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Abstract

We show that for any coprime m, r there is a circuit of the form MODm ◦ ANDd(n) whose

correlation with MODr is at least 2−O( n
d(n) ). This is the first correlation lower bound for

arbitrary m, r, whereas previously lower bounds were known for prime m. Our motivation is

the question posed by Green et al. [11] to which the 2−O( n
d(n) ) bound is a partial negative

answer. We first show a 2−Ω(n) correlation upper bound that implies a 2Ω(n) circuit size lower

bound. Then, through a reduction we obtain a 2−O( n
d(n)

) correlation lower bound. In fact, the
2Ω(n) size lower bound is for MAJ ◦ANYo(n) ◦AND ◦MODr ◦ANDO(1) circuits, which can be
of independent interest.

1 Introduction

Understanding the power of small-depth circuits that have MODm gates, in addition to the usual
boolean gates, is one of the most fascinating areas of computational complexity. MODm is the
boolean function that outputs 1 if and only if the number of 1s in its input is a multiple of m. The
computational limitations of MODm gates for prime m = p is well-understood since 1980s through
the seminal works of Razborov [14] and Smolensky [15]. They proved that no constant depth
polynomial size circuit with {MODp,AND,OR,NOT} gates can compute the MODq function, for
primes p 6= q. Smolensky further conjectured that the same holds true for composite moduli, which
remains an important open question.

A main tool in the study of small-depth circuit lower bounds is via correlation upper bounds
[2, 3, 7, 8, 9, 11, 13]. The notion of correlation quantifies the distance of two functions and was
introduced by Hajnal et al. [13]; see p. 2 for definitions. The smaller the correlation between the
circuit and a function the larger the circuit size to compute this function.

In this note we show a limitation of the correlation method, aiming to answer the question
of Green et al. [11]. They asked whether it is possible to prove correlation upper bounds that
yield size lower bounds for circuits of the form MODm ◦ANDω(logn), which correspond to functions
MODm(P (x)), for a polynomial P of degree ω(log n). We show a correlation lower bound between
MODr and MODm(P (x)) where m ∈ Z is anything and P is of any degree. Previously, Green [10]
and Viola [17] discussed correlation lower bounds that differ from ours. Viola’s argument is for
the correlation between symmetric functions and polynomials of degree

√
n (i.e. high degree) over

GF(2) (in fact, GF(p) for prime p and his result is incomparable to ours), whereas Green’s argument
is only about MOD2 and MOD3.

Our goal is to lower bound the correlation between MODr and any circuit Csimple with a single
layer of MODm. This is shown in two steps. In the first step we obtain a correlation upper bound
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but for more complicated circuits Cmulti-layer, which in particular includes circuits with two MOD
layers. This correlation upper bound implies a circuit size lower bound for Cmulti-layer. In the second
step we do a reduction to obtain the lower bound on the correlation of a specific Csimple and MODr.

There is considerable success in using correlation upper bounds in obtaining circuit lower
bounds. In our argument we need to lower bound the size of circuits of the form MAJ ◦ANYo(n) ◦
AND ◦MODr ◦ANDd(n), for which no previous lower bounds were known.

Hajnal et al. [13] showed the discriminator lemma, according to which upper bounded correlation
of f, g implies a lower bound for circuits of the form MAJ ◦ f that compute g. MAJ outputs 1
if and only if the majority of input bits is 1. Cai et al. [3] studied depth 3 circuits of the form
MAJ◦MODm ◦AND and introduced the analytic study of exponential sums, which is important for
our work as well. Their results were for symmetric MOD functions, later generalized by Green [9],
whereas Bourgain [2] (for odd moduli) and Green et at [11], and Chattopadhyay [5] (best known
constants), finally showed an exponential size lower bound for MAJ◦MODm ◦ANDO(1) computing
MODq, when m, q are coprime, i.e. (m, q) = 1. For OR ◦MOD circuits, i.e. linear systems over
mod m, Chattopadhyay and Wigderson [8] showed exponential small correlation with MODq for
restricted m and the general abelian case was handled by Chattopadhyay and Lovett [7].

For two layers of MOD gates, Grolmusz et al. [12] and Caussinus [4] studied MODm ◦MODr

circuits computing the AND function and proved, for anym, r, exponential circuit size lower bounds.
Barrington and Straubing [1] considered MODp◦MODm circuits and proved a exponential size lower
bound for such circuits computing MODq, where p is a prime and (p, q) = (m, q) = 1. Straubing [16]
introduce a finite field representation of MOD gates and simplified the previous proofs [1, 12].
Chattopadhyay et al. [6] studied MODr ◦MODm to compute MODq, where (r, q) = (m, q) = 1,
for composite r. The authors proved that the fan-in of the output MODr gate, or any ANY gate,
must be Ω(n).

