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Abstract

In a recent breakthrough [CZ15], Chattopadhyay and Zuckerman gave an explicit two-source
extractor for min-entropy k ≥ logC n for some large enough constant C, where n is the length
of the source. However, their extractor only outputs one bit. In this paper, we improve the
output of the two-source extractor to kΩ(1), while the error remains n−Ω(1) and the extractor
remains strong in the second source. In the non-strong case, the output can be increased to k.
Our improvement is obtained by giving a better extractor for (q, t, γ) non-oblivious bit-fixing
sources, which can output tΩ(1) bits instead of one bit as in [CZ15].

We also give the first explicit construction of deterministic extractors for affine sources over
F2, with entropy k ≥ logC n for some large enough constant C, where n is the length of the
source. Previously the best known results are by Bourgain [Bou07], Yehudayoff [Yeh11] and Li
[Li11b], which require the affine source to have entropy at least Ω(n/

√
log log n). Our extractor

outputs kΩ(1) bits with error n−Ω(1). This is done by reducing an affine source to a non-oblivious
bit-fixing source, where we adapt the alternating extraction based approach in previous work
on independent source extractors [Li13a] to the affine setting. Our affine extractors also imply
improved extractors for circuit sources studied in [Vio11].
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1 Introduction

Randomness extraction is a broad area that studies the problem of converting biased random
sources into nearly uniform random bits. The natural motivation comes from the wide application
of randomness in computation, such as in algorithms, distributed computing and cryptography, and
the requirement that the random bits used should be uniformly distributed. In reality, however,
natural random sources almost always have serious bias, and can leak information to an adversary
because of side channel attacks. These defective random sources are known as weak random sources.
Therefore, intuitively, a randomness extractor takes as input one or more weak random sources,
and outputs a distribution that is statistically close to uniform.

Formally, a weak random source is modeled as a probability distribution over n bit strings with
some entropy k. In the context of randomness extraction, the standard measure of entropy is the
so called min-entropy, which is defined as follows.

Definition 1.1. The min-entropy of a random variable X is

H∞(X) = min
x∈supp(X)

log2(1/Pr[X = x]).

For X ∈ {0, 1}n, we call X an (n,H∞(X))-source, and we say X has entropy rate H∞(X)/n.

However, one can easily show that it is impossible to construct deterministic randomness ex-
tractors for one (n, k) source, even if k is as large as n−1. Thus, the study of randomness extractors
has been pursued in two different directions. The first one is to allow the extractor itself to be
randomized. In this case one ends up with the notion of seeded extractors [NZ96], where the ex-
tractor is given a short independent uniform random seed (typically of length say O(log n)). It is
now possible to construct such extractors for all possible weak random sources. Typically, one also
requires the output of the extractor to be close to uniform even given the seed. Such extractors
are known as strong seeded extractors. Seeded extractors have a lot of applications in theoreti-
cal computer science and have been studied extensively, resulting in almost optimal constructions
[LRVW03, GUV09, DKSS09].

Another direction is to impose some special structure on the weak source, and thereby allows the
construction of deterministic randomness extractors. This is the focus of this paper. Specifically,
we will study the following classes of weak sources.

Independent Sources Here, the extractor is given as input more than one general weak random
sources, and the sources are independent of each other. Using the probabilistic method, one can
show that there exists a deterministic extractor for just two independent sources with logarithmic
min-entropy, which is optimal since extractors for one weak source do not exist. In fact, the
probabilistic method shows that with high probability a random function is such a two-source
extractor. However, the most interesting and important part is to give explicit constructions of
such functions, which turns out to be highly challenging.

The first explicit construction of a two-source extractor appeared in [CG88], where Chor and
Goldreich showed that the well known Lindsey’s lemma gives an extractor for two independent
(n, k) sources with k > n/2. Since then there has been essentially no progress on two-source
extractors until in 2005 Bourgain [Bou05] gave a construction that breaks the entropy rate 1/2
barrier, and works for two independent (n, 0.49n) sources. In a different work, Raz [Raz05] gave an
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incomparable result of two source extractors which requires one source to have min-entropy larger
than n/2, while the other source can have min-entropy O(log n).

Given the difficulty of constructing explicit two-source extractors, much research has been fo-
cusing on a slightly more general model, where the extractor is allowed to have more then two
independent sources as the input. Starting from [BIW04], there has been a long line of fruitful
results [BIW04, Raz05, Bou05, Rao06, BRSW06, Li11a, Li13b, Li13a, Li15, Coh15], which intro-
duced many new techniques and culminated in the three source extractor of exponentially small
error by the author [Li15]. However, in the two source case the situation has not been improved.

