
Addition is exponentially harder than counting

for shallow monotone circuits

Xi Chen∗ Igor C. Oliveira† Rocco A. Servedio‡

Department of Computer Science

Columbia University

July 29, 2015

Abstract

Let Uk,N denote the Boolean function which takes as input k strings of N bits each, represent-
ing k numbers a(1), . . . , a(k) in {0, 1, . . . , 2N−1}, and outputs 1 if and only if a(1)+· · ·+a(k) ≥ 2N .
Let THRt,n denote a monotone unweighted threshold gate, i.e., the Boolean function which takes
as input a single string x ∈ {0, 1}n and outputs 1 if and only if x1 + · · ·+ xn ≥ t. The function
Uk,N may be viewed as a monotone function that performs addition, and THRt,n may be viewed
as a monotone function that performs counting. We refer to circuits that are composed of THR
gates as monotone majority circuits.

The main result of this paper is an exponential lower bound on the size of bounded-depth
monotone majority circuits that compute Uk,N . More precisely, we show that for any constant
d ≥ 2, any depth-d monotone majority circuit computing Ud,N must have size 2Ω(N1/d). Since

Uk,N can be computed by a single monotone weighted threshold gate (that uses exponentially
large weights), our lower bound implies that constant-depth monotone majority circuits require
exponential size to simulate monotone weighted threshold gates. This answers a question posed
by Goldmann and Karpinski (STOC’93) and recently restated by H̊astad (2010, 2014). We also

show that our lower bound is essentially best possible, by constructing a depth-d, size-2O(N1/d)

monotone majority circuit for Ud,N .
As a corollary of our lower bound, we significantly strengthen a classical theorem in circuit

complexity due to Ajtai and Gurevich (JACM’87). They exhibited a monotone function that is
in AC0 but requires super-polynomial size for any constant-depth monotone circuit composed of
unbounded fan-in AND and OR gates. We describe a monotone function that is in depth-3 AC0

but requires exponential size monotone circuits of any constant depth, even if the circuits are
composed of THR gates.

∗xichen@cs.columbia.edu.
†oliveira@cs.columbia.edu.
‡rocco@cs.columbia.edu. Supported in part by NSF grants CCF-1319788 and CCF-1420349.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 123 (2015)

1 Introduction.

“And you do Addition?” the White Queen asked. “What’s one and one and one and

one and one and one and one and one and one and one?”

“I don’t know,” said Alice. “I lost count.”

“She can’t do Addition,” the Red Queen interrupted.

— Lewis Carroll, Through the Looking Glass

Threshold functions and threshold circuits. A Boolean function f : {0, 1}n → {0, 1} is called

a weighted threshold function (also known as a halfspace, weighted majority, weighted threshold

gate, or linear threshold function) if there exist integers w1, . . . , wn and t such that

f(x) = 1 ⇐⇒
n∑
i=1

wixi ≥ t.

The parameters w1, . . . , wn are called weights. We say that a threshold function f is unweighted if

|wi| = 1 for every i ∈ {1, . . . , n}, and that it is monotone if every weight is non-negative. (Thus a

monotone unweighted threshold function is precisely a THRt,n function described in the abstract.)

Threshold functions and their generalizations have been extensively investigated for decades

(see e.g. Dertouzos [Der65], Minsky and Papert [MP68], and Muroga [Mur71]), and arise in diverse

areas including social choice theory (Taylor and Zwicker [TZ92]), circuit complexity (Aspnes et al.

[ABFR94]), structural complexity (Beigel, Reingold, and Spielman [BRS95]), learning theory (Fre-

und and Schapire [FS97]), neural networks (Parberry [Par94]), cryptography (Naor and Reingold

[NR04]), and many others.

In this work, we consider Boolean circuits that are composed of gates that compute threshold

functions (i.e., threshold gates). (We refer to Jukna [Juk12] as an extensive reference on Boolean

functions and circuit complexity). While individual threshold gates may appear relatively simple,

Boolean circuits composed of these gates (i.e., threshold circuits) remain poorly understood despite

intensive study. For instance, it is a notorious and long-standing open problem in complexity

theory to prove the existence of a function in NP that cannot be computed by a depth-2 circuit

with polynomially many weighted threshold gates. This difficulty can be explained in part by the

surprising computational power of bounded-depth threshold circuits, both in theory and practice.

On the theory side, such circuits can efficiently implement all the basic arithmetic operations (see

e.g., Table 1 in Sherstov [She07]) and can also simulate (in quasi-polynomial size and depth 3)

AND/OR/MODm Boolean circuits of much larger depth (Allender [All89] and Yao [Yao90]). On a

more practical level, constant-depth networks of (continuous analogues of) threshold gates play a

fundamental role in recent successful deep learning frameworks (see e.g., Schmidhuber [Sch15]).

Despite our inability to prove strong lower bounds against threshold circuits, there have been

some notable successes in understanding the relative power of weighted versus unweighted thresh-

old gates and circuits. Siu and Bruck [SB91] were the first to show that any weighted threshold gate

can be simulated by a polynomial-size, constant-depth circuit consisting of unweighted threshold

gates (such circuits are also known as majority circuits). This result was improved by Goldmann,

H̊astad, and Razborov in [GHR92], who showed (non-constructively) that weighted threshold gates

can be computed by polynomial-size majority circuits of depth 2; in fact, [GHR92] showed that any

1

depth-d weighted threshold circuit can be simulated efficiently by a depth-(d+ 1) majority circuit.

Soon thereafter Goldmann and Karpinski [GK93] gave a constructive proof with better parameters

for the size of the resulting majority circuits. Subsequent simplifications and improvements of these

simulations were given by Hofmeister [Hof96] and Amano and Maruoka [AM05].

Monotone functions and monotone circuits. In a different, and highly successful, strand of

circuit complexity research, a wide range of lower bounds have been obtained against various types

of monotone Boolean circuits (composed of AND/OR gates only but no negations). A sequence of

well-known results [Raz85, And85, AB87, Tar88] culminated in the existence of explicit monotone

Boolean functions that can be computed by polynomial-size Boolean circuits but require monotone

circuits of exponential size. Analogous results highlighting the limitations of monotone circuits

are also known at the “low-complexity” end of the spectrum: in an important result, Ajtai and

Gurevich [AG87] exhibited a monotone function in AC0 (i.e., a constant-depth, polynomial-size

AND/OR/NOT Boolean circuit) that requires monotone AC0 circuits (composed of AND/OR gates)

to have super-polynomial size. However, it should be noted that the Ajtai–Gurevich circuit lower

bound against monotone AC0 is quantitatively not very strong (at best a quasipolynomial nΩ(logn)

lower bound; see discussion following the statement of the Ajtai–Gurevich theorem below). Other

works have given alternative/simplified expositions of the Ajtai–Gurevich lower bound and of its

consequences in formal logic (see [BST13] for the former and Stolboushkin [Sto95] for the latter).

But prior to the results of this paper, stronger lower bounds against monotone AC0 circuits for

monotone functions in AC0 remained elusive.

This work: Monotone weighted threshold functions versus constant-depth monotone

majority circuits. As mentioned earlier, Goldmann and Karpinski gave a constructive proof

[GK93] that weighted threshold gates can be simulated by polynomial-size and depth-2 majority

circuits. They also observed that even if the weighted threshold gate is monotone, known simula-

tions produce majority circuits that are inherently non-monotone (i.e., they contain majority gates

with negative weights, or equivalently, negation gates), which then led them to ask the question of

whether an efficient monotone simulation is possible in constant depth.

Hofmeister [Hof92] made some early progress on this question by showing that any monotone

depth-2 majority circuit that computes the function U2,N from the abstract must have exponential

size. To state the result more precisely, let us first clearly specify our notion of monotone majority

circuits. A monotone majority circuit here is a directed acyclic graph which may have multiple

edges (called wires). There is a single node with no outgoing wires, called the output gate. Nodes

that have no incoming wires are called input nodes and are each labeled either 0, 1 or xi, for some

i; every other node is labeled with a monotone unweighted threshold gate THRt,m for some t, with

m being its in-degree, which outputs 1 iff there are at least t 1’s from its m input wires. We say

the size of a monotone unweighted threshold gate THRt,m is m (or its in-degree), and that the size

of a monotone majority circuit is the sum of the sizes of its gates (or its number of wires).1 Then

Hofmeister showed that every depth-2 monotone majority circuit for U2,N must have size 2Ω(
√
N).

As mentioned above, in subsequent work [Hof96] and [AM05], several improvements were made

on the Goldmann-Karpinski simulation, but neither is monotone, and no further progress was ob-

tained on the lower bound side after Hofmeister’s paper [Hof92] until the current work. The question

1Observe that by reduplicating inputs, any weighted threshold function f given by
∑n
i=1 wixi ≥ t can be computed

by an unweighted threshold gate of size |w1|+ · · ·+ |wn|. We sometimes refer to this as the “weight of f .”

2

of Goldmann and Karpinski was recently restated by H̊astad [H̊as10, BHKS14].

