completes the
locally planar PPA-complete characterization approach known ten years ago for less natural
non-orientable surfaces. Our 2D simple Möbius band PPA-complete work establishes an eternal
result in that direction.

The proof is based on a construction for the DPZP problem, that of finding a zero point
under a discrete version of continuity condition. It further derives PPA-complete for versions
on the Möbius band of the following problems: the Sperner problem; the Tucker problem,
finding an edge such that if the value of one end vertex is x, the other is −x, given an appropriate
boundary condition.

More generally, this applies to other non-orientable spaces. We derive a variety of the other
models, including the projective plane and the Klein bottle. However, since those models have
a closed boundary, we rely on a version of the PPA that states it as to find another fixed point
giving a fixed point. This model also makes it presentationally simple for an extension to a
high dimensional discrete fixed point problem on a non-orientable (nearly) hyper-grid with a
constant side length.
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1 Introduction

In his seminal work on understanding the time complexity of the parity argument, Papadimitriou
introduced the now well known class PPAD [27] that has influenced a generation of algorithmic
game theorists in their study of economic computations. In the same paper, Papadimitriou also
defined a more inclusive complexity class PPA (Polynomial Parity Argument) of search problems
whose solution is guaranteed to exist through a proof based on the fact that “Any undirected graph
with an odd-degree vertex must have another one”. In contrast to PPA, PPAD is based on another
straightforward principle: “Any directed graph that has an unbalanced node must have another”.

The class PPA is a superset of PPAD, and the intuitive reason is that directions are helpful:
Finding another node of the appropriate kind is harder to solve when there are no directions; in
fact, oracle separation is known [3]. This difference has also reflected in our understanding in the
two classes, especially with regard to their complete problems. The class PPAD has now many
problems that have been shown complete for PPAD such as in the incomplete list of 25 of them [22]
gathered by Kintali. The class PPA-complete, however, did not fare as well.

On the one hand, there are many interesting existence theorems in Graph Theory, Combinatorics
and Number Theory for which the computational problems are in PPA [27]: Smith’s theorem [30]
and related existentially polytime (graph) theorems [5], Chevalley’s theorem [10] and Alon’s Com-
binatorial Nullstellensatz [2], among others. Remarkably, the problem of factoring an integer has
been recently proved to belong to PPA (via randomized reductions) [21], and the inclusion of this
fundamental and critical problem gives the class a new significance.

On the other hand, we know fewPPA-complete problems besides the generic one, unfortunately.
The only exceptions are certain versions of Sperner’s problem for rather esoteric non-orientable
bodies. About ten years after the introduction of the class, Grigni [17] had the important idea
that the right geometric context for PPA are non-orientable bodies, and showed that a version of
the Sperner problem in the non-orientable three-dimensional space is complete in the class. Soon
after, Friedl et al. [15] strengthened it to a non-orientable and locally two-dimensional orientable
space.

In general, it would be nice to have a growing strong collection of PPA-complete problems
(like we have for PPAD), which with luck could eventually include factoring. The progress has
been slow: Another ten years passed without any progress in our understanding of the class PPA-
complete for this problem many scientists are interested in.

Contributions Our main results first end the quest for a complete fixed point characterization of
the PPA-complete class. It provides a sharp division on what can be done and what cannot be done
in computing different versions of the fixed point problem on the Möbius band. In particular, it
does so by completing the task started by Friedl et al. [15], to reduce the next dimension demanded
by the seminal result of Grigni [17], with the help of a technique developed by Chen and Deng [7],
on the 2D Möbius version of a zero point problem, referred to as DPZP and conceptualised in [20,
8, 7, 11]. Together with the results of Grigni and Friedl, et al., they raise a theoretical connection
of computational complexity to topology. The comparison between the 2D versions makes a strong
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case for this distinction.
Next, as the past works of Chen and Deng [7] as well as Deng, Qi, Saberi and Zhang [11] unify

the complexity of the various discrete fixed point concepts in principle the above result implies that
the same result holds for all the related discrete fixed points on the Möbius band. However, this
may not always hold in general. We develop a new reduction approach to derive those results on
the Möbius band. In particular, the 2D Tucker on orientable space were proven PPAD-complete,
originally in the first principle by Polvolgyi [26] and then by reduction to another discrete fixed
point [11]. Both approaches are complicated where applied to the Möbius version. Our new
reduction approach makes it easy to be shown in both ways of containing and contained in the
PPA class. The same holds for the other discrete fixed point problems.

Third, the simplicity of our 2D version has been handy to make further applications. On the
higher constant dimension non-orientable space, all the discrete fixed point problems follow from
the 2D results to become PPA-complete. Those cannot be easily obtained from the past works for
the Spernerproblem alone. An even bigger challenge here is whether the PPAD-completeness
of the constant side length higher dimensional Sperner’s problem developed by Chen, et al., [9],
can be extended to the non-orientable space. Using a new (dicephalic snake) embedding lemma,
together with a few demanding technical details, a 2D Sperner version is used to reduce to
the higher dimension and constant side length Sperner problem on non-orientable space, and to
prove the PPA-hardness of the latter. The proof involves quite some technical details but still
accessible, which would be extremely difficult due to the subtlety of the boundary conditions of the
non-orientable case if our Sperner on the 2D Möbius band is constructed differently. The same
subtlety applies to the other discrete fixed point versions.

Fourth, the concept of the index, with modification of mod 2, is helpful both for the proofs that
the above problems are in PPA, It has also be applied to develop algorithmic solutions for the oracle
model of the computational problem. This approach had delivered the matching algorithmic bound
for the oracle models for the fixed point problem in the orientable space [8], closing a previously
almost tight gap [19]. The extension to the non-orientable space is quite natural by simply taking
a mod 2 operation upon that for the orientable space. But it proves very effective. In comparison,
past works have taken the path following paradigm for the fixed point computation. There are
some subtleties in using index for the non-orientable space. We should not interpret the index and
other values in the definitions as in the orientable space: the sense of direction no longer holds in
non-orientable space at least in one dimension. Even though they are named similarly, we still need
to treat them differently.

Fifth, the techniques for the 3D version may bear some similarity with our 2D version, it is
exactly the articulation or, the simplicity if one prefers, in the 2 dimensional results that allows
better applications to even better understanding in related problems. As we prove related results
for other orientable spaces such as the Klein bottle or projective space, we would have to refer
to less natural 3D (in 5 dimensions) Klein solid bottle or 3D projective space, with unbearable
complications in the proofs. One such case is in the beautiful PSPACE proof of the other end of
the line for the path following algorithm in the 2D discrete fixed point proof by Goldberg[16]. In
addition, we had 20 years after the definition of PPA by Papadimitriou, 15 years after Grigni’s 3D
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non-orientable space SPERNER’s PPA-completeness, and 10 years after the locally 2D SPERNER’s
PPA-completeness by Friedl, et al. [15]. It is a time for a better understanding.

Relevance of the Möbius Band The stories of the Möbius band have been a curiosity out of
the Mind, such as a brain’s toy of German mathematicians August FerdinandMöbius (and Johann
Benedict Listing), and the fascination art in the parade of ants by a Dutch artist M.C. Escher [13].
In recent years, it becomes a possibility in scientific discoveries. Scientists made assembled object
created by nano technology [18], proposed technical tool to develop negative refractive index ma-
terials [14], made experimental observation in electromagnetic metamaterial systems [6]. In our
work, it plays a role in understanding theoretical complexity of PPA-completeness. Hopefully, one
day, they will become truly useful like other creatures of human imagination, if one so demands.

Related Literatures The standard Sperner’s problem, 3D-Sperner, is among the first natural
problem proved to be PPAD-complete by Papadimitriou [27]. The problem 2D-Sperner is proved
to be PPAD-complete by Chen and Deng [7]. In [17], Grigni [17] proposed the brilliant idea using
non-orientable space to model the 3D-Sperner as a PPA-complete problem. The only other
known PPA-complete problem is the Sperner problem on a sophisticated locally 2D structure by
Friedl, Ivanyos, Santha and Verhoeven [15].

Lemke-Howson’s algorithm [24] for Nash equilibrium computation has started a path following
paradigm. However, a worst case exponential lower bound was known for this algorithm by Savani
and von Stengel [28]. It was shown that the other PPAD-complete problems demand, under the
oracle model, exponential time including the fixed point problem by Hirsch, Papadimitriou and
Vavasis [19]. It was further shown to have a tight exponential time by Chen and Deng [8], which
was extended to include several discrete versions of the fixed point problem by Deng, Qi, Saberi
and Zhang [11].