Recently, Chattopadhyay and Zuckerman [CZ15] made an breakthrough to this problem by
giving the first explicit two-source extractors for (n, k) sources with k ≥ logC n for some large enough
constant C. This dramatically improves the situation of two-source extractors and is actually near
optimal. However, their construction only outputs one bit and thus a natural question is whether
one can achieve a significantly larger output length.

Affine Sources An affine source is the uniform distribution over some unknown subspace of a
vector space. The formal definition is given below.

Definition 1.2. (affine source) Let Fq be the finite field with q elements. Denote by Fnq the n-
dimensional vector space over Fq. A distribution X over Fnq is an (n, k)q affine source if there
exist linearly independent vectors a1, · · · , ak ∈ Fnq and another vector b ∈ Fnq s.t. X is sampled by
choosing x1, · · · , xk ∈ F uniformly and independently and computing

X =
k∑
i=1

xiai + b.

An affine extractor is a deterministic function such that given any affine source as the input,
the output of the function is statistically close to the uniform distribution.

Definition 1.3. (affine extractor) A function AExt : Fnq → {0, 1}m is a deterministic (k, ε)-affine
extractor if for every (n, k)q affine source X,

|AExt(X)− Um| ≤ ε.

Here Um is the uniform distribution over {0, 1}m and | · | stands for the statistical distance.

In this paper we focus on the case where q = 2. Using the probabilistic method, it is not hard
to show that there exists a deterministic affine extractor, as long as k > 2 log n and m < k−O(1).
The problem is to given an explicit construction of such a function.

A weaker version of the extractor, called an affine disperser, only requires the output to have a
large support size.

Definition 1.4. (affine disperser) A function ADisp : Fnq → {0, 1}m is a deterministic (k, ε)-affine
disperser if for every (n, k)q affine source X,

|Supp(ADisp(X))| ≥ (1− ε)2m.

The function is called a zero-error disperser if ε = 0.
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There has also been a lot of work studying affine extractors and dispersers. For example,
Gabizon and Raz [GR05] constructed explicit extractors for affine sources even with entropy 1.
However, their constructions require the field size to be much larger than n, i.e., q > nΩ(1), in order
to use Weil’s theorem. DeVos and Gabizon [DG10] constructed explicit extractors for (n, k)q affine
sources when q = Ω((n/k)2) and the characteristic of the field Fq is Ω(n/k). As the field size gets
smaller, constructing explicit affine extractors becomes significantly harder.

The extreme and hardest case where the field is F = GF(2), is the focus of the rest of the
paper. Note that in this case the min-entropy H∞(X) is the same as the standard Shannon entropy
H(X). Here, it is well known how to construct extractors for affine sources with entropy rate
greater than 1/2. However the problem becomes much harder as the entropy rate drops to 1/2
and below 1/2. Bourgain [Bou07] used sophisticated character sum estimates to give an extractor
for affine sources with entropy k = δn for any constant δ > 0. This was later slightly improved
to k = Ω(n/

√
log log n) by Yehudayoff [Yeh11] and the author [Li11b], which have remained the

best known results. Rao [Rao09] constructed extractors for affine sources with entropy as small as
polylog(n), as long as the subspace of X has a basis of low-weight vectors.

In the case of constructing dispersers for affine sources over GF(2), Ben-Sasson and Kopparty
[BSK09] constructed dispersers for affine sources with entropy Ω(n4/5). Shaltiel [Sha11] gave a

construction that works for entropy 2log0.9 n, which remains the best known result.

Circuit Sources Trevisan and Vadhan [TV00] considered the question of extracting random bits
from samplable sources, which are n-bit distributions generated by some small circuit from ` uniform
bits. They showed that such extractors imply circuit lower bounds for related circuits. They also
constructed explicit extractors for such sources with min-entropy k = Ω(n) under some necessary
computational assumptions (such as the existence of a function computable in time 2O(n) which
requires 2Ω(n) size Σ5 circuits). In a subsequent work, Viola [Vio11] constructed unconditional
extractors for sources generated by local circuits and circuits of small depth (e.g., NC0 and AC0

circuits). However, for both NC0 and AC0 sources, the extractors in [Vio11] require the min-entropy
to be at least n2/3+Ω(1).