1.1 Our Results.

Our main result shows that monotone weighted threshold gates cannot be simulated by subexpo-

nential size monotone majority circuits of constant depth. This may be viewed as an extension of

Hofmeister’s depth-2 lower bound in [Hof92] to arbitrary constant depth (in fact we obtain super-

polynomial size lower bounds even for circuits of small super-constant depth; see discussions after

Theorem 1 below). We thus answer the question posed by Goldmann and Karpinski [GK93] and by

H̊astad [H̊as10, BHKS14].

Before giving a precise statement of our results, we define formally the family Uk,N of Boolean

functions as described in the abstract. Given t ≥ 1, we let [t] denote the set {1, . . . , t}. For k ≥ 2,

the function Uk,N maps {0, 1}k×N to {0, 1} as follows. Given x = (xi,j)i∈[k],j∈[N] ∈ {0, 1}k×N , define

SUM(x)
def
=

N∑
j=1

2N−j · (x1,j + · · ·+ xk,j) and Uk,N (x)
def
=

{
1 if SUM(x) ≥ 2N ,

0 otherwise.

It is helpful to think of the input x = (xi,j)i∈[k],j∈[N] as a k-row, N -column, and 0/1-valued matrix,

where its ith row (xi,1, . . . , xi,N) gives the binary representation of a number x(i) ∈ {0, 1, . . . , 2N − 1}
in the usual way (with xi,1 being the most significant bit). Then the function Uk,N adds up the k

numbers x(1), . . . , x(k) and outputs 1 if and only if the sum is at least 2N .

With the definition of Uk,N in place, our main result can be stated as follows:

Theorem 1. Let d ≥ 2, n and N be three positive integers that satisfy

n ≥ 260d and N ≥ (213n)d.

Then any depth-d monotone majority circuit that computes Ud,N must have size at least 2n/2
60d
.

This lower bound is nearly optimal for any fixed d ≥ 2, as we prove the following upper bound.

Theorem 2. Let k, d,N ≥ 2 be three positive integers. Then there exists a depth-d monotone

majority circuit of size 26(N1/d log k+logN) that computes Uk,N .

Remark 1. For any fixed constant d ≥ 2, Theorems 1 and 2 together show that the smallest

depth-d monotone majority circuit that computes Ud,N (note that this function has d ·N = Θ(N)

input variables) has size exp(Θ(N1/d)). In addition, by setting d = c
√

logN and n = 261d for

some small enough positive constant c so that N ≥ (213n)d, Theorem 1 implies that any depth-d

monotone majority circuit computing Ud,N has superpolynomial size (exponential in 2c
√

logN)).

Remark 2. As an easy consequence of Theorem 2, we obtain a slightly weaker version of the

main result of Beimel and Weinreb [BW05]. They proved that the “universal monotone threshold

function”2 UO(N),O(N logN) can be computed by a poly(N)-size, depth-O(logN) monotone circuit

composed of fan-in two AND gates and unbounded fan-in OR gates. While Theorem 2 above is

tailored for small values of k, we note that it implies that UO(N),O(N logN) can be computed by a

2It is called the universal monotone threshold function because it can simulate any monotone weighted threshold
function over N inputs.

3

poly(N)-size, depth-O(log2N) monotone circuit composed of fan-in two AND/OR gates only. (In

more detail, it is enough to set d = logN and replace each majority gate by a O(logN)-depth fan-

in-two AND/OR Boolean circuit.) We sketch a simpler construction in Appendix A that matches

the parameters obtained in [BW05] in the case of the universal monotone threshold function.

Another consequence of our lower bound as stated in Theorem 1 is a significant strengthening

of the Ajtai–Gurevich lower bound discussed earlier. We recall their result in more detail:

Theorem (Ajtai–Gurevich [AG87]). There exists an explicit sequence f = {fn}n∈N of monotone

Boolean functions fn : {0, 1}n → {0, 1} such that:

(i) f ∈ AC0;

(ii) f /∈ monAC0: For any fixed constant d, any monotone depth-d AND/OR circuit computing fn
must have size at least Sd(n), for some function Sd(n) = nω(1).

Regarding part (ii) above, it is not immediately clear what is the best (largest) function Sd(n) that

can be extracted from the Ajtai–Gurevich proof. However, fn is easily seen to be computed by a

monotone depth-2 circuit (a monotone DNF) of size nlogn, so Sd(n) ≤ nlogn for all d ≥ 2.

As an easy corollary of Theorem 1, we strengthen the Ajtai–Gurevich circuit lower bound

(for a different monotone function in AC0) in two ways: by giving a lower bound against monotone

majority circuits of constant depth (rather than monotone circuits of AND/OR gates only), and

by achieving an exponential size lower bound for any fixed depth (rather than a bound which is at

most nlogn). Our theorem is the following:

Theorem 3. There exists an explicit sequence g = {gn}n∈N of monotone Boolean functions, where

gn : {0, 1}n logn → {0, 1}, such that:

(i) g ∈ AC0 (in fact each gn is computed by a poly(n)-size, depth-3 AND/OR/NOT circuit);

(ii) For any constant d ≥ 2, any monotone depth-d majority circuit for gn must have size 2Ω(n1/d).

It is interesting to observe that our proof of Theorem 3 uses very different arguments from those

of Ajtai and Gurevich. The heart of their proof is a “switching lemma” for monotone functions

on hypergrids (see the excellent exposition of their proof given in [BST13]), whereas our approach

does not use switching lemmas at all.

1.2 Related Work and Our Techniques.

In addition to papers discussed above, the works of Yao [Yao89] and H̊astad and Goldmann [HG91]

are relevant in the context of our lower bound result. Let Sipserd+1 denote the read-once monotone

n-variable formula of depth d+ 1 that has alternating layers of AND and OR gates (see [HG91] for

a detailed description of this function). Strengthening the earlier result of Yao [Yao89], H̊astad and

Goldmann [HG91] showed that a depth-d circuit of weighted monotone threshold gates computing

Sipserd+1 must have size 2Ω(n1/2d). In contrast, our Theorem 1 only establishes a lower bound against

constant-depth monotone circuits of unweighted threshold gates, but — crucially — we establish

the lower bound for a much “simpler” monotone function, Ud,N , that is computed by a single

weighted monotone threshold gate. Indeed, the main challenge of our work is to push through a

lower bound for such a heavily constrained target function.

4

At the heart of our lower bound proof is a sequence of carefully constructed pairs of probability

distributions (YES`,NO`) over {0, 1}(`+1)×N` for ` = 1, . . . , d (i.e. over possible inputs to U`+1,N`

for some N` to be specified later). The first distribution YES` in the pair is supported on strings

x that have U`+1,N`(x) = 1, while NO` is supported on strings with U`+1,N`(x) = 0. The key

property of these pairs of distributions, which yields our lower bound, is that considered together,

each pair of (YES`,NO`) is “hard” for “small” monotone majority circuits of depth ` in a suitable

sense. In a bit more detail, our requirement is roughly that for any such circuit F , we have

Prx∼YES`
[
F (x) = 1

]
+ Pry∼NO`

[
F (y) = 0

]
≤ 1 + τ`, (1)

for a suitable value 0 < τ` � 1. At a high level, we establish (1) above through a careful inductive

argument on `. (We note that the preceding sketch is something of an oversimplification; actually,

in order for the inductive hypothesis to be “strong enough to prove itself,” we require an analogue

of (1) both for the pair (YES`,NO`) and for another pair of distributions (YES ′`,NO′`), and the

inductive argument establishing the case ` = j + 1 from the case ` = j requires careful analysis of

yet a third carefully constructed pair (YES∗` ,NO∗`) of distributions. See Section 2 for full details

of the argument.)3

Notation and Organization. Recall that a restriction ρ of a function f is an assignment

fixing some of the input variables of f . We write “f � ρ” to denote f restricted by ρ, a function over

the rest of variables. We use boldface lower-case letters x,y, etc. to denote string-valued random

variables and boldface capital letters X,Y, etc. to denote real-valued random variables.

The rest of the paper is organized as follows. We prove Theorems 1 and 2 in Sections 2 and 3,

respectively. We then use Theorem 1 to prove Theorem 3 in Section 4.

2 The Lower Bound: Proof of Theorem 1.

We prove Theorem 1 in this section. Throughout the section we use d, n and N to denote the three

positive integers in the statement of Theorem 1 with n ≥ 260d and N ≥ (213n)d.

This section is organized as follows. In Sections 2.1 and 2.2, we define inductively two pairs

(YES`,NO`) and (YES ′`,NO′`) of distributions over strings x ∈ {0, 1}(`+1)×N` for ` from 1 to d,

where N` is specified later and satisfies N1 < · · · < Nd ≤ N . An important property of these

distributions is that every x drawn from YES`, NO`, YES ′`, NO′` has SUM(x) equal to

2N` , 2N` − 1, 2N` − 1 and 2N` − (`+ 1),

respectively. From the definition of (YES1,NO1) and (YES ′1,NO′1), it is not too difficult to show

that both pairs are very hard for monotone depth-1 majority circuits (Lemma 2.1), i.e. no majority

gate with small weights can output 1 on strings drawn from YES1 with probability p1 and at the

same time output 0 on strings drawn from NO1 with probability p2 if p1 +p2 is slightly larger than

1 (and the same holds for YES ′1 and NO′1).

