
Extractors for Affine Sources with Polylogarithmic Entropy

Xin Li

Department of Computer Science

Johns Hopkins University

Baltimore, MD 21218, U.S.A.

lixints@cs.jhu.edu

July 25, 2015

Abstract

We give the first explicit construction of deterministic extractors for affine sources over F2,
with entropy k ≥ logC n for some large enough constant C, where n is the length of the source.
Previously the best known results are by Bourgain [Bou07], Yehudayoff [Yeh11] and Li [Li11b],
which require the affine source to have entropy at least Ω(n/

√
log log n). Our extractor outputs

one bit with error n−Ω(1).
Our construction is obtained by reducing an affine source to a non-oblivious bit-fixing source,

and then applying a deterministic extractor for such sources in the recent breakthrough result of
two-source extractors by Chattopadhyay and Zuckerman [CZ15]. To reduce an affine source to a
non-oblivious bit-fixing source, we adapt the alternating extraction based approach in previous
work on independent source extractors [Li13a] to the affine setting.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 121 (2015)

1 Introduction

Randomness extraction is a broad area that studies the problem of converting biased random
sources into nearly uniform random bits. The natural motivation comes from the wide application
of randomness in computation, such as in algorithms, distributed computing and cryptography, and
the requirement that the random bits used should be uniformly distributed. In reality, however,
natural random sources almost always have serious bias, and these random sources are known as
weak random sources. Therefore, intuitively, a randomness extractor takes as input one or more
weak random sources, and outputs a distribution that is statistically close to uniform.

Formally, a weak random source is modeled as a probability distribution over n bit strings with
some entropy k. In the context of randomness extraction, the standard measure of entropy is the
so called min-entropy, which is defined as follows.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

However, one can easily show that it is impossible to construct deterministic randomness ex-
tractors for one (n, k) source, even if k is as large as n−1. Thus, the study of randomness extractors
has been pursued in two different directions. The first one is to allow the extractor itself to be
randomized. In this case one ends up with the notion of seeded extractors [NZ96], where the ex-
tractor is given a short uniform random seed (typically of length say O(logn)). It is now possible
to construct such extractors for all possible weak random sources. Seeded extractors have a lot of
applications in theoretical computer science and have been studied extensively, resulting in almost
optimal constructions [LRVW03, GUV09, DKSS09].

Another direction is to impose some special structure on the weak source, and thereby allows
the construction of deterministic randomness extractors. For example, there has been a long line of
research focusing on constructing extractors for independent weak random sources [CG88, BIW04,
Raz05, Bou05, Rao06, BRSW06, Li11a, Li13b, Li13a, Li15, Coh15, CZ15]. In this paper, we focus
on another well studied model, where the weak random source is called an affine source and is the
uniform distribution over some unknown affine subspace.

Definition 1.2. (affine source) Let Fq be the finite field with q elements. Denote by F
n
q the n-

dimensional vector space over Fq. A distribution X over F
n
q is an (n, k)q affine source if there

exist linearly independent vectors a1, · · · , ak ∈ F
n
q and another vector b ∈ F

n
q s.t. X is sampled by

choosing x1, · · · , xk ∈ F uniformly and independently and computing

X =
k

∑

i=1

xiai + b.

An affine extractor is a deterministic function such that given any affine source as the input,
the output of the function is statistically close to the uniform distribution.

Definition 1.3. (affine extractor) A function AExt : Fn
q → {0, 1}m is a deterministic (k, ǫ)-affine

extractor if for every (n, k)q affine source X,

|AExt(X)− Um| ≤ ǫ.

Here Um is the uniform distribution over {0, 1}m and | · | stands for the statistical distance.

In this paper we focus on the case where q = 2. Using the probabilistic method, it is not hard
to show that there exists a deterministic affine extractor, as long as k > 2 log n and m < k−O(1).
The problem is to given an explicit construction of such a function.

A weaker version of the extractor, called an affine disperser, only requires the output to have a
large support size.

Definition 1.4. (affine disperser) A function ADisp : Fn
q → {0, 1}m is a deterministic (k, ǫ)-affine

disperser if for every (n, k)q affine source X,

|Supp(ADisp(X))| ≥ (1− ǫ)2m.

The function is called a zero-error disperser if ǫ = 0.

There has been a lot of work studying affine extractors and dispersers. For example, Gabizon
and Raz [GR05] constructed explicit extractors for affine sources even with entropy 1. However,
their constructions require the field size to be much larger than n, i.e., q > nΩ(1), in order to use
Weil’s theorem. DeVos and Gabizon [DG10] constructed explicit extractors for (n, k)q affine sources
when q = Ω((n/k)2) and the characteristic of the field Fq is Ω(n/k). As the field size gets smaller,
constructing explicit affine extractors becomes significantly harder.

The extreme and hardest case where the field is F = GF(2), is the focus of the rest of the
paper. Note that in this case the min-entropy H∞(X) is the same as the standard Shannon entropy
H(X). Here, it is well known how to construct extractors for affine sources with entropy rate
greater than 1/2. However the problem becomes much harder as the entropy rate drops to 1/2
and below 1/2. Bourgain [Bou07] used sophisticated character sum estimates to give an extractor
for affine sources with entropy k = δn for any constant δ > 0. This was later slightly improved to
k = Ω(n/

√
log log n) by Yehudayoff [Yeh11] and the author [Li11b], which is the state of the art.

Rao [Rao09] constructed extractors for affine sources with entropy as small as polylog(n), as long
as the subspace of X has a basis of low-weight vectors.

In the case of constructing dispersers for affine sources over GF(2), Ben-Sasson and Kopparty
[BSK09] constructed dispersers for affine sources with entropy Ω(n4/5). Shaltiel [Sha11] gave a

construction that works for entropy 2log
0.9 n, which remains the best known result.

1.1 Our Result

In this paper we give an affine extractor over F2 that works for entropy k ≥ polylog(n), thus
improving all previous results in terms of the entropy requirement. Our extractor outputs one bit
and has error n−Ω(1). Specifically, we have

Theorem 1.5. There exists a constant C > 1 and an efficiently computable function AExt :
{0, 1}n → {0, 1} such that for any (n, k) affine source X with k ≥ logC n, we have that

|AExt(X)− U1| ≤ ǫ,

where ǫ = n−Ω(1).

2

1.2 Overview of the construction

Our construction is actually quite intuitive, although the analysis is non-trivial. On the high level,
our construction follows the recent breakthrough result of the two-source extractor construction
by Chattopadhyay and Zuckerman [CZ15]. Specifically, we will first reduce an affine source to a
(q, t, γ)-non-oblivious bit-fixing source as defined in [CZ15]. Intuitively, this means that the new
source has q “bad” bits which can depend arbitrarily on the other bits. However, if we consider
the rest “good” bits, then any t such bits are γ-close to uniform. At the heart of [CZ15] is an
explicit deterministic extractor for such sources (with appropriate parameters q, t, γ), which is a
derandomized monotone version of the Ajtai-Linial resilient function (the function itself is in AC0,
and thus fooled by polylog-wise independence). Thus, once we reduce an affine source to such a
non-oblivious bit-fixing source, we can apply this deterministic extractor and output one bit that
is n−Ω(1)-close to uniform.