For the PPA class, the path following method was known to take an exponential time for
the Smith problem by Krawczyk [23, 4]. It has been extended to related problems, such as an
exponential time bound for finding the second perfect matching on Eulerian graphs by Edmonds
and Sanita [12]. An extensive discussion on related problems can be found in [5].

Organization of Presentation We prove that the natural Möbius band versions of the problems,
Sperner, DPZP andTucker to bePPA-complete. A neat reduction allows the problem of finding
one fixed point be extended to given-one-find-another types of PPA problems. Along with several
important technical details, a dicephalic snake lemma is crucial for the padding and folding to
create a higher dimensional fixed point on a non-orientable grid in order to reduce the problem to
one of constant side lengths.

The paper is laid out as follows: In Section 2, we will show some necessary definitions and
notations. In Section 3, we show a key result, the proof of PPA-completeness of the problem
mn-DPZP and its applications. In Section 4, we extend our work to prove a high-dimensional
non-orientable version of fixed point. In Section 6, we discuss the generality of the results obtained
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here in related settings. We prove the PPA-completeness of the problem of finding the next fixed
point on the projective plane and on the Klein bottle. Finally we discuss potential future works.

2 Preliminaries and Definitions

PPA, (in its complete form, the Polynomial Parity Argument class), is a class of search problems
based on an exponential size graph consisting of nodes of maximum degree two, with a given node
of degree one. The problem asks for an output of another node of degree one, which is guaranteed
to exist by the parity argument. More formally, we define it by a complete problem, named AEUL
as follows:

Definition 1 (Another End of Undirected Lines). Given an input circuit Tn of polynomial
size in n which takes as input u in the configuration space Cn = {0, 1}n, returns as output Tn(u)
in the form ⟨v, w⟩, ⟨v⟩, or ⟨⟩ where v > w and v, w ∈ Cn \ {u}. 0n is a given configuration of one
tuple, i.e., |Tn(0n)| = 1. The search problem is to find another configuration v, v ̸= 0n such that
|Tn(v)| = 1. We should write it as AEUL for short.

Möbius Band: It is obtained from a rectangle by merging its left and right sides after twisting
it 180 degrees (counter)-clockwise to form a one-boundary and one-surface band. Therefore, it is
non-orientable. More formally,

Definition 2 (Möbius Band). Let VN,M = {p = (p1, p2) ∈ Z2 : −N ≤ p1 ≤ N,−M ≤ p2 ≤ M}.
A Möbius band is obtained by twisting VN,M 180 degrees clockwise and then joining every vertex
(N, y) with (−N,−y) to form a loop. We denote it by BN,M . A function f is defined on the Möbius
band BN,M iff ∀y : −M ≤ y ≤M , we have f((N, y)) = f((−N,−y)) on VN,M .

Definition 3 (Standard Triangulation). For each i, j ∈ Z : −N ≤ i < N,−M ≤ j < M , we
link (i, j) with (i+ 1, j + 1) on the grids VN,M and BN,M .

We call every unit square in the standard triangulated grid VN,M a base square, every unit side
length triangle of it a base triangle, its every edge a base edge.

Index: We now define the index [29, 31] but adopt it for the non-orientable space BN,M .
Consider a coloring by {0, 1, 2} of vertices in BN,M , one vertex is assigned by one color. If a base

triangle δ has all three colors, we define its index as 1. Otherwise, the index is 0. Alternatively, we
define an edge index to be 1 if it is colored by both 1 and 2. The index of a base triangle is the
sum of indices of its three edges, mod 2. It prepares us to define the index on Möbius band.

Definition 4 (Index of a Non-orientable Triangulated Möbius Grid BN,M). Given a
triangulated Möbius grid BN,M , a coloring ϕ : BN,M → {0, 1, 2} of its vertices. The index of BN,M

is defined as
index(BN,M , ϕ) :=

∑
δ is a base triangle ∈BN,M

index(δ, ϕ) (mod 2)
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Immediately, one derive the following lemma about indices on the Möbius band.

Lemma 1.
index(BN,M , ϕ) =

∑
e∈∂BN,M

index(e, ϕ) (mod 2),

where ∂BN,M is the boundary of BN,M .

DPZP: We should introduce several concepts to prepare its definition as a numeric version of
the original direction preserving zero point.

Definition 5 (Möbius Numeric Feasible Function). A function f : BN,M → {0,±1,±2} is
feasible if it satisfies the Möbius condition, f((N, y)) = f((−N,−y)), ∀y ∈ Z,−M ≤ y ≤M .

Definition 6 (Möbius Numeric Direction-preserving Function). A function f : BN,M →
{0,±1,±2} is direction-preserving if for any p,q ∈ BN,M where ||p − q||∞ = 1 and f(p) ̸= 0, we
have f(p) + f(q) ̸= 0.

Definition 7 (Zero Point Base Triangle). Given a function f : BN,M → {0,±1,±2}, a base
triangle δ of a triangulated Möbius Grid is called a zero point base triangle of f if {f(p) : p ∈ δ} =
{0, 1, 2}.

Definition 8 (Admissible Boundary Condition). A function F : BN,M → {0,±1,±2} is called
admissible if it satisfied the following boundary conditions:

• F ((0,M)) = −2; F ((0,−M)) = 2

• F ((i,M)) = F ((−i,−M)) = −1, for every i ∈ Z: 0 < i ≤ N

• F ((−i,M)) = F ((i,−M)) = 1, for every i ∈ Z: 0 < i ≤ N

Definition 9 (Numeric Möbius DPZP). Given as input, a triangulated Möbius Grid BN,M , and
a polynomial-time machine F , which generates a numeric direction-preserving feasible admissible
function f on BN,M : f(p) ∈ {0,±1,±2}, ∀p ∈ BN,M , we are required to output p : f(p) = 0.

As the function F (·, ·) mn-DPZP has five values, the index defined above does not apply. We
should introduce a new definition of index for mn-DPZP.

Definition 10 (Index of a Base Edge and a Base Triangle in mn-DPZP). Given an mn-
DPZP grid BN,M , a coloring F : BN,M → {0,±1,±2}, of its vertices. The index of an edge is 1 if
the colors of its two end vertices are {1, 2}, 0 otherwise. The index of a base triangle is the sum of
the indices of its three edges (mod 2).

Definition 11 (Index of mn-DPZP). Given a mn-DPZP grid BN,M , a coloring F : BN,M →
{0,±1,±2}, of its vertices. The index of BN,M is defined as

index(BN,M , F ) :=
∑

δ is a base triangle ∈BN,M

index(δ, F ) (mod 2)
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We have the following lemma on the Möbius grid.

Lemma 2. index(δ, F ) = 1 if and only if F (δ) = {0, 1, 2}. Furthermore, index(BN,M , F ) =∑
e∈∂BN,M

index(e, F ) (mod 2), where ∂BN,M is the boundary of BN,M .

Proof of Lemma 2. First, a base triangle is index 1 if and only if its vertices are colored {x, 1, 2}
where x /∈ {1, 2}. As all vertices in a base triangle are of distance 1 in ∞-metric. Therefore, x
can be neither −1 nor −2 by the direction preserving property. The only index 1 base triangle is
{0, 1, 2}.

Next, as any internal base edge appears in the calculation of indices of two base triangles, the
summation of the indices of them is either 0 or 2, which equals to 0 (mod 2). The claim follows.

Using the index on non-orientable surfaces, it is immediately that:

Lemma 3. The Numeric Möbius DPZP with the admissible boundary always has a zero point.
Finding a zero point is a PPA problem.

Proof of Lemma 3. Since we have only one edge with (2, 1) on the boundary of the Möbius band,
the index of edges along the boundary is 1. Therefore, by Lemma 2, there is an odd number of zero
point base triangles on the Möbius grid. Therefore, there is always a zero point inside the Möbius
grid.

For the construction of the AEUL, we take the boundary edge (2, 1) as the origin vertex of AEUL.
Two such edges of mn-DPZP are connected in AEUL if they are in the same base triangle. Any
such edge in mn-DPZP is an leaf node in AEUL if it is the single {1, 2} edge in a base triangle.

Therefore, an end of lines of the AEUL instance is a base triangle of the mn-DPZP. Finding a
zero point base triangle is an AEUL problem, and in PPA.

We should next list the results for other related discrete fixed point concepts. We call the
problem of finding a fully colored base triangle on Möbius band BN,M the m-Sperner problem.

Definition 12 (m-Sperner). Consider a triangulated Möbius grid BN,M and a polynomial-time
machine G, which generates a function g on BN,M : g(p) = G(p) ∈ {0, 1, 2}, ∀p ∈ BN,M . Further,
we require that g(·) satisfies the m-Sperner boundary condition, defined as follows.