Non-oblivious bit-fixing Sources As in [CZ15], an intermediate class of sources we use in our
construction is a special kind of non-oblivious bit-fixing source. Non-oblivious bit-fixing sources are
sources on n bits where except some unknown q bits, the bits are uniformly distributed. However
the q bits can depend arbitrarily on the n− q uniform bits. Extractors for non-oblivious bit-fixing
sources are equivalent to resilient functions, and were studied in [BOL78, KKL88, KZ07, Vio11].
What we need here is a special kind of non-oblivious bit-fixing sources which only requires bounded
independence in the “good” bits. Such sources were first defined by Viola in [Vio11], where he
constructed an extractor that extracts one bit from a non-oblivious bit-fixing source with q ≈√
n bad bits, and the “good” bits are polylog(n)-wise independent. Subsequently, [CZ15] gave an

improved one-bit extractor that can handle q = n1−δ for any constant δ > 0. We now formally
define such sources.

Definition 1.5. A distribution D on n bits is t-wise independent if the restriction of D to any t
bits is uniform. Further D is a (t, ε)-wise independent distribution if the distribution obtained by
restricting D to any t coordinates is ε-close to uniform.

Definition 1.6. A source X on {0, 1}n is called a (q, t)-non-oblivious bit-fixing source if there
exists a subset of coordinates Q ⊆ [n] of size at most q such that the joint distribution of the bits
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indexed by Q = [n]\Q is t-wise independent. The bits in the coordinates indexed by Q are allowed
to arbitrarily depend on the bits in the coordinates indexed by Q.

If the joint distribution of the bits indexed by Q is (t, γ)-wise independent then X is said to be
a (q, t, γ)-non-oblivious bit-fixing source.

1.1 Our Results

In this paper, we improve the output length of the two-source extractor in [CZ15] to kΩ(1). Specif-
ically, we have the following theorem.

Theorem 1.7. There exists a constant C > 0 such that for all n ∈ N, there exists a polynomial
time computable function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m satisfying the following: if X,Y are
two independent (n, k) sources with k ≥ logC n, then

|(2Ext(X,Y ), Y )− (Um, Y )| ≤ ε,

where m = kΩ(1) and ε = n−Ω(1).

Since the extractor is strong in Y , if we don’t need a strong two-source extractor, then we can
use the output of 2Ext to extract from Y and output almost all the min-entropy. For example,
by using a strong seeded extractor from [RRV02] that uses O(log2 n log k) bits to extract all the
min-entropy (and requiring that say m ≥ log3 n), we have the following theorem.

Theorem 1.8. There exists a constant C > 0 such that for all n ∈ N, there exists a polynomial
time computable function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m satisfying the following: if X,Y are
two independent (n, k) sources with k ≥ logC n, then

|2Ext(X,Y )− Um| ≤ ε,

where m = k and ε = n−Ω(1).

Table 1 summarizes our results compared to previous constructions of independent source ex-
tractors. Note that in the table the output lengths are all under the condition of being strong
extractors.

We also give an affine extractor over F2 that works for entropy k ≥ polylog(n), thus significantly
improving all previous results in terms of the entropy requirement (even in the disperser case). Our
extractor outputs kΩ(1) bit and has error n−Ω(1). Specifically, we have

Theorem 1.9. There exists a constant C > 0 such that for all n ∈ N, there exists a polynomial
time computable function AExt : {0, 1}n → {0, 1}m satisfying the following: for any (n, k) affine
source X with k ≥ logC n, we have that

|AExt(X)− Um| ≤ ε,

where m = kΩ(1) and ε = n−Ω(1).

Table 2 summarizes our results compared to previous constructions of extractors and dispersers
for affine sources over F2.

By using a reduction from NC0 and AC0 sources to affine sources in [Vio11], our affine extractor
also implies improved extractors for NC0 and AC0 sources, which only require min-entropy n1/2+Ω(1).
Specifically, we have
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Construction Number of Sources Min-Entropy Output Error

[CG88] 2 k ≥ (1/2 + δ)n, any constant δ Θ(n) 2−Ω(n)

[BIW04] poly(1/δ) δn, any constant δ Θ(n) 2−Ω(n)

[BKS+05] 3 δn, any constant δ Θ(1) O(1)

[Raz05] 3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(1) O(1)

[Raz05] 2
One source: (1/2 + δ)n, any constant δ.
Other source may have k ≥ polylog(n)

Θ(k) 2−Ω(k)

[Bou05] 2
(1/2− α0)n for some small universal
constant α0 > 0

Θ(n) 2−Ω(n)

[Rao06] 3
One source: δn, any constant δ. Other
sources may have k ≥ polylog(n).