We now describe how to reduce an affine extractor to a non-oblivious bit-fixing source. We will
mainly adapt techniques from previous work on extractors for independent sources. Specifically,
by using ideas from alternating extraction (Figure 1), one of the author’s previous work [Li15]
obtained a somewhere random source with N = poly(n) rows from two independent (n, k) sources
with k ≥ polylog(n). The somewhere random source has the property that except for a small
fraction of “bad” rows, the rest of the rows are almost t-wise independent for t = kΩ(1) in the sense
that any t of these rows are γ = 2−k

Ω(1)
-close to uniform. Thus, these rows (or, say, taking one bit

each row) form exactly a (q, t, γ)-non-oblivious bit-fixing source.
Now we need to adapt that construction to affine sources. Of course we now only have one affine

source and not two independent sources. However, due to the special structure of affine sources we
can still apply similar ideas as in [Li13a, Li15]. Specifically, we will use a special kind of strong
seeded extractors called linear seeded extractors. These extractors have the property that for any
fixed seed, the output is a linear function of the source. We take such a seeded extractor with seed
length O(log n) and error ǫ, and use every possible seed to extract from the affine source X. This
gives us a matrix (or somewhere random source) of N = poly(n) rows, where each row corresponds
to the output of the extractor on a particular seed. A standard argument shows that if X is affine,
then at least 1−2ǫ fraction of the rows are truly uniform, although they may depend on each other
in arbitrary ways. We further restrict the size of each row, so that the length is much smaller than
the entropy of X.

We can now use these rows and the source X itself to do the same alternating extraction
protocol as in [Li13a, Li15] to make the “good” rows almost t-wise independent for t = kΩ(1), with

error γ = 2−k
Ω(1)

. To see why alternating extraction works in this case, consider one particular
uniform row Y . Note that Y is a linear function of X, so Y is also an affine source. Recall that
the length of Y is much smaller than the entropy of X. A standard argument shows that X can
be decomposed into X = A + B where both A,B are affine sources, A = L(Y) for some linear
bijection L, and B is independent of Y . Thus, to do the alternating extraction, we can first take
a small slice of Y to be S1, and use a linear seeded extractor Ext to compute R1 = Ext(X,S1).
Note that R1 = Ext(X,S1) = Ext(A,S1) + Ext(B,S1). By the property of a strong extractor we
know that with high probability over the fixing of S1, Ext(B,S1) is close to uniform (since S1 is
independent of B). Note that S1 is a deterministic function of A and A is independent of B, thus
R1 = Ext(A,S1) + Ext(B,S1) is also uniform conditioned on the fixing of S1.

Next, suppose the length of R1 is much smaller than the length of Y ,we can then use R1 and
apply Ext back to Y to extract S2 = Ext(Y,R1). The reason is that we can first fix Ext(A,S1).

3

Note that we have already fixed S1 so this is a deterministic function of A (or Y). Therefore after
fixing it, Ext(B,S1) is still uniform and independent of Y , and now R1 = Ext(A,S1) + Ext(B,S1)
is independent of Y . Since the length of R1 is small, conditioned on this fixing Y still has a lot of
entropy left. Therefore we can now extract S2 = Ext(Y,R1). Continue doing this, we can see that
alternating extraction works as long as we always use a strong linear seeded extractor. Intuitively,
it’s like alternating extraction between the two independent affine sources Y and B. Now we can
use similar arguments as in [Li13a] to convert the somewhere random source into almost t-wise
independent.1

However, there are a few subtle technical problems we need to deal with. First, when we
generalize the above alternating extraction to run for t rows Y 1, Y 2, · · · , Y t simultaneously, we will
need to consider the concatenation Y = Y 1 ◦ Y 2 ◦ · · · ◦ Y t and decompose X into X = A + B =
L(Y)+B. This ensures that we can condition on the fixing of all the intermediate random variables
obtained from Y 1, Y 2, · · · , Y t without affecting B. Another subtlety arises in the analysis as follows.
The alternating extraction will take some b < log n rounds, with each round consisting of some
kΩ(1) steps. At the end of round j, for each Y i we need to use the Rij variable extracted from X to
extract another Y i(j+1) from Y i to start the next round of alternating extraction. Here we would
like to argue that for those {Rℓj} that have already become independent of Rij , we can first fix all
{Y ℓ(j+1)} and all the R variables produced in round j+1, and Y i(j+1) is still uniform. This ensures
that whatever is already independent will remain independent. While this is true in the case of
two independent sources, it is no longer true in the case of an affine source. The reason is again,
as explained above, when we fix R = Ext(A,S) + Ext(B,S), the part of Ext(A,S) is a function of
A (and Y). Thus this fixing may cause Y i(j+1) to lose entropy (note that fixing Ext(B,S) will not
since B is independent of Y). Fortunately, we can get around this by restricting the length of the R
variables to be much smaller than the length of Y i(j+1). We note that if we take a seeded extractor
with error ǫ, and use a seed that loses ℓ bits of entropy, then the extractor still works with error
increased to 2ℓǫ. Thus by appropriately choosing the parameters (making ℓ small enough) we can
ensure that the new round of alternating extraction still goes through.

One final point is that the extractor for non-oblivious bit-fixing source in [CZ15] can only handle
the case where q = N1−δ for any constant δ > 0. This means that to convert the affine source X
into a somewhere random source in the first step, we need to take a strong linear seeded extractor
with seed length O(log n) and error ǫ = 1/poly(n), i.e., an extractor with optimal seed length. We
construct such a strong linear seeded extractor by combining the lossless condenser in [GUV09]
and another strong linear seeded extractor in [SU05]. We note that the condenser in [GUV09] itself
may not be linear, but can be made linear with the same parameters by a careful instantiation,
following a result in [CI15]. Thus in this step we can use O(logn) bits to condense the source
into a (n′ = O(k), k) source with error 1/poly(n). We then use the linear seeded extractor in

[SU05], which has seed length d = O
(

logn′ + logn′

log k log
(

1
ǫ

)

)

. Note that n′ = O(k). Thus if we

take ǫ = 1/poly(n) we get d = O(logn). Altogether we get a strong seeded extractor with seed
length O(logn) and error ǫ = 1/poly(n). Since both the condenser and the extractor are linear,
the combined extractor is also linear.

1We remark that we can also use the flip-flop alternating extraction developed in [Coh15], which may result in an
improvement in the constants. However in this paper we do not try to optimize the constant C in our final result
where k ≥ logC n.

4

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 2. In Section 3 we define alternating extraction, an important ingredient in our construc-
tion. We present our main construction of affine extractors in Section 4. Finally we conclude with
some open problems in Section 5.

2 Preliminaries

We use common notations such as ◦ for concatenation and [n] for {1, 2, · · · , n}. All logarithms are
to the base 2. We often use capital letters for random variables and corresponding small letters for
their instantiations.

2.1 Basic Definitions

Definition 2.1 (statistical distance). Let D and F be two distributions on a set S. Their statis-
tical distance is

|D − F | def= max
T⊆S

(|D(T)− F (T)|) = 1

2

∑

s∈S
|D(s)− F (s)|

If |D − F | ≤ ǫ we say that D is ǫ-close to F and write D ≈ǫ F .

2.2 Somewhere Random Sources, Mergers and Condensers

Definition 2.2 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (r, t) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 2.3. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt), such that
some Xi is a k-source. A somewhere k-source is a convex combination of elementary somewhere-k-
sources.

Definition 2.4. A function C : {0, 1}n × {0, 1}d → {0, 1}m is a (k → l, ǫ)-condenser if for every
k-sourceX, C(X,Ud) is ǫ-close to some l-source. When convenient, we call C a rate-(k/n→ l/m, ǫ)-
condenser.

2.3 Strong Linear Seeded Extractors

We need the following definition and property of a specific kind of extractors.

Definition 2.5. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ǫ) strong seeded extractor if
for every min-entropy k source X,

|Ext(X,R)− (Um, R)| ≤ ǫ,

where Um is the uniform distribution on m bits and R is the uniform distribution on d bits inde-
pendent of X. We say that the function is a linear strong seeded extractor if the function Ext(·, u)
is a linear function over GF(2), for every u ∈ {0, 1}d.

