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Abstract

In this paper we explore the noncommutative analogues, VPnc and VNPnc, of Valiant’s
algebraic complexity classes and show some striking connections to classical formal language
theory. Our main results are the following:

� We show that Dyck polynomials (defined from the Dyck languages of formal language
theory) are complete for the class VPnc under ≤abp reductions. To the best of our knowl-
edge, these are the first natural polynomial families shown to be VPnc-complete. Likewise,
it turns out that PAL (Palindrome polynomials defined from palindromes) are complete
for the class VSKEWnc (defined by polynomial-size skew circuits) under ≤abp reductions.
The proof of these results is by suitably adapting the classical Chomsky-Schützenberger
theorem showing that Dyck languages are the hardest CFLs.

� Assuming VPnc 6= VNPnc, we exhibit a strictly infinite hierarchy of p-families, with respect
to the projection reducibility, between the complexity classes VPnc and VNPnc (analogous
to Ladner’s theorem [Lad75]).

� Inside VPnc too we show there is a strict hierarchy of p-families (based on the nesting
depth of Dyck polynomials) with respect to the ≤abp-reducibility (defined explicitly in this
paper).

1 Introduction

The field of arithmetic complexity has a rich history, starting with the work of Strassen on matrix
multiplication [Str69]. A central open problem of the field is proving superpolynomial size lower
bounds for arithmetic circuits that compute the permanent polynomial PERn. Motivated by this
problem, Valiant, in his seminal work [Val79], defined the arithmetic analogues of P and NP:
namely VP and VNP. Informally, VP consists of multivariate (commutative) polynomials that
have polynomial size circuits, over the field of rationals. The class VNP (which corresponds to the
counting class #P in the world of Boolean complexity classes) has a more technical definition which
we will give later. Valiant showed that PERn is VNP-complete w.r.t. projection reductions. Thus,
VP 6= VNP iff PERn requires arithmetic circuits of size superpolynomial in n. Over any field F the
classes VPF and VNPF are similarly defined. Indeed, Valiant’s proof actually shows that PERn is
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complete for the class VNPF for any field F of characteristic different from 2. (Note: In this paper,
we will drop the subscript and simply use VP and VNP to denote the classes as the field F will
either not matter or will be clear from the context.)

Nisan, in his 1990 paper [Nis91], explored the complexity of noncommutative arithmetic com-
putations, in particular the complexity of computing the permanent with noncommutative com-
putations. The noncommutative polynomial ring F〈x1, . . . , xn〉 over a field F in noncommuting
variables x1, x2, . . . , xn, consists of noncommuting polynomials in x1, x2, . . . , xn. These are just
F-linear combinations of words (we call them monomials) over the alphabet X = {x1, . . . , xn}.

Analogous to commutative arithmetic circuits, we can define noncommutative arithmetic cir-
cuits for computing polynomials in F〈X〉. The only difference is that in noncommutative circuits
inputs to multiplication gates are ordered from left to right. A natural definition of the noncom-
mutative permanent polynomial PERn, over X = {xij}1≤i,j≤n, is

PERn =
∑
σ∈Sn

x1,σ(1)x2,σ(2) . . . xn,σ(n).

Can we show that PERn requires superpolynomial size noncommutative arithmetic circuits?
One would expect this problem to be easier than in the commutative setting. Indeed, for the model
of noncommutative algebraic branching programs (ABPs), Nisan [Nis91] showed exponential lower
bounds for PERn (and even the determinant polynomial DETn). Unlike in the commutative world,
where ABPs are nearly as powerful as arithmetic circuits, Nisan [Nis91] could show an exponential
separation between noncommutative circuits and noncommutative ABPs. However, showing that
PERn requires superpolynomial size noncommutative arithmetic circuits remains an open problem.

Analogous to VP and VNP, the classes VPnc and VNPnc can be defined, as has been done by
Hrubes et al [HWY10b]. In [HWY10b] it is shown that PERn is VNPnc-complete w.r.t projections
(this is the p-projection reducibility defined by Valiant [Val79], which allows variables or scalars to
be substituted for variables).

The purpose of our paper is a closer study of the structure of the classes VPnc and VNPnc and
its connections to formal language classes. Our main results show a rich structure within VNPnc
and VPnc which nicely corresponds to properties of regular languages and context-free languages.

1.1 Main results of the paper

We begin with some formal definitions needed to state and explain the main results.

Definition 1. A sequence f = (fn) of noncommutative multivariate polynomials over a field F is
called a polynomial family (abbreviated as p-family henceforth) if both the number of variables in
fn and the degree of fn are bounded by nc for some constant c > 0.

Definition 2.

1. The class VBPnc consists of p-families f = (fn) such that each fn has an algebraic branching
program (ABP) of size bounded by nb for some b > 0 depending on f .

2. The class VPnc consists of p-families f = (fn) such that each fn has an arithmetic circuit of
size bounded by nb for some b > 0 depending on f .
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3. A p-family f = (fn) is in the class VNPnc if there exists a p-family g = (gn) ∈ VPnc such
that for some polynomial p(n)

fn(x1, . . . , xq(n)) =
∑

y1,...,yr(n)∈{0,1}

gp(n)(x1, . . . , xm(n), y1, . . . , yr(n)).

where r(n) is polynomially bounded.

4. The class VSKEWnc consists of p-families f = (fn) such that each fn has a skew arithmetic
circuit of size bounded by nb for some b > 0 depending on f .

We note that the class VBPnc is defined through algebraic branching programs (ABPs) which
intuitively correspond to acyclic finite automata. In fact noncommutative ABPs are also studied in
the literature as multiplicity automata [BBB+00], and Nisan’s rank lower bound argument [Nis91]
is related to the rank of Hankel matrices in formal language theory [BR11]. Similarly, arithmetic
circuits correspond to acyclic context-free grammars.

It turns out, as we will see in this paper, that this analogy goes further and shows up in the
internal structure of VNPnc and VPnc.

1. We prove that the Dyck polynomials are complete for VPnc w.r.t ≤abp reductions. The
result can be seen as an arithmetized version of the Chomsky-Schützenberger theorem [CS63]
showing that the Dyck languages are the hardest CFLs. We note here that ≤abp reducibility
is a generalization of the standard projection reducibility wherein instead of substitution by
variables and scalars we allow substitutions by matrices (whose entries are variables/scalars).
Section 3 has the formal definitions and a discussion on this reducibility.

2. On the same lines we show that the Palindrome polynomials PALn =
∑

w∈{x0,x1}n w.w
R are

complete for VSKEWnc under ≤abp reducibility, again by adapting the proof of the Chomsky-
Schützenberger theorem.

3. We prove a transfer theorem which essentially shows that if f is a VNPnc-complete p-family
under projections then an appropriately defined commutative version f (c) of f is complete
under projections for the commutative VNP class.

4. Hrubes et al [HWY10a] have shown, assuming the sum-of-squares conjecture, that the p-
family ID = (IDn), where IDn =

∑
w∈{x0,x1}n w.w is not in VPnc. Based on ID, we

define a p-family ID∗ and show, assuming VPnc 6= VNPnc, that ID∗ is neither in VPnc nor
VNPnc-complete. This is analogous to Ladner’s well-known theorem [Lad75]. We note here
that Bürgisser [Bür99] has proven an analogue of Ladner’s theorem for commutative Valiant
classes VP and VNP. That result requires an additional assumption about counting classes in
the boolean setting. It also turns out that under VPnc 6= VNPnc we have an infinite hierarchy
w.r.t ≤proj reductions between VPnc and VNPnc and also incomparable p-families. To the
best of our knowledge, obtaining an infinite hierarchy is open in the commutative case.

5. Within VPnc we obtain a proper hierarchy w.r.t ≤abp-reductions corresponding to the Dyck
polynomials of bounded nesting depth. This roughly corresponds to the noncommutative
VNC hierarchy within VPnc.
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P-family Complexity Result Remarks

Dk, k ≥ 2 - VPnc-Complete (Theorem 13)
- VSKEWnc-hard

w.r.t ≤abp-reductions

PALd VSKEWnc-Complete (Theorem 19) w.r.t. ≤abp-reductions

IDd -not VNPnc-Complete (Theorem 27)
-not in VPnc [HWY10a]

≤proj ,≤iproj-reductions
assuming SOSk conjecture

f (i+1), i ≥ 1 VNPnc-intermediate (Theorem 33) ≤proj ,≤iproj-reductions

- not reducible to f (i)

assuming VPnc 6= VNPnc
PER∗,χ VNPnc-Complete (Theorem 38) w.r.t. ≤abp-reductions

ID∗n VNPnc-Complete (Theorem 28) w.r.t. ≤abp-reductions

Table 1: Summary of Results

Table 1 summarizes the results in this paper.

Organization: Section 2 contains some preliminary definitions. In Section 3 we define and
compare the different reducibilities considered in this paper. In Section 4 we show the VPnc-
completeness of Dyck polynomials, and in Section 5 we show the VSKEWnc-completeness of Palin-
drome polynomials. Section 6 contains our results analogous to Ladner’s theorem. Sections 7 and
8 contain some more observations on VNPnc-completeness and structure inside the VPnc. Finally,
in Section 9 we state some open problems.

2 Preliminaries

A noncommutative arithmetic circuit C over a field F is a directed acyclic graph such that each
in-degree 0 node of the graph is labelled with an element from X ∪ F, where X = {x1, x2, . . . , xn}
is a set of noncommuting variables. Each internal node has fanin two and is labeled by either (+)
or (×) – meaning a + or × gate, respectively. Furthermore, each × gate has a designated left child
and a designated right child. Each gate of the circuit inductively computes a polynomial in F〈X〉:
the polynomials computed at the input nodes are the labels; the polynomial computed at a + gate
(resp. × gate) is the sum (resp. product in left-to-right order) of the polynomials computed at its
children. The circuit C computes the polynomial at the designated output node.

A noncommutative arithmetic circuit is said to be skew if for every multiplication gate one of
its inputs is a scalar or an indeterminate x ∈ X.

A noncommutative algebraic branching program ABP ([Nis91], [RS05]) is a layered directed
acyclic graph (DAG) with one in-degree zero vertex s called the source, and one out-degree zero
vertex t, called the sink. The vertices of the DAG are partitioned into layers 0, 1, . . . , d, and edges
go only from level i to level i + 1 for each i. The source is the only vertex at level 0 and the sink
is the only vertex at level d. Each edge is labeled with a linear form in the variables X. The size
of the ABP is the number of vertices.