2 Notations and prerequisites

All operations in this note are over C, e.g. in evaluating a polynomial function P : {0, 1}n → Z with
integer coefficients the operations treat the inputs 0, 1 as integers. We write ||x||1 :=

∑n
i=1 xi for

x ∈ {0, 1}n and denote by MODm the boolean function (gate), where MODm(||x||1) = 1 if m
∣∣||x||1

and 0 otherwise; not to be confused with the modulus over Z, i.e. ||x||1( mod m). Thus, polynomial
functions take inputs {0, 1}n and MOD functions take inputs from Z. For X ∈ Z we write em(X) :=

eX
2πi
m , where e

2πi
m is the m-th primitive root of 1. Then, MODm(X) = 1

m

∑
0≤k<m em(kX). The

correlation of the boolean functions f, g : {0, 1}n → {0, 1} is defined as Corr(f, g) = |Prx(f(x) =

1
∣∣ g(x) = 1)−Prx(f(x) = 1

∣∣ g(x) = 0)| = |Ex(f(x)·g(x))
Prx(g(x)=1) −

Ex(f(x)·(1−g(x)))
Prx(g(x)=0) |. We extend the definition

for f : {0, 1}n → C and g : {0, 1}n → {0, 1} so that Corr(f, g) = |Ex[f(x)·g(x)]
Prx[g(x)=1] −

Ex[f(x)·(1−g(x))]
Prx[g(x)=0] |.

Now, let us state an observation we made, which is repeatedly used later on.

Observation 1 (sub-additivity). Let functions f1, f2 : {0, 1}n → C and boolean function g. Then,
Corr(f1 + f2, g) ≤ Corr(f1, g) + Corr(f2, g) and Corr(c · f, g) = |c| · Corr(f, g), for constant c ∈ C.

The main tool for proving MAJ ◦ ANY circuit lower bounds is the following lemma [13]. In
fact, this lemma applies not only to MAJ but to any threshold gate.

Lemma 2 (discriminator lemma [13]). Let T be a circuit consisting of a majority gate over sub-
circuits C1, C2, . . . , Cs each taking n-bit inputs. Let f be the function computed by this circuit. If
Corr(Ci(x), f(x)) ≤ ε for each i = 1, . . . , s, then s ≥ 1/ε.
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We use the above lemma together with elementary analytic techniques. The analytic machinery
is explicit in the statement of the following Lemma 3 .

Lemma 3. [see [11]] For any m, q, k ∈ Z+, (m, q) = 1, P a polynomial function with integer
coefficients, deg(P ) = O(1), and x ∈ {0, 1}n, then Corr(em(P (x)),MODq(||x||1) ≤ 2−Ω(n).

We represent functions f : {0, 1}n → {0, 1} as f(x) =
∑

S⊆{1,2,...,n} αS
∏

xi∈S xi. This rep-

resentation is unique since the functions {
∏

i∈S xi|S ⊆ {1, 2, . . . , n}} form a function basis1 for
{0, 1}n → C. These basis functions are not to be confused with the fourier basis, which consists of
the characters written multiplicatively ({−1, 1}n → {−1, 1}). We also introduce the definition of
norm(f) :=

∑
S |αS |, which is particularly useful for our purposes.

3 Our results: statements and proofs

Our main results are Theorem 4, which states the circuit lower bound, and Theorem 5, which states
the correlation lower bound. Note that Theorem 4 is used to show Theorem 5.

To simplify expression we represent a family of functions {gm}m by one g ∈ {gm}m.

Theorem 4. Let n be the input length to circuits and degg = o(n). Fix arbitrary g : {0, 1}degg →
{0, 1} and m, q ∈ Z+, where (m, q) = 1. If a MAJ ◦ g ◦AND ◦MODm ◦ANDO(1) circuit computes

MODq, then the fanin of the MAJ gate on the top is 2Ω(n).

Theorem 5. For every d ∈ Z+ and every m, q ∈ Z+, (m, q) = 1 there exists a degree d polynomial

P such that Corr(MODm(P (x)),MODq(||x||1)) ≥ 2−O(nd ).

3.1 Proof of Theorem 4: via a correlation upper bound

First, the sub-additive properties of correlation (Observation 1) yield the following lemma.