3Notice that the argument we just sketched implies that Ud+1,N is hard against depth-d circuits. A more careful
analysis at the end of the argument using the distributions (YES∗d,NO∗d) allows us to obtain the same lower bound
for Ud,N , as stated in Theorem 1.

5

Then we prove our main technical lemma (Lemma 2.7) in Section 2.3, which shows by induc-

tion that both pairs (YES`,NO`) and (YES ′`,NO′`) are hard in the same sense for “small” depth-`

majority circuits over {0, 1}(`+1)×N` for every ` ∈ [d], with (YES1,NO1) and (YES ′1,NO′1) serving

as the base case. Theorem 1 for Ud+1,N (instead of Ud,N as stated) follows directely from Nd ≤ N
and the property that strings x drawn from YESd and NOd have SUM(x) equal to 2Nd and 2Nd−1,

respectively. (Note that, although the second pair (YES ′d,NO′d) is not needed in the proof of The-

orem 1 once Lemma 2.7 has been established, the intermediate pairs (YES ′`,NO′`) play a crucial

role in the inductive definition of these distributions and the proof of Lemma 2.7.)

In order to extend the result to Ud,N (as stated in Theorem 1), we rely on another auxiliary

pair of distributions (YES∗d,NO∗d) constructed during the proof, which is described in more detail

in Section 2.2. We finally use Lemma 2.7 to prove Theorem 1 in Section 2.4.

2.1 The Initial Two Pairs of Distributions.

Let d, n,N be positive integers in the statement of Theorem 1. Let ε
def
= 2−12d and N1

def
= n · (1/ε).

Given a string z ∈ {0, 1}2×N1 , the j-th column of z corresponds to a pair of positions (1, j) and

(2, j), where j ∈ [N1].

We now define two pairs of distributions (YES1,NO1) and (YES ′1,NO′1) over {0, 1}2×N1 and

show that they are hard for monotone depth-1 majority circuits of not-too-large size. We define

the distributions via the following sampling processes.

• A string x ∼ YES1 is generated as follows. Let R ∼ [N1] be uniformly random. We set both

bits in the R-th column of x to 1. For every j > R, we set both bits in the j-th column of x

to 0. For every j < R, we set the j-th column of x to (1, 0) or (0, 1) independently and with

equal probability. For example, writing an x ∈ supp(YES1) as a matrix, it would look like

x =
1 0 0 1 · · · 0 1 0 0 · · · 0 0

0 1 1 0 · · · 1 1 0 0 · · · 0 0
and we have SUM(x) = 2N1 .

• A string y ∼ NO1 is generated by setting its j-th column to (1, 0) or (0, 1) independently

and with equal probability for each j ∈ [R]. So a string y ∈ supp(NO1) would look like

y =
0 1 0 0 · · · 1 1 0 1 · · · 1 0

1 0 1 1 · · · 0 0 1 0 · · · 0 1
and we have SUM(y) = 2N1 − 1.

• YES ′1 is the same as NO1. In particular, each x ∈ supp(YES ′1) has SUM(x) = 2N1 − 1.

• Finally, a string y ∼ NO′1 is obtained as follows. First, sample a random x ∼ YES1. Then

let y be the string obtained by negating each bit of x. So a string y ∈ supp(NO′1) looks like

y =
1 1 0 1 · · · 0 0 1 1 · · · 1 1

0 0 1 0 · · · 1 0 1 1 · · · 1 1
and SUM(y) = 2N1 − 2.

Recall a monotone depth-1 majority circuit of size s is simply a monotone weighted majority

gate with total weight at most s. We show below that both pairs (YES1,NO1) and (YES ′1,NO′1)

defined above are hard for a monotone depth-1 circuit (to be correct on both YES1 and NO1, or

on both YES ′1 and NO′1, with nontrivial probability) unless the total weight s is large.

6

Lemma 2.1. For any depth-1 monotone majority circuit F over {0, 1}2×N1 of size at most 2n−1,

Prx∼YES1
[
F (x) = 1

]
+ Pry∼NO1

[
F (y) = 0

]
≤ 1 + ε, and (2)

Prx∼YES′1

[
F (x) = 1

]
+ Pry∼NO′1

[
F (y) = 0

]
≤ 1 + ε. (3)

Proof. We present the proof of the first inequality on (YES1,NO1). An entirely similar argument

establishes the bound for (YES ′1,NO′1).

Consider an auxiliary distribution D (essentially a coupling of YES1 and NO1) supported over

{0, 1}2×N1×{0, 1}2×N1×[N1], and defined in the following way. A draw (x,y,R) ∼ D is obtained by

selecting a uniformly random R ∼ [N1], a string y ∼ NO1, and by letting x = x(y,R) ∈ {0, 1}2×N1

be the string obtained by replacing the R-th column of y with (1, 1), and by setting the j-th column

of y to (0, 0) for every j > R. Observe that the marginal distributions Dx and Dy are identical to

YES1 and NO1, respectively. Consequently,

LHS of Equation (2) = Pr(x,y,R)∼D
[
F (x) = 1

]
+ Pr(x,y,R)∼D

[
F (y) = 0

]
= Pr

[
F (x) = 1 or F (y) = 0

]
+ Pr

[
F (x) = 1 and F (y) = 0

]
≤ 1 + Pr

[
F (x) = 1 and F (y) = 0

]
.

Hence to prove the lemma, it is enough to show that

q
def
= Pr(x,y,R)∼D

[
F (x) = 1 and F (y) = 0

]
≤ ε. (4)

For every r ∈ [N1], let Yr be an indicator random variable defined on D that is 1 whenever

wr(y) >
∑
`> r

w`(y),

where wj(y)
def
= w1,r · y1,r +w2,r · y2,r, and wi,j is the weight corresponding to the input variable of

F at position (i, j). Informally, Yr = 1 if and only if the weight of y with respect to F at the r-th

column is strictly larger than the sum of the weights collected from all succeeding columns.

We will employ the following claim to establish Equation (4).

Claim 2.2. For every j ∈ [N1], we have

qj
def
= Pr(x,y,R)∼D

[
F (x) = 1 and F (y) = 0

∣∣R = j
]
≤ PrD

[
Yj = 1

]
.

Proof. We consider first the case where j = 1. The conditions of F (x) = 1 and R = 1 imply that

w1,1 + w2,1 ≥ t, where t is the threshold of F . Furthermore, because F (y) = 0 it must be the case

that
∑N1

r=1wr(y) < t. These inequalities give us

w1,1 + w2,1 − w1(y) >
∑
r > 1

wr(y). (5)

Let ỹ be the string obtained from y by flipping the two bits in the first column of y. Equation (5)

7

is then equivalent to w1(ỹ) >
∑

r > 1wr(ỹ). Therefore,

q1 ≤ Pr(x,y,R)∼D

[
w1(ỹ) >

∑
r>1

wr(ỹ)
∣∣R = 1

]
= Pr(x,y,R)∼D

[
w1(y) >

∑
r>1

wr(y)
∣∣R = 1

]
= Pr(x,y,R)∼D

[
Y1 = 1

]
,

where the last two equations use the independence of y and R as well as the fact that ỹ and y are

identically distributed.

For j > 1 the result can be proved similarly by writing qj as a conditional expectation over the

outcome of the first j − 1 columns of y, then adapting the argument above in the natural way.

Claim 2.2 and the definitions of probabilities q and qj imply that

N1 · q =

N1∑
j=1

qj ≤
N1∑
j=1

PrD
[
Yj = 1

]
= ED

 N1∑
j=1

Yj

 .
In particular, there is a string y∗ ∈ supp(NO1) and a set S ⊆ [N1] with |S| ≥ N1 · q such that

wr(y
∗) >

∑
`> r

w`(y
∗), (6)

for each r ∈ S. Recall that the weight associated to each variable in F is a non-negative integer,

and that the total weight of F is at least
∑

r≥1wr(y
∗). It follows directly from (6) that F must have

total weight at least 2|S|−1. However, by assumption F has total weight at most 2n−1. Altogether,

we get from these inequalities and N1 = n · (1/ε) that q ≤ ε, which completes the proof.

2.2 A Sequence of Pairs of Pairs of Distributions.

Next, suppose that we have defined pairs of distributions (YES`−1,NO`−1) and (YES ′`−1,NO′`−1)

over {0, 1}`×N`−1 for some 2 ≤ ` ≤ d, where a string x drawn from YES`−1, NO`−1, YES ′`−1 and

NO′`−1 has SUM(x) equal to

2N`−1 , 2N`−1 − 1, 2N`−1 − 1 and 2N`−1 − ((`− 1) + 1), (7)

respectively. (Note that the pairs (YES1,NO1) and (YES ′1,NO′1) have this property.) Our aim is

to inductively define (YES`,NO`) and (YES ′`,NO′`) over {0, 1}(`+1)×N` , where

N`
def
= n ·N`−1 + 1 ≤ 2` · n`−1 ·N1 = (2n)` · 212d ≤ (213n)d ≤ N, for ` ∈ {2, . . . , d},

and a string x drawn from YES`, NO`, YES ′` and NO′` has SUM(x) equal to

2N` , 2N` − 1, 2N` − 1 and 2N` − (`+ 1), (8)

8

︸ ︷︷ ︸
x ∼ YES∗`

section
1

YES ′`−1
or
NO`−1

· · · · · · · · · · · · · · · · · · · ·

section
T − 1

YES ′`−1
or
NO`−1

section
T

YES`−1

section
T + 1

0· · · · · · · ·0...·
0· · · · · · · ·0

·
... ·

section
n

0· · · · · · · ·0...·
0· · · · · · · ·0

·
...