For any s-to-t directed path γ = e1, e2, . . . , ed, where ei is the edge from level i− 1 to level i, let
`i denote the linear form labeling edge ei. Let fγ = `1 · `2 · · · `d be the product of the linear forms
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in that order. Then the ABP computes the degree d polynomial f ∈ F〈X〉 defined as

f =
∑
γ∈P

fγ ,

where P is the set of all directed paths from s to t.

2.1 Polynomials

We now define some p-families that are important for the paper.

Identity Polynomials:

We define the p-family ID = (IDn) which corresponds to the familiar context-sensitive language
{ww | w ∈ Σ∗}.

IDn =
∑

w∈{x0,x1}n
ww.

We will also consider some variants of this p-family in the paper.

Palindrome Polynomials:

The p-family PAL = (PALn) corresponds to the context-free language of even length palin-
dromes.

PALn =
∑

w∈{x0,x1}n
wwR,

where wR denotes the string obtained by reversing the string w.
Dyck Polynomials:

Let Xi = {(1, )1, ..., (i, )i} for a fixed i ∈ N denote the set of i different types of matching left
and right bracket pairs. The set of all well-balanced strings over alphabet Xi is inductively defined
as below.

The empty string ε is well-balanced.

For each well-balanced string v over Xi, the strings (jv)j are well-balanced for j ∈ {1, 2, . . . , i}.

For any two well-balanced strings v1, v2, their concatenation v1v2 is well-balanced.

We define the polynomial Di,n over the variable set Xi to be sum of all strings in X2n
i which

are well-balanced. The Di,n are Dyck polynomials of degree 2n over i different types of brackets.
The corresponding p-family is denoted Di = (Di,n).

3 The Reducibilities

In the paper we consider mainly three different notions of reducibility for our completeness results
and for exploring the structure of the classes VNPnc,VPnc and VSKEWnc.
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The projection reducibility

The projection is basically Valiant’s classical notion of reductions between p-families using which he
showed VNP-completeness for PERn and other p-families in his seminal work [Val79]. Let f = (fn)
and g = (gn) be two noncommutative p-families over a field F, where ∀n fn ∈ F〈Xn〉 and gn ∈ F〈Yn〉.
We say f ≤proj g if there are a polynomial p(n) and a substitution map φ : Yp(n) → Xn ∪ F such
that ∀n

f(Xn) = g(φ(Yp(n))).

As shown in [HWY10b], based on Valiant’s original proof, the noncommutative PERn p-family
is VNPnc-complete for ≤proj-reducibility.

The indexed-projection reducibility

Let [n] = {1, 2, · · · , n}. The indexed-projection is specific to the noncommutative setting. We say
f ≤iproj g for p-families f = (fn) and g = (gn), where deg(fn) = dn, deg(gn) = d′n, fn ∈ F〈Xn〉,
and gn ∈ F〈Yn〉, if there are a polynomial p(n) and indexed projection map

φ : [d′p(n)]× Yp(n) → Xn ∪ F,

such that on substituting φ(i, y) for variable y ∈ Yp(n) occurring in the ith position in monomials
of gp(n) we get polynomial fn.

Clearly, ≤iproj is more powerful than ≤proj and we will show separations in this section.

The abp-reducibility

The≤abp reducibility is the most general notion that we will consider. The≤abp reduction essentially
amounts to matrix substitutions for variables, where the matrices have scalar or variable entries
(we can even allow constant-degree monomial entries). Formally, let fn ∈ F〈Xn〉 and gn ∈ F〈Yn〉 as
before. We say f ≤abp g if there are polynomials p(n), q(n) and the substitution map φ : Yp(n) →
Mq(n)(Xn ∪F) where Mq(n)(Xn ∪F) stands for q(n)× q(n) matrices with entries from Xn ∪F, with
the property that f(Xn) is the (1, q(n))-th entry of g(φ(Yp(n))).

The ≤abp reducibility is implicitly used in [AS10], where it is shown that the noncommutative
determinant polynomial cannot have polynomial-size noncommutative circuits unless the noncom-
mutative permanent has such circuits. Essentially the result shown is that PERn is ≤abp reducible
to the noncommutative determinant.

We note that ≤abp is transitive.

Proposition 3. Let f, g, h ∈ F〈X〉 such that f ≤abp g and g ≤abp h then f ≤abp h.

Proof. Let Xn, Yn, Zn denote the variable sets of fn, gn, hn respectively. Let φ : Yp(n) →Mq(n)(Xn∪
F) and φ′ : Zp′(n) →M ′q′(n)(Yp(n)∪F) be the substitution maps corresponding to reductions fn ≤abp
gp(n) and gp(n) ≤abp hp′(n) respectively. The substitution map ψ for the abp-reduction from f to h is
defined in the following way. For z ∈ Zp′(n), let ψ(z) denotes a r(n)×r(n) matrix (r(n) = q(n)·q′(n))
obtained from φ′(z) by substituting every scalar α in φ′(z) by α · Iq(n) where Iq(n) is q(n) × q(n)
identity matrix and every variable y appearing in φ′(z) by q(n)× q(n) matrix φ(y). It is easy to see
that if we substitute matrices ψ(z) for variables z in hp′(n) we obtain polynomial f at (1, r(n))th

entry of the resulting matrix. �
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Proposition 4. Let f, g ∈ F〈X〉 and suppose f ≤abp g. Then

g ∈ VBPnc implies f ∈ VBPnc.

g ∈ VPnc implies f ∈ VPnc.

g ∈ VSKEWnc implies f ∈ VSKEWnc.

Proof. As f ≤abp g, for every variable y of g we have polynomial sized matrix φ(y) such that on
substituting φ(y) for variables y in g the top right corner entry of the resulting matrix is f .

Suppose g has a polynomial sized algebraic branching program P . W.l.o.g. assume that edges
in P are labeled either with scalars or variable y ∈ V ar(g) where V ar(g) is set of variables of the
polynomial g. To get polynomial sized ABP P ′ for f , we replace each edge of P with non-scalar
label y by a small ABP with two layers, each layer containing k nodes where k is the size of matrix
φ(y). An edge from ith node in first layer to jth node in the second layer is labeled with φ(y)(i, j).
Clearly P ′ will compute f and has polynomial size.

Now suppose g has a polynomial sized arithmetic circuit C. The polynomial sized circuit C ′

for f is obtained simply by replacing + and × gates of C by small sub-circuits computing sum and
product of two polynomial sized matrices respectively. If C is a skew circuit so is C ′. �

Remark 5. We could as well have called abp-reductions as matrix-reductions, since the reductions
are a generalization of projections with matrix substitutions instead of only scalars and variables.
However, abp-reducibility seems to us a more appropriate name because the matrix-valued variable
substitutions really captures the power of noncommutative ABPs. To see this, let g = (gn) be a
p-family where gn = y1y2 . . . yn consists of a single degree-n monomial for each n. Now, a p-family
f is in VBPnc if and only if f ≤abp g.

Another point about the definition of ≤abp is that the choice of the (1, q(n))-th entry of g(φ(Yp(n)))
is arbitrary. We could have chosen any specific entry of the matrix g(φ(Yp(n))) or its trace or the
sum of all entries. These would all yield equivalent definitions.

Remark 6. An arithmetic circuit is weakly skew if for every multiplication gate at least one of
its input gates has fanout 1. Suppose f ≤abp g and g has polynomial-size weakly-skew circuits
then we do not know if f has polynomial-size weakly skew circuits. In the noncommutative case
we note that weakly-skew circuits are strictly more powerful than skew circuits. The polynomial
family PALnPALn has polynomial-size weakly skew circuits but skew-circuits require exponential
size [LMS15]. In contrast, for the commutative case polynomial-size weakly-skew circuits are equiv-
alent to polynomial-size skew circuits [Tod92].

3.1 Comparing the reducibilities

From the definition of the reducibilities it immediately follows that the ≤abp reduction is more
powerful than ≤iproj reduction which is more powerful than ≤proj reduction. In fact, it is not
difficult to show that the ≤abp and the ≤iproj reductions are strictly more powerful than the ≤iproj
and the ≤proj reductions respectively. We summarize these simple observations below.

Proposition 7. There exist p-families f = (fn) and g = (gn) such that:

1. f ≤iproj g but f �proj g.
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2. f ≤abp g but f �iproj g.

Proof. For the first part define p-families fn ∈ F〈x1, x2, . . . , xn, y1, . . . , yn〉 and gn ∈ F〈z0, z1〉 as
fn =

∏
i∈[n](xi + yi) and gn =

∏
i∈[n](z0 + z1). Clearly, f ≤iproj g where the indexed projection will

substitute xi for z0 and yi for z1 in the i-th linear factor (z0 + z1) of g. However f �proj g as the
usual ≤proj reduction cannot increase the number of variables.

For the second part define p-families fn, gn ∈ F〈x, y〉 as fn = x + y and gn = xy for every
n. Clearly f is not ≤iproj-reducible to g as indexed projections cannot increase the number of

monomials in g. To see that f ≤abp g we define 2 × 2 substitution matrices: Mx =

[
1 x
0 0

]
and

My =

[
0 y
0 1

]
. Clearly, the (1, 2)th entry of g(Mx,My) = MxMy is x+ y. Hence, f ≤abp g. �

Remark 8. A natural generalization of the projection reducibilities (≤proj and ≤iproj) is to consider
indexed linear projections, denoted ≤linproj. Namely, we allow for each variable occurring in a given
position, substitution by either a scalar or a linear form. It is easy to see that ≤linproj is strictly
more powerful than ≤iproj. For example, in Proposition 7 we saw that x+ y is not ≤iproj-reducible
to xy. However, x + y is trivially reducible by a linear projection: in the polynomial xy we can
substitute 1 for y and x+ y for x.

It turns out that the proofs of some of our results shown for projections carry over to indexed
linear projections but other results do not. We will return to this point at the end of Section 6.

3.2 Matrix substitutions and ≤abp reductions

We describe ideas from [AJS09] that are useful for the present paper in connection with showing
≤abp reductions between p-families. Consider an ABP P computing a noncommutative polynomial
g ∈ F〈X〉. Suppose the ABP P has q nodes with source s and and sink t.