We have the following simple fact.

5

Lemma 2.6. If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ǫ) strong seeded extractor, then for every
(n, k) source X and every independent (d, k′) source R,

|Ext(X,R)− (Um, R)| ≤ 2d−k
′
ǫ.

Proof. Without loss of generality we can assume that R is the uniform distribution over some subset
S of size 2k

′
. Then for any r ∈ S, we have Pr[R = r] = 2−k

′
. Thus

|Ext(X,R)− (Um, R)| =
∑

r∈S
2−k

′ |Ext(X, r)− Um| =
∑

r∈S
2d−k

′ · 2−d|Ext(X, r)− Um|

≤
∑

r∈{0,1}d
2d−k

′ |2−dExt(X, r)− 2−dUm| = 2d−k
′ |Ext(X,R)− (Um, R)|R←Ud

≤ 2d−k
′
ǫ.

Lemma 2.7 ([Rao09]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear strong seeded extractor for
min-entropy k with error ǫ < 1/2. Let X be any affine source with entropy k. Then,

Pr
u←RUd

[|Ext(X,u)− Um| = 0] ≥ 1− 2ǫ

2.4 The Structure of Affine Sources

The following lemma is proved in [Li11b].

Lemma 2.8. (Affine Conditioning). Let X be any affine source on {0, 1}n. Let L : {0, 1}n →
{0, 1}m be any linear function. Then there exist independent affine sources A,B such that:

• X = A+B.

• For every b ∈ Supp(B), L(b) = 0.

• H(A) = H(L(A)) and there exists an affine function L−1 : {0, 1}m → {0, 1}n such that
A = L−1(L(A)).

2.5 Non-oblivious bit-fixing source

Definition 2.9. A distribution D on n bits is t-wise independent if the restriction of D to any t
bits is uniform. Further D is a (t, ǫ)-wise independent distribution if the distribution obtained by
restricting D to any t coordinates is ǫ-close to uniform.

Definition 2.10. A source X on {0, 1}n is called a (q, t)-non-oblivious bit-fixing source if there
exists a subset of coordinates Q ⊆ [n] of size at most q such that the joint distribution of the bits
indexed by Q = [n]\Q is t-wise independent. The bits in the coordinates indexed by Q are allowed
to arbitrarily depend on the bits in the coordinates indexed by Q.

If the joint distribution of the bits indexed by Q is (t, γ)-wise independent then X is said to be
a (q, t, γ)-non-oblivious bit-fixing source.

6

2.6 Previous Work that We Use

We are going to use two constructions of linear seeded extractors in this paper. The first one is for
the purpose of obtaining small error. For this we use Trevisan’s extractor:

Theorem 2.11 ([Tre01, RRV02]). For every n, k,m ∈ N and ǫ > 0 such that m ≤ k ≤ n, there is

an explicit (k, ǫ) strong seeded extractor TrExt : {0, 1}n × {0, 1}d → {0, 1}m with d = O
(

log2(n/ǫ)
log(k/m)

)

.

This extractor is actually a linear seeded extractor. By setting the parameters appropriately,
we get the following corollary.

Corollary 2.12 ([Tre01, RRV02]). For every n, k ∈ N and ǫ > 0 such that k ≤ n, there is an explicit
(k, ǫ) strong linear seeded extractor TrExt : {0, 1}n × {0, 1}d → {0, 1}Ω(k) with d = O(log2(n/ǫ)).

The next one is for the purpose of obtaining a short seed (i.e., O(logn)). For this we need the
following extractor.

Theorem 2.13 ([SU05]). For every n ∈ N, constant δ > 0, ǫ ≥ 2−k
δ/4

, and k ≥ log4/δ n there
is an explicit (k, ǫ) strong linear seeded extractor SUExt : {0, 1}n × {0, 1}d → {0, 1}m with d =

O
(

log n+ logn
log k log

(

1
ǫ

)

)

and m = k1−δ.

We also note that the lossless condenser in [GUV09] can be made linear.

Theorem 2.14 ([CI15]). For any constant α > 0 and any n ∈ N, k ≤ n, ǫ > 0 there is an explicit
strong (k, ǫ)-lossless condenser Cond : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ (1 + 1/α)(log(nk/ǫ) +
O(1)) and m ≤ (1 + α)k. Moreover, Cond is a linear function for every fixed choice of the seed.

We now have the following theorem.

Theorem 2.15. There exists a constant c > 1 such that for every n, k ∈ N with c log8 n ≤ k ≤ n,
and ǫ ≥ n−2, there is an explicit (k, ǫ) strong linear seeded extractor LExt : {0, 1}n × {0, 1}d →
{0, 1}m with d = O(log n) and m =

√
k.

Proof. Given any (n, k) source X, we first take O(logn) bits and use Theorem 2.14 to condense X
into an (n′, k) source Y with length n′ = O(k), and error ǫ/2. We then use Theorem 2.13 to extract
m =

√
k bits from Y with error ǫ/2 (i.e., take δ = 1/2 in Theorem 2.13). One can check that the

conditions of that theorem are satisfied. This will use another O
(

log n′ + logn′

log k log
(

2
ǫ

)

)

= O(logn)

bits. Since both the condenser and the extractor are linear and strong, the composed extractor is
also a strong linear seeded extractor.

A key ingredient in our affine extractor is the following extractor for non-oblivious bit-fixing
source developed recently by Chattopadhyay and Zuckerman [CZ15].

Theorem 2.16 ([CZ15]). There exists a constant c such that for any constant δ > 0, and for
all n ∈ N, there exists an explicit extractor bitExt : {0, 1}n → {0, 1} for the class of (q, t, γ)-non-
oblivious bit-fixing sources with error n−Ω(1), where q ≤ n1−δ, t ≥ c log18(n) and γ ≤ 1/nt+1.

7

Quentin: Q,S1 Wendy: X

S1

S1−−−−−−−−−−−−−→
R1←−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2−−−−−−−−−−−−−→
R2←−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·
St = Extq(Q,Rt−1)

St−−−−−−−−−−−−−→
Rt = Extw(X,St)

Figure 1: Alternating Extraction.

3 Alternating Extraction

An important ingredient in our construction is the following alternating extraction protocol, which
has been used a lot in recent constructions of independent source extractors [Li13b, Li13a]. Here
we will use it in the context of affine sources.

Alternating Extraction. Assume that we have two parties, Quentin and Wendy. Quentin
has a source Q, Wendy has a source X. Also assume that Quentin has a uniform random seed S1

(which may be correlated with Q). Let Extq and Extw be the strong linear seeded extractors in
Corollary 2.12. Let ℓ be an integer parameter for the protocol. For some integer parameter t > 0,
the alternating extraction protocol is an interactive process between Quentin and Wendy that runs
in t steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(X,S1). She sends
R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step R1, S2 each outputs ℓ bits.
In each subsequent step i, Quentin sends Si to Wendy, Wendy computes Ri = Extw(X,Si). She
replies Ri to Quentin and Quentin computes Si+1 = Extq(Q,Ri). In step i, Ri, Si+1 each outputs
ℓ bits. Therefore, this process produces the following sequence:

S1, R1 = Extw(X,S1), S2 = Extq(Q,R1), · · · , St = Extq(Q,Rt−1), Rt = Extw(X,St).

Look-Ahead Extractor. Now we can define our look-ahead extractor. Let Y = (Q,S1) be a
seed, the look-ahead extractor is defined as

laExt(X,Y) = laExt(X, (Q,S1))
def
= R1, · · · , Rt.