︸ ︷︷ ︸
x ∼ NO∗`

section
1

YES ′`−1
or
NO`−1

· · · · · · · · · · · · · · · · · · · ·

section
T − 1

YES ′`−1
or
NO`−1

section
T

NO′`−1

section
T + 1

1 · · · · · · · ·1...·
1 · · · · · · · ·1

·
... ·

section
n

1 · · · · · · · ·1...·
1 · · · · · · · ·1

·
...

Figure 1: Illustrations of how the YES∗` and NO∗` distributions

are defined from the YES ′`−1,NO′`−1,YES`−1 and NO`−1 distributions.

respectively. To this end we start by defining a pair of distributions (YES∗` ,NO∗`) over {0, 1}`×N∗`
(note that the number of rows for these distributions, `, is exactly the same as for the distributions

YES`−1,NO`−1 and YES ′`−1,NO′`−1), with

N∗`
def
= n ·N`−1 = N` − 1.

To define (YES∗` ,NO∗`), we partition the N∗` columns into n sections, each with N`−1 columns

(and ` rows). (So the first section consists of all xi,j with j ∈ [N`−1], the second section consists

of all xi,j with j ∈ [N`−1 + 1, 2N`−1], and so forth.) A draw of a string from YES∗` is obtained as

follows: first we draw an integer T uniformly from [n], and then

(a) For each i < T , we independently set the i-th section to be a string drawn from NO`−1

with probability 1/2 or a string drawn from YES ′`−1 with probability 1/2.

(b) For each i > T , we set the i-th section to be all 0.

(c) For the T -th section, we set it to be a string drawn from YES`−1.

See Figure 1 for an illustration. A draw of a string from NO∗` is obtained in a similar fashion. First

we draw T from [n] uniformly at random, and then

(a′) For each i < T , we independently set the i-th section to be a string drawn from NO`−1

with probability 1/2 or a string drawn from YES ′`−1 with probability 1/2. (Note that this is

the same as step (a) above in the definition of YES∗` .)

(b′) For each i > T , we set the i-th section to be all 1 (this is different from (b) above).

(c′) For the T -th section, we set it to be a string drawn from NO′`−1 (this is different from (c)).

9

x ∼ YES ′`︷ ︸︸ ︷
0
...
0

z ∼ YES∗`

0 1 ·1

x ∼ NO′`︷ ︸︸ ︷
0
...
0

z ∼ NO∗`

0 1 ·1

x ∼ YES`︷ ︸︸ ︷
0...
0

z ∼ YES∗`

1 0 · 0

x ∼ NO`︷ ︸︸ ︷
0...
0

z ∼ NO∗`

1 (binary represent. of `− 1)

Figure 2: Illustrations of how the YES ′`,NO′`,YES` and NO` distributions

are defined from the YES∗` and NO∗` distributions.

Again see Figure 1 for an illustration. Given (7), we see that a string x drawn from YES∗` (or from

NO∗`) has SUM(x) equal to 2N
∗
` (respectively, equal to 2N

∗
` − `).

With the definitions of YES∗` and NO∗` in hand, we now use them to define (YES`,NO`) and

(YES ′`,NO′`) so that every string x drawn from these distributions should have SUM(x) equal to

the values given in (8). Recall that N` = N∗` + 1.

A string x = (xi,j) ∈ {0, 1}(`+1)×N` drawn from YES ′` is obtained as follows. First we draw a

string z from YES∗` and put it in columns {2, . . . , N`} and rows {1, . . . , `} of x, i.e., xi,j = zi,j−1

for all i ∈ [`] and j ∈ {2, . . . , N`}. For the remaining positions (in the first column and the last

row), we set xi,1 = 0 for all i ∈ [`+ 1] and x`+1,j = 1 for all j > 1. The other distribution NO′` is

defined similarly, except that we draw the string z from NO∗` instead of from YES∗` . The definition

of YES ′` and NO′` is illustrated in Figure 2.

For the other pair (YES`,NO`), a string x drawn from YES` is obtained as follows. As before,

we first draw a string z from YES∗` and put it in columns {2, . . . , N`} and rows {1, . . . , `} of x.

Then we set x`+1,1 = 1 and all other variables on the first row and last column of x to be 0. For

the other distribution NO`, we similarly draw z from NO∗` and put it in columns {2, . . . , N`} and

rows {1, . . . , `} of x. We set x`+1,1 = 1 and all other variables on the first column to be 0. We

set the last row, i.e., x`+1,j with j ∈ {2, . . . , N`}, to be the binary representation of `− 1. (This is

well defined since N∗` ≥ n ≥ 260d � log d ≥ log `.) As before, see Figure 2 for an illustration of the

definition of YES ′` and NO′`.
We record the following two useful facts about N` and the distributions:

Fact 2.3. Nd ≤ N .

Fact 2.4. For each ` ∈ [d], a string x drawn from YES`, NO`, YES ′`, NO′` has SUM(x) equal to

2N` , 2N` − 1, 2N` − 1 and 2N` − (`+ 1).

10

An important property of the (YES`,NO`) pair and of the (YES ′`,NO′`) pair — which in fact

motivated the above definitions of these distributions in terms of YES∗` and NO∗` — is that they

are at least as hard to distinguish as (YES∗` ,NO∗`) for monotone majority circuits.

This is made formal in the following two lemmas.

Lemma 2.5. Given any monotone majority circuit F over {0, 1}(`+1)×N`, there is a monotone

majority circuit F ∗ over {0, 1}`×N∗` of the same size and depth as F such that

Prx∈YES′`

[
F (x) = 1

]
+ Pry∈NO′`

[
F (y) = 0

]
= Prx∈YES∗`

[
F ∗(x) = 1

]
+ Pry∈NO∗`

[
F ∗(y) = 0

]
.

Proof. Given F , we hard-wire the variables in the first column to be 0 and the rest of the variables

in the last row to be 1. Let F ∗ denote the new monotone majority circuit obtained from F of the

same size and depth. The definition of YES ′` and NO′` from YES∗` and NO∗` implies that

Prx∈YES′`

[
F (x) = 1

]
= Prx∈YES∗`

[
F ∗(x) = 1

]
and

Pry∈NO′`

[
F (y) = 0

]
= Pry∈NO∗`

[
F ∗(y) = 0

]
.

The lemma then follows.

Lemma 2.6. Given any monotone majority circuit F over {0, 1}(`+1)×N`, there is a monotone ma-

jority circuit F ∗ over {0, 1}`×N∗` of the same size and depth as F such that

Prx∈YES`
[
F (x) = 1

]
+ Pry∈NO`

[
F (y) = 0

]
≤ Prx∈YES∗`

[
F ∗(x) = 1

]
+ Pry∈NO∗`

[
F ∗(y) = 0

]
.

Proof. Given F , we hard-wire x`+1,1 to be 1 and the rest of the variables in the first column and

the last row to be 0. Let F ∗ denote the resulting monotone majority circuit obtained from F of

the same size and depth. The definition of YES` and NO` from YES∗` and NO∗` implies that

Prx∈YES`
[
F (x) = 1

]
= Prx∈YES∗`

[
F ∗(x) = 1

]
and

Pry∈NO`
[
F (y) = 0

]
≤ Pry∈NO∗`

[
F ∗(y) = 0

]
,

where the inequality follows from the monotonicity of F . The lemma then follows.

2.3 The Key Induction Lemma.

Given distributions defined in Sections 2.1 and 2.2, we prove the following key technical lemma.

Recall that ε = 2−12d. Below we let M = 2ε
5n.

Lemma 2.7. Let ` ∈ {2, . . . , d}. Suppose that any depth-(`− 1) monotone majority circuit F over

{0, 1}`×N`−1 of size at most M satisfies

Prx∼YES`−1

[
F (x) = 1

]
+ Pry∼NO`−1

[
F (y) = 0

]
≤ 1 + 7`−2ε and

Prx∼YES′`−1

[
F (x) = 1

]
+ Pry∼NO′`−1

[
F (y) = 0

]
≤ 1 + 7`−2ε. (9)

Then any depth-` monotone majority circuit F ∗ over {0, 1}`×N∗` of size at most M satisfies

Prx∼YES∗`
[
F ∗(x) = 1

]
+ Pry∼NO∗`

[
F ∗(y) = 0

]
≤ 1 + 7`−1ε.

11

Proof. Recall that strings drawn from YES∗` and NO∗` consist of n sections. For convenience, we

refer to strings in {0, 1}`×N`−1 as section strings.