Lemma 6 (bounded correlation amplifier). For every d,m, q ∈ Z+, (m, q) = 1 and every g :
{0, 1}degg → {0, 1} and polynomial functions Pi(x), x ∈ {0, 1}n, whose degrees are deg(Pi(x)) ≤ d
we have

Corr(g(MODm(P1(x)),MODm(P2(x)), . . . ,MODm(Pdegg(x))),MODq(||x||1))

≤ norm(g) · max
P (x)∈Z[x],deg(P )≤d

(Corr(em(P (x)),MODq(||x||1)))

In particular, for Pi(x) = O(1) we have

Corr(g(MODm(P1(x)),MODm(P2(x)), . . . ,MODm(Pdegg(x))),MODq(||x||1)) ≤ norm(g) · 2−Ω(n)

Proof. Let yi = MODm(Pi(x)) and y = (y1, y2, . . . , ydegg) the input to g. Now, let g(y) =∑
S⊆{1,...,degg} αS

∏
i∈S yi. Therefore we have the following.

Corr(g(MODm(P1(x)),MODm(P2(x)),MODm(P3(x)), . . . ,MODm(Pdegg(x))),MODq(||x||1))

= Corr(g(y),MODq(||x||1))

= Corr(
∑

S⊆{1,...,degg}

αS

∏
i∈S

yi,MODq(||x||1))

1Since
∏
i∈S xi

∏
i/∈s(1− xi) is the standard basis and the dimension of the function space is 2n.
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≤
∑

S⊆{1,...,degg}

|αS |Corr(
∏
i∈S

yi,MODq(||x||1)) (by Observation 1)

=
∑

S⊆{1,...,degg}

|αS |Corr(
∏
i∈S

MODm(Pi(x)),MODq(||x||1))

=
∑

S⊆{1,...,degg}

|αS |Corr(
∏
i∈S

(
1

m

∑
0≤j≤m−1

em(j · Pi(x))),MODq(||x||1))

=
∑

S⊆{1,...,degg}

|αS |Corr(
1

m|S|

∑
i1...i|S|∈S,0≤ji1 ...ji|S|<m

em(ji1 · Pi1(x) + · · ·+ ji|S| · Pi|S|(x))),MODq(||x||1))

≤
∑

S⊆{1,...,degg}

|αS |
1

m|S|

∑
i1...i|S|∈S,0≤ji1 ...ji|S|<m

Corr(em(ji1 · Pi1(x) + · · ·+ ji|S| · Pi|S|(x))),MODq(||x||1))

(by Observation 1)

≤
∑

S⊆{1,...,degg}

|αS | · max
P (x)∈Z[x],deg(P )≤d

(Corr(em(P (x)),MODq(||x||1)))

(because deg(ji1 · Pi1(x) + · · ·+ ji|S| · Pi|S|(x)) ≤ d)

= norm(g) · max
P (x)∈Z[x],deg(P )≤d

(Corr(em(P (x)),MODq(||x||1)))

The second part of the statement follows by Lemma 3.

The above lemma shows the relation between correlation bounds and norm bounds. Now, we
show a norm bound, which together with Lemma 6 concludes Theorem 8 below.

Lemma 7. For every g : {0, 1}degg → {0, 1} we have norm(g) ≤ 3degg .

Proof. We proceed by induction on degg. If degg = 0 then g = 0 or g = 1, that is norm(g) = 0 or
1. Suppose the predicate holds for degg ≤ k. For degg = k+ 1 let the polynomial representation of
g be g(x1, x2, . . . , xk+1) = P1(x1, x2, . . . , xk) + xk+1 · P2(x1, , . . . , xk), i.e. g|xk+1=0 = P1, g|xk+1=1 =
P1 + P2. Then, P1 = g|xk+1=0 and P2 = g|xk+1=1 − g|xk+1=0. Since g|xk+1=1 and g|xk+1=0 are
boolean function on k variables, by the induction hypothesis we have norm(g|xk+1=1) ≤ 3k and
norm(g|xk+1=0) ≤ 3k. Then, norm(g) = norm(g|xk+1=0 + xk+1 · (g|xk+1=1 − g|xk+1=0)) ≤ 3 · 3k =
3k+1.

Theorem 8. Fix arbitrary g : {0, 1}degg → {0, 1} where degg = o(n) and (m, q) = 1. Then, the

correlation between g ◦MODm ◦ANDO(1) circuit and MODq(||x||1) is 2−Ω(n).