For each variable x ∈ X we define a q × q matrix Mx, whose (i, j)th entry Mx(i, j) is the
coefficient of variable x in the linear form labeling the directed edge (i, j) in the ABP P .1

Consider a degree d polynomial f ∈ F〈X〉, where X = {x1, · · · , xn}. For each monomial
w = xj1 · · ·xjk we define the corresponding matrix product Mw = Mxj1

· · ·Mxjk
. When each

indeterminate x ∈ X is substituted by the corresponding matrix Mx then the polynomial f ∈ F〈X〉
evaluates to the matrix ∑

f(w) 6=0

f(w)Mw,

where f(w) is the coefficient of monomial w in the polynomial f .

Theorem 9. [AJS09] Let C be a noncommutative arithmetic circuit computing a polynomial f ∈
F〈x1, x2, . . . , xn〉. Let P be an ABP (with q nodes, source node s and sink node t) computing a
polynomial g ∈ F〈x1, x2, . . . , xn〉. Then the (s, t)th entry of the matrix f(Mx1 ,Mx2 , . . . ,Mxn) is the
polynomial ∑

w

f(w)g(w)w.

where f(w), g(w) are coefficients of monomial w in f and g respectively. Hence there is a circuit
of size polynomial in n, size of C and size of P that computes the noncommutative polynomial∑

w f(w)g(w)w.

1If (i, j) is not an edge in the ABP then the coefficient of x is taken as 0.
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Acyclic Automata and ABPs

Let P be a deterministic finite automaton with q states that accepts a finite language W ⊆ Xd.
There is an equivalent automaton P ′ with O(qd) states with the following properties: it has a start
state labeled s and a unique final state labeled t. The state transition graph for P ′ is a layered
directed acyclic graph with d layers, and each transition edge in P ′ is labeled by a variable from
X.

Clearly, we can also interpret P ′ as an ABP, and the polynomial g that it computes is the sum
of all monomials that are accepted by P . I.e.

g =
∑
w∈W

w.

Corollary 10. Suppose f ∈ F〈X〉 is a homogeneous degree d polynomial computed by a noncom-
mutative circuit C and W ⊆ Xd has a finite automaton P . Then the polynomial

∑
w∈W f(w)w can

be computed by a noncommutative circuit whose size is polynomially bounded in d, size of C and
the size of the automaton P .

The above corollary follows directly from Theorem 9.
It is useful to combine the construction described in the previous remark with substitution

maps. For this purpose we consider substitution automata. A finite substitution automaton is a
finite automaton P along with a substitution map ψ : Q×X → Q× Y ∪ F, where Q is the set of
states of P , and Y is a set of (noncommuting) variables. If ψ(i, x) = (j, u) it means that when the
automaton P in state i reads variable x it replaces x by u ∈ Y ∪ F and makes a transition to state
j ∈ Q.

Now, for each x ∈ X we can define the matrix M ′x as follows:

M ′x(i, j) = u, 1 ≤ i, j ≤ q, where ψ(i, x) = (j, u).

For every monomial w = xj1xj2 . . . xjd accepted by P , there is a unique s-to-t path γ =
(s, i1), (i1, i2), . . . , (id−1, t) along which it accepts. This defines the substitution map ψ extended to
monomials accepted by P as

ψ(w) = ψs,i1(xj1)ψi1,i2(xj2) . . . ψid−1,t(xjd),

so that ψ(w) ∈ Y ∗. It follows that the (s, t)th entry of matrix f(M ′x1 ,M
′
x2 , . . . ,M

′
xn) is the polyno-

mial ∑
w∈W

f(w)ψ(w).

Corollary 11. Suppose f = (fn) is a p-family computed by a circuit family (Cn)n>0, where fn ∈
F〈Xn〉 is a homogeneous degree d(n) polynomial for each n. Suppose Pn is a polynomial (in n) size

substitution automaton accepting a subset Wn ⊆ Xd(n)
n with substitution map ψn for each n. Then

the polynomial family g = (gn), where

gn =
∑
w∈Wn

fn(w)ψn(w),

is ≤abp reducible to f . In particular, it follows that gn has a noncommutative circuit whose size is
polynomial in d(n) and the sizes of Cn and Pn.

The above corollary follows directly from the definition of a substitution automaton, Theorem 9
and Corollary 10).
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4 Dyck Polynomials are VPnc-complete

In this section we exhibit a natural p-family which is complete for the complexity class VPnc
under ≤abp reductions. We show that the p-family Dk (defined in Section 2.1), consisting of Dyck
polynomials over k different types of brackets, is VPnc-complete under ≤abp reductions. This
result can be understood as an arithmetic analogue of the Chomsky-Schützenberger representation
theorem [CS63] (also see [DSW94, pg. 306]), which says that every context-free language is a
homomorphic image of intersection of a language of balanced parenthesis strings over suitable
number of different types of parentheses and a regular language.

The overall idea is as follows: Given a VPnc p-family f , in order to show f ≤abp Dk we first
construct a deterministic finite automaton which filters out suitable monomials from monomials of
Dk. Then we do appropriate scalar substitutions for certain suitably chosen variables in Dk in order
to obtain the polynomial f . These two steps together can be seen as doing matrix substitutions for
variables in Dk. Here the matrices are polynomial-sized, and are defined using the required scalar
substitutions and the transition function of the automaton, as explained in Section 3.2.

Theorem 12 (Chomsky-Schützenberger). A language L over alphabet Σ is context free iff there
exist

1. a matched alphabet P∪P (P is set of k different types of opening parentheses P = {(1, (2, . . . , (k}
and P is the corresponding set of matched closing parentheses P = {)1, )2, . . . , )k}),

2. a regular language R over P ∪ P ,

3. and a homomorphism h : (P ∪ P )∗ 7→ Σ∗

such that L = h(D ∩R), where D is the set of all balanced parentheses strings over P ∪ P .

Recall that the p-family Dk = {Dk,d}d≥0 is defined over 2k distinct variables Xk = {(i, )i|1 ≤
i ≤ k}, where (i and )i are matching parenthesis pairs.

Dk,d =
∑

m∈Wk,d

m,

where Wk,d is all degree-d well-balanced parenthesis strings over Xk (defined in Section 2.1).

Theorem 13. The p-family Dk = {Dk,d}d≥0 is VPnc-complete under ≤abp reductions for k ≥ 2.

Proof. Let f = (fn)n>0 be a p-family in VPnc and {Cn}n≥0 be a circuit family such that Cn
computes polynomial fn ∈ F〈Xn〉 for each n. Let s(n) and d(n) be polynomials bounding the size
and syntactic degree of circuit Cn, respectively. We do the following preprocessing on Cn.

• Suppose g is a gate in Cn with input gates g1 and g2. If the subcircuit rooted at either g1

or g2 consists only of scalars at the input level then we replace this subcircuit by the actual
scalar value computed by the subcircuit. We perform this preprocessing for the entire circuit.

We can assume without loss of generality that the above preprocessing is already done on Cn for
each n. For each n we will construct a collection of 2t(n) many matrices M1,M

′
1, . . . ,Mt(n),M

′
t(n)

whose entries are either field elements or monomials in variables {x1, . . . , xn} for a suitably cho-
sen polynomial bound t(n). These matrices will have the following property: consider the Dyck
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polynomial Dt(n),q(n), where q(n) is a polynomial to be suitably chosen later in the proof. When
we substitute Mi for variable (i and M ′i for variable )i in Dt(n),q(n), it will evaluate to a matrix
M = Dt,q(M1,M

′
1, . . . ,Mt(n),M

′
t(n)) whose top right corner entry is precisely the polynomial fn

computed by Cn.
The idea underlying the construction is from the proof of the Chomsky-Schützenberger theorem.

Our proof is essentially an arithmetic version. We need to additionally take care of coefficients of
monomials and polynomial size bounds. The matrices M1,M

′
1, . . . ,Mt,M

′
t correspond to the tran-

sitions of a deterministic finite state substitution automaton, in the sense explained in Section 3.2.
The substitution automaton will be designed to transform monomials of Dt(n),q(n) into monomials
of Cn so that M ’s top right entry (corresponding to the accept state of the automaton) contains
the polynomial Cn. We now give a structured description of the reduction.

1. Firstly, we do not directly work with the circuit Cn because we need to introduce a parsing
structure to the monomials of Cn. We also need to make the circuit initially constant-free by
introducing new variables. We will substitute back the constants for the new variables in the
matrices. To this end, we will carry out the following modifications to the circuit Cn:

(a) For each product gate f = gh in the circuit, we convert it to the product gate computing
f = (fg)fh, where (f and )f are new variables.

(b) We replace each input constant a of the circuit Cn by a degree-3 monomial (aza)a, where
(a, )a, za are new variables.

Let C ′n denote the resulting arithmetic circuit after the above transformations applied to the
gates. The new circuit C ′n computes a polynomial in the ring F〈X ′n〉, where

X ′n = Xn ∪ {(g, )g | g is a × gate in Cn}
∪ {(a, )a | a is a constant in Cn}
∪ {za | a is a constant in Cn}.

We make a further substitution: we replace every variable y ∈ Xn by the degree-2 monomial
[y]y and every variable za for constants a appearing in Cn by [za ]za . Let the resulting arithmetic
circuit be C ′′n and the expanded variable set be denoted X ′′n.

It is clear that the resulting family of circuits (C ′′n)n>0 computes a p-family f ′′ = (f ′′n)n>0,
where f ′′n ∈ F〈X ′′n〉 is the polynomial computed by C ′′n. Furthermore, by construction, C ′′n
is a polynomial whose monomials are certain properly balanced parenthesis strings over the
parentheses set defined above. The circuit C ′′n is not homogeneous. Clearly, its degree is
bounded by a polynomial in (s(n) + d(n)). A multiplicative subcircuit of C ′′n is defined by
the following procedure starting at the output gate of C ′′n: At each + gate retain exactly one
of its input gates. At each × gate retain both input gates. In general, each multiplicative
subcircuit computes a monomial with some coefficient. In the case of C ′′n notice that distinct
multiplicative subcircuits compute distinct monomials (guaranteed because of the new gate
variables introduced). Furthermore, as C ′′n is constant-free, the coefficients of all monomials
is 1. We have the following simple claim.