We begin by defining some useful distributions D1, . . . ,Dn over concatenations of section strings

where Dt is supported on concatenations of t− 1 section strings. First, let D denote the following

distribution over section strings: x ∼ D is drawn from NO`−1 with probability 1/2 and is drawn

from YES ′`−1 with probability 1/2. For each t ∈ [n], we use Dt to denote the distribution of the

concatenation of t− 1 section strings, each drawn from D independently. (So Dt is a distribution

over {0, 1}`×(t−1)N`−1 .) Note that in the special case when t = 1, D1 is supported on the empty

string only. Note also that for t ∈ [n], Dt is generated precisely according to (a) or (a′) from Section

2.2 (recall that (a) and (a′) are the same).

As in the statement of Lemma 2.7, let F ∗ be a depth-` monotone majority circuit on {0, 1}`×N∗`
of size at most M . We say a string z ∈ supp(Dt) for some t ∈ [n] is good with respect to F ∗ if

Prx∼YES`−1

[
F ∗(z ◦ x ◦ 0) = 1

]
+ Pry∼NO′`−1

[
F ∗(z ◦ y ◦ 1) = 0

]
≥ 1 + 6δ,

where we write 0 and 1 to denote the all-0 and all-1 strings in {0, 1}`×(n−t)N` , and δ
def
= 7`−2ε.

Now we fix a t ∈ [n] and fix a good string z ∈ supp(Dt). Let ρz be the restriction that fixes the

first t− 1 sections of variables of F ∗ to be z and leaves the remaining n− (t− 1) sections unfixed.

As z is good, we have that F ∗ � ρz is nontrivial (i.e., F ∗ � ρz 6≡ 0 or 1). We write H1, . . . ,Hm (with

multiplicities) to denote the set of all depth-(` − 1) sub-circuits rooted at children of the output

gate of F ∗ such that Hi � ρz is nontrivial. In other words, we assume that the same sub-circuit

may appear multiple times in this list if the output majority gate in F ∗ contains multiple wires to

it. Since the size of (F ∗) is at most M , the fan-in of the output majority gate of F ∗ is at most M ,

and consequently m ≤ M. Since F ∗ � ρ is nontrivial there is a positive integer h ∈ [M] such that

F ∗ � ρz outputs 1 if and only if at least h many of H1 � ρz, . . . ,Hm � ρz output 1. The following

claim shows that with non-negligible probability, a random x ∼ D is such that “many” Hi’s become

trivial (i.e., compute a constant function) after a restriction by ρz◦x:

Claim 2.8. Suppose that z is a good string in the support of Dt. Then we have

Prx∼D

[∣∣{i ∈ [m] : Hi � ρz◦x is trivial }
∣∣ ≥ δ2m/2

]
≥ δ/4.

Proof. We consider two cases: h ≥ m/2 or h < m/2. We focus on the latter below and the former

case is symmetric. Assume that h < m/2. Since z is good, we have

Pry∼NO′`−1

[
F ∗(z ◦ y ◦ 1) = 0

]
≥ 1 + 6δ − 1 = 6δ.

However, if y ∈ supp(NO′`−1) satisfies F ∗(z ◦ y ◦ 1) = 0, then by h < m/2 it must be the case that

at least m/2 of the Hi’s have Hi(z ◦ y ◦ 1) = 0, and hence

Ey∼NO′`−1

[
number of Hi’s with Hi(z ◦ y ◦ 1) = 0

]
≥ 3δm. (10)

Let I denote the set of i ∈ [m] such that

Pry∼NO′`−1

[
Hi(z ◦ y ◦ 1) = 0

]
≥ 2δ. (11)

12

Then we have from (10) that

|I| · 1 + (m− |I|) · 2δ ≥ 3δm,

which implies that |I| ≥ δm.

We write ρ to denote the restriction over {0, 1}`×N∗` that fixes the first t− 1 sections of input

variables to be z and the last (n− t) sections of input variables to be all 1, and leaves only the

variables in the t-th section unfixed. So each Hi � ρ is a depth-(` − 1) monotone majority circuit

over {0, 1}`×N`−1 of size at most M . Then combining (11) and the assumption of the lemma, i.e.,

(9), applied to Hi � ρ, we have that each i ∈ I satisfies

Prx∼YES′`−1

[
Hi(z ◦ x ◦ 1) = 1

]
≤ 1 + δ − 2δ = 1− δ,

and thus,

Prx∼YES′`−1

[
Hi(z ◦ x ◦ 1) = 0

]
≥ δ. (12)

Note that if an x ∈ supp(YES ′`−1) satisfies Hi(z ◦ x ◦ 1) = 0, then we have Hi � ρz◦x ≡ 0 by

the monotonicity of Hi. Let X be a random variable that denotes the number of Hi’s that become

trivial after ρz◦x, where x ∼ YES ′`−1. So by (12) the expectation of X is at least δ|I|. Let q denote

the probability that X ≥ δ|I|/2. The lower bound E[X] ≥ δ|I| implies that

q · |I|+ (1− q) · δ|I|/2 ≥ δ|I|,

and thus q ≥ δ/2. Plugging in |I| ≥ δm, we have that X ≥ δ2m/2 with probability at least δ/2.

Finally, taking into account that a draw of x ∼ D is drawn from YES ′`−1 with probability 1/2,

we see that with probability at least δ/4 over a draw of x ∼ D, we have that at least δ2m/2 many

Hi’s become trivial after ρz◦x. This finishes the proof of the claim.

Claim 2.8 implies that if z ∼ Dt is good (with respect to F ∗), then with probability at least

δ/4 over a random draw of x ∼ D, the restriction ρz◦x trivializes at least (δ2/2)-fraction of the

depth-(` − 1) sub-circuits of F that are not trivialized by ρz. Intuitively, this is useful because it

means that we have a good chance of getting a significant simplification of F (shrinking the fan-in

of the top gate by a lot), and since F is of size at most M this cannot happen too many times. On

the other hand, note that if z is not good, then by definition we have

Prx∼YES`−1

[
F ∗(z ◦ x ◦ 0) = 1

]
+ Pry∼NO′`−1

[
F ∗(z ◦ y ◦ 1) = 0

]
< 1 + 6δ,

which intuitively is also useful for our purpose of bounding

Prx∼YES∗`
[
F ∗(x) = 1

]
+ Pry∼NO∗`

[
F ∗(y) = 0

]
(13)

from above by 1 + 7δ.

To finish the proof of the lemma, we take the following alternative but equivalent view of (13).

Let z1, . . . ,zn be a sequence of random section strings, each drawn from D independently. By the

13

definition of YES∗` and NO∗` (recall Figure 1), we have that

(13)× n = Ez1,...,zn

[
n∑
t=1

Prx∼YES`−1

[
F ∗(z1 ◦ · · · ◦ zt−1 ◦ x ◦ 0) = 1

]
+

n∑
t=1

Pry∼NO′`−1

[
F ∗(z1 ◦ · · · ◦ zt−1 ◦ y ◦ 1) = 0

]]
.

This can be viewed as the expectation of a random variable Γ generated as follows.

1. Start with Γ = 0.

2. For each “round” t = 1, . . . , n, independently draw zt from D and add the following to Γ:

Prx∼YES`−1

[
F ∗(z1 ◦ · · · ◦ zt−1 ◦ x ◦ 0) = 1

]
+ Pry∼NO′`−1

[
F ∗(z1 ◦ · · · ◦ zt−1 ◦ y ◦ 1) = 0

]
.

So it suffices to show that E[Γ] ≤ (1 + 7δ)n.

For each of the n rounds t = 1, . . . , n, exactly one of the following two possibilities must hold:

1. The current string z1 ◦ · · · ◦ zt−1 is not good. In this case Γ goes up by at most 1 + 6δ in

the t-th round. Otherwise,

2. The current string z1 ◦ · · · ◦ zt−1 is good. In this case Γ can go up by at most 2 in the t-th

round, but by our previous analysis (specifically, Claim 2.8), the number of nontrivial

depth-(`− 1) subcircuits of F ∗ (with multiplicities) rooted at children of the output gate of

F ∗ drops by a factor of (1− δ2/2) with probability at least δ/4 when the draw of zt in the

t-th round extends the restriction to ρz1◦···◦zt . Note that F ∗ has size M ≤ 2ε
5n so it can

survive at most 2δ3n many such drops before F ∗ becomes trivial; to see this, observe that

(1− δ2/2)2δ3n ≤ exp
(
−(δ2/2) · (2δ3n)

)
= exp

(
−δ5n

)
< 2−ε

5n. (14)

Note further that once F ∗ becomes trivial, Γ goes up by 1 in every subsequent round.

We use S, a random variable, to denote the total number of rounds t ∈ [n] such that the current

string z1 ◦ · · · ◦zt−1 is good (note that once F ∗ becomes trivial the current string cannot be good).

We claim that S ≤ 32δ2n with high probability.

Claim 2.9. We have S ≤ 32δ2n with probability at least 1− exp(−nδ4/2).