Proof. By Lemma 7 we have norm(g) ≤ 2Ω(degg) = 2o(n), and thus the above observation yields
norm(g ◦AND) ≤ norm(g) ≤ 2o(n). Finally, by Lemma 6 we have that
Corr(g ◦MODm ◦ANDO(1),MODq(||x||1)) ≤ norm(g) · 2−Ω(n) ≤ 2−Ω(n).

We strengthen this theorem by observing that norm(g ◦ AND) ≤ norm(g), which holds true
since

∏
1≤i≤k xi is simply a monomial on x. Thus, Theorem 8 is strengthened for circuits of the form

g ◦AND ◦MODm ◦ANDO(1), and by Lemma 2 we immediately conclude the proof of Theorem 4.
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3.2 Proof of Theorem 5: the correlation lower bound

We stated the lower bound of Theorem 4 in the most general form we could obtain (since it is also
of independent interest). Now, we give the proof of Theorem 5, where we only need to show how to
write MODq as a ANY ◦MODm ◦ANDd circuit, for a function ANY = g that we determine later.

Here is the main tool used to obtain Theorem 5.

Theorem 9. For every d ∈ Z+ and m, q ∈ Z+, (m, q) = 1 there exists a degree d polynomial P ,

such that Corr(em(P (x)),MODq(||x||1)) ≥ 2−O(nd ).

Proof. Let Md be such that for every d ∈ Z+ and m, q ∈ Z+, (m, q) = 1 we have

max
P (x)∈Z[x],deg(P )≤d

(Corr(em(P (x)),MODq(||x||1)) = Md

Split {x1, x2, . . . , xn} into n/d subsets Si = {xid+1, xid+2, . . . , x(i+1)d} for i = 1, 2, . . . , n/d,
where for simplicity we assume d

∣∣n. Now, use log q bits (all logarithms are of base 2) to encode the

value of each (
∑

j∈Si xj) mod q. Thus, using n log q
d bits denoted by b1,1, b1,2, . . . , b1,log q, b2,1, . . . , bn

d
,log q

we can compute MOD(||x||1). We define g such that MODq(||x||1) = g(b1,1, b1,2, . . . , b1,log q, b21 , . . . , bnd ,log q).
Since MODm(1− y) = y for any y ∈ {0, 1} we have MODq(||x||1) = g(MODm(1− b1,1),MODm(1−
b1,2), . . . ,MODm(1 − bn

d
,log q)). Since bi,j is a function on variables {xid+1, xid+2, . . . , x(i+1)d},

we can represent 1 − bi,j as a polynomial Pi,j on d variables and hence deg(Pi,j) ≤ d. Thus,
MODq(||x||1) = g(MODm(P1,1),MODm(P1,2), . . . ,MODm(Pn

d
,log q)), which we use to obtain the

following.

Corr(MOD(||x||1),MOD(||x||1))

= Corr(g(MODm(P1,1),MODm(P1,2), . . . ,MODm(Pn
d
,log q)),MOD(||x||1))

≤ norm(g)Md ≤ 2Ω(n
d

)Md (by Lemma 7 – used with different parameters than in Theorem 8)

On the other hand, by the definition of correlation we have that Corr(MOD(||x||1),MOD(||x||1)) =
1, and thus 1 ≤ 2Ω(n

d
)Md that implies Md ≥ 2−O(n

d
).

Since em(X) is a linear combination of MOD(X),MOD(X−1), . . . ,MOD(X−m+1) we conclude
Theorem 5.

Proof of Theorem 5. Let P ′ be a polynomial of degree at most d such that Corr(em(P ′(x)),MODq(||x||1)) ≥
2−O(nd ). Since em(P ′(x)) =

∑
0≤i<m em(i)MOD(P ′(x) − i), by Observation 1 we have 1

2
O(nd )

≤

Corr(em(P ′(x)),MODq(||x||1)) ≤
∑

0≤i<m Corr(MOD(P ′(x)− i),MOD(||x||1)).

Then, there exists 0 ≤ i < m such that Corr(MODm(P ′(X) − i),MODq(||x||1)) ≥ 2
−O(nd )
m =

2−O(nd ).
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circuits of bounded depth. In Foundations of Computer Science (FOCS), pages 99–110, 1987.

[14] Alexander Razborov. Lower bounds on the size of bounded depth networks over a complete
basis with logical addition, mathematische zametki 41 pp. 598–607. English Translation in-
Mathematical Notes of the Academy of Sciences of the USSR, 41:333–338, 1986.

[15] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Symposium on Theory of Computing (STOC), pages 77–82, 1987.
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