Claim 14. f ≤proj f ′′.

11



The above claim follows because we can recover the circuit Cn from C ′′n by substituting 1
for the parenthesis variables (g, )g occurring in C ′′n for each gate g of Cn. Then substituting
variable y for the term [y]y in C ′′n, and substituting the scalar a for [za ]za in C ′′n.

f ′′ is ≤abp reducible to Dk

This is the main part of the proof. We describe the reduction in two steps. We first show that
f ′′ is ≤abp reducible to the p-family D̂ = (Dt(n),q(n))n>0. Here t(n) is a polynomial bounding
the number of parenthesis types used in C ′′n along with some additional parentheses types.
The polynomial bound q(n) will be specified below. We then show that D̂ ≤abp Dk for any
k ≥ 2.

Let the syntactic degree of polynomial C ′′n be 2r. By construction, all nonzero monomials in
the polynomial computed by C ′′n are of even degree bounded by 2r. We introduce r + 1 new
parenthesis types {j , }j , 0 ≤ j ≤ r (to be used as prefix padding in order to get homogeneity).
Now, consider the polynomial Dt(n),q(n) where q(n) = 2r + 2 and t(n) = (r + 1) + pn, where
pn is the number of parenthesis types occurring in C ′′n.

The reduction will map all degree 2j monomials in C ′′n to prefix-padded monomials in Dt,q

of the form m′ = {1}1{2}2 . . . {r−j}r−j{0}0m, where m is a degree 2j monomial over the
parentheses types of C ′′n. As a consequence m′ is of degree 2r + 2 for all choices of j.

Now the matrices of the automaton have to effect substitutions in order to convert these
m′ into a monomial of C ′′n of degree 2j. The strings accepted by this automaton is of the
form uv, where u = {1}1{2}2 . . . {i−1}i−1{0}0, 0 ≤ i ≤ r + 1 and v is a well-balanced string
over remaining parentheses types. This automaton is essentially based on the one defined
in the proof of the Chomsky-Schützenberger theorem. We give its description below. The
automaton runs only on monomials of Dt(n),q(n) and hence can be seen as a layered acyclic
DAG (as explained in Section 3.2) with exactly q(n) layers.

(a) The start state of the automaton is (ŝ, 0). The automaton first looks for prefix

{1}1{2}2 . . . {r−j}r−j{0}0.

As it reads these variables, one by one, it steps through states (ŝ, i), substitutes 1 for
each of them, and reaches state (s, 2(r− j+ 1)) when it reads }0, where s is the name of
the output gate of circuit C ′′n. If any of the variables {l, }l, l ∈ [r] ∪ {0} occur later they
are substituted by 0 (to kill such monomials).

(b) The automaton will substitute the substring [x]x by variable x. If [x is not immediately
followed by ]x then it substitutes 0 for variable [x (to kill such monomials). Similarly, the
automaton substitutes [a]a by a (if [a is not immediately followed by ]a then it substitutes
0 for [a).

(c) Now, we describe the crucial transitions of the automaton continuing from state (s, 2(r−
j + 1)), where s is the output gate of circuit C ′′n. The transitions are defined using the
structure of the circuit C ′′n. At this point the automaton is looking for a degree 2j
monomial. Let ` < 2r + 2.

12



In order to simplify our notation, we describe the transitions of the automaton on reading
certain (short) monomials rather than symbol by symbol. The transition denoted

(h, `)→ m(g, `+ |m|)

means that the automaton in state (h, `) reads the monomial m and goes from state
(h, `) to state (g, `+ |m|), where |m| is the degree of the monomial m.

The automaton is defined by the following transitions:

i. (ŝ, 2j)→ {j+1}j+1(ŝ, 2(j + 1)), for 0 ≤ j < r.

ii. (ŝ, 2(r− j))→ {0}0(s, 2(r− j + 1)), for 0 ≤ j ≤ r, where s is the output gate in the
circuit C ′′n.

iii. (g, `) → (g(gl, ` + 1), where g is an internal product gate in circuit C ′′n and gl is its
left child.

iv. Include the transition (g, `)→ (h(hl, `+ 1), if g is an internal + gate in circuit C ′′n,
h is an internal product gate such that there is a directed path of + gates from h
to g. As before, hl denotes the left child of h.

v. For each input variable, say z, in the circuit C ′′n and for each product gate g in
the circuit C ′′n, the automaton includes the transition (h, `) → [z]z)g(gr, ` + 3), if
` + 3 < 2r + 2, where gr is the right child of the internal product gate g, and h
stands for any internal gate in C ′′n. If ` + 3 = 2r + 2 then the automaton instead
includes the transition (h, `) → [z]z)g(t, 2r + 2), where (t, 2r + 2) is the unique
accepting state of the automaton.

This completes the definition of the automaton. The important property about monomials
accepted by the automaton is summarized in the following claim.

Claim 15. The above automaton accepts only strings from (X ′′n)q(n), where q(n) = 2r(n) + 2. Fur-
thermore, if the input to the automaton is a monomial m′ of Dt(n),q(n) then the automaton accepts
m′ iff m′ = {1}1{2}2 . . . {r−j}r−j{0}0m for some j, where m is a nonzero degree 2j monomial of
f ′′n .

The claim follows directly from the automaton’s construction. Notice that the automaton could
accept some arbitrary monomials in (X ′′n)q(n) which are not monomials of Dt(n),q(n). However, that
is not a problem for our reduction.

Now that we have specified the transitions of the automaton, we can define the substitution
automaton, by describing the matrices that we substitute for each parenthesis. We define U as the
following subset of X ′′n:

U = {[z| z is a variable in C ′′n}⋃
{(g, )g | g ∈ G}⋃
{{j , }j | j ∈ [r] ∪ {0}}

where G denotes the set of all product gates in the circuit Cn. Let Mv be the matrix we
substitute for variable v ∈ U . The rows and columns of matrix Mv are labelled by the states of the
automaton. Matrix Mv is defined as follows:
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mi,j = Mv[i, j] =

{
1 if v ∈ U and (i, j) is a transition labeled v
z if p =]z and (i, j) is a transition labeled v

where z denotes a variable in the circuit C ′′n.
From the above construction and by Corollary 11, it follows that upon substituting these matri-

ces for the variables in the polynomial Dt(n),q(n) the top right corner entry of the resulting matrix

is the polynomial computed by the circuit C ′′n. Therefore, f ′′ ≤abp D̂.

We now complete the proof by showing that D̂ ≤abp Dk for any k ≥ 2.

Claim 16. The p-family D̂ is ≤abp-reducible to D2.

Proof of Claim. Let 2p(n)−1 < t(n) ≤ 2p(n) for some p(n) ∈ O(log n). Consider the p-family
D̂′ = (D2p(n),q(n))n>0. Clearly, D̂ ≤proj D̂′, where the projection reduction will substitute 1 for

variables (j , )j when t(n) < j ≤ 2p(n). Thus, it suffices to show D̂′ is ≤abp reducible to D2.
Let {[0, [1, . . . , [2p(n)−1} ∪ {]0, ]1, . . . , ]2p(n)−1} be the variable set for D2p(n),q(n). For 0 ≤ i ≤

2p(n)− 1 we will encode [i, ]i by strings (b0(b1 . . . (bp(n)−1
and )b0)b1 . . .)bp(n)−1

respectively, where the
tuple 〈b0, . . . , bp(n)−1〉 is the binary encoding of index i. We can easily design a finite automaton
which on input a degree p(n)q(n) monomial m of D2,p(n)q(n), checks if m is a valid encoding
of some monomial of D2p(n),q(n). So by using the transition function of this automaton we can
define appropriate matrix substitutions for the variables of D2,p(n)q(n) (namely the four variables
(0, (1, )0, )1), so that the top right corner entry of the resulting matrix obtained after this substitution
in D2,p(n)q(n) is the polynomial D2p(n),q(n). This proves the claim.

Clearly every Dyck polynomial can be computed by a polynomial-size non-commutative arith-
metic circuit so from Claim 16, it follows that D2 is VPnc-complete. As for any r ≥ 2 we have
D2 ≤abp Dr. Thus the Dyck polynomials Dr for all r ≥ 2 are VPnc-complete. This proves the
theorem. �

Remark 17. In the commutative setting, Valiant has shown [Val79] that the determinant DET
is VP-complete, but only under quasipolynomial projections. The problem of finding natural VP-
complete p-families that are complete under p-projections is not yet satisfactorily settled in the
commutative case. Perhaps one needs to consider a more flexible reducibility than projections.
However, the ≤abp reducibility does not make sense for VP. The commutative ABP model is very
powerful: DET itself has polynomial-size commutative ABPs [Tod92].

Remark 18. We note that D1 is not VPnc-complete. Indeed, it is easy to see that each D1,n has
a polynomial in n size ABP. Therefore, D1 ∈ VBPnc. In fact, notice that D1 ≤abp PAL ≤abp D2

and D2 6≤abp PAL 6≤abp D1. As PAL is not in VBPnc [Nis91], it follows that PAL 6≤abp D1. Since
PAL2 = (PALnPALn) is in VPnc and does not have polynomial-size skew circuits [LMS15], it
follows that D2 is not ≤abp-reducible to PAL.

5 Palindrome Polynomials are VSKEWnc-complete

In this section we show that the p-family PAL, consisting of palindrome polynomials (defined in
Section 2.1), is complete for the class VSKEWnc w.r.t. ≤abp reductions. The proof is broadly similar
to that of Theorem 13.

Theorem 19. The p-family PAL is VSKEWnc-complete under ≤abp reductions.
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Proof. We show that any p-family in VSKEWnc is ≤abp-reducible to PAL.
Let f = (fn)n>0 be a p-family in VSKEWnc and {Cn}n≥0 be a skew circuit family computing f .

Suppose fn ∈ F〈Xn〉 for each n. Let s(n) and d(n) be polynomials bounding the size and syntactic
degree of Cn, respectively.

We need to construct matrices corresponding to the transitions of a substitution automaton
which will transform monomials of PALt(n), for a suitably large polynomial t(n), into monomials
of Cn. More precisely, after substitutions, the top right entry of the resulting matrix contains the
polynomial fn.