Θ(k) 2−k
Ω(1)

[Rao06] O(log n/ log k) k ≥ polylog(n) Θ(k) k−Ω(1)

[BRSW06] O(log n/ log k) k ≥ polylog(n) Θ(k) 2−k
Ω(1)

[Li11a] 3 k = n1/2+δ, any constant δ Θ(k) k−Ω(1)

[Li13b] O(log( logn
log k )) +O(1) k ≥ polylog(n) Θ(k) k−Ω(1)

[Li13a]
O( 1

η ) +O(1),

O(1) can be large
k ≥ log2+η n Θ(k)

n−Ω(1)+

2−k
Ω(1)

[Li15] 3 k ≥ log12 n Θ(k) 2−k
Ω(1)

[Li15] d14
η e+ 2 k ≥ log2+η n Θ(k) 2−k

Ω(1)

[Coh15] 3 δn,O(log n), O(log log n) Θ(log n) (log n)−Ω(1)

[CZ15] 2 k ≥ logC n for some large constant C. 1 n−Ω(1)

This work 2 k ≥ logC n for some large constant C. kΩ(1) n−Ω(1)

Table 1: Summary of Results on Extractors for Independent Sources.

Theorem 1.10. For any constant α > 0, d = O(1) and any n, k ∈ N with k ≥ n1/2+α, there is
an explicit extractor acExt : {0, 1}n → {0, 1}m with m = kΩ(1) such that if X is an (n, k) source
generated by a depth-d AC0 circuit of size nd, then

|acExt(X)− Um| ≤ ε,

where ε = n−Ω(1).

All the above extractors are based on an extractor for (q, t, γ)-non-oblivious bit-fixing sources.
In particular, we have the following theorem which improves the output length of such an extractor
in [CZ15] from one bit to tΩ(1).

Theorem 1.11. There exists a constant c > 0 such that for any constant δ > 0 and all n ∈ N,
there exists an explicit extractor BFExt : {0, 1}n → {0, 1}m such that for any (q, t, γ) non-oblivious
bit-fixing source X on n bits with q ≤ n1−δ, t ≥ c log21 n and γ ≤ 1/nt+1, we have that

|BFExt(X)− Um| ≤ ε,

where m = tΩ(1) and ε = n−Ω(1).
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Construction Entropy Output Error

[Bou07] k ≥ δn, any constant δ Θ(n) 2−Ω(n)

[Yeh11, Li11b] k = Ω(n/
√

log logn) nΩ(1) 2−n
Ω(1)

[BSK09] k = Ω(n4/5) 1 Disperser

[Sha11] k ≥ 2log0.9 n 1 Disperser

This work k ≥ logC n for some large constant C. kΩ(1) n−Ω(1)

Table 2: Summary of Results on Extractors for Affine Sources over F2.

2 Overview of the constructions

2.1 Improved two-source extractor

Here we give a brief overview of our improved two-source extractor. Since it follows easily from the
extractor for non-oblivious bit-fixing sources, we first describe our new extractor for the (q, t, γ)
non-oblivious bit-fixing source on n bits with q ≤ n1−δ for any constant δ > 0, and γ ≤ 1/nt+1. Our
starting point is the one-bit deterministic extractor for such sources in [CZ15], which we will call
BitExt. We note that from the construction of [CZ15], (by setting the parameters appropriately)
this function has the following properties. First, it is a depth-4 AC0 circuit with size nO(1). Second,
since it’s an extractor, for any (q, t, γ) non-oblivious bit-fixing source X, we have BitExt(X) is
n−Ω(1)-close to uniform. Third, it’s a resilient function, in the sense that any coalition of q bits has

influence1 at most q/n1− δ
2 , even when the rest of the bits are only (t, γ)-wise independent.

We now describe how to extract more than one bit. One natural idea is to divide the source X
into many blocks and then apply BitExt to each block. Indeed this is our first step. In the source
X, we denote the “bad bits” by Q, and the “good bits” by Q. To ensure that no block consists of
only bad bits, we will divide X into nα blocks for some constant α < δ (it suffices to take α = δ/4).
Thus we get ` = nα blocks {Xi, i ∈ [`]} with each block containing n′ = n1−α bits. We now apply
BitExt to each block to obtain a bit Yi. Of course, we will set up the parameters such that BitExt
is an extractor for (q, t, γ) non-oblivious bit-fixing source on n1−α bits.