We first prove the following lemma.

Lemma 3.1. Let X be an affine source on n bits, Z be a linear function of X, Y = (Y1 =
(Q1, S1), Y2 = (Q2, S2), · · · , Yh = (Qh, Sh)) and Y ′ be linear functions of Z, such that H(Y ′|Y) ≥
k1, H(X|Z) ≥ k2. Assume the following hold: ∀i, Qi has m bits with m < n, and Si has ℓ bits;
H(Q1) = kq and S1 is uniform; kq ≥ 2htℓ+10ℓ, k1 ≥ htℓ+10ℓ and k2 ≥ htℓ+10ℓ. Let Extq and Extw
be strong linear seeded extractors as in Corollary 2.12, set up to use ℓ bits to extract from (m, 10ℓ)

8

sources and (n, 10ℓ) sources respectively, with error ǫ and ℓ = O(log2(n/ǫ)). For any i ∈ [h], let
(Ri1, · · · , Rit) = laExt(X,Yi) and {Sij , j = 1, · · · , t} denote the random variables corresponding to
{Sj} that are produced when computing laExt(X,Yi). For any j ∈ [t], let Sij = (Si1, · · · , Sij) for
i ∈ [h] and Rij = (Ri1, · · · , Rij) for i ∈ [h]. Then for any 0 ≤ j ≤ t, we have that

(R1j , {Sij , i ∈ [h]}, {Ri(j−1), i ∈ [h]}, Y)

≈(2j−1)ǫ(Uℓ, {Sij , i ∈ [h]}, {Ri(j−1), i ∈ [h]}, Y).

and

(S1(j+1), {Sij , i ∈ [h]}, {Rij , i ∈ [h]})
≈(2j)ǫ(Uℓ, {Sij , i ∈ [h]}, {Rij , i ∈ [h]}).

Moreover, conditioned on ({Sij , i ∈ [h]}, {Ri(j−1), i ∈ [h]}), we have that X is still an affine source,
({Rij , i ∈ [h]}) are deterministic linear functions of X, H(Q1) ≥ kq − (2j − 1)hℓ, H(Y ′|Y) ≥
k1 − (j − 1)hℓ and H(X|Z) ≥ k2 − (j − 1)hℓ; conditioned on ({Sij , i ∈ [h]}, {Rij , i ∈ [h]}), we have
that X is still an affine source, ({Si(j+1), i ∈ [h]}) are deterministic linear functions of {Y1, · · · , Yh}
respectively, H(Q1) ≥ kq − 2jhℓ, H(Y ′|Y) ≥ k1 − jhℓ and H(X|Z) ≥ k2 − jhℓ.

Proof. We prove the lemma by induction on j. When j = 0, the statement is trivially true. Now
we assume that the statement holds for some j and we prove it for j + 1.

We first fix ({Sij , i ∈ [h]}, {Rij , i ∈ [h]}). Note that after this fixing, X is still an affine source.
Since Y, Y ′ and Z are linear functions of X, they are still all affine sources as well. Thus by
Lemma 2.8, there exist independent affine sources A,B such that X = A + B and there exists
a linear bijection L between A and Z. Thus B is also independent of Z. Note that we have
H(X|Z) ≥ k2 − jhℓ ≥ 10ℓ, thus H(B) ≥ 10ℓ.

Since ({Si(j+1), i ∈ [h]}) are linear function of Y and Y is a linear function of Z, we have that
({Si(j+1), i ∈ [h]}) are also linear functions of Z; thus B is independent of (A, {Si(j+1), i ∈ [h]}, Y).
If S1(j+1) is uniform, then by Corollary 2.12 we have

(Extw(B,S1(j+1)), S1(j+1)) ≈ǫ (Uℓ, S1(j+1)).

Note that R1(j+1) = Extw(X,S1(j+1)) = Extw(A,S1(j+1))+Extw(B,S1(j+1)) since Extw is a linear
seeded extractor. Thus for any fixing of S1(j+1), we have that Extw(B,S1(j+1)) is a deterministic
linear function of B, and is thus independent of (Extw(A,S1(j+1)), {Si(j+1), i ∈ [h]}, Y). Therefore,
we also have that

(R1(j+1), {Si(j+1), i ∈ [h]}, Y) ≈ǫ (Uℓ, {Si(j+1), i ∈ [h]}, Y).

Adding back the error, we have

(R1(j+1), {Si(j+1), i ∈ [h]}, {Rij , i ∈ [h]}, Y)

≈(2j+1)ǫ (Uℓ, {Si(j+1), i ∈ [h]}, {Rij , i ∈ [h]}, Y). (1)

9

Moreover, note that initially ({Si(j+1), i ∈ [h]}) are deterministic linear functions of {Y1, · · · , Yh}
respectively. Thus if we further condition on the fixing of ({Si(j+1), i ∈ [h]}) (i.e, conditioned on

({Si(j+1), i ∈ [h]}, {Rij , i ∈ [h]})), we have that X is still an affine source, and ({Ri(j+1), i ∈ [h]}) are
deterministic linear functions of X. Furthermore H(Q1) ≥ kq−2jhℓ−hℓ = kq−(2(j+1)−1)hℓ. On
the other handH(Y ′|Y) andH(X|Z) will remain the same since ({Si(j+1), i ∈ [h]}) are deterministic
linear functions of Y . So H(Y ′|Y) ≥ k1 − (j + 1− 1)hℓ and H(X|Z) ≥ k2 − (j + 1− 1)hℓ.

Now, recall that ∀i, we have Ri(j+1) = Extw(X,Si(j+1)) = Extw(A,Si(j+1)) + Extw(B,Si(j+1)).

Let RA
i(j+1) = Extw(A,Si(j+1)) and RB

i(j+1) = Extw(B,Si(j+1)), thus Ri(j+1) = RA
i(j+1)+RB

i(j+1). We

now fix ({Si(j+1), i ∈ [h]}). Note that we have just shown that conditioned on this further fixing,

X is still an affine source; thus Y, Y ′ and Z are all still affine sources as well. Note that now RA
i(j+1)

is a deterministic linear function of A, and RB
i(j+1) is a deterministic linear function of B. Thus

(RA
i(j+1), i ∈ [h]) is independent of (RB

i(j+1), i ∈ [h]).

We now further fix all RA
i(j+1). Note that these are all linear functions of A with size ℓ; thus

conditioned on these fixings, we have that X is still an affine source. Since there is a bijection
between A and Z, we have that now H(Q1) ≥ kq − (2j + 1)hℓ − hℓ = kq − 2(j + 1)hℓ ≥ 10ℓ.
Moreover H(Y ′|Y) ≥ k1− jhℓ−hℓ = k1− (j+1)hℓ. On the other hand H(X|Z) remains the same
since A is a linear function of Z.

Now note that ∀i, Ri(j+1) = RA
i(j+1) +RB

i(j+1) is a linear function of B, and is thus independent

of (A,Z, Y, Y ′). If we ignore the error in Equation 1, we know that conditioned on these fixings,
R1(j+1) = RA

1(j+1) +RB
1(j+1) is uniform. Therefore by Corollary 2.12 we have

(S1(j+2), R1(j+1)) ≈ǫ (Uℓ, R1(j+1)).

Note that conditioned on R1(j+1), we have that S1(j+2) is a deterministic linear function of Y1,
and is thus independent of (B, {Ri(j+1), i ∈ [h]}). Therefore we also have

(S1(j+2), {Ri(j+1), i ∈ [h]}) ≈ǫ (Uℓ, {Ri(j+1), i ∈ [h]}).
Adding back the error from Equation 1, we have

(S1(j+2), {Si(j+1), i ∈ [h]}, {Ri(j+1), i ∈ [h]})
≈2(j+1)ǫ(Uℓ, {Si(j+1), i ∈ [h]}, {Ri(j+1), i ∈ [h]}).