We will modify circuit Cn in order to introduce a parsing structure to the monomials it computes.
We apply the following transformations to Cn:

1. For each left-skew product gate g = xh in the circuit Cn where x is an input variable and h
a gate in the circuit, let (h, g) be the directed edge in the circuit Cn from gate g to gate h.
We convert the gate into the two skew gates

g′ = hx(h,g,R)

g′′ = x(h,g,L)g
′,

where x(h,g,L) and x(h,g,R) are fresh variables. Right-skew gates g = hx are transformed

analogously using fresh variables x
(r)
(h,g,L) and x

(r)
(h,g,R). Here we use superscripts ` and r for

the variables to keep track of whether the original × gate was left skew or right skew.

2. For each product gate g = ah in the circuit Cn, for some scalar a ∈ F we convert it to two
skew gates

g′ = ha(h,g,R)

g′′ = a(h,g,L)g
′

where a(h,g,L) and a(h,g,R) are again fresh variables.

Let C ′n denote the resulting skew circuit after transformation. It computes a polynomial f ′n in

F〈X ′n〉 where the variable set X ′n is the collection of all the a(h,g,L), a(h,g,R), x(h,g,L), x(h,g,R), x
(r)
h,g,L,

and x
(r)
h,g,R defined above.

The transformation ensures that distinct multiplicative subcircuits of C ′n compute distinct
monomials because all the new variables introduced carry the gate names. As C ′n is constant-
free, the coefficients of all nonzero monomials in f ′n is 1.

Furthermore, the nonzero monomials in f ′n are all palindrome monomials in the variable set X ′n:
in a monomial m of degree 2d occurring in f ′n, for all i ∈ [d], variable x(h,g,L) occurs at position i if
and only if at position 2d− i+ 1 we have the matching variable x(h,g,R). Similarly, for the variable

pairs ah,g,L and ah,g,R, as well as x
(r)
h,g,L and x

(r)
h,g,R. This property is easy to check inductively by

the transformation at all × gates in C ′n.
Clearly, f ≤proj f ′ because we can recover fn from f ′n by the following substitutions:
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� Variable x for xh,g,L and 1 for xh,g,R.

� Variable x for x
(r)
h,g,R and 1 for x

(r)
h,g,L.

� Scalar a for variable ah,g,L and 1 for ah,g,R.

Clearly, the number of variables and degree of f ′n are polynomially bounded in n.
Let the degree of polynomial f ′n be 2r(n). The nonzero monomials computed by C ′n are of even

degree bounded by 2r(n). We introduce r(n) + 1 new variable pairs yj,L, yj,R, 0 ≤ j ≤ r(n) (to be
used as prefix and suffix padding in order to get homogeneity). For a degree 2j monomial m in f ′n
define the palindrome monomial

m′ = (y1,Ly2,L . . . yr−j,Ly0,L)m(y0,Ryr−j,R . . . y2,Ry1,R).

Now, m′ is of degree 2r(n)+2 for all choices of j. Let C ′′n denote a new circuit obtained from C ′n
as follows: From C ′n we find skew circuits for each of its homogeneous components. For the degree 2j
homogeneous component we apply the appropriate prefix/suffix padding (of length 2r(n)+2−j) as
described above. We add the resulting circuits for the different homogeneous components to obtain
C ′′n. Let f ′′n denote the polynomial computed by C ′′n and f ′′ = (f ′′n)n>0 the corresponding p-family.
Clearly, f ′′n computes a homogeneous degree 2r(n) + 2 polynomial. All the monomials of f ′′n are
palindrome monomials over the variable pairs in the set X ′′n = {yj,L, yj,R | 0 ≤ j ≤ r(n) + 1} ∪X ′n.

Let ˆPAL = ( ˆPALn)n>0 denote the p-family, where ˆPALn consists of all degree 2r(n) + 2 palin-
drome monomials over the variable set X ′′n.

In the next steps, we will show that f ′′ ≤abp ˆPAL and ˆPAL ≤abp PAL. As f ≤proj f ′ ≤proj f ′′,
it will follow that f ≤abp PAL, completing the proof.

f ′′ is ≤abp-reducible to ˆPAL

The≤abp reduction is effected by a substitution automaton which accepts precisely those palindrome
monomials wwR such that the first half w is “compatible” with the circuit structure of C ′′n (although
it also accepts many non-palindrome monomials). The transition matrices of the automaton, when
substituted for variables in ˆPALn, ensure that only monomials of C ′′n survive in the final polynomial
obtained as the top right entry of the resulting matrix. The automaton is a layered DAG with
exactly 2r + 2 layers.

1. The start state of the automaton is (ŝ, 0). The automaton first looks for a prefix (y1,Ly2,L . . . yr−j,Ly0,L).
These transitions can be described as (ŝ, i) → y(i+1,L)(ŝ, i + 1)), for 0 ≤ i < r. As the au-
tomaton reads these variables it steps through states (ŝ, i), substitutes 1 for each of them,
and reaches state (s, (r − j + 1)) when it reads y0,L, where s is the name of the output gate
of circuit C ′′n. If any of yl,L, l ∈ [r]∪ {0} occur later the automaton will substitute 0 for it (in
order to kill that monomial).

2. Now we describe the transitions of the automaton continuing from state (s, (r− j + 1)). The
automaton will use the circuit C ′′n. At this point the automaton is looking for a degree 2j
monomial. Let ` < 2r + 2. The automaton has the following transitions:
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(a) (ŝ, j)→ y(0,L)(s, j + 1), where 0 ≤ j ≤ r and s is the output gate in the circuit C ′′n.

(b) In state (s, j + 1) if the automaton reads variable xh,g,L (or x
(r)
h,g,L or ae,g,L) it moves to

state (g, j+ 2) if the gate g is a left-skew multiplication occurring in the circuit C ′′n, and
the directed path from g to s in the circuit has only + gates or right-skew multiplication
gates in it. Formally, the transitions made are:

(s, j + 1) → x(h,g,L)(g, j + 2),

(s, j + 1) → x
(r)
(h,g,L)(g, j + 2),

(s, j + 1) → a(h,g,L)(g, j + 2).

(c) In general, when the automaton is in state (g, `) for a left-skew multiplication gate g

in the circuit and it reads variable xg1,g2,L (x
(r)
g1,g2,L

or ag1,g2,L) then it moves to state
(g2, `+ 1) if the gate g2 is left-skew occurring in the circuit, and the directed path from
g2 to g has only + gates or right-skew multiplication gates in it. The transitions are:

(g, `) → x(g1,g2,L)(g2, `+ 1),

(g, `) → x
(r)
(g1,g2,L)(g2, `+ 1),

(g, `) → a(g1,g2,L)(g2, `+ 1).

(d) After the automaton reaches a state (g, r + 1) for some left-skew multiplication gate g
it makes only transitions of the form:

(g, `) → z(t, `+ 1),

(t, `) → z(t, `+ 1),

for all choices of z ∈ {a(h,g,R),x(h,g,R), x
(r)
h,g,R | g and h gates in Cn}, and for r + 1 ≤ ` <

2r + 2. The state (t, 2r + 2) is the unique accepting state of the automaton.

Transitions (a)-(d) ensures that the automaton accepts a monomial ww′ ∈ (X ′′n)2r(n)+2, where
|w| = r(n) + 1, if and only if wwR is a nonzero monomial in the polynomial f ′′n computed by
C ′′n. Thus, the transitions in (a)-(d) ensure the following claim.

Claim 20. The automaton defined above accepts a palindrome monomial wwR ∈ (X ′′n)2r(n)+2

iff wwR is a nonzero monomial in f ′′n .

Note that there may be many other monomials ww′ also accepted by the automaton. However,
that does not affect the reduction.

We can now apply Corollary 11. Let W ⊂ (X ′′n)2r(n)+2 denote the set of strings accepted by the
above automaton, and ψ denote its substitution map (which replaces the variables yj,L and yj,R by

1 and leaves other variables unchanged). Then Corollary 11 implies that f ′′ ≤abp ˆPAL.
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ˆPAL is ≤abp-reducible to PAL

Finally, we note that ˆPAL is ≤abp-reducible to PAL. The polynomial ˆPALn consists of palindromes
over a large (polynomial size) variable set X ′′n. We can transform each such palindrome into a
palindrome over two variables {x0, x1} with simple encoding: we can substitute yj,L and yj,R by

x0x
j
1x0 for each j. Similarly, for xh,g,L and xh,g,R we use a distinct integer k and encode them

both as x0x
k
1x0. Likewise, we encode each variable pair x

(r)
h,g,L and x

(r)
h,g,R, or ah,g,L and ah,g,R as

x0x
k
1x0 for distinct choices of integer k. We will need only integers k ≤ |X ′′n| which is polynomially

bounded. Furthermore, this encoding is invertible and can be implemented by a polynomial-size
substitution automaton. It now follows from Corollary 11 that ˆPAL ≤abp PAL. �

6 A Ladner’s Theorem analogue for VNPnc

In this section we explore the class VNPnc assuming VPnc 6= VNPnc. We exhibit an explicit p-family
in VNPnc \VPnc that is not VNPnc-complete. Based on this p-family we construct strictly infinite
hierarchy of p-families under indexed projections between VPnc and VNPnc. This is similar in
spirit to the well-known Ladner’s Theorem [Lad75] that shows, assuming P 6= NP, that there is an
infinite hierarchy of polynomial degrees between P and NP-complete. For commutative Valiant’s
classes, the existence of VNP-intermediate p-families is investigated by Bürgisser [Bür99]. The
results there require an additional assumption about counting classes in the boolean setting.

Definition 21 (VNPnc-intermediate). We say that a noncommutative p-family f = (fn)n≥0 is
VNPnc-intermediate if f /∈ VPnc and f is not VNPnc-complete w.r.t. ≤iproj reductions.

For any set of noncommuting variables X with |X| ≥ 2, we define the p-family ID = (IDn),
where IDn =

∑
w∈Xn ww. As the monomials of IDn can be recognized and their coefficients

computed in polynomial time the p-family ID is in VNPnc [HWY10b].
We first show that ID is not VNPnc-complete under ≤iproj reductions. We prove it uncondi-

tionally using a simple ”transfer” theorem, which allows us to transfer a VNPnc-complete p-family
w.r.t ≤iproj reductions to a commutative VNP-complete p-family w.r.t ≤proj reductions.