• G((0,M)) = 0; G((0,−M)) = 2

• G((i,M)) = G((−i,−M)) = 0, for every i ∈ Z: 0 < i ≤ N

• G((−i,M)) = G((i,−M)) = 1, for every i ∈ Z: 0 < i ≤ N

The required output is a base triangle which contains all three colors.

Lemma 4. On any admissible triangulated Möbius band BN,M for an m-Sperner instance, the
number of Sperner base triangles is odd. Finding one of those is in PPA.
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Proof. As m-Sperner has index 1, the oddity follows. The reduction to an AEUL is similar to the
above for the mn-DPZP problem.

Now we define the admissible function for the Möbius version of Tucker. A function g:
BN,M → {±1,±2} is m-Tucker admissible if it satisfies that: (1) Antipodal condition, i.e.,
g((x,M)) = −g(x,−M), ∀x ∈ Z,−N ≤ x ≤ N . (2) Möbius condition, i.e. g((N, y)) =
g((−N,−y)), ∀y ∈ Z,−M ≤ y ≤ M . An edge connecting two vertices assigned with the same
value of opposite signs is called a complementary edge.

We define the Möbius version of Tucker as follows.

Definition 13 (m-Tucker). Consider a triangulated Möbius grid BN,M and a polynomial-time
machine G, which generates a function g on BN,M : g(p) = G(p) ∈ {±1,±2}, ∀p ∈ BN,M . Further,
we require that g(·) satisfies the mn-DPZP’s boundary condition, Definition 8. The required output
is a complementary edge.

Lemma 5. On m-Tucker, there is always a complementary edge. Finding one is in PPA.

Proof. Changing the colors {−1,−2} of the vertices in m-Tucker into 0, we reduce the problem to
m-Sperner. As the boundary of the m-Sperner has index 1, there is always a fully colored base
triangle δ. The vertex colored 0 in δ was originally either −1 or −2 in the m-Tucker, we obtain
a complementary edge in the m-Tucker. The claims follow.

3 PPA-completeness of mn-DPZP and Its Applications

We have already proven that mn-DPZP is in PPA in the last section. We now prove the PPA-
hardness of the mn-DPZP. For any input to AEUL(Tn, Cn, {0, 1}n), we construct an mn-DPZP
instance in polynomial time so that each zero point in the mn-DPZP instance maps back to an
end vertex for some lines in the original instance of AEUL(Tn, Cn, {0, 1}n), and vice versa.

Our proof embeds the AEUL(Tn, Cn, 0
n) graph on the Möbius band. The reduction is motivated

by the original proof of 2D Sperner being PPAD-complete by Chen and Deng [7].
Given a simple undirected graph G = (V,E), let |V | = N = 2n, we define G∗ = (V ∗, E∗),

where V ∗ = V12N2,24N . For every p ∈ V ∗, let Kp =
{
q : qi ∈ {pi, pi + 1}

}
, i = 1, 2 to be the

vertex set containing all 4 vertices in the base square having p at the left bottom corner, and
E1

p = {{p,p+ (0, 1)}, {p+ (1, 0),p+ (1, 1)}}, E2
p = {{p,p+ (1, 0)}, {p+ (0, 1),p+ (1, 1)}} to be

its two subsets of edges of Kp. For p,q ∈ V ∗, if pi = qi, i = 1 or 2, let u1,u2, . . . ,um ∈ Z2 be all
the integer internal points on segment pq which are labeled along pq, where u1 = p and um = q.
We say Kp and Kq are connected iff edges set ∪m

k=1E
i
uk ⊆ E∗, we denote it by KpKq.

On the Möbius band, we also allow that K(12N2−1,y) and K(−12N2,−y−1),−24N ≤ y ≤ 24N − 1
can be connected, that is E2

(12N2−1,y)∪E
2
(−12N2,−y−1) ⊆ E∗. If we haveKu1Ku2 ,Ku2Ku3 , . . . ,Kum−1Kum ,

but these points u1,u2, · · · ,um don’t share the same x-coordinate nor y-coordinate, hence the edges
introduced need to make turns in its directions to connect u1 to um. We make a special note that,
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at a turn on Ku toward the right-upper direction, the edges {{u, u+(0, 1)}, {u+(0, 1), u+(1, 1)}}
will be removed to make the nodes along the paths be of degree no more than two.

Intuitively, G∗ is a plannar embedding of the graph G for AEUL with vertices {0, 1, . . . , N − 1}.
The construction is motivated by and has some similar details to that of Chen and Deng [7]. Making
it work on the Möbius band requires new ideas.

For every i : 0 ≤ i < N , vertex i of G maps to a vertex set Si = ∪24i+11
k=24i {K(0,k)}. That is,

we create a fixed-length “tube” Si for the vertex i in G. We call it a “vertex tube”. Every such
tube has two ends, called up and down, dependent on their values of the second coordinates on V ∗,
denoted by Sup

i = K(0,24i+11) and Sdown
i = K(0,24i). We make a change in the embedding of the

starting node 0n: for i = 0, S0 = ∪(24i+11)
k=−24N{K(0,k)} in G∗.

Edge ij appears in G iff there is an undirected path between one of {Sup
i , Sdown

i } and one of
{Sup

j , Sdown
j }. Let ij ∈ E and ik ∈ E be the two edges connected to j and k from i. If j > k we

call j the bigger neighbour and k the smaller neighbour of the vertex i.
For each vertex tube, we connect its up end to its bigger neighbour (if the degree of the vertex

is 1, we also take it as the bigger one), and its down end to the smaller neighbour (if any).
If (i, j) is an edge in G, let yi, yj be the y-coordinates of the ends of tube i and j where need

to be linked together. Let t = 12(N ·max{i, j}+min{i, j}). We consider two different connection
cases:

1. Sup
i − Sdown

j or Sdown
i − Sup

j : we add edges K(0,yi)K(t,yi), K(t,yi)K(t,yj), K(t,yj)K(0,yj) into E
∗.

2. Sup
i −Sup

j or Sdown
i −Sdown

j : w.l.o.g., we assume that i < j, we add edges K(0,yi)K(12N2−1,yi),
K(12N2−1,yi)K(−12N2,−yi−1),K(−12N2,−yi−1)K(−t−1,−yi−1),K(−t−1,−yi−1)K(−t−1,yj),K(−t−1,yj)K(0,yj)

into E∗.

Case 1 is illustrated in Figure 1, which is a normal case. The crucial difference that would involve
in the Möbius band structure B12N2,24N is Case 2, illustrated in Figure 2. For example, if degree of i
is 2, i.e. T (n, i) = ⟨j, k⟩, k > i, j, also we assume that i > j and T (n, j) = ⟨k, i⟩. Let t = 10(n ·i+j),
we will link Sdown

i and Sdown
j by adding edges K(0,24i)K(12N2−1,24i), K(12N2−1,24i)K(−12N2,−24i−1),

K(−12N2,−24i−1)K(−t−1,−24i−1), K(−t−1,−24i−1)K(−t−1,24j), K(−t−1,24j)K(0,24j).
The remaining difficulties of the reduction are how to color the vertices of G∗ according to the

requirements for Möbius DPZP and how to handle crossing paths. We should present techniques
to handle them in the proof.

Lemma 6. mn-DPZP is PPA-hard.

Proof of Lemma 6. Using the main structure presented above, we show how to color B12N2,24N ,
so that for any zero point of this mn-DPZP, we can get a corresponding solution for the search
problem AEUL.

The circuit Tn of AEUL generates an undirected graph G = (Cn, E), where Cn = {0, 1}n. An
edge (u, v) appears in E iff u ∈ Tn(v) and v ∈ Tn(u).
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Figure 1: Connecting vertices

So given any G, we construct an instance (f,G∗) for mn-DPZP problem where f is a coloring
function for the generated G∗ = B12N2,24N . We should also use T12N2,24N to refer to G∗ in case of
no ambiguity, with the understanding that (−12N2, y) and (12N2,−y) are the same vertex.

In constructing the coloring function f for G∗, we make use of the input circuit of Tn, to identify
edges connecting a node to another, and vice versa, and to identify the degree one node of the AEUL
graph.

We define the coloring function as follows:

1. Color vertices on the boundary according to the admissible conditions, Definition 8.

2. Color the long vertex tube: ∀j : −24N ≤ j < 12, set f((0, j)) = 2, f((1, j)) = 1, which is a
long vertex tube for the given degree one vertex 0.