We can now further fix (RB
i(j+1), i ∈ [h]). Since (RA

i(j+1), i ∈ [h]) have already been fixed, this will

fix (Ri(j+1), i ∈ [h]) and thus we have fixed ({Si(j+1), i ∈ [h]}, {Ri(j+1), i ∈ [h]}). Since (RB
i(j+1), i ∈

[h]) are linear functions of B, conditioned on these fixings X is still an affine source. Moreover, this
fixing will not affect H(Q1) or H(Y ′|Y) since B is independent of (A,Z, Y, Y ′). Thus we have that
H(Q1) ≥ kq − 2(j +1)hℓ, H(Y ′|Y) ≥ k1− (j +1)hℓ and H(X|Z) ≥ k2− jhℓ− hℓ = k2− (j +1)hℓ.

Note that j ≤ t, thus the lemma is proved.

4 The Affine Extractor

In this section we describe our construction. First we have the following algorithm that obtains a
somewhere random source.

10

Algorithm 4.1 (SR(X)).

Input: X— an (n, k)-affine source with k ≥ polylog(n).
Output: W — a source that is close to an SR-source.

Sub-Routines and Parameters:

Let 0 < α < β < 1 be two constants to be chosen later. Let ℓ = kβ . Pick an integer h such that
kα ≤ h < 2kα and h = 2l for some integer l > 0. Let Extq,Extw be strong linear extractors from
Corollary 2.12, set up to extract from ((h2 +12)ℓ, 10ℓ) sources and (n, 10ℓ) sources respectively,

with seed length ℓ > log2 n, error ǫ = 2−Ω(
√
ℓ) and output length ℓ. These will be used in laExt.

Let Ext1,Ext2,Ext3 be strong linear extractors from Corollary 2.12, with parameters as follows.

• Let d > log2 n be an integer such that when we use d uniform bits to extract from an

(n, k) source as in Corollary 2.12, the error ǫ′ = 2−Ω(
√
d) satisfies that 2(2h

3+h2+11h)ℓǫ′ ≤
ǫ = 2−Ω(

√
ℓ). Note that it suffices to take d = ch6ℓ2 for some constant c > 1.

• Ext1 uses d bits to extract from (n, 10ℓ) sources, with error ǫ′ and output length ℓ.

• Ext2 uses ℓ bits to extract from (
√
k, (4h2 + 20)ℓ) sources, with error ǫ = 2−Ω(

√
ℓ) and

output length (2h2 + 10)ℓ.

• Ext3 uses ℓ bits to extract from from (
√
k, 2d) sources, with error ǫ = 2−Ω(

√
ℓ) and output

length d.

1. Let LExt be the linear seeded extractor in Theorem 2.15, which uses d′ = O(logn) bits to
extract from an (n, k) source and output m =

√
k bits with error n−2. Let N = 2d

′
=

poly(n) and enumerate all possible choices of the seed r1, · · · , rN . For every i ∈ [N]
compute Y i = LExt(X, ri).

2. For every i = 1, · · · , N , use X and Y i to compute W i as follows.

(a) Compute the binary expression of i− 1, which consists of d′ = logN = O(log n) bits.
Divide these bits sequentially from left to right into b = ⌈d′l ⌉ blocks of size l (the last
block may have less than l bits, then we add 0s at the end to make it l bits). Now
from left to right, for each block j = 1, · · · , b, we obtain an integer Indij ≤ 2l such
that the binary expression of Indij − 1 is the same as the bits in block j.

(b) Let Y i1 be the first d bits of Y i. Set j = 1. While j < b do the following.

i. Compute Rij
0 = Ext1(X,Y ij) and Y ′ij = Ext2(Y

i, Rij
0).

ii. Compute (Rij
1 , · · · , R

ij
h) = laExt(X,Y ′ij), where Q = Y ′ij and S1 is the first ℓ

bits of Y ′ij .

iii. Compute Y i(j+1) = Ext3(Y
i, Rij

Indij
).

iv. Set j = j + 1.

(c) Finally, compute (Rib
1 , · · · , Rib

h) = laExt(X,Y ib) and set W i = Rib
Indib

.

3. Let W = W 1 ◦ · · · ◦WN .

11

We now introduce some notation. For any i ∈ [N] and j ∈ [b], we let Y i(≤j) denote (Y i1, · · · , Y ij)

and similarly Y ′i(≤j) denote (Y ′i1, · · · , Y ′ij); let R
i(≤j)
Indi(≤j)

denote (Ri1
Indi1

, · · · , Rij
Indij

) and let f j(i)

denote the integer whose binary expression is the concatenation of the binary expression of i − 1
from block 1 to block j. Recall that for any i, j, when computing laExt(X,Y ij) we will com-
pute Sij

1 , · · · , Sij
h and Rij

1 , · · · , R
ij
h . Let Sij = (Sij

1 , · · · , Sij
max(Indvj−1,Indij)) and similarly Rij =

(Rij
1 , · · · , R

ij
max(Indvj−1,Indij)); let Si(≤j) = (Si1, · · · , Sij) and similarly Ri(≤j) = (Ri1, · · · , Rij). We

have the following lemma.

Lemma 4.2. Assume that k ≥ 9b2d2h2. Fix any v ∈ [N] such that Y v is uniform. Let T ⊂ [N]
be any subset with |T | = h and v ∈ T , and let ZT be the concatenation of all Y i where i ∈ T . For
any j ∈ [b], define T j

v = {i ∈ T : f j(i) < f j(v)} and let Tv = T b
v . Let T̃ j

v = Tv \ T j
v . Then for any

j ∈ [b] , we have that

• At the beginning of iteration j, conditioned on ({Y ′i(≤j−1), Y i(≤j−1), Si(≤j−1), Ri(≤j−1), i ∈
Tv}), we have

1. X is still an affine source.

2. {Y ij , i ∈ Tv} are linear functions of ZT .

3. H(Y v) ≥
√
k − 2(j − 1)dh, H(X|ZT) ≥ k − h

√
k − 2(j − 1)h2ℓ.

4. With probability 1 − ǫj1 over the fixing of {Y ′i(≤j−1), Y i(≤j−1), Si(≤j−1), Ri(≤j−1), i ∈
Tv}, {Y ij , i ∈ T j−1

v }, we have Y vj = Ud. Here ǫj1 = 4j(h+ 1)ǫ.

• At the end of iteration j, we have

(Rvj
Indvj

, {Y ′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T j
v })

≈ǫj2(Uℓ, {Y ′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T j
v }),

where ǫj2 = 4j(h+ 1)ǫ+ (2h+ 1)ǫ.

Proof. We prove the lemma by induction on j. Note that Tv = {i ∈ T : i < v} and T̃ j
v = Tv \ T j

v

contains all the numbers in T that are less than v but have the same binary expression in the first
j blocks.

We first show that properties 1, 2 and 3 in the first part of the statement hold. When j = 1
these are trivially true. Now suppose they hold for some j and we’ll show that they hold for j +1.
We first fix ({Y ′i(≤j−1), Y i(≤j−1), Si(≤j−1), Ri(≤j−1), i ∈ Tv}) and we know that conditioned on this
fixing, properties 1, 2 and 3 hold. We now further fix {Y ij , i ∈ Tv}. Note that conditioned on
this fixing, X is still an affine source, and {Rij

0 , i ∈ Tv} are deterministic linear functions of X.