Definition 22. Let f = (fn) be a p-family in VNPnc, where each fn is a polynomial of degree

d(n). We define the commutative version f (c) = (f
(c)
n ) as follows: Suppose fn ∈ F〈Xn〉. Let

Yn =
⋃

1≤i≤d(n)Xn,i be a new variable set, where Xn,i = {xji|∀xj ∈ Xn} is a copy of the variable

set Xn for the ith position. If the polynomial fn =
∑
αmm where αm ∈ F and m ∈ X

≤d(n)
n is

a monomial, the polynomial f
(c)
n is defined as f

(c)
n =

∑
αmm

′, where if m = xj1xj2 . . . xjq then
m′ = xj1,1xj2,2 . . . xjq ,q.

Clearly, f
(c)
n ∈ F[X] and is a polynomial of degree d(n).

Lemma 23. For any p-families f and g (in F〈X〉), if f ≤iproj g then f (c) ≤proj g(c).

Proof. Since f ≤iproj g, for every n there is a polynomial p(n) and an indexed projection φn :
[dp(n)]×Xp(n) → (Yij)1≤i,j≤n s.t. fn(Yn) = g(φn(Xp(n))) where dp(n) is the degree of the polynomial

gp(n). Define φ′n :
⋃
i∈[d(n)]Xp(n),i → Yn as φ′n(xji) = φn(i, xj) for 1 ≤ i, j ≤ n. Clearly, f (c) is

reducible to g(c) via this projection reduction. This completes the proof. �

18



The following observation is an easy consequence of Lemma 23.

Theorem 24 (Transfer theorem). Let f = (fn) ∈ VNPnc be a p-family that is VNPnc-complete
under ≤iproj-reductions. Then f (c) is VNP-complete under ≤proj-reductions.

Proof. Since f is VNPnc-complete and PER ∈ VNPnc we have PER ≤iproj f . It follows from

Lemma 23 that PER
(c)
d ≤proj f

(c), which means that f (c) is VNP-complete under ≤proj-reductions.
�

Corollary 25. If VP 6= VNP then the noncommutative determinant DET = (DETn) is VNPnc-
intermediate.

Proof. If the noncommutative determinant DET = (DETn) is VNPnc-complete under ≤iproj re-
ductions then, by Theorem 24, DET is VNP-complete under ≤proj-reductions. However, DET is
in VP, which contradicts VP 6= VNP. �

Remark 26. We note here that VP 6= VNP is a stronger assumption as it implies VPnc 6= VNPnc.
However, in this section we show existence of VNPnc-intermediate polynomials under the weaker
assumption that VPnc 6= VNPnc.

We first note that the p-family ID is not VNPnc-complete under ≤iproj reductions.

Theorem 27. The p-family ID is not VNPnc-complete under ≤iproj-reductions.

Proof. Consider ID = (IDn) with IDn defined over variable set X = {x1, x2, . . . , xm(n)}. Then

then commutative polynomial ID
(c)
n is

ID(c)
n =

n∏
j=1

(

m(n)∑
i=1

xi,jxi,n+j).

All irreducible factors of ID
(c)
n have degree 2. If g is a p-family such that g ≤iproj ID, then by

Lemma 23 we have g(c) ≤proj ID(c). As g(c) is obtained by projection from ID
(c)
n (for some n),

it follows that all irreducible factors of g(c) also have degree at most 2. Now, define the p-family

g = (gn), where gn = x1x2x3 +x4x5x6 for all n. Clearly, g ∈ VNPnc and g
(c)
n is irreducible of degree

3. Therefore, g is not ≤iproj-reducible to ID. �

Thus, the p-family ID is not VNPnc-complete w.r.t. ≤iproj reductions unconditionally. As ID is
not known to be in VPnc, that makes it a candidate for being VNPnc-intermediate. If we could show
that ID is VNPnc-complete w.r.t. ≤abp reductions it would follow that ID is not in VPnc assuming
VPnc 6= VNPnc. Motivated by this observation, we consider a generalized version of ID which we
call ID∗ which turns out to be VNPnc-complete under ≤abp reductions but not VNPnc-complete
under ≤iproj reductions.

For each positive integer n, let Xn be a variable set such that |Xn| = n2. Let Wn denote the
set of all degree n monomials over Xn and define the polynomial

ID∗n =
∑
w∈Wn

ww . . . w︸ ︷︷ ︸
n2−times

.

Clearly, the p-family ID∗ = (ID∗n) is in VNPnc as we can recognize the monomials of ID∗n in
time polynomial in n for each n. We show the following completeness result for ID∗.
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Theorem 28. The p-family ID∗ is VNPnc-complete under ≤abp reductions.

Proof. Consider the permanent polynomial PERn and the ID∗n polynomials, both defined on the
variable set Vn = {xij | 1 ≤ i, j ≤ n}.

We design a deterministic finite state automaton A with the following properties:

1. The automaton A takes as input strings of length n3 over alphabet Vn. We can write each
such string as w1w2 . . . wn2 , where each wi is of length n.

2. It checks that each wi is a monomial of the form w = X1i1 . . . Xnin . I.e. the automaton checks
that the first index of the variables in monomial wi is strictly increasing from 1 to n.

3. For the ith block wi, since 1 ≤ i ≤ n2, we can consider the index i as a pair (j, k), 1 ≤ j, k ≤ n.
While reading the ith block wi = X1i1 . . . Xnin the automaton checks that ij 6= ik if j 6= k.

The automaton A can be easily realized as a DAG with n3 layers. The first layer has the start
state s and the last layer has one accepting state t and one rejecting state t′. The transitions of
automaton A are only between adjacent layers of this DAG. We group the adjacent layers of this
DAG into blocks of size n. Let these layer blocks be denoted B1, B2, . . . , Bn2 . In block Bi, the
transitions of the automaton will check if ij 6= ik holds in wi assuming j 6= k, where i = (j, k) and
the entire input is w1, w2 . . . wn2 . The automaton will have the indices j and k hardwired in the
states corresponding to block Bi and can easily check this condition. If for any block Bi, the indices
ij = ik then the automaton stores this information in its state and in the end makes a transition
to the rejecting state t′.

Finally, the matrices of the automaton have to effect substitutions in order to convert monomials
of IDn into monomials of PERn. The matrices will replace xij by the same variable xij in the
first block B1 and by 1 in all subsequent blocks. The polynomial ID∗n when evaluated on these
matrices will have the permanent polynomial PERn in the (s, t)th entry of the resulting matrix.
This completes the proof of the theorem. �

Theorem 29. Assuming VPnc 6= VNPnc, the p-family ID∗ is VNPnc-intermediate under ≤iproj
projections.

Proof. If ID∗ is VNPnc-complete under ≤iproj reductions, then PER ≤iproj ID∗ where d ≤ p(n)
for a polynomial p. By Theorem 24 it follows that PER(c) ≤proj ID∗(c). Now,

ID
∗(c)
d =

d2∏
i=1

d2∑
j=1

d2∏
k=1

xj,d(k−1)+i

Thus, each irreducible factor of ID
∗(c)
d is of degree d2 and has d2 monomials. On the other hand,

for each n PER
(c)
n is irreducible with n! monomials. Thus, PER

(c)
n can be obtained as a projection

of ID
∗(c)
d only if d2 = Ω(n!), which contradicts PER(c) ≤proj ID∗(c).

Finally, note that ID∗ is not in VPnc under the assumption VPnc 6= VNPnc, as ID∗ is VNPnc-
complete under ≤abp reductions by Theorem 28. �
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6.1 A strict ≤iproj hierarchy in VNPnc

We give an infinite hierarchy of p-families under ≤iproj reductions between VPnc and VNPnc using
the p-families ID∗ and D2.

We define p-families f (i) in VNPnc \VPnc such that f (i) ≤iproj f (i+1) but f (i+1) �iproj f (i), for
each positive integer i ∈ N. Let ID∗ = (IDn) where ID∗n are degree n3, and D2 = (D2,n)n≥0 where

D2,n are degree 2n. Each f (i) = (f
(i)
n ), where

f (1)
n = ID∗n,

f (2)
n = D2,nID

∗
n,

f (i)
n = f (i−1)

n D2,nID
∗
n,

for each i, n ∈ N. It is easy to verify that f (i) ∈ VNPnc for all i. The degree of f
(i)
n is i(n3 +2n).

Proposition 30. For every i, f (i) ≤iproj f (i+1), where the f (i) are the p-families defined above.

Proof. The indexed projection that gives a reduction from f
(i)
n to f

(i+1)
n will simply substitute 1

for the variables ( occurring in positions 1 ≤ i ≤ n, and 1 for the variables ) occurring in positions
n + 1 ≤ i ≤ 2n. For all other occurrences of the variables of D2,n in the positions 1 ≤ j ≤ 2n,
the indexed projection substitutes 0. This substitution picks out the following unique degree-2n
monomial in the first copy of D2,n

(((· · · ((︸ ︷︷ ︸
n−times

)) · · · )))︸ ︷︷ ︸
n−times

in the polynomial D2,n and gives it the value 1, and it zeros out the remaining monomials of D2,n.
For positions 2n+ 1 ≤ j ≤ n3 + 2n, the indexed projection will substitute 1 for variable x1 and

0 for all other variables, which will pick out the unique monomial xn
3

1 from ID∗n and give it value
1 and zero out all other monomials in the first copy of ID∗n.

Finally, the indexed projection substitutes x for x, for each variable x occurring in positions
after 2n+ n3. �

It remains to show that f (i+1) �iproj f (i) assuming VPnc 6= VNPnc. First, we observe that ID∗

and D2 are incomparable under ≤iproj reductions, assuming VPnc 6= VNPnc. In order to show this

we need to show that D
(c)
2,n is irreducible.

Lemma 31. The polynomial D
(c)
2,n is irreducible for each n.

Proof. Suppose D
(c)
2,n = g.h is a nontrivial factorization. Notice that D

(c)
2,n is set-multilinear of degree

2n since the i-th location is allowed only one variable from the set {(i, )i, [i, ]i}. It follows that g
and h are both homogeneous and multilinear, and their variable sets are disjoint.