3. Coat the long vertex tube (to protect positive colored 1 and 2 inside tube): ∀j : −24N ≤ j <
12, set f((−1, j)) = −1 and f((2, j)) = −2.

4. Color the other vertex tubes: ∀i : 0 < i < N , set f((0, 24i+ k)) = 2, f((1, 24i+ k)) = 1, k =
0, 1, 2, . . . , 11. We need to make some modifications in the colors for the case k = 0 later.

5. Coat vertex tubes (to protect positive colored 1 and 2 inside tube): ∀i : 0 < i < N :
f((−1, 24i+ k)) = −1, f((2, 24i+ k)) = −2, k = 0, 1, 2, . . . , 11.

6. Make feasible: fill in the the rest of the interior vertices by color −2. Some of those vertices
will be re-colorred in the following steps.

9



Figure 2: Connecting vertices 2

7. Direction preserving on end of lines: For a leaf vertex i : 0 < i < N , we have f(0, 24i) =
f(1, 24i) = 0.

8. Build an edge path: Given an edge (i, j) ∈ E, w.l.o.g., assume that i < j, we construct a
path between i and j in G∗. Let (i′, j) ∈ E and (i, j′) ∈ E. If j > j′, then the upper end of
tube for i is connected to that of j, else the lower end of the tube for i is connected to that of
j. Therefore, there are four possibilities one end of the vertex tube is connected to another
vertex tube.

(a) i > i′ and j < j′: Lower end of vertex tube for i is connected to the upper end of the
vertex tube for j. See Figure 1.

(b) i < i′ and j > j′: Upper end of vertex tube for i is connected to the lower end of the
vertex tube for j. See Figure 1.

(c) i < i′ and j < j′: Lower end of vertex tube for i is connected to the lower end of the
vertex tube for j. See Figure 2.

(d) i > i′ and j > j′: Upper end of vertex tube for i is connected to the upper end of the
vertex tube for j. Similar to item (c).

We should make appropriate adjustments so that the colorings consistently link two vertex
tubes.

9. We need parallel paths of width 4, making the colors crossing it to be ⟨−1, 2, 1,−2⟩ (or
⟨−2, 1, 2,−1⟩, dependent on the direction we are moving) to maintain the direction preserving
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conditions. The vertex tubes for i and j connected in the four ways specified above will
maintain it, that their colorings are consistent.

Note that if the path will pass through the direction-reversing line, it must satisfy the
Möbius condition, that is, the four vertices crossing the path reverse their colors from from
⟨−1, 2, 1,−2⟩ to ⟨−2, 1, 2,−1⟩ (or vice versa) after crossing the reversing direction boundary.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 3: Connection Crossing

The colorings along the parallel paths satisfy our condition of direction preserving, as well as
feasibility and admissibility conditions, except the problem where two paths cross each other. We
resolve it in the same way originated from [7], shown in Figure 3. All the changes are local and can
be decided using the local information with a constant bounded number of uses of the circuit T .
Now we have provided the admissible coloring function that, given any point in B12N2,24N , provides
its coloring in polynomial time using the polynomial time circuit T .

Note that vertices of color 0 in G∗ only appear in the mapping from G to G∗ from a vertex of
degree one in G.

Therefore, finding a vertex of color 0 in G∗ is equivalent to find the AEUL solution in G.
Hence we have proven that mn-DPZP is PPA-hard.

We conclude that Möbius DPZP and Möbius Tucker are PPA-complete.

Theorem 14. mn-DPZP is PPA-complete.
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Proof. By Lemma 3, mn-DPZP is in PPA. By Lemma 6, mn-DPZP is PPA-hard. The claim
follows.

Theorem 15. m-Tucker is PPA-complete.

Proof of Theorem 15. m-Tucker is in PPA by Lemma 5.
For PPA-hardness, we use the same construction as the proof of Lemma 6, except that we

change vertices colored 0 to color −2. Therefore, at each vertex of color 0 in Lemma 6, we have an
edge of color +2 and −2; and vice versa. The reduction follows.

Therefore, the theorem holds.

Finally we show that Möbius Sperner is PPA-complete.

Theorem 16. m-Sperner is PPA-complete.

Proof of Theorem 16. First, m-Sperner is in PPA by Lemme 4.
To prove it is PPA-hard, we simply replace vertices colored {−1,−2} to color 0 in the instance

constructed in the PPA-hardness proof of mn-DPZP. Finding a fully colored triangle δ in the
m-Sperner instance will imply a true zero point in the mn-DPZP instance because the direction
preserving condition, Definition 6, for mn-DPZP will prevent another vertex in the same base
triangle of color∈ {−1,−2}.

The claim follows.

4 High Dimensional Non-orientable Discrete Fixed Point

In the above, some 2D fixed point problems on the Möbius band are proven PPA-complete. The
generalized problem in higher dimension space with all constant side lengths is considered in this
section. The proof is motivated by a construction in [9]. To handle the non-orientable space, the
key changes are on the snake lemma. We need a dicephalic snake version. Considerable changes
and new ideas are required to make it through. To avoid tedious details, we should present a
version of the construction and the proof. To observe the page limit, we place all the proofs and
some lemmas at the appendices.

4.1 Uniform Boundary Discrete Fixed Points on Möbius Band

We introduce a version here for which the boundary of the 2D Möbius band consists vertices all of
the same color. Every instance of the problem has index 0. This naturally leads to a version of the
fixed point problem where one fixed point is given and another is sought after. We call such a case
the uniform boundary coloring.

More precisely, the coloring function f is of uniform boundary on Möbius band BN,M if it
satisfies that: (1) f((x,±M)) = 0, ∀x ∈ Z,−N ≤ x ≤ N . (2) Möbius condition, i.e. f((N, y)) =
f((−N,−y)), ∀y ∈ Z,−M ≤ y ≤M . Then the Möbius Sperner problem can be defined as follows.
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Definition 17 (Möbius Sperner). The input is a polynomial-time machine F that generates a
uniform boundary 3-coloring function f on BN,M : F (p) = f(p) ∈ {0, 1, 2}, ∀p ∈ BN,M , as well as a
panchromatic base triangle. The required output is another panchromatic base triangle on BN,M .

Note that index(BN,M , f) is zero for a color function of uniform boundary on the Möbius band.
According to Lemma 1, we have the following lemma:

Lemma 7. For any uniform boundary 3-coloring of the triangulated Möbius band BN,M , the number
of panchromatic base triangles is even. Given one panchromatic base triangle, finding another is a
PPA-complete problem.

Proof of Lemma 7. Clearly, the degree of any instance is 0. Therefore, there is an even number of
the fully colored base triangles. Given one fully colored Sperner base triangle, the existence of
another follows by the above lemma.

The problem is in PPA because the relationship of two edges on a base triangle of colors (1,2)
still holds and the uniform color boundary condition prevents the paths in the underlying AEUL
going out of boundary.

On the other direction, m-Sperner can be easily reduced to Uniform-Color-Boundary
Möbius Sperner by coating an extra layer of vertices outside of the boundary and coloring
them all zero. More specifically, for each instance of m-Sperner, we create a Uniform-Color-
Boundary Möbius Sperner by adding new vertices {(i,±(M + 1)) : −N ≤ i ≤ N} with all
color 0. After this construction, we have an instance of Uniform-Color-Boundary Möbius
Sperner. There is a fully colored base triangle given ({(0,−M −1), (0,−M), (1,−M)}). Our goal
is to find another which is also one for the original m-Sperner instance.

4.2 High Dimensional Möbius Sperner

We extend the 2-dimensional uniform boundary Möbius Sperner proven PPA-complete in the
above to higher dimension. First we define the well-behaved function.

Definition 18 (Well-behaved Function [9]). A polynomial-time computable integer function
f is well-behaved, if ∃n0 > 0 such that ∀n ≥ n0 3 ≤ f(n) ≤ n/2.

Define Kp =
{
q ∈ Zd | qi = pi or pi + 1, ∀1 ≤ i ≤ d

}
.

For a positive integer d and a vector r ∈ Zd
+, let

Ad
r =

{
p ∈ Zd | −ri+1 ≤ pi ≤ ri−1, ∀1 ≤ i ≤ d

}
be the hyper grid with side length r (note that is 2(ri−1) in the i-th dimension because of symmetry
with respect to ri = 0). Note that its boundary is, in one dimension, intentionally left open,

∂Ad
r =

{
p ∈ Ad

r | pi = −ri+1 or ri−1, ∃2 ≤ i ≤ d
}
.
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Definition 19 (The Valid Boundary Condition). A coloring function C : Ad
r → {0, 1, . . . , d}

is valid on Ad
r if it satisfies the following Boundary Conditions:

1. (Uniform color boundary:) For any p ∈ ∂Ad
r , C(p) = 0

2. (Reversing face consistency:) C((r1−1, x2, x3, . . . , xd)) = C((−r1+1,−x2, x3, . . . , xd)) for all
xi, where i = 2, 3, . . . , d. Note that it is equivalent to merging (r1 − 1, x2, x3, · · · , xd) and
(−r1 + 1,−x2, x3, · · · , xd) into one vertex.