Proof. We say that round t is good if the current string z1 ◦ · · · ◦ zt−1 is good. We say that F ∗

is hit in the t-th round, if z1 ◦ · · · ◦ zt−1 is good and the number of depth-(`− 1) subcircuitscuits

of F ∗ (with multiplicities) that are trivial under the restriction ρz1◦···◦zt−1 drops by a factor of at

least (1− δ2/2) under the restriction ρz1◦···◦zt−1◦zt . Then we can write Pr[S ≥ 32δ2n] as

Pr
[
S ≥ 32δ2n & F ∗ is hit > 2δ3n many times during the first 32δ2n of the good rounds

]
+ Pr

[
S ≥ 32δ2n & F ∗ is hit ≤ 2δ3n many times during the first 32δ2n of the good rounds

]
.

The first of these probabilities is zero because of (14), i.e. if F ∗ is hit 2δ3n times then it is trivialized

so no subsequent rounds can be good and thus F ∗ cannot be hit again.

14

We focus on upper bounding the second probability. For each i from 1 to 32δ2n we define the

following random variable Yi where

Yi =

{
1 if F ∗ is hit in the i-th good round or there are fewer than i good rounds

0 otherwise (there are at least i good rounds and F ∗ is not hit in the ith good round).

The second probability we are interested in is at most Pr[
∑

i Yi ≤ 2δ3n]. By Claim 2.8, we have

E
[
Yi |Y1 = b1, . . . ,Yi−1 = bi−1

]
≥ δ/4 (15)

for all i and all b1, . . . , bi−1 ∈ {0, 1}. Let X0 ≡ 0 and

Xi = Xi−1 + Yi −E
[
Yi |Y1, · · · ,Yi−1

]
.

Then X0,X1, . . . is a martingale that satisfies |Xi−Xi−1| ≤ 1 with probability 1, and we have that

X32δ2n =

32δ2n∑
i=1

(
Yi −E

[
Yi |Y1, · · · ,Yi−1

])
≤

32δ2n∑
i=1

Yi − 8δ3n,

using (15) for the inequality. Applying the Azuma-Hoeffding inequality (see, e.g., Theorem 5.1 of

[DP09]) to the martingale X0,X1, . . ., we get that

Pr

[∑
i

Yi ≤ 2δ3n

]
≤ Pr

[
X32δ2n ≤ 2δ3n− 8δ3n

]
≤ exp

(
− (6δ3n)2

2 · 32δ2n

)
< exp(−nδ4/2).

This finishes the proof of the claim.

We are almost done with the proof of Lemma 2.7. Recalling that δ = 7`−2ε, we have that

exp
(
−nδ4/2

)
≤ δ/4 and δ ≤ 2−8 (16)

since d ≥ 2, n ≥ 260d, ε = 2−12d and ` ∈ {2, . . . , d}. It follows from Claim 2.9 that

E
[
Γ
]
≤ exp(−nδ4/2) · 2n+ (1− exp(−nδ4/2)) ·

(
2 · 32δ2n+ (1 + 6δ) · (n− 32δ2n)

)
< δn/2 + 64δ2n+ (1 + 6δ)n ≤ (1 + 7δ)n,

where we also used the two inequalities in (16). This finishes the proof of the lemma.

2.4 Proof of Theorem 1.

Finally we combine all the ingredients to prove Theorem 1.

Recall that d ≥ 2, n and N are positive integers that satisfy n ≥ 260d and N ≥ (213n)d ≥ Nd.

We also have ε = 2−12d and M = 2ε
5n. We first prove by induction on ` that, for ` = 1, . . . , d, any

15

monotone majority circuit F over {0, 1}(`+1)×N` of depth ` and size at most M satisfies

Prx∼YES`
[
F (x) = 1

]
+ Pry∼NO`

[
F (y) = 0

]
≤ 1 + 7`−1ε, and

Prx∼YES′`

[
F (x) = 1

]
+ Pry∼NO′`

[
F (y) = 0

]
≤ 1 + 7`−1ε. (17)

The ` = 1 base case follows from Lemma 2.1. Now assume that (17) holds for `−1. By Lemma

2.7, any monotone majority circuit F ∗ over {0, 1}`×N∗` of depth ` and size at most M satisfies

Prx∼YES∗`
[
F ∗(x) = 1

]
+ Pry∼NO∗`

[
F ∗(y) = 0

]
≤ 1 + 7`−1ε. (18)

It follows from Lemmas 2.5 and 2.6 that every monotone majority circuit F over {0, 1}(`+1)×N` of

depth ` and size at most M satisfies (17). This finishes the induction.

We finish the proof using (YES∗d,NO∗d) over {0, 1}d×N∗d , where N∗d = Nd − 1 < N . Given (18)

on (YES∗d,NO∗d) and the fact that 7d−1ε < 1, no depth-d monotone majority circuit on {0, 1}d×N∗d
of size at most M can compute Ud,N∗d correctly on all inputs, because every string x ∼ YES∗d has

SUM(x) = 2N
∗
d and hence Ud,N∗d (x) = 1, while every string y ∼ NO∗d has SUM(y) = 2N

∗
d − d and

hence Ud,N∗d (y) = 0. Since N > N∗d , this establishes Theorem 1.

3 The Upper Bound: Proof of Theorem 2.

We prove Theorem 2 in this section. We focus on the case when N1/d > 1 is a positive integer, and

give a depth-d monotone majority circuit that computes Uk,N and has size at most

23(N1/d ·log k+logN). (19)

For the general case, we let n = dN1/de > 1, and let s denote the smallest integer such that ns ≥ N
(so s ≤ d). Then we first construct a depth-s monotone majority circuit that computes Uk,ns , and

then hard-wire the variables in the last ns −N columns to be 0 to get a circuit for Uk,N . The size

bound given in the statement of Theorem 2 follows from (19) and the simple facts that n ≤ 2N1/d

and ns ≤ nN ≤ N2. For the rest of the section we assume that n = N1/d > 1 is an integer.

First we note that the theorem (with the size bound as given in (19); the same below) is trivial

if N < log k since implementing Uk,N directly using a single THR gate only takes a total weight of

k · 2N < 23 log k. Assuming that N ≥ log k below, we let t ∈ {1, . . . , d} denote the smallest integer

such that nt = N t/d ≥ log k. We also write M = nt. It is clear by the choice of t that we have

M ≤ n log k. (20)

With the same reasoning the theorem is trivial if M = N . Below we assume that t ≤ d− 1.

We need some notation for our construction. We say S = (S1, . . . , S`) is an `-decomposition of

[N] if there exist indices 1 = a−1 ≤ a
+
1 < a−2 ≤ a

+
2 < . . . < a−` ≤ a

+
` = N such that

• For each γ ∈ [`], Sγ = {a−γ , a−γ + 1, . . . , a+
γ }; and

•
⋃
γ∈[`] Sγ = [N].

In other words, S partitions [N] into ` sequential intervals.

16

Let (xi,j)i∈[k],j∈[N] be the set of input variables of Uk,N . Given an `-decomposition S, we define

a sequence of “conditional” carry-bit functions c
(γ)
α,β(x), where 0 ≤ α, β ≤ k − 1 and γ ∈ [`]. Each

function c
(γ)
α,β depends only on the variables xi,j with j ∈ Sγ . For convenience, let Bγ = [k]× Sγ be

the set containing the indices of these variables. Intuitively, for an assignment x ∈ {0, 1}k×N , we

have c
(γ)
α,β(x) = 1 if and only if a carry of value at least α is generated/propagated by the input bits

corresponding to Bγ , assuming this block of variables receives a carry of value β from the block of

variables to the right. Formally,

c
(γ)
α,β(x)

def
= 1 ⇐⇒

∑
(i,j)∈Bγ

2|Sγ |−(j+1−a−γ) · xi,j + β ≥ α · 2|Sγ |. (21)

For each i ∈ {0, . . . , d− t}, we write S(i) to denote the ni-decomposition in which each set has size

nd−i. Observe that, for the 1-decomposition S(0) = (S
(0)
1), where S

(0)
1 = {1, . . . , N}, we have

Uk,N (x) = 1 ⇐⇒ c
(1)
1,0(x) = 1, (22)

for the function c
(1)
1,0 of S(0).

Our construction is based on a recursive computation of functions c
(γ)
α,β(·) associated to different

decompositions S(r), for r from d− t back to 0, where each decomposition S(r+1) is obtained via a

refinement of the previous decomposition S(r). More precisely we construct our monotone majority

circuit for Uk,N with the following intended behavior. The top gate of the circuit computes the bit

c
(1)
1,0(x) associated to the decomposition S(0). However, this gate does not have access to x: it receives

as input the output of carry-bit functions c
(γ)
α,β(x) corresponding to the finer n-decomposition S(1)

in which each block has nd−1 columns. This then leads to a recursive procedure, which unfolds as

a depth-(d− t+ 1) circuit described in more detail below (recall that t ≥ 1).

In general our circuit has d− t+1 layers of majority gates, where gates at the ith layer compute

carry-bit functions c
(`)
α,β corresponding to the nd−t−i+1-decomposition S(d−t−i+1). The base case,

i.e. the first layer of majority gates that are supposed to compute c
(`)
α,β of Sd−t, is done by a majority

gate that follows directly the definition given in (21). It is clear that the size of each gate in the

first layer is bounded from above by k2M .