Thus, every nonzero monomial m of f has a unique factorization m = m1m2, where m1 occurs
in g and m2 in h. There are no cancellations of terms in the product gh. Hence, it also follows
that both g and h are set-multilinear, where the set of locations [2n] is partitioned as S for g and
[2n] \ S for h. The monomials of g are over variables in {(i, )i, [i, ]i | i ∈ S} and monomials of h are
over variables in {(i, )i, [i, ]i | i ∈ [2n] \ S}.
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Now, there are monomials m occurring in D
(c)
2,n such that the projection of m onto positions in

S does not give a string of matched brackets. Let m′ be any such monomial. Then we have the
factorization m′ = m′1.m

′
2, where m′1 and m′2 are monomials that occur in g and h respectively.

Let the monomial m′′ be obtained from m′ by swapping (i with [i and )i with ]i. Notice that m′′

occurs in D
(c)
2,n. Let m′′ = m′′1m

′′
2, where m′′1 and m′′2 occur in g and h, respectively. Now, since

there are no cancellations in the product gh, the monomial m′1m
′′
2 (which is not a properly matched

bracket string) must also occur in gh and hence in D
(c)
2,n, which is a contradiction. This completes

the proof. �

Lemma 32. 1. If VPnc 6= VNPnc then ID∗ �iproj D2.

2. D2 �iproj ID∗.

Proof. The first part follows from the VNPnc-completeness of ID∗ shown in Theorem 28. For the

second part, if D2 ≤iproj ID∗ then by Lemma 23 it follows that D
(c)
2 ≤proj ID∗(c). By Lemma 31

D
(c)
2,n is irreducible for each n. Moreover, the number of monomials of D

(c)
2,n is 2Ω(n). On the other

hand, each irreducible factor of ID
∗(c)
d has only d2 monomials. Hence, D

(c)
2 �proj ID∗(c). �

We now show that f (i) form a strictly infinite hierarchy under ≤iproj reductions in VNPnc\VPnc.

Theorem 33. If VPnc 6= VNPnc then for each i f (i+1) �iproj f (i).

Proof. Suppose f (i+1) ≤iproj f (i). Then there are a polynomial p(n) and indexed projection map

φn s.t. f
(i)
p(n)(φn(X

(i)
p(n))) = f

(i+1)
n (X

(i+1)
n ), where X

(i)
p(n) = V ar(f

(i)
p(n)) and X

(i+1)
n = V ar(f

(i+1)
n ). By

definition we have

� f
(i)
p(n) = D2,p(n)ID

∗
p(n) . . . D2,p(n)ID

∗
p(n)︸ ︷︷ ︸

i−times

� f
(i+1)
n = D2,nID

∗
n . . . D2,nID

∗
n︸ ︷︷ ︸

(i+1)−times

By Lemma 32, ID∗n �iproj D2,n and D2,n �iproj ID∗n. Therefore, D2,nID
∗
n �iproj D2,p(n) and

D2,nID
∗
n �iproj ID∗2,p(n). Hence D2,nID

∗
n must get mapped by the projection φn to the product

D2,p(n)ID
∗
p(n) or ID∗p(n)D2,p(n), overlapping both factors. But f

(i+1)
n has (i+1) such factorsD2,nID

∗
n.

Hence, at least one of these factors D2,nID
∗
n must map wholly to ID∗p(n) or D2,p(n) by the indexed

projection φn, which is a contradiction to Lemma 32. Hence f (i+1) �iproj f (i). This proves the
theorem. �

6.2 Discussion

Proving the existence of VNPnc-intermediate p-families under ≤abp reductions, assuming VPnc 6=
VNPnc, remains open. At present we do not see an approach. However, in Section 3.1 we briefly
discussed ≤linproj , which we termed linear indexed reducibility. Unfortunately, our proof that
PER �iproj ID∗ (see Theorem 29) does not generalize to ≤linproj . Specifically, our proof is based

on counting the number of monomials in the irreducible factors of ID
∗(c)
n and PERn, which does
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not carry over to linear indexed projections. Indeed, it is easy to note that ≤linproj does not, in
general, preserve the number of monomials in irreducible factors.

However, a plausible stronger assumption than VPnc 6= VNPnc implies the existence of VNPnc-
intermediate p-families under ≤ linproj reductions.

Conjecture 34 (SOSk Conjecture). Consider expressing the biquadratic polynomial

SOSk(x1, . . . , xk, y1, . . . , yk) = (
∑
i∈[k]

x2
i )(
∑
i∈[k]

y2
i )

as a sum of squares (
∑

i∈[s] f
2
i ), where fi are all homogeneous bilinear polynomials with the mini-

mum s.
The SOSk conjecture states that over complex numbers (or the algebraic closure of any field of

characteristic different from 2), for all k we have the lower bound s = Ω(k1+ε) for some constant
ε > 0 independent of k.

In [HWY10a], it is shown that the SOSk-conjecture implies that the p-family ID is not in VPnc.
In fact, they prove exponential circuit size lower bounds for IDd assuming the conjecture.

It is easy to see that unconditionally PER �linproj ID. We can apply the argument of counting
monomials in the irreducible factors of IDd, which is also used in the proof of Theorem 29. The
reason is that the irreducible factors of IDd are of degree 2 and even with linear substitutions the
number of monomials in each factor remains polynomially bounded. As PERn is irreducible with
exponentially many monomials it follows that PER �linproj ID.

Now, since the SOSk conjecture implies that ID /∈ VPnc, it follows that ID is a VNPnc-
intermediate p-family assuming the SOSk conjecture.

Finally, exactly as in Section 6.1, we can combine ID and D2 to define an infinite hierarchy of
p-families g(i)q within VNPnc \ VPnc under ≤linproj reductions. We omit the proof details. The
p-families g(i) are defined as:

g
(1)
n = IDn, g

(2)
n = D2,nIDn, g

(i)
n = g

(i−1)
n D2,nIDn.

Theorem 35. Assuming SOSk conjecture we have for every i:

1. g(i) ≤linproj g(i+1).

2. g(i+1) �linproj g(i).

7 More on VNPnc-Completeness

By the transfer theorem (Theorem 24) we know that if f is a VNPnc-complete p-family under ≤iproj
reductions, then in the commutative setting f (c) is VNP-complete under ≤proj-reductions.

For the reverse direction, suppose f is a commutative p-family which is VNP-complete under
≤proj-reductions. There are several examples starting with the permanent, the p-family HC (cor-
responding to Hamiltonian circuits) and so on [Val79]. Is there an associated noncommutative
p-family that is VNPnc-complete under ≤iproj reductions? In this section we formulate an answer
to this question and make some related observations.

Suppose f = (fn) is a commutative p-family that is VNP-complete. Since f is VNP-complete,
suppose PERn ≤proj fr(n) for each n, where r(n) is polynomially bounded.
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Suppose the polynomial fr(n) ∈ F[Xn] is of degree d(n). Let Xn = {x1, x2, . . . , xq(n) ordered by

increasing indices. The monomials of fr(n) are of the form m = xe11 x
e2
2 . . . x

eq(n)
q(n) , where the sum of

the exponents ei is at most d(n). Letting βm denote the coefficient of monomial m in fr(n), we can
write

fr(n) =
∑
m

βmm.

Now, consider the noncommutative p-family f∗ = (f∗n) where

f∗n =
∑
m

βmmm. . .m︸ ︷︷ ︸
n−times

.

Note that f∗n ∈ F〈Xn〉 for each n.

Proposition 36. If f is VNP-complete under ≤proj reductions then f∗ is VNPnc-complete under
≤iproj reductions.

Proof. Denote PERn’s variables by Xjk, 1 ≤ j, k ≤ n. Let i ∈ [q(n)]. Suppose the ≤proj reduction
from PERn to fr(n) does the substitution

xi ← Xjk,

then in the noncommutative case the ≤iproj reduction from PERn to f∗n substitutes Xjk for the xi
in the ((j − 1)n+ k)th copy of m and substitutes 1 for xi in all other copies of m. If the reduction
does the substitution

xi ← α,

for a scalar α, then in the noncommutative case the ≤iproj reduction substitutes α for xi in the
1st copy of m and substitutes 1 for xi in all other copies of m. It is easy to verify that this trick
of repeated copies ensures that the projection transforms f∗n to PERn, where all the monomials of
PERn are ordered as X1i1X2i2 . . . Xnin as per its definition. This completes the proof. �

7.1 A generalized permanent

We next address a different question regarding the permanent polynomial. Let χ : Sn → F \ {0}
be any polynomial-time computable function assigning nonzero values to each permutation in Sn.
We define a generalized permanent polynomial

PERχ
n =

∑
σ∈Sn

χ(σ)x1σ(1)x2σ(2) . . . xnσ(n).

Clearly PERχ = (PERχ
n) is a p-family that is in VNPnc. For which functions χ is PERχ a

VNPnc-complete p-family? In other words, does the hardness of the noncommutative permanent
depend only on the nonzero monomial set (and the coefficients are not important)?

In the commutative setting, a related well-studied question is the complexity of immanents. For
each Young diagram λ the immanent polynomial is defined as

Immλ(X) =
∑
π∈Sn

χλ(π)

n∏
i=1

Xiπ(i).
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The λ are basically (ordered) partitions of n, and we can draw a staircase like diagram (known
as the Ferrers diagram) to represent them. The two extreme cases are when the diagram is a single
column (then the immanent is the determinant) and a single row (the immanent is the permanent
in this case). Intermediate cases are algorithmically well studied with many interesting results
[B0̈0b, Bar90, B0̈0a, Har85, MM13]. Notably, the immanent polynomial is efficiently solvable
when the Ferrers diagram is concentrated on the leftmost column (but for a constant number of
entries) [B0̈0b, Bar90]. Furthermore, the character χλ itself is known to be #P-hard to compute
for arbitrary partitions λ [Hep94].

In the noncommutative setting, as already shown in [AS10], PER ≤abp DET. Thus, it is quite
plausible that Immλ is a hard polynomial for each partition λ, although we have not been able to
answer this question. The main technical difficulty is the complexity of computing χλ.

However, to the question regarding the complexity of PERχ, defined above, for arbitrary but
easily computable functions χ, we are able to give a partial answer. Define

PER∗ =
∑
σ∈Sn

XσXσ . . . Xσ︸ ︷︷ ︸
n−times

, where Xσ is the monomial x1σ(1) . . . xnσ(n).

Proposition 37. PER∗ is VNPnc-complete.