The point set {(±(r1−1), x2, . . . , xd) : −ri < xi < ri, i = 2, 3, . . . , d} are called reversing face. Even
though they are not on the boundary, we include (2) here to make sure the consistency of function
values on the non-orientable space. Fixing other variables, x3, x4, · · · , xd, we have a reversing plane
for the variables x1 and x2.

For any well-behaved function f , we define a corresponding Möbius-Sperner fixed point prob-
lem as follows.

Definition 20 (Möbius Spernerf ). For a well-behaved function f and a parameter n, let m =
f(n) and d = ⌈n/f(n)⌉. An input instance of Möbius Spernerf is a pair (C, 0n) where C is a
valid coloring function with parameter d and r where ri = 2m, ∀i : 1 ≤ i ≤ d. Given a point p ∈ Ad

r

where Kp is of degree one, i.e., contains one panchromatic simplex in its triangulation, the output
of this problem is another point q ̸= p, such that Kq contains another panchromatic simplex.

We have the following theorem.

Theorem 21. The problem Möbius Spernerf is PPA-complete for any well-behaved function
f .

One can show that this problem is in PPA. To prove the hardness, similar to the orientable
space [9], we embed an instance of Möbius Spernerf2 , known in PPA-complete, into one dimen-
sional higher space iteratively till Möbius Spernerf . We should show that the process can be
done in a polynomial number of state transformations. In Subsection 4.3, we show three crucial
lemmas for our reduction. In Subsection 4.4, we employ these three lemmas iteratively to build up
our construction.

4.3 Three Technical Lemmas

A triple T = (C, d, r) is a coloring triple if r ∈ Zd with ri ≥ 3 for all 1 ≤ i ≤ d and C is a valid
coloring function with parameters d and r. Let Size [C] denote the number of gates plus the number
of input and output variables in a function C.

The embedding is carried out by a sequence of three polynomial-time transformations: L1(T,
t, u), L2(T, u), and L3(T, t, a, b). L1(T, t, u) increases the t-th dimension size of the hyper grid
from rt to u (requiring u > rt). L2(T, u) extend the colouring into a space one dimension higher.
L3(T, t, a, b) folds a Möbius grid T to T ′ so that one more side length in a dimension is reduced
to a constant size. At the same time, from every panchromatic simplex of T ′, one can find a
panchromatic simplex of T efficiently. We should use ei as the vector for the i-coordinate.
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L1(T, t, u): {Input: T = (C, d, r), t, u} {Output: (C ′, d, r′), r′ = r+ (u− rt)et}

1. if p ∈ ∂Ad
r′ then C ′(p) = 0

2. else if −rt < pt < rt then C ′(p) = C(p)
3. else C ′(p) = 0

Figure 4: How L1(T, t, u) extends the coloring triple T = (C, d, r)

L2(T, u): {Input: T = (C, d, r), u} {Output: T ′ = (C ′, d+ 1, r′), r′d+1 = u, (∀i : 1 ≤ i ≤ d)r′i = ri }

1. if p ∈ ∂Ad+1
r′ then C ′(p) = 0.

2. else if pd+1 = 1 then C ′(p) = C(p̂) where p̂ ∈ Zd satisfying p̂i = pi for all 1 ≤ i ≤ d.
3. else if pd+1 = 0 then C ′(p) = d+ 1.
4. else C ′(p) = 0

Figure 5: How L2(T, u) extends the coloring triple T = (C, d, r)

Lemma 8 (L1(T, t, u): Padding a Dimension). Given a coloring triple T = (C, d, r) and two
integers 1 ≤ t ≤ d and u > rt, L1 constructs a new coloring triple T ′ = (C ′, d, r′) that satisfies the
following two conditions:

A. r′t = u, and r′i = ri for all other i ∈ [d]. In addition, there exists a polynomial g1(n) such that
Size [C ′] = Size [C] +O(g1(Size [r

′])), and T ′ can be computed in time polynomial in Size [C ′].
We write T ′ = L1(T, t, u);

B. From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic
simplex P of T in polynomial time.

Proof. Property A immediately follows from Figure 4. For Property B, let P ′ be a panchromatic
simplex of T ′, and Kp be the hypercube containing P ′. We first note that −rt + 1 ≤ pt < rt − 1,
because if pt ≥ rt − 1 or pt < −rt + 1, all colors on Kp will be 0 by the color assignment. As
C ′(q) = C(q) for all q ∈ Ad

r. Thus P
′ is also a panchromatic simplex of the coloring triple T .

Next, we add a dimension to the grid.

Lemma 9 (L2(T, u): Adding a Dimension). Given a coloring triple T = (C, d, r) and integer u ≥ 3,
L2 constructs a new coloring triple T ′ = (C ′, d+ 1, r′) satisfying the following conditions:

A. r′d+1 = u, and r′i = ri for all i ∈ [d]. Moreover, there exists a polynomial g2(n) such that
Size [C ′] = Size [C] +O(g2(Size [r

′])). T ′ can be computed in time polynomial in Size [C ′]. We
write T ′ = L2(T, u);
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L3(T, t, a, b):
Input: T = (C, d, r), t, a, b, 1 ≤ t ≤ d, rt = a(2b+ 1) + 5, a, b ≥ 1
Output: T ′ = (C ′, d+ 1, r′), r′t = a+ 5, r′d+1 = 4b+ 3, (∀i ̸= t, 1 ≤ i ≤ d)r′i = ri

1. if p ∈W then C ′(p) = C(ψ(p))
2. else if p ∈ ∂Ad+1

r′ then C ′(p) = 0
3. else if pd+1 = 0 then C ′(p) = d+ 1.
4. else if pd+1 = 4i where 1 ≤ i ≤ b and 0 ≤ |pt| ≤ a+ 1 then C ′(p) = d+ 1
5. else if pd+1 = 4i+ 1, 4i+ 2 or 4i+ 3 where 0 ≤ i ≤ b− 1 and |pt| ≤ 1 then C ′(p) = d+ 1
6. else C ′(p) = 0

Figure 6: How L3(T, t, a, b) extends the coloring triple T = (f, d, r)

B. From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic
simplex P of T in polynomial time.

Proof. For each point p ∈ Ad+1
r′ , we use p̂ to denote the point z ∈ Ad

r with zi = pi, ∀i ∈ [d]. The
color assignment of C ′ is given in Figure 5. Clearly, Property A is true.

To prove Property B, we let P ′ ⊂ Kp be a panchromatic simplex of T ′. We note that pd+1 = 0.
For otherwise, Kp contains color d+1 only if pd+1 = −1, in which case, it only contains color d+1
and 0, a contradiction. Therefore, the panchromatic simplex P ′ must be in Kp for pd+1 = 0. The
rest of vertices, those in p̂, must all be in Kp, which contains all the colors except d+1, is therefore
a panchromatic simplex of T .

Lemma 10 (L3(T, t, a, b): Dicephalic Snake Embedding). Given a coloring triple T = (C, d, r) and
integer 1 ≤ t ≤ d, if rt = a(2b+ 1) + 5 for two integers a, b ≥ 1, then L3 constructs a new coloring
triple T ′ = (C ′, d+ 1, r′) that satisfies the following conditions:

A. r′t = a + 5, r′d+1 = 4b + 3, and r′i = ri for all other i ∈ [d]. Moreover, there exists a
polynomial g3(n) such that Size [C ′] = Size [C] + O(g3(Size [r

′])) and T ′ can be computed in
time polynomial in Size [C ′]. We write T ′ = L3(T, t, a, b).

B. From each panchromatic simplex P ′ of coloring triple T ′, we can compute a panchromatic
simplex P of T in polynomial time.