We then further fix {Rij
0 , i ∈ Tv}. Note that conditioned on this fixing, X is still an affine source,

and {Y ′ij , i ∈ Tv} are deterministic linear functions of {Y i, i ∈ Tv} respectively. We thus further
fix {Y ′ij , i ∈ Tv}. Note that conditioned on this fixing, X is still an affine source. Now for any
i ∈ Tv, in the computation of (Rij

1 , · · · , R
ij
h) = laExt(X,Y ′ij) we can fix Rij

1 , R
ij
2 , · · · one by one, and

we note that conditioned on the fixing of the previous one, the next one is a deterministic linear
function of X. Thus we can fix {Rij , i ∈ Tv} and after this fixing, X is still an affine source. Note
that once {Rij , i ∈ Tv} are fixed, {Sij , i ∈ Tv} are also fixed since they are functions of {Rij , i ∈ Tv}
and {Y ′ij , i ∈ Tv}. Thus we have fixed ({Y ′i(≤j), Y i(≤j), Si(≤j), Ri(≤j), i ∈ Tv}) and conditioned on

12

this fixing, X is still an affine source. Furthermore now {Y i(j+1), i ∈ Tv} are linear functions of
{Y i, i ∈ Tv} = ZT .

Next we look at the H(Y v) and H(X|ZT). We note that since Y v and ZT are linear functions
of X, whenever X is an affine source, they are also both affine sources. We can now repeat
the argument above, and since each time we are conditioning on some linear functions of X, the
conditional entropy will decrease by at most the size of the random variables being conditioned
on. We further note that when we condition on Rij

t , t = 0, · · · , h, we may lose entropy in both
H(Y v) and H(X|ZT); while when we condition on Y ij and Y ′ij, we only lose entropy in H(Y v)
since they are deterministic functions of ZT . Note that the total size of {Rij

t , t = 0, · · · , h, i ∈ Tv}
is at most h(h + 1)ℓ < 2h2ℓ, while the total size of {Y ij , Y ′ij , Rij

t , t = 0, · · · , h, i ∈ Tv} is at most
h(d + (2h2 + 10)ℓ) + h(h + 1)ℓ < 2dh. Thus we know that at the beginning of iteration j + 1, we
have H(Y v) ≥

√
k−2(j−1)dh−2dh =

√
k−2jdh and H(X|ZT) ≥ k−h

√
k−2(j−1)h2ℓ−2h2ℓ =

k − h
√
k − 2jh2ℓ.

Now we show that property 4 in the first part and the second part hold. Again we use induction.
When j = 1, we note that Y v1 = Uℓ. Thus property 4 holds. Now suppose property 4 holds for
some j; we will show that the second part of the statement is true for iteration j, and that property
4 holds for iteration j + 1. This will establish the lemma.

We first note that by our choice of the parameters, even if conditioned on all the ({Y ′i(≤b), Y i(≤b),

Si(≤b), Ri(≤b), i ∈ Tv}), we have that H(Y v) ≥
√
k−2bdh ≥ bdh and H(X|ZT) ≥ k−h

√
k−2bh2ℓ >

0.9k. Thus no matter when we apply Ext1, Ext2 or Ext3 in the case of i = v, the source always has
enough entropy for extraction.

We now first fix ({Y ′i(≤j−1), Y i(≤j−1), Si(≤j−1), Ri(≤j−1), i ∈ Tv}). Note that conditioned on this
fixing, X is still an affine source. Note that ZT is a linear function of X and {Y ij , i ∈ Tv} are linear
functions of ZT , thus they are all affine sources. We will now further fix {Y ij , i ∈ T j−1

v }. Note that
since they are all linear functions of ZT , conditioned on this fixing X is still an affine source. By
induction hypothesis, with probability 1− ǫj1 over the fixing of all these random variables, Y vj is
uniform.

Note that now for any i ∈ T j−1
v , we have Rij

0 = Ext1(X,Y ij) is a deterministic linear function

of X. We can now further fix all {Rij
0 , i ∈ T j−1

v } and conditioned on this fixing, X is still an affine

source. After this fixing, for any i ∈ T j−1
v , we have Y ′ij = Ext2(Y

i, Rij
0) is a deterministic function of

Y i. We can now further fix all {Y ′ij , i ∈ T j−1
v }. Conditioned on this fixing X is still an affine source,

and now we have that all the {Rij
t , i ∈ T j−1

v } are deterministic functions of X. Moreover, for any
i ∈ T j−1

v , if we fix Rij
t , then Rij

t+1 is a deterministic linear function of X. Thus for any i ∈ T j−1
v , we

can fix all {Rij
t , t = 1, · · · ,max(Indvj−1, Indij)} one by one, and conditioned on all these fixings, X

is still an affine source. Note that this also fixes all {Sij
t , t = 1, · · · ,max(Indvj−1, Indij)} since they

are deterministic functions of {Rij
t } and {Y ′ij}. Thus we have fixed all {Y ij , Y ′ij , Sij , Rij , i ∈ T j−1

v }.
Note that in the above process, we may lose entropy in Y vj when we fix {Rij

t , t = 0, · · · ,max(Indvj−
1, Indij), i ∈ T j−1

v } and {Y ′ij , i ∈ T j−1
v }. However, note that the size of all these random variables

is at most |T j−1
v |((h + 1)ℓ + (2h2 + 10)ℓ) ≤ h((h + 1)ℓ + (2h2 + 10)ℓ) = (2h3 + h2 + 11h)ℓ, thus

H(Y v1) ≥ d− (2h3 + h2 + 11h)ℓ.
Now by Lemma 2.8, there exist independent affine sources A,B such that X = A+B and there

exists a linear bijection L between A and ZT . Thus B is also independent of (ZT , {Yi, i ∈ Tv}).
Note that H(B) = H(X|ZT) ≥ 0.9k and H(Yv) ≥ d−(2h3+h2+11h)ℓ. Since Y vj is a deterministic
function of Yv, by Lemma 2.6 we have

13

(Ext2(B, Y vj), Y vj) ≈ǫ (Uℓ, Y
vj).

Note that Rvj
0 = Ext2(A, Y

vj) + Ext2(B, Y vj). Let RA = Ext2(A, Y
vj) and RB = Ext2(B, Y vj),

thus Rvj
0 = RA + RB. We now fix Y vj . Note that after this fixing, RB is a deterministic linear

function of B, and is thus independent of (A, Y i, i ∈ Tv). If we ignore the error, then RB is still
uniform. Thus we can further fix all {Y ij , i ∈ T̃ j−1

v } (since they are deterministic linear functions
of Y i) and RB is still uniform. Note that after this fixing X is still an affine source. Now, all the
{Ext2(A, Y ij), i ∈ T̃ j−1

v } become deterministic linear functions of A, and are thus independent of
RB. So we can now further fix all {Ext2(A, Y ij), i ∈ T̃ j−1

v } and RB is still uniform and independent
of {Y i, i ∈ Tv}. Note that conditioned on this fixing we have Rvj

0 = RA + RB is uniform and

independent of all {Y i, i ∈ T̃ j−1
v }. Thus by Corollary 2.12 we have

(Y ′vj , Rvj
0) ≈ǫ (U(2h2+10)ℓ, R

vj
0).

We can now further fix RB, and conditioned on this fixing Y ′vj is a deterministic function of Y v,
and is thus independent of all {Ext(B, Y ij), i ∈ T̃ j−1

v } since they are deterministic linear functions
of B. We can therefore fix all {Ext(B, Y ij), i ∈ T̃ j−1

v } and Y ′vj is still close to uniform. Note since
{Ext(A, Y ij), i ∈ T̃ j−1

v } have been fixed before, now we have fixed all {Rij
0 , i ∈ T̃ j−1

v }. Now adding
back all the error, we get that after all these fixings,

Y ′vj ≈2ǫ U(2h2+10)ℓ.