Due to the recursive nature of our construction, it is sufficient to describe how to compute the

carry-bit functions corresponding to a decomposition S(r) from the carry-bit functions correspond-

ing to S(r+1) for each r ∈ {0, 1, . . . , d− t− 1}. For convenience we fix an r below and write S ′ for

S(r) and S for S(r+1). We also fix a set S′ ∈ S ′ with S′ = S1 ∪ . . . ∪ Sn, where S1, . . . , Sn are sets

in the ordered tuple S listed from left to right. We write cu,v to denote a carry-bit function of the

block S that we need to compute, for some u, v ∈ {0, . . . , k− 1}, and assume that we have already

computed c
(γ)
α,β for each block Sγ , γ ∈ [n], and for all α, β ∈ {0, . . . , k − 1}. The goal is to compute

cu,v(x) given the bits c
(γ)
α,β(x).

We start with a general observation about carry-bit functions of a block. We say that (α, β) ≺
(α′, β′) if either α < α′, or α = α′ and β ≥ β′. Given a block Sγ , note that c

(γ)
α,β has the following

monotonicity property. (Note that the assumption of |Sγ | ≥ log k always holds given our choice of

t and trivial cases ruled out at the beginning of the section.)

Claim 3.1. Assume that |Sγ | ≥ log k. If (α, β) ≺ (α′, β′), then c
(γ)
α,β(x) ≥ c

(γ)
α′,β′(x) on every input

string x for Uk,N .

17

Proof. We consider the two cases corresponding to the assumption that (α, β) ≺ (α′, β′). If α = α′

and β ≥ β′, the claim follows immediately from (21).

Assume now that α < α′, where β, β′ ∈ {0, . . . , k− 1} are arbitrary. Clearly it suffices to argue

that c
(γ)
α′,k−1(x) = 1 implies that c

(γ)
α′−1,0(x) = 1. Using (21), this assumption is equivalent to∑

(i,j)∈Bγ

2|Sγ |−(j+1−a−γ) · xi,j + (k − 1) ≥ α′ · 2|Sγ |. (23)

In order to show c
(γ)
α′−1,0(x) = 1, we need to verify that∑

(i,j)∈Bγ

2|Sγ |−(j+1−a−γ) · xi,j ≥ (α′ − 1) · 2|Sγ |.

Using (23) it is sufficient to have k − 1 ≤ 2|Sγ |. This follows from the assumption in the statement

of the claim, which completes the proof.

The description of the majority gate that computes cu,v(x) for the block S′ in S ′ using c
(γ)
α,β(x)

for blocks S1, . . . , Sn in S is based on the following lemma.

Lemma 3.2. Assume that |Sγ | ≥ log k for every γ ∈ [n]. Then cu,v(x) = 1 if and only if

v +

n∑
γ=1

 k−1∑
α=1,β=0

c
(γ)
α,β(x)

 · kn−γ
 ≥ u · kn. (24)

Proof. We consider (24) as a sum in base k over k(k − 1) rows and n columns of variables, with v

extra 1’s on column n (which corresponds to the least significant position). Let pγ denote the (base

k) carry from column γ to column γ − 1 in (24), and let qγ denote the (base 2) carry from block

γ to block γ − 1 in our decomposition of x after adding v to block n (without taking into account

the remaining columns of x not covered by S1 ∪ . . . ∪ Sn).

We prove by induction that pγ = qγ , for all γ from n to 1. Notice that this establishes the

lemma. For the basis when γ = n, we consider the following two cases:

1. If c
(n)
α,β = 0 for all α ≥ 1 and β ≥ 0, then qn = 0 (as we have c

(n)
1,k−1 = 0 and v ≤ k − 1). This

implies that pn = qn = 0.

2. Otherwise, let (αn, βn) denote the largest pair (under ≺ defined earlier) with c
(n)
αn,βn

= 1. It

follows from Claim 3.1 that qn = αn if βn ≤ v, and qn = αn − 1 if βn > v. We also have

v +

k−1∑
α=1,β=0

c
(n)
α,β = (αn − 1) · k + (k − βn + v).

It follows from this equation and the characterization of qn that the (base k) carry pn = qn.

The induction step is similar. We assume that pγ+1 = qγ+1, and prove that pγ = qγ . We focus

on the γ-th column from (24) and block γ, and consider the following two cases:

18

1. If c
(n)
α,β = 0 for all α ≥ 1 and β ≥ 0, then qγ = 0 (as we have c

(γ)
1,k−1 = 0 and qγ+1 ≤ k − 1).

This implies that pγ = qγ = 0.

2. Otherwise, let (αγ , βγ) denote the largest pair with c
(γ)
αγ ,βγ

= 1. Using Claim 3.1, qγ is αγ if

βγ ≤ qγ+1, and qγ is αγ − 1 if βγ > qγ+1. Using the inductive hypothesis, we have

pγ+1 +
k−1∑

α=1,β=0

c
(n)
α,β = (αγ − 1) · k + (k − βγ + qγ+1).

It follows from this equation and the characterization of qγ that pγ = qγ .

This finishes the induction, and the proof of the lemma.

Lemma 3.2, (21), and our previous discussions complete the description of the circuit for Uk,N .

Moreover, its correctness follows easily from (22) and Lemma 3.2. It remains to analyze the size of

the resulting depth-(d− t+ 1) majority circuit.

We upper bound its size layer by layer as follows. As discussed earlier, the size of each majority

gate in the first layer is at most k2M , and there are nd−t many of them. Furthermore, for the i-th

layer of the circuit, where i > 1, there are n(d−t−i+1) gates each of which has size at most

k(k − 1) · k
n − 1

k − 1
< kn+1,

as given in Lemma 3.2. Using (20), the majority circuit for Uk,N has overall size at most

nd−t · k2M +
d−t+1∑
i=2

nd−t+1−i · kn+1 ≤ Nk2M + 2Nkn+1 ≤ 23(N1/d log k+logN).

The construction presented here uses THR gates and majority circuits. We sketch in Appendix

A an alternative construction with respect to semi-unbounded fan-in AND/OR circuits.

4 Strengthening the Ajtai-Gurevich Result: Proof of Theorem 3.

We require the following lemma:

Lemma 4.1. For a suitable absolute constant 0 < c < 1, letting k = (logN)c, the function Uk,N is

computed by a poly(N)-size AND/OR/NOT circuit of depth 3.

Proof. Recall the well-known technique of carry-save addition, also known as the “3-to-2 trick,”

for addition of binary numbers (see e.g., Section 1.2.3 of [Lei92]). This “trick” states that there is

a (multi-output) circuit that takes as input three n-bit binary numbers X,Y, Z and outputs two

(n + 1)-bit binary numbers A,B such that (i) A + B = X + Y + Z, and (ii) each output bit

Ai or Bi depends on at most 3 of the input bits. By applying this trick in parallel to the N -bit

integers x(1), . . . , x(k) that are the rows of the input to Uk,N , we obtain d2k/3e many (N + 1)-

bit integers whose sum equals x(1) + · · · + x(k). Recursing O(log k) times, we see that there are

two (N + O(log k))-bit integers (call them y and z) such that y + z = x(1) + · · · + x(k). A naive

composition of these “3-to-2 trick” circuits in a tree of depth O(log k) to compute y, z would yield

19

a circuit of depth Θ(log logN). To avoid this blowup in circuit depth, we proceed differently, by

observing that each each bit yi, zi depends on at most 3O(log k) ≤ logN of the original input bits of

the x(i)’s, and exploiting this locality to get a depth-3 circuit overall.

In more detail, let yi denote the bit in the “2i-position” of the binary representation of y, so

y =

N+O(log k)∑
i=0

yi · 2i and similarly z =

N+O(log k)∑
i=0

zi · 2i.

We define “generate” and “propagate” bits for each bit position of y + z in the standard way,

gi
def
= yi ∧ zi and pi

def
= yi ∨ zi,

so gi = 1 iff the bits in the 2i-position generate a carry into the 2i+1-position, and pi = 1 iff the bits

in the 2i-position propagate an incoming carry into the 2i-position onward to the 2i+1-position.

Observe that each pi, gi depends on at most 2 logN of the original input bits.

The sum y + z is at least 2N if and only if either of the following events hold:

• Event A: at least one of the bits yN , yN+1, . . . , zN , zN+1, . . . is 1. This can be expressed as

A =
∨
j≥N

(yj ∨ zj).

Since yj , zj each depend on at most logN of the original input variables, each of them can

be expressed as a poly(N)-size DNF over the original input variables, and thus A can be

expressed as a poly(N)-size DNF.

• Event B: a carry bit is propagated into the 2N -position. Event B can be expressed as

B =
N−1∨
j=1

gj ∧
 ∧
j<i<N

pi

 .

As each pi depends on at most 2 logN of the original input variables, it can be expressed as

a poly(N)-size CNF; the same holds for gj , sogj ∧
 ∧
j<i<N

pi

can be expressed as a poly(N)-size CNF, and thus Event B can be expressed as a poly(N)-size

depth-3 OR-AND-OR circuit.

As a consequence, A ∨B can be expressed as a poly(N)-size depth-3 OR-AND-OR circuit over

the original input variables, and the lemma is proved.