Proof. Consider the domains Ad
r ⊂ Zd and Ad+1

r′ ⊂ Zd+1 of our coloring triples. The reduction

L3(T, t, a, b) is carried out in three steps. First, we define a d-dimensional set W ⊂ Ad+1
r′ that is

large enough to contain Ad
r. Second, we define a (many to one) map ψ from W to Ad

r that specifies
an implicit embedding of Ad

r into W . Finally, we build a function C ′ for Ad+1
r′ and show that from

each panchromatic simplex of T ′, a panchromatic simplex of T can be found in polynomial time.
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Figure 7: The two dimensional view of set W ⊂ Ad+1
r′

A two dimensional view of W ⊂ Ad+1
r′ is illustrated in Figure 7. We use a (dicephalic) snake-

pattern to realize the longer tth dimension of Ad
r using the two-dimensional space defined by a new

shorter tth dimension and the (d+1)th dimension (smaller by a multiplicative factor less than one)
of Ad+1

r′ , such that it is roughly rt = r′t ∗ r′d+1 (in fact, rt = O(r′t ∗ r′d+1)). Formally, W consists of

points p ∈ Ad+1
r′ satisfying 1 ≤ pd+1 ≤ 4b+ 1 and

if pd+1 = 1, then 2 ≤ pt ≤ a+ 4 or −(a+ 4) ≤ pt ≤ −2;

if pd+1 = 4b+ 1, then −(a+ 2) ≤ pt ≤ a+ 2;

if pd+1 = 4(b− i)− 1 where 0 ≤ i ≤ b− 1, then 2 ≤ pt ≤ a+ 2 or −(a+ 2) ≤ pt ≤ −2;

if pd+1 = 4(b− i)− 3 where 0 ≤ i ≤ b− 2, then 2 ≤ pt ≤ a+ 2 or −(a+ 2) ≤ pt ≤ −2;

if pd+1 = 4(b− i)− 2 where 0 ≤ i ≤ b− 1, then pt = 2 or −2;

if pd+1 = 4(b− i) where 0 ≤ i ≤ b− 1, then pt = a+ 2 or −(a+ 2).

To build T ′, we embed the coloring triple T into W . The embedding is implicitly given by a
many-to-one map ψ from W to Ad

r, which will play a vital role in the coloring and the analysis of
our reduction. For each p ∈ W , we use p[m] to denote the point q in Zd with qt = m and qi = pi
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for all other i ∈ [d]. We denote by the function sgn(x) = 1 if x > 0,−1 if x < 0, 0 if x = 0. We
define ψ(p) according to the following cases:

if pd+1 = 1, then ψ(p) = p[2ab · sgn(pt) + pt]

if pd+1 = 4b+ 1, then ψ(p) = p[pt];

if pd+1 = 4(b− i)− 1 where 0 ≤ i ≤ b− 1, then ψ(p) = p[((2i+ 2)a+ 4) · sgn(pt)− pt];

if pd+1 = 4(b− i)− 3 where 0 ≤ i ≤ b− 2, then ψ(p) = p[(2i+ 2)a · sgn(pt) + pt];

if pd+1 = 4(b− i)− 2 where 0 ≤ i ≤ b− 1, then ψ(p) = p[((2i+ 2)a+ 2) · sgn(pt)];
if pd+1 = 4(b− i) where 0 ≤ i ≤ b− 1, then ψ(p) = p[((2i+ 1)a+ 2) · sgn(pt)].

We let ψi(p) denote the ith component of ψ(p).

Proposition 1 (Valid Boundary Condition Preserving). The coloring function C ′ described in
Figure 6 is valid on Ad+1

r′ .

Proof. First we show that C ′ satisfies the uniform color boundary condition (1) for all p ∈ ∂Ad+1
r′ .

We only need to prove every vertex p ∈W ∩ ∂Ad+1
r′ is colored zero, by Step 2 of Figure 6.

∀p ∈W ∩∂Ad+1
r′ , by the definition of ψ(·), we have pi = ±(r′i−1) if and only if ψi(p) = ±(ri−1)

for (i : d ≥ i ≥ 2). It follows that C ′(p) = C(ψ(p)) = 0 by the valid boundary condition for C.
Therefore, C ′ satisfies the valid boundary condition (1).

Next we show that C ′ satisfies the reversing face boundary condition (2).

• If t > 2, obviously, C ′ satisfies the boundary condition (2), since we have no change in x1 nor
x2 for any set of other variables.

• If t = 1, we consider p = (r′1−1, x2, x3, . . . , xd, xd+1) and p′ = (−r′1+1,−x2, x3, . . . , xd, xd+1).
If xd+1 ̸= 1, C ′(p) = C ′(p′) = 0. If xd+1 = 1, then p,p′ ∈ W . Thus C ′(p) = C(ψ(p)),
C ′(p′) = C(ψ(p′)). Since C is valid, C(ψ(p)) = C(ψ(p′))) by definition of ψ(·). Therefore,
C ′(p) = C ′(p′).

• If t = 2, we consider p = (r1−1, x′2, x3, . . . , xd, xd+1) and p′ = (−r1+1,−x′2, x3, . . . , xd, xd+1).
Because p and p′ are central symmetric on the reversing plane, they are both in W or
both not. If p,p′ ∈ W , then C ′(p) = C(ψ(p)) = C(ψ(p′)) = C ′(p′)(since C is valid). If
p,p′ are not in W , we have C ′(p) = C ′(p′) = 0 (where p is outside W or pd+1 < 0) or
C ′(p) = C ′(p′) = d+ 1 (where p is inside W ).

Therefore, C ′ is a valid coloring function on Ad+1
r′ .

Clearly, whether p ∈ W or not can be decided in polynomial time by L3. Property A in
Lemma 10 follows from the construction in Figure 6.

Next, we establish Property B of Lemma 10.
The intuition behind the proof is as follows. In C ′, vertices to the inside of W are colored in

d+1, and vertices to the outside are colored in 0. Every (unit-size) hypercube Kp ⊂ Ad+1
r′ consists
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of Kp ∩W , whose image ψ(Kp ∩W ) is a (unit-size) hypercube in Ad
r, and either vertices to the

inside or the outside of W but not both. Let P ′ be a panchromatic simplex of T ′ in Ad+1
r′ . Let

Kp∗ be the hypercube containing P ′. Since hypercubes to the outside of W do not have a vertex
of color d+1, Kp∗ must lie to the inside of W . We will show that, except the vertex of color d+1,
every vertex p ∈ P ′ either belongs to W ∩ Kp∗ , or it can be mapped to a vertex q ∈ W ∩ Kp∗ ,
such that C ′(q) = C ′(p). Thus from P ′, we can recover d+1 points in W ∩Kp∗ with d+1 distinct
colors {0, 1, . . . , d}. Since C ′(p) = C(ψ(p)) for all p ∈ W , we can apply ψ to get a panchromatic
simplex P of T .

Formally, we proceed to prove a collection of claims to cover all the possible cases of the given
panchromatic simplex P ′ of T ′. We use the following notation: For each p ∈ Ad+1

r′ , let p[m1,m2]
denote the vertex q ⊂ Zd+1 such that qt = m1, qd+1 = m2 and qi = pi for all other i ∈ [d].

Claim 1. If p∗t = 0, then p∗d+1 = 4b. Furthermore, for every vertex p ∈ P ′ such that C ′(p) ̸= d+1,
C(ψ(p[pt, 4b+ 1])) = C ′(p).

Proof. For the first part of the claim, we have the following contradictions if p∗d+1 ̸= 4b and p∗t = 0.

1. If p∗d+1 = 4b+ 1, Kp∗ does not contain color d+ 1.

2. p∗d+1 < 0: C ′(p) ∈ {0, d+ 1}, the colors of vertices in Kp∗ can only be 0 or d+ 1.

3. p∗d+1 < 4b: p∗t = 0 implies pt ∈ {0, 1}. Therefore, each vertex q ∈ Kp∗ is colored according
one of the conditions in line 3, 4, 5 or 6 of Figure 6. For each q ∈ Kp∗ , C ′(q) = 0 or d + 1
from the construction in Figure 6.

Then,Kp∗ cannot be a panchromatic hypercube, contradicting the assumption of the claim. Putting
these cases together, we have p∗d+1 = 4b.

We now prove the second part of the claim. If pd+1 = 4b + 1, then we are done, because
C(ψ(p)) = C ′(p) according to line 1 of Figure 6. Then pd+1 = 4b is the only other possibility.
Therefore, by the condition C ′(p) ̸= d + 1, according to Line 2 and 4 of Figure 6, we have
p ∈ W ∩ ∂Ad+1

r′ and p[pt, 4b+ 1] = p. So we have C(ψ(p[pt, 4b+ 1])) = C ′(p[pt, 4b+ 1]) = C ′(p),
which completes the proof of the claim.