Ignoring the error, we can now apply Lemma 3.1 (where Y = (Y ′ij , i ∈ Tv), Y
′ = Y v and Z =

ZT). Thus conditioned on the further fixing of {Sij
1 , · · · , Sij

Indvj−1, i ∈ T̃ j−1
v } and {Rij

1 , · · · , R
ij
Indvj−1, i ∈

T̃ j−1
v }, we have that X is still an affine source, and {Sij

Indvj
, i ∈ T̃ j−1

v } are deterministic linear func-

tions of {Y ′ij , i ∈ T̃ j−1
v } respectively. Moreover H(X|ZT) ≥ 0.9k > 10ℓ. Therefore again by

Lemma 2.8, there exist independent affine sources A,B such that X = A+B and there exists a lin-
ear bijection L between A and ZT . Thus B is also independent of ZT and H(B) = H(X|ZT) > 10ℓ.

Lemma 3.1 also tells us that

(Svj
Indvj

, {Sij
1 , · · · , Sij

Indvj−1, R
ij
1 , · · · , R

ij
Indvj−1, i ∈ T̃ j−1

v })

≈(2(Indvj−1))ǫ(Uℓ, {Sij
1 , · · · , Sij

Indvj−1, R
ij
1 , · · · , R

ij
Indvj−1, i ∈ T̃ j−1

v }).

Ignoring the error, conditioned on the further fixing of {Sij
1 , · · · , Sij

Indvj−1, i ∈ T̃ j−1
v } and

{Rij
1 , · · · , R

ij
Indvj−1, i ∈ T̃ j−1

v }, we have that Svj
Indvj

is uniform. Since Svj
Indvj

is a deterministic linear
function of Y v, it is independent of B. Thus by Corollary 2.12 we have

(Extw(B,Svj
Indvj

), Svj
Indvj

) ≈ǫ (Uℓ, S
vj
Indvj

).

Note that for any i ∈ T̃ j−1
v , we have Rij

Indvj
= Extw(X,Sij

Indvj
) = Extw(A,S

ij
Indvj

)+Extw(B,Sij
Indvj

).

Thus for any fixing of Svj
Indvj

, we have Extw(B,Svj
Indvj

) is a deterministic linear function of B, and is

thus independent of (A,ZT = {Y i, i ∈ Tv}). Therefore it is also true that

14

(Rvj
Indvj

, {Sij
Indvj

, i ∈ T̃ j−1
v }, {Y ′ij , i ∈ T̃ j−1

v }) ≈ǫ (Uℓ, {Sij
Indvj

, i ∈ T̃ j−1
v }, {Y ′ij , i ∈ T̃ j−1

v }).

Now we add back all the error, and notice that we have already fixed all {Y ′i(≤j−1), Y i(≤j−1),

Si(≤j−1), Ri(≤j−1), i ∈ Tv}, {Y ij , i ∈ Tv}, {Y ′ij , i ∈ T j−1
v }, {Sij , Rij , i ∈ T j−1

v }. Furthermore notice
that for any i ∈ T j

v \ T j−1
v , we must have Indij < Indvj , thus max(Indvj − 1, Indij) = Indvj − 1.

Therefore for these i when we fix {Rij
1 , · · · , R

ij
Indvj−1} we have fixed Rij . On the other hand for any

i ∈ Tv we have that Indij ≤ Indvj so if we fix all Sij
1 , · · · , Sij

Indvj
we have fixed Sij . Thus we have

(Rvj
Indvj

, {Y ′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T j
v })

≈ǫj2(Uℓ, {Y ′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T j
v }),

where ǫj2 = ǫj1+2ǫ+(2(Indvj−1))ǫ+ ǫ ≤ ǫj1+(2h+1)ǫ = 4j(h+1)ǫ+(2h+1)ǫ. Thus the second
part of the statement for iteration j is true.

Now conditioned on the fixing of {Y ′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T j
v }, we have that

Extw(B,Svj
Indvj

) is still uniform (ignoring the error) and is a deterministic linear function of B. We

will now further fix all {Extw(A,Sij
Indvj

), i ∈ T̃ j−1
v }. Since these are all deterministic linear functions

of A, conditioned on these fixings we have X is still an affine source, and Extw(B,Svj
Indvj

) is still

uniform. Now Rvj
Indvj

= Extw(A,S
vj
Indvj

) + Extw(B,Svj
Indvj

) is still uniform and is a deterministic

linear function of B, and is thus independent of (ZT , Y
v). Moreover, all {Rij

Indij
, i ∈ T j

v } have

been fixed and all {Rij
Indvj

, i ∈ T̃ j
v } are deterministic linear functions of B. Therefore now all

{Y i(j+1) = Ext3(Y
i, Rij

Indij
), i ∈ T j

v } are deterministic linear functions of {Y i, i ∈ T j
v } respectively.

We can thus now further fix all these {Y i(j+1), i ∈ T j
v } and conditioned on this fixing, X is still an

affine source and Y v still has enough entropy. Now by Corollay 2.12 we have

(Y v(j+1), Rvj
Indvj

) ≈ǫ (Ud, R
vj
Indvj

).

Note that conditioned on Rvj
Indvj

, we have that Y v(j+1) is a deterministic function of Y v, and is

thus independent of all {Rij
Indvj

, i ∈ T̃ j
v } since they are deterministic functions of B. Note that for

any i ∈ T̃ j
v , we must have Indij = Indvj and thus max(Indvj − 1, Indij) = Indij . Therefore it is also

true that

(Y v(j+1), {Rij
Indij

, i ∈ T̃ j
v }) ≈ǫ (Ud, {Rij

Indij
, i ∈ T̃ j

v }).
Therefore we have that

(Y v(j+1), {Y ′i(≤j), Y i(≤j), Si(≤j), Ri(≤j), i ∈ Tv}, {Y i(j+1), i ∈ T j
v })

≈ǫ′(Uℓ, {Y ′i(≤j), Y i(≤j), Si(≤j), Ri(≤j), i ∈ Tv}, {Y i(j+1), i ∈ T j
v }),

where ǫ′ = 2ǫ + (2(Indvj − 1))ǫ + ǫ + ǫ ≤ 2(h + 1)ǫ. This is conditioned on the event that Y vj is
uniform at the beginning of iteration j, which happens with probability 1−ǫj1. By Lemma 2.7, now

15

with all but another 2ǫ′ ≤ 4(h + 1)ǫ probability, conditioned on {Y ′i(≤j), Y i(≤j), Si(≤j), Ri(≤j), i ∈
Tv}, {Y i(j+1), i ∈ T j

v } we have that Y v(j+1) is uniform. Thus property 4 in the first part holds for
iteration j + 1 with ǫ(j+1)1 = ǫj1 + 4(h+ 1)ǫ = 4(j + 1)(h+ 1)ǫ.

We now have the following lemma.

Lemma 4.3. Assume that k ≥ 9b2d2h2 and X is an (n, k)-affine source. Let N = 2d
′
= poly(n)

and W = W 1 ◦ · · · ◦WN = SR(X). Then there exists a subset S ⊂ [N] with |S| ≥ (1− 2
n2)N such

that for any subset S′ ⊂ S with |S′| = h, we have that

(W i, i ∈ S′) ≈ǫ Uhℓ,

where ǫ = 2−Ω(
√
ℓ).

Proof. First note that LExt is a strong linear seeded extractor with seed length d′ = O(logn) and
error n−2. Thus by Lemma 2.7 there exists a subset S ⊂ [N] with |S| ≥ (1 − 2

n2)N such that
∀i ∈ S, we have that Y i is uniform.