Proof of Theorem 3: We take gN
def
= Uk,N , where k = (logN)c as in Lemma 4.1. Then Part (i) of

the theorem follows from Lemma 4.1. Part (ii) follows from our main lower bound, Theorem 1, by

20

observing that any circuit for Uk,N yields a circuit for Ud,N (by setting the last k − d rows of the

input to 0).

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.

Combinatorica, 7(1):1–22, 1987. 1

[ABFR94] James Aspnes, Richard Beigel, Merrick L. Furst, and Steven Rudich. The expressive

power of voting polynomials. Combinatorica, 14(2):135–148, 1994. 1

[AG87] Miklós Ajtai and Yuri Gurevich. Monotone versus positive. J. ACM, 34(4):1004–1015,

1987. 1, 1.1

[All89] Eric Allender. A note on the power of threshold circuits. In Symposium on Foundations

of Computer Science (FOCS), pages 580–584, 1989. 1

[AM05] Kazuyuki Amano and Akira Maruoka. On the complexity of depth-2 circuits with

threshold gates. In Symposium on Mathematical Foundations of Computer Science

(MFCS), pages 107–118, 2005. 1

[And85] Alexander E. Andreev. On a method for obtaining lower bounds for the complexity of

individual monotone functions. Soviet Math. Dokl, 31(3):530–534, 1985. 1

[BHKS14] Olaf Beyersdorff, Edward A. Hirsch, Jan Kraj́ıcek, and Rahul Santhanam. Optimal

algorithms and proofs (Dagstuhl Seminar 14421). Dagstuhl Reports, 4(10):51–68, 2014.

1, 1.1

[BRS95] Richard Beigel, Nick Reingold, and Daniel A. Spielman. PP is closed under intersection.

J. Comput. Syst. Sci., 50(2):191–202, 1995. 1

[BST13] Eric Blais, Dominik Scheder, and Li-Yang Tan. Ajtai-Gurevich Redux. Manuscript,

2013. 1, 1.1

[BW05] Amos Beimel and Enav Weinreb. Monotone circuits for weighted threshold functions.

In Conference on Computational Complexity (CCC), pages 67–75, 2005. 2, A

[Der65] Michael Dertouzos. Threshold Logic: A Synthesis Approach. MIT Press, 1965. 1

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for the

analysis of randomized algorithms. Cambridge University Press, 2009. 2.3

[FS97] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997. 1

[GHR92] Mikael Goldmann, Johan H̊astad, and Alexander A. Razborov. Majority gates vs.

general weighted threshold gates. Computational Complexity, 2:277–300, 1992. 1

21

[GK93] Mikael Goldmann and Marek Karpinski. Simulating threshold circuits by majority

circuits. In Symposium on Theory of Computing (STOC), pages 551–560. ACM, 1993.

1, 1.1

[H̊as10] Johan H̊astad. Some Results in Circuit Complexity. Presentation at China The-

ory Week (CTW). Slides available at http://conference.itcs.tsinghua.edu.cn/

CTW2010/content/Slides/1.pdf, 2010. 1, 1.1

[HG91] Johan H̊astad and Mikael Goldmann. On the power of small-depth threshold circuits.

Computational Complexity, 1:113–129, 1991. 1.2

[Hof92] Thomas Hofmeister. The power of negative thinking in constructing threshold circuits

for addition. In Structure in Complexity Theory Conference (CCC), pages 20–26, 1992.

1, 1.1

[Hof96] Thomas Hofmeister. A note on the simulation of exponential threshold weights. In

Conference on Computing and Combinatorics (COCOON), pages 136–141, 1996. 1

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers. Springer, 2012.

1

[Lei92] Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays,

Trees, Hypercubes. Morgan Kaufmann, 1992. 4

[MP68] Marvin Minsky and Seymour Papert. Perceptrons - An Introduction to Computational

Geometry. MIT Press, 1968. 1

[Mur71] Saburo Muroga. Threshold Logic and its Applications. Wiley, 1971. 1

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-

random functions. J. ACM, 51(2):231–262, 2004. 1

[Par94] Ian Parberry. Circuit Complexity and Neural Networks. MIT Press, 1994. 1

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean

functions. Soviet Mathematics Doklady, 31(6):354–357, 1985. 1

[SB91] Kai-Yeung Siu and Jehoshua Bruck. On the power of threshold circuits with small

weights. SIAM J. Discrete Math., 4(3):423–435, 1991. 1

[Sch15] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,

61:85–117, 2015. 1

[She07] Alexander A. Sherstov. Powering requires threshold depth 3. Inf. Process. Lett., 102(2-

3):104–107, 2007. 1

[Sto95] Alexei P. Stolboushkin. Finitely monotone properties. In Symposium on Logic in Com-

puter Science (LICS), pages 324–330, 1995. 1

[Tar88] Éva Tardos. The gap between monotone and non-monotone circuit complexity is expo-

nential. Combinatorica, 8(1):141–142, 1988. 1

22

http://conference.itcs.tsinghua.edu.cn/CTW2010/content/Slides/1.pdf
http://conference.itcs.tsinghua.edu.cn/CTW2010/content/Slides/1.pdf

[TZ92] Alan Taylor and William Zwicker. A characterization of weighted voting. Proc. Amer.

Math. Soc., 115(4):1089–1094, 1992. 1

[Yao89] Andrew Chi-Chih Yao. Circuits and local computation. In Symposium on Theory of

Computing (STOC), pages 186–196, 1989. 1.2

[Yao90] Andrew Chi-Chih Yao. On ACC and threshold circuits. In Symposium on Foundations

of Computer Science (FOCS), pages 619–627, 1990. 1

A Upper Bound for the Universal Monotone Threshold Gate.

We sketch in this section a construction of monotone circuits for the universal monotone threshold

function that matches the parameters obtained by Beimel and Weinreb [BW05]. More precisely,

we describe a polynomial size O(logN)-depth AND/OR circuit for UO(N),O(N logN), where OR gates

have unbounded fan-in, while AND gates have fan-in two.

Our construction relies on a more general reduction from Uk,N to a certain graph connectivity

problem. We start with an `-decomposition S of Uk,N (see Section 3 for more details), and assume

(for now) that we are given the corresponding (conditional) carry-bit functions c
(γ)
α,β(x), where α

and β are in {0, . . . , k − 1}, and γ ∈ [`].

Given these bits, we can view them as a layered directed graph GS,x = (V,E) which depends

on x and S as follows. The vertices of G are partitioned into ` + 1 layers, which we number for

convenience from ` to 0. The first and last layers are special, and contain a single vertex only. The

remaining layers each contain k vertices. The (directed) edges of this graph leave the γ-th layer

and reach the (γ − 1)-th layer. We use the output bit of each function c
(γ)
α,β to decide whether an

edge is present in this graph. The idea is that there will be a path from the `-th layer to the 0-th

layer if and only if Uk,N (x) = 1.

More precisely, we view V = L` ∪ L`−1 ∪ . . . ∪ L0, where L` = {s}, L0 = {t}, and Lγ =

{vγ,0, . . . , vγ,k−1}, for ` > γ > 0. The edge set E ⊆ V × V is defined as follows.

• (s, v`−1,j) ∈ E if and only if c
(`)
1,j = 1, where j ∈ {0, . . . , k − 1};

• (v1,j , t) ∈ E if and only if c
(1)
j,0 = 1, where j ∈ {0, . . . , k − 1};

• For `− 1 ≥ γ ≥ 2 and 0 ≤ α, β ≤ k − 1, (vγ,α, vγ−1,β) ∈ E if and only if c
(γ)
α,β = 1;

• There is no other edge in E.

Given vertices u, v in a graph G, we write u ; v if there exists a directed path from u to v in

G. Our construction is based on the following observation.

Lemma A.1. Given an `-decomposition S for Uk,N and an input x,

Uk,N (x) = 1 ⇐⇒ s; t in GS,x.

23

Proof. We provide a sketch of the argument. If Uk,N (x) = 1, consider the sequence of carries

generated during the actual computation of
∑

i∈[k] x
(i) by the standard binary addition algorithm.

At least one final carry is generated in this process, since the sum is at least 2N . The correct

carry values computed during intermediate steps of the addition algorithm correspond to a path

from s to t in GS,x. On the other hand, if there exists a path from s to t in this graph, then an

inductive argument starting from t and proceeding backwards to s shows that, during each step

of the addition algorithm, at least some number of carries must be produced when we add the

integers x(1), . . . , x(k). In particular, there must be at least one final carry bit, which implies that

Uk,N (x) = 1.

To sum up, in order to compute Uk,N from the carry-bit functions it is enough to solve a directed

s-t-connectivity problem on a graph with O(N) layers, where each layer contains O(k) vertices.

The computation of the carry-bit functions can be done efficiently in the case of the universal

monotone threshold function if we start with an Ω(N logN)-decomposition. More precisely, each

such function can be written as a monotone majority gate over a polynomial number of input bits,

which is known to admit efficient monotone circuits as needed in our construction.

Finally, the upper bound follows from the well-known construction of monotone circuits for

s-t-connectivity on layered graphs via divide-and-conquer.

24

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