Claim 2. If p∗t = a + 2 or a + 3, then p∗d+1 = 0. In addition, for each vertex p ∈ P ′ such that
C ′(p) ̸= d+ 1, C(ψ(p[pt, 1])) = C ′(p).

Proof. Obviously, p∗d+1 ≥ 0. If p∗d+1 > 0, thenKp∗ does not contain color d+1, so we have p∗d+1 = 0.
The first half of the claim holds.

For the second half of the claim, first we know that if p ∈ W , the claim follows. We consider
the following three cases:

1. pd+1 = 1: then p is in W , we have C(ψ(p[pt, 1])) = C ′(p).
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2. p ∈ Ad+1
r′ \ ∂Ad+1

r′ : recall that C ′(q) = d+ 1 for all q ∈ Ad+1
r′ \ ∂Ad+1

r′ with qd+1 = 0, and we
know that pt ∈ {a+ 2, a+ 3, a+ 4}. So p is also in W in this case.

3. p ∈ ∂Ad+1
r′ : we have p[pt, 1] ∈ ∂Ad+1

r′ , and ψ(p) = ψ(p[pt, 1]), hence C(ψ(p[pt, 1])) =
C(ψ(p)) = C ′(p).

Combine these three cases, the second half of the claim follows.

Claim 3. If p∗d+1 = 4b, then 0 ≤ p∗t ≤ a + 1. Moreover, for each vertex p ∈ P ′ such that
C ′(p) ̸= d+ 1, C(ψ(p[pt, 4b+ 1])) = C ′(p).

Proof. If p∗t > a+1, then Kp∗ does not contain color d+1. So 0 ≤ p∗t ≤ a+1. Similar to the proof
of Claim 1, we can prove the second part for the case when 0 ≤ pt ≤ a+ 1.

When pt = a+2, both p and p[pt, 4b+1] are in W , and we have ψ(p) = ψ(p[pt, 4b+1]). Thus,
C(ψ(p[pt, 4b+ 1])) = C(ψ(p)) = C ′(p).

We can similarly prove the following claims.

Claim 4. If p∗d+1 = 4i+1 or 4i+2 for some 0 ≤ i ≤ b−1, then p∗t = 1. Moreover, for each p ∈ P ′

such that C ′(p) ̸= d+ 1, C(ψ(p[2, pd+1])) = C ′(p).

Claim 5. If p∗d+1 = 4i for some 1 ≤ i ≤ b− 1, then 1 ≤ p∗t ≤ a+ 1. In addition, for each p ∈ P ′

such that C ′(p) ̸= d + 1, if 2 ≤ pt ≤ a + 1, then C(ψ(p[pt, 4i + 1])) = C ′(p); if pt = 1, then
C(ψ(p[2, 4i+ 1])) = C ′(p).

Claim 6. If p∗d+1 = 4i − 1 for some 1 ≤ i ≤ b, then 1 ≤ p∗t ≤ a + 1. Moreover, for each p ∈ P ′

such that C ′(p) ̸= d + 1, if 2 ≤ pt ≤ a + 1, then C(ψ(p[pt, 4i − 1])) = C ′(p); if pt = 1, then
C(ψ(p[2, 4i− 1])) = C ′(p).

Claim 7. If p∗d+1 = 0, then 1 ≤ p∗t ≤ a + 3. In addition, for each vertex p ∈ P ′ such that
C ′(p) ̸= d + 1, if 2 ≤ p∗t ≤ a + 3, then p ∈ W (and thus, C(ψ(p)) = C ′(p)); if p∗t = 1, then
C ′ψ(p[2, 1])) = C ′(p).

In addition,

Claim 8. p∗d+1 ̸= 4b+ 1.

Proof. If p∗d+1 = 4b+ 1 then Kp∗ does not contain color d+ 1.

Here we do not list the cases where pt < 0 where they are all the same as the above claims
since W is symmetric (technically, there is one unit-sized bias between the negative and positive
cases about the tth dimension). Notice that p∗d+1 ≥ 0 in our construction of T ′. Suppose that P ′

is a panchromatic simplex of T ′, and Kp∗ be the hypercube containing P ′. Then P ′ and p∗ must
satisfy the conditions of one of the claims above. By that claim, we can transform every vertex
p ∈ P ′, (aside from the one that has color d+ 1) back to a vertex q in Ad

r to obtain a set P from
P ′. Since P is accommodated, it is a panchromatic simplex of t. Thus, with all the claims above,
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The Construction of T 3m′−14 from T 1

1. for any t from 0 to m′ − 6 do
2. let u = (2(m

′−t−1)(l−2) − 5)(2l−1 − 1) + 5
3. T 3t+2 = L1(T 3t+1, 1, u)
4. T 3t+3 = L3(T 3t+2, 1, 2(m

′−t−1)(l−2), 2l−2 − 1)
5. T 3t+4 = L1(T 3t+3, t+ 3, 2l)

Figure 8: The Construction of T 3m′−14 from T 1

we specify an efficient algorithm to compute a panchromatic simplex P of T given a panchromatic
simplex P ′ of T ′.

4.4 Proof of The PPA-hardness in Theorem 21

Starting with the two dimensional case, a folding process presented next changes the size of each
dimension one by one to make the size in accordance to that of the well-behaved functions. Each
step uses operations L1(T, t, u), L2(T, u), and L3(T, t, a, b) to achieve this goal and maintains the
validity of boundary conditions by Lemma 8, 9 and 10.

The folding process from Chen et al. [9] can now be copied over by using our versions of the
three basic operations, L1, L2 and L3, introduced above. Only some little changes are necessary in
order to deal with the details for the non-orientable model. We present a simplified version here.

Formally, let (C, 02n) be an input instance of Möbius Spernerf2 , already proven PPA-
complete. Recall that f2(n) = ⌊n/2⌋. Let

l = f(11n) ≥ 3,m′ =

⌈
n

l − 2

⌉
, and m =

⌈
11n

l

⌉
.

For any well-behaved function f , we reduce Möbius Spernerf2 to Möbius Spernerf by itera-
tively constructing a sequence of coloring triple T = {T 0, T 1, . . . , Tw} for some w = O(m), where
T0 = (C, 2, (2n, 2n)) and Tw = (Cw,m, rw) such that rw ∈ Zm and rwi = 2l for any i, 1 ≤ i ≤ m. At
each phase t, we employ one of the three technical lemmas L1,L2 and L3 described in the previous
subsection with appropriate parameters to construct T t+1 from T t.

First, we invoke L1
(
T 0, 1, 2m

′(l−2)
)
to get T 1 =

(
C1, 2,

(
2m

′(l−2), 2n
))

, where the pre-condition

of L1 holds as m′(l − 2) ≥ n. Next we call the procedure in Figure 8. During every loop, the first
component of r decreases by a factor of 2l−2 while the dimension of the space increases by 1 and
the new dimension has a size already satisfied the requirement. So when finishing this function, we

get a temporary coloring triple T 3m′−14 =
(
C3m′−14, d3m

′−14, r3m
′−14

)
, such that

d3m
′−14 = m′ − 3, r3m

′−14
1 = 25(l−2), r3m

′−14
2 = 2n and r3m

′−14
i = 2l, for any i : 3 ≤ i ≤ m′ − 3.
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The Construction of Tw′
from T 3m′−14

1. let t = 0
2. while T 3(m′+t)−14 = (C3(m′+t)−14,m′ + t− 3, r3(m

′+t)−14) satisfies r
3(m′+t)−14
1 > 2l do

3. let k = ⌈(r3(m
′+t)−14

1 − 5)/(2l−1 − 1)⌉+ 5
4. T 3(m′+t)−13 = L1(T 3(m′+t)−14, 1, (k − 5)(2l−1 − 1) + 5)
5. T 3(m′+t)−12 = L3(T 3(m′+t)−13, 1, k, 2l−2 − 1)
6. T 3(m′+t)−11 = L1(T 3(m′+t)−12,m′ + t− 2, 2l), set t = t+ 1
7. let w′ = 3(m′ + t)− 13 and Tw′

= L1(T 3(m′+t)−14, 1, 2l)

Figure 9: The Construction of Tw′
from T 3m′−14

Next, well invoke the procedure given in Figure 9. Note that the while-loop must terminate in at
most 8 iterations because we start with r3m

′−14
1 = 25(l−2). The procedure returns a coloring triple

Tw′
=

(
Cw′

, dw
′
, rw

′
)
that satisfies

w′ ≤ 3m′ + 11, dw
′ ≤ m′ + 5, rw

′
1 = 2l, rw

′
2 = 2n, rw

′
i = 2l, for any i : 3 ≤ i ≤ dw

′
.