Now consider any subset S′ ⊂ S with |S′| = h. We order the elements in S′ to be i1 < i2 <
· · · < ih. Since S′ ⊂ S, for any j ∈ [h] we have that Y ij is uniform. We now apply Lemma 4.2 to
the set S′. Note that f b(i) = i − 1, thus for any v ∈ S′ we have S′bv = {i ∈ S′ : i < v}. Also note
that W i = Rib

Indib
for any i ∈ [N]. Thus by Lemma 4.2, for any j ∈ [h] we have that

(W ij ,W i1 , · · · ,W ij−1) ≈
O(bh2−Ω(

√
ℓ))

(Uℓ,W
i1 , · · · ,W ij−1).

Thus we have that

(W i1 , · · · ,W ih) ≈ǫ Uhℓ,

where ǫ = O(bh22−Ω(
√
ℓ)) = 2−Ω(

√
ℓ) since ℓ = kβ > kα, h < 2kα and b < log n = kO(1).

We can now state our affine extractor.

Algorithm 4.4 (AExt(X)).

Input: X— an (n, k)-affine source with k ≥ polylog(n).
Output: Z — a bit that is n−Ω(1)-close to uniform.

Sub-Routines and Parameters:

Let SR be the function in Algorithm 4.1. Let bitExt be the extractor for non-oblivious bit-fixing
sources in Theorem 2.16.

1. Let W = W 1 ◦ · · · ◦WN = SR(X) where N = poly(n). Take the first bit of each W i and
let V be the concatenation.

2. Compute Z = bitExt(V).

We have the following theorem.

16

Theorem 4.5. There exists a constant C > 1 such that for any (n, k) affine source X with k ≥
logC n, we have that

|AExt(X)− U1| ≤ ǫ,

where ǫ = n−Ω(1).

Proof. By Lemma 4.3, if k ≥ 9b2d2h2 then there exists a subset S ⊂ [N] with |S| ≥ (1− 2
n2)N such

that for any subset S′ ⊂ S with |S′| = h, we have that

(W i, i ∈ S′) ≈ǫ′ Uhℓ,

where ǫ′ = 2−Ω(
√
ℓ).

Therefore by definition V is a (q, t, γ)-non-oblivious bit-fixing source with q = 2N/n2, t = h

and γ = ǫ′ = 2−Ω(
√
ℓ). We now apply Theorem 2.16. Note that q = 2N/n2 ≤ N1−δ for some

constant δ > 0 since N = poly(n). We also need that t = h ≥ O(log18(N)) = O(log18 n)and
γ ≤ 1/N t+1 = 1/nO(t).

Note that b < log n, d = O(h6ℓ2), ℓ = kβ , and kα ≤ h < 2kα. Thus altogether all conditions
are satisfied if

k ≥ ck14α+4β log2 n, kα ≥ c1 log
18 n, and

√
ℓ = kβ/2 ≥ c2k

α logn,

for some constants c, c1, c2.
It is now easy to check that if we take α, β to be small enough with α < β/2 and k ≥ logC n for

a big enough constant C > 1, then all the above conditions are satisfied. Thus by Theorem 2.16
the output of AExt is ǫ-close to uniform with ǫ = N−Ω(1) = n−Ω(1). Note that N = poly(n) so the
extractor can be computed in polynomial time.

5 Open Problems

The most obvious open problem left here is to increase the output length of our extractor and
improve the error. Currently our extractor only outputs one bit with error n−Ω(1), while by the
probabilistic method one can hope to extract Ω(k) bits with error 2−Ω(k). Note that in the case of
two-source extractors, if one can improve the output length of the extractor in [CZ15] to O(logn),
then one can immediately obtain output length close to k by applying a seeded extractor to one of
the sources. However, in the affine case, it is not clear if one can apply this trick.

References

[BIW04] Boaz Barak, R. Impagliazzo, and Avi Wigderson. Extracting randomness using few in-
dependent sources. In Proceedings of the 45th Annual IEEE Symposium on Foundations
of Computer Science, pages 384–393, 2004.

[Bou05] Jean Bourgain. More on the sum-product phenomenon in prime fields and its applica-
tions. International Journal of Number Theory, 1:1–32, 2005.

[Bou07] Jean Bourgain. On the construction of affine-source extractors. Geometric and Func-
tional Analysis, 1:33–57, 2007.

17

[BRSW06] Boaz Barak, Anup Rao, Ronen Shaltiel, and Avi Wigderson. 2 source dispersers for no(1)

entropy and Ramsey graphs beating the Frankl-Wilson construction. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, 2006.

[BSK09] Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials. In
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 2009.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2):230–261,
1988.

[CI15] Mahdi Cheraghchi and Piotr Indyk. Nearly optimal deterministic algorithm for sparse
walsh-hadamard transforms. Technical Report TR15-076, Electronic Colloquium on
Computational Complexity, 2015.

[Coh15] Gil Cohen. Local correlation breakers and applications to three-source extractors and
mergers. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Com-
puter Science, 2015.

[CZ15] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functionss. Technical Report TR15-119, Electronic Colloquium on Computa-
tional Complexity, 2015.

[DG10] Matt DeVos and Ariel Gabizon. Simple affine extractors using dimension expansion. In
Proc. of the 25th CCC, 2010.

[DKSS09] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan. Extensions to the method of multiplicities,
with applications to Kakeya sets and mergers. In Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, pages 181–190, 2009.

[GR05] Ariel Gabizon and Ran Raz. Deterministic extractors for affine sources over large
fields. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, 2005.

[GUV09] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness
extractors from Parvaresh-Vardy codes. Journal of the ACM, 56:1–34, 2009.

[Li11a] Xin Li. Improved constructions of three source extractors. In Proceedings of the 26th
Annual IEEE Conference on Computational Complexity, pages 126–136, 2011.

[Li11b] Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the 26th
Annual IEEE Conference on Computational Complexity, pages 137–147, 2011.

[Li13a] Xin Li. Extractors for a constant number of independent sources with polylogarithmic
min-entropy. In Proceedings of the 54th Annual IEEE Symposium on Foundations of
Computer Science, pages 100–109, 2013.

[Li13b] Xin Li. New independent source extractors with exponential improvement. In Pro-
ceedings of the 45th Annual ACM Symposium on Theory of Computing, pages 783–792,
2013.

18

[Li15] Xin Li. Three source extractors for polylogarithmic min-entropy. In Proceedings of the
56th Annual IEEE Symposium on Foundations of Computer Science, 2015.

[LRVW03] C. J. Lu, Omer Reingold, Salil Vadhan, and Avi Wigderson. Extractors: Optimal up
to constant factors. In Proceedings of the 35th Annual ACM Symposium on Theory of
Computing, pages 602–611, 2003.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, 52(1):43–52, 1996.

[Rao06] Anup Rao. Extractors for a constant number of polynomially small min-entropy in-
dependent sources. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, 2006.

[Rao09] Anup Rao. Extractors for low-weight affine sources. In Proc. of the 24th CCC, 2009.

[Raz05] Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

[RRV02] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing
the error in trevisan’s extractors. JCSS, 65(1):97–128, 2002.

[Sha11] Ronen Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In Proceedings
of the 52nd Annual IEEE Symposium on Foundations of Computer Science, 2011.

[SU05] Ronen Shaltiel and Chris Umans. Simple extractors for all min-entropies and a new
pseudorandom generator. Journal of the ACM, 52:172–216, 2005.

[Tre01] Luca Trevisan. Extractors and pseudorandom generators. Journal of the ACM, pages
860–879, 2001.

[Yeh11] Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 2011.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