The above proposition is easy to prove: PER∗ is in VNPnc because the coefficient of any
given monomial is polynomial-time computable. Furthermore, PER is ≤iproj-reducible to PER∗ by
substituting 1 for all except the first n variables in every monomial.

Now, consider the polynomial

PER∗,χ =
∑
σ∈Sn

χ(σ)XσXσ . . . Xσ︸ ︷︷ ︸
n−times

.

We prove the following theorem about PERχ and PER∗,χ under assumptions about the function
χ.

Theorem 38. Suppose the function χ is such that |χ(Sn)| ≤ p(n) for some polynomial p(n) and
each n. Then

� If χ is computable by a 1-way logspace Turing machine then PER ≤abp PERχ.

� If χ is computable by a logspace Turing machine then PER ≤abp PER∗,χ.

Proof. We explain the second part of the theorem. The first part follows from the proof of the
second. The idea is to construct an automaton from the given logspace machine such that for a
given σ ∈ Sn, the automaton computes 1

χ(σ) in the field F.

Let T be a logspace Turing machine which uses space s = O(log n), computing χ. Thus, total
running time of T is bounded by P (n), where P (n) is some fixed polynomial in n. Since the range
of χ is p(n) bounded in size, we can encode in a state of the automaton the following:

� Input head position,

� Content of working tape, and
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� Content of output tape.

The number of states is bounded by a polynomial in n. We can convert this log-space machine
T on input σ into a one-way log-space machine T ′ on a modified input as follows:

� The input to T ′ is the concatenation of P (n) copies of σ. Thus the input to T ′ is of the form
σσ . . . σ, with P (n) many σ.

� At a step i, T ′ reads from the ith copy.

The difference between machine T ′ and T is that T ′ is a 1-way logspace machine whose input
head moves always to the right. For σ ∈ Sn, we can convert T ′ into a deterministic automaton
with poly(n) many states as follows: there are only polynomially many instantaneous descriptions
of T ′. This consists of the input head position, the work tape contents and head position, and the
current output string (which is a prefix of some element in the range χ(Sn)). When this automaton
completes reading the input, suppose the state q contains the output element α = χ(σ). The
automaton has a transition from q to the unique final state t labeled by scalar 1/χ(σ).

Finally, we can modify this automaton to work on the monomialsXσXσ . . . Xσ, where it replaces
all but the first block of variables by 1.

When the polynomial PER∗,χ is evaluated on the matrices corresponding to the above au-
tomaton (with the substitutions), the (s, t)th entry of the output matrix will be the permanent
polynomial PERn. �

Remark 39. We note that the sign of a permutation can be computed by a logspace Turing machine,
which implies that DET∗ (which is PER∗,χ where χ(π) is the sign of π) is VNPnc-complete under
≤abp reductions. As the above theorem is for any logspace computable χ, it is not strong enough to
imply the hardness of DET. The hardness proof of DET shown in [AS10] uses a different strategy.

8 Inside VPnc

In the boolean complexity setting, the sub-classes of P are the parallel complexity classes NCi

defined by boolean circuits with bounded fanin gates of polynomial size and login depth for length
n inputs. On the other hand, we have no such hierarchy of algebraic complexity classes inside
the commutative Valiant class VP because VP coincides with VNC2. The reason for it is that
commutative arithmetic circuits of polynomial degree can be transformed to logarithmic depth
with only a polynomial increase in size.

In this section we briefly examine the structure within VPnc. It follows easily from Nisan’s
rank argument [Nis91] that the corresponding VNCnc classes form a strict infinite hierarchy within
VPnc. Furthermore, by considering Dyck polynomials with logi n nesting depth we obtain a strict
hierarchy under ≤abp reductions which roughly corresponds to the VNCnc hierarchy.

Definition 40. A p-family f = (fn) is in VNCi
nc if there is a family of circuits (Cn) for f such

that each Cn is of polynomial size and degree, and is of logi n depth. The class VNCnc is the union
∪iVNCi

nc.

The classes VNCi
nc, i = 1, 2, . . . are clearly contained in VPnc. Furthermore, Nisan’s rank

argument directly implies that VNCi
nc, i = 1, 2, . . . form a strict hierarchy. Specifically, for each

i, palindromes of length logi+1 n over variables {x0, x1} have circuits of depth logi+1 n and size
O(logi+1 n). However, circuits of depth logi n for it require superpolynomial size.
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8.1 Dyck depth hierarchy inside VPnc

We now show that the nesting depth of Dyck polynomials yields a strict hierarchy of p-families
within VPnc. This hierarchy roughly corresponds to the VNCnc hierarchy.

Definition 41 (Nesting depth). The nesting depth of a string in D2 is defined as follows:

� () and [] have depth 1.

� If u1 has depth d1 and u2 has depth d2, u1u2 has depth max{x1, d2} and (u1), [u1] have depth
d1 + 1.

Let W
(k)
2,n denote the set of all monomials in D2,n of depth at most k and degree 2n. We define

the polynomial D
(k)
2,n =

∑
u∈W (k)

2,n

u and denote the corresponding p-family as D
(k)
2 . In this definition

we allow k to be a growing function k(n) of n, where D
(k)
2 = (D

(k)
2,n)n≥0.

We next observe that the Dyck polynomial of nesting depth logi+1 n lies strictly between VNCi
nc

and VNCi+2
nc . We need following definition.

Definition 42. A p-family f = (fn) is in VACi
nc if there is a family (Cn) of circuits with unbounded

fanin gates such that each Cn is of polynomial size and degree, and logi n depth. The class VACnc

is the union
⋃
i VACi

nc.

We note that VNCi
nc ⊆ VACi

nc ⊆ VNCi+1
nc , because we can simulate an unbounded fanin with

a subcircuit of O(log n) depth and polynomial in n size, with fanin two gates.

Theorem 43. For any i ≥ 0, the Dyck polynomial of depth logi+1 n satisfy the following:

1. D
(logi+1 n)
2 is hard for VNCi

nc for ≤abp reductions.

2. D
(logi+1 n)
2 ∈ VACi+1

nc \VNCi
nc.

3. D
(logi+1 n)
2 is not hard for VACi+1

nc for ≤abp reductions.

Proof. It follows from inspection of the proof of the Theorem 13 that it scales down and yields
part (1) of the theorem.

We now show part (2). Assume that D
(logi+1 n)
2 ∈ VNCi

nc. Then D
(logi+1 n)
2 has an algebraic

branching program of size 2O(logi n) · poly(n). The ≤abp reduction from PAL to D2 can be easily

modified to show that PALlogi+1 n ≤abp D
(logi+1 n)
2,n . It follows that PALlogi+1 n too has an ABP of

size 2O(logi n) · poly(n), which contradicts Nisan’s result [Nis91] that PALlogi+1 n requires ABPs of

size 2Ω(logi+1 n). Hence, D
(logi+1 n)
2 6∈ VNCi

nc.

Now we show that D
(logi+1 n)
2 ∈ VACi

nc. More generally, consider the polynomial D̂
k(n)
l(n),d(n) =∑k(n)

p=1 D
p
l(n),d(n) where l(n), d(n) and k(n) are polynomial functions in n. Clearly,

D̂k
l,d =

l∑
i=1

(iD̂
k−1
l,d−2)i +

∑
i,j∈[l]

d−4∑
p=0

(iD̂
k−1
l,p )i(jD̂

k−1
l,d−4−p)j .
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Using the above recursive description, we can construct an unbounded fanin polynomial size

arithmetic circuit of depth O(k(n)) for D̂
k(n)
l(n),d(n) recursively. Clearly, the resulting circuit will have

depth O(k(n)). From this we can obtain a polynomial size arithmetic circuit of depth O(k(n)) for

the largest degree homogeneous part which will be D̂
k(n)
l(n),d(n). Applying this for l = 2 yields an

unbounded fanin polynomial size circuit for D
(logi+1 n)
2 of depth O(logi+1 n). Hence, D

(logi+1 n)
2 ∈

VACi
nc.

In order to prove (3), we exhibit a polynomial f in VACi+1
nc such that f �abp D

(logi+1 n)
2 . Let

f = D
(logi+1 n)

logi+1 n
. We know that f ∈ VACi+1

nc from the above recursive description. Now, if f ≤abp
D

(logi+1 n)
2 then f has an algebraic branching program of size 2O(logi+1 n) ·poly(n). Applying Nisan’s

rank argument to the polynomial f , we can see that any ABP for f must have size at least (logi+1 n)!

in the logi+1 nth layer of the ABP. Hence any algebraic branching program for f is of size 2ω(logi+1 n)

which is a contradiction. �

9 Concluding remarks and open problems

Several open questions arise from our work. We list the important ones below:

- We have shown that Dyck polynomials are VPnc-complete under ≤abp reductions. Finding
natural VPnc-complete p-families under ≤iproj reductions appears to be a challenging prob-
lem, given that finding natural VP-complete p-families under projections does not have a
satisfactory answer yet. In the commutative case, it would be nice to show that DET is
VP-complete under more general reducibility (projections are probably too restricted).

- Assuming VPnc 6= VNPnc, analogous to Ladner’s theorem, we have given an infinite hierarchy
within VNPnc under≤iproj reductions. A similar result for the more powerful≤abp reducibility
will require substantially new techniques. It remains open whether we can show the existence
of infinitely many p-families that are incomparable under ≤proj reductions (Lemma 32 shows
the existence of two such p-families). It is also interesting to further compare the strengths
of the three hypotheses considered in this paper: VPnc 6= VNPnc, VP 6= VNP, and the SOSk
conjecture. As explained in Section 6.2, the first hypothesis is the weakest of the three. Does
the SOSk conjecture imply VP 6= VNP?

- Suppose f = (fn) is a p-family such that fn has the same nonzero monomial set as PERn for
each n. When the coefficients of fn are 1-way logspace computable from their corresponding
monomials, we have shown f is VNPnc-complete under ≤abp reductions. Can we prove any
hardness result for f in general?

- We have seen that ID 6≤iproj D2. Showing that ID 6≤abp D2 would imply superpolynomial
circuit size lower bounds for ID. It would be interesting to show this in the special case when
the ≤abp reductions are allowed only 2× 2 matrix substitutions.

- The complexity of the noncommutative immanent discussed in Section 7 remains open for
different Young diagrams.
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