Then we repeat the whole process above on the second coordinate and obtain a coloring triple

Tw′′
=

(
Cw′′

, dw
′′
, rw

′′
)
such that

w′′ ≤ 6m′ + 21, dw
′′ ≤ 2m′ + 8 and rw

′′
i = 2l, for any i : 1 ≤ i ≤ dw

′′
.

Now follow our initial definition for m and m′, we have

dw
′′ ≤ 2m′ + 8 ≤ 2

(
n

l − 2
+ 1

)
+ 8 ≤ 2

(
n

l/3

)
+ 10 =

6n

l
+ 10 ≤ 11n

l
≤ m.

Finally, we repeat applying L2 for m−dw′′
times with parameter u = 2l to obtain the final coloring

triple Tw = (Cw) ,m, rw where rwi = 2l for any i, 1 ≤ i ≤ m. It follows our construction, w = O(m).
Now we prove that the whole construction is indeed a reduction from Möbius Spernerf2

to Möbius Spernerf . Let T i =
(
Ci, di, ri

)
, as sequence

{
Size

[
ri
]}

0≤i≤w
is non-decreasing and

w = O(m) = O(n), by Property A of Lemma 8, 9 and 10, there exists a polynomial g(n) such that
Size [Cw] = Size [C] +O(g(n)). By these Properties A again, we can construct the whole sequence
T and in particularly, Tw =

(
Cw,m, r2

)
, in time polynomial in Size [C].

As we know, the pair
(
Cw, 011n

)
is an input instance of Möbius Spernerf . Given a panchro-

matic simplex P of
(
Cw, 011n

)
, using the algorithm in Property B of Lemma 8, 9 and 10, we can

compute a sequence of panchromatic simplex Pw = P, Pw−1, . . . , P 0 iteratively in polynomial time,
where P t is a panchromatic simplex of T t and can be computed from the panchromatic simplex
P t+1 of T t+1. In the end, we obtain P 0, which is a panchromatic set of

(
C, 02n

)
.
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5 Discrete Fixed Points on Projective Space and Klein Bottle

The results we have discussed above extend to other non-orientable spaces. The general idea is to
slice out a Möbius band from the more complicated non-orientable space and to color it properly,
then to patch the rest of the space. Two of the most interesting ones are the projective space
and Klein Bottle. While the Möbius band can be embedded into 3D Euclidean space, neither the
projective space nor the Klein bottle can. In this section, we make a reduction from DPZP to both
the Möbius band and the projective plane for the PPA-hardness. As usually, as both cases are two
dimensional objects, it is easy to triangulate them and to develop a path following algorithm.

We have discussed two types of discrete fixed point problems in the above. 1. finding one, and
2. (given one) finding another, dependent on the boundary conditions. As both the Projective
space and the Klein bottle are closed without a boundary, we need to use the second version.

Our presentation will focus on the mn-DPZP version of the problems. The same applies to
other types of discrete fixed point concepts discussed above. We omit them here as the results are
similar.

5.1 mn-DPZP on the Projective Plane

We make a reduction from mn-DPZP to the same problem on the projective space. We will define
the DPZP on the projective plane. Then, we make a reduction of mn-DPZP to the DPZP on the
projective plane.

First, a 2D projective plane can be obtained from the sphere of a 3D unit ball by identifying
two points share the same diameter. In other words, (x, y, z) and (−x,−y,−z) in B = {(x, y, z) :
x2 + y2 + z2 = 1} are merged into one point.

Next, it can be decomposed into a Möbius band and a disc as follows. M = {(x, y, z) : |z| ≤
1/2 : (x, y, z) ∈ B} and D+ = {(x, y, z) ∈ B : z ≥ 1/2} D− = {(x, y, z) ∈ B : z ≤ −1/2}. Here
D+ and D− merge into one. We color the disc as in the central figure, at the center of the disk we
place a zero point Figure 10.

Further, let M+ = {(x, y, z) ∈ M : x ≥ 0 and M− = {(x, y, z) ∈ M : x ≤ 0. We have M+ is a
Möbius band and so is M−. Moreover, the interior of M− maps into that of M+ in a 1-1 mapping.
They have a shared boundary on x = 0 that corresponds to the direction reversing line discussed
in the above. Using the standard mn-DPZP boundary condition 8, we can embed an mn-DPZP
instance on M+ as in Figure 11.

Connecting the mobius band on M+ with the disk D+ along their boundaries, we construct a
triangulated projective plane that has a zero point on D+ with the task of finding another zero
point, which can only be on M+. As M+ is equivalent to an mn-DPZP instance, it follows that
the task is a PPA-complete problem.

Theorem 22. Given a triangulated projective plane with vertices labelled {0,±1,±2}. It is PPA-
complete to find another zero point.
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Figure 11: The Möbius Band

5.2 mn-DPZP on the Klein Bottle

Similarly, the PPA completeness of the finding another fixed point version extends naturally to
the Klein Bottle [1]. Here again, the Klein Bottle can only be embedded in the four dimensional
space. It is rather awkward to present it in the 3D world we live. Here we present by a 2D view
with some amendments for ease of discussion in Figure 12. All the three non-orientable 2D spaces
are represented uniformly in the 2D grid, with their boundaries merged with the opposite sides as
illustrated.

This clear presentation allows a simple embedment of the DPZP grid on to the Klein bottle as
presented in the following Figure 13.

Here we merge the top line and the bottom line. On it, there is a zero point in the middle. We
are asked to find another zero point on the Klein bottle constructed from this grid. If we remove
the top 4 lines and the bottom four lines, we obtain a mn-DPZP on the Möbius band where the
only other zero points could be hidden.
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Figure 12: Grid Views: Möbius band, Klein bottle and Projective plane
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Figure 13: Embed DPZP on to Klein bottle

Therefore, given the top zero point, finding another is to find a zero point in the mn-DPZP for
the Möbius band in the middle.

Theorem 23. Given a triangulated Klein bottle with vertices labelled {0,±1,±2}. It is PPA-
complete to find another zero point.

6 Remarks and Discussion

We have discussed two types of discrete fixed point problems on the Möbius band: finding one,
and (given one) finding another, dependent on the boundary conditions. We show both problems
are PPA-complete for several versions of discrete fixed point models, including the Sperner’s
problem on the two dimensional Möbius band.
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Our first step focuses on the 2D version. We start with mn-DPZP, which finds a zero point of
a discrete version of the continuous functions. Based on this result, we derive PPA-completeness
proof of several other related fixed point problems on the Möbius band. We discuss finding another
for Möbius Sperner and Index1-Brouwer on Möbius Band. We discuss finding one for m-Tucker
and mn-DPZP. They are switchable into the other types. For example, we can change all negative
colored vertices to color 0 in mn-DPZP to obtain a “finding one” version forMöbius Sperner. We
leave those cases out in this version and only exemplify useful structures and techniques choosing
the most typical cases.

In this work, the link between non-orientable topological space and undirected path following
computational paradigm, started by Grigni in [17], is further ratified by the simple structure of 2D
Möbius band. It deepens our understanding of the computational complexity difference between
the two classes PPAD and PPA in terms of the underlying topological structures.

The simplicity of our construction allows itself to extend beyond the 2D Möbius band to more
general cases. For example, the PPA completeness of the finding another fixed point version
extends naturally to the Klein Bottle, the projective space, and to other non-orientable surfaces [1].
Simplicity has played a role in raising further curiosities from the 2D Sperner work [7] in the
orientable space, such as in [25, 16].

Further the results extend to higher dimensions, even for the case where each side is of a
constant length. One such high dimension non-orientable space case of finding-another fixed point
is presented in Section 4. The result extends to different related solution concepts as in the previous
related concepts.

Note that the discrete fixed point problems in our discussion has an exponential size configura-
tion. Otherwise, we can enumerate the space to find a solution by brute force. To compute colors
and function values, a polynomial size circuit is given as an input. Alternatively, an oracle model
returns those values in a unit oracle time [19]. It is known that there is an asymptotic matching
bound for finding the Brouwer’s fixed point in Euclidean space [8], which extends to other discrete
fixed point models [11]. The same holds for the non-orientable space we discuss here. The lower
bound holds simply because the problem is harder in the non-orientable space. The upper bound
follows by the standard divide-and-conquer on the index adopted for the non-orientable space.

We would like to see the natural 2D Möbius Sperner will encourage more constructive works
to develop a better knowledge of the PPA-complete class. In particular, as had suggested by
Grigni [17], we would like to see the computational complexity of the Smith’s Theorem, known in
the class of PPA, be eventually resolved.
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