Now consider any block. Our observation is that since each block can contain at most q ≤ n1−δ

bits from Q, the coalition of the bad bits in this block still has small influence. In particular, a

simple calculation shows that q < n′1−
3δ
4 and thus for each block the influence of the bad bits is

bounded by q/n′1−
3δ
8 < n−

3δ
8 . This means that with probability at least 1 − n−

3δ
8 over the fixing

of Xi ∩ Q, we have that Yi is fixed. Thus, by a simple union bound, with probability at least

1− nαn−
3δ
8 = 1− n−

δ
8 over the fixing of Q, we have that all {Yi, i ∈ [`]} are fixed.

Now consider another distribution X ′, which has the same distribution as X for the bits in Q,
while the bits in Q are fixed to 0 independent of the bits in Q. We let Y ′i , i ∈ [`] be the corresponding

Yi’s obtained from X ′ instead of X. By the above argument, with probability at least 1 − n−
δ
8

over the fixing of Q, {Yi} and {Y ′i } are the same. Thus the joint distribution of {Yi} and {Y ′i } are

within statistical distance n−
δ
8 . Moreover, the bits in Q are (t, γ)-wise independent and thus they

are ntγ ≤ 1/n-close to a truly t-wise independent distribution. From now on we will treat Q as
being truly t-wise independent, since this only adds 1/n to the final error.

1Informally, the influence of a set of bits is the probability over the rest of the bits such that the function is not
fixed.
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We will now choose a parameter m = tΩ(1) for the output length. In addition, we take the
generating matrix G of an asymptotically good linear binary code with message length m, codeword
length r = O(m) and distance d = Ω(m). It is well known how to construct such codes (and thus
the generating matrix) explicitly. Note that G is an m × r matrix and any codeword can be
generated by w = vG for some vector v ∈ {0, 1}m, where all operations are in F2. We choose
m so that r = O(m) ≤ ` and now we let Y = (Y1, · · · , Yr) be the random vector in Fr2 obtained
from {Yi, i ∈ [`]}. Similarly, we have Y ′ = (Y ′1 , · · · , Y ′r ). The output of our extractor will now be
Z = (Z1, · · · , Zm) = GY , where all operations are in F2.

For the analysis let us consider Z ′ = (Z ′1, · · · , Z ′m) = GY ′. We will show that Z ′ is close to
uniform and then it follows that Z is also close to uniform since they are within statistical distance
n−Ω(1) (as they are deterministic functions of Y and Y ′ respectively). To show this, we will use the
XOR lemma. Consider any non-empty subset S ⊆ [m] and V ′S =

⊕
i∈S Z

′
i. Note that this is just

(
∑

i∈S Gi)Y
′ where Gi stands for the i’th row of G. Note that

∑
i∈S Gi is a codeword and thus has

at least d = Ω(m) 1’s. On the other hand, it can have at most r = O(m) 1’s.
Note that the parity of up to r bits can be computed by a depth-2 AC0 circuit of size 2O(r) =

2O(m). Recall that each input bit Yi can be computed by a depth-4 AC0 circuit of size nO(1). Thus
we see that each V ′S can be computed by a depth-6 AC0 circuit of size at most 2O(m)nO(1) = 2O(m)

if we choose m > log n.2 Note that all bits in Q are fixed to 0. Thus the inputs of the circuits are
only from Q.

Now our goal is to ensure that V ′S can be fooled by t-wise independent distributions with
error ε = 2−m. By the results of Braverman [Bra10] and Tal [Tal14], it suffices to take t =

O(log(2O(m)/ε)21) = O(m21). Thus we can take m = Ω(t
1
21 ) and it follows that V ′S cannot distin-

guish between t-wise independent distributions and uniform distribution. On the other hand, if Q
is the uniform distribution, then V ′S is the XOR of at least d = Ω(m) independent random variables,
with each being n−Ω(1)-close to uniform. Thus in this case V ′S is (n−Ω(1))d = 2−Ω(m logn)-close to
uniform. Together this means that V ′S is 2−Ω(m logn) + 2−m < 21−m close to uniform. Since this is
true for any non-empty subset S, by a standard XOR lemma it now follows that Z ′ is 2−Ω(m)-close
to uniform. Adding back the errors we see that Z is n−Ω(1)-close to uniform.

We can now apply the reduction from two independent sources to a non-oblivious bit-fixing
source, which was implicit in [Li15] and explicit in [CZ15]. This reduction reduces two independent
(n, k) sources to a (q, t, γ)-non-oblivious bit-fixing source with t = kΩ(1),3 thus by applying the
above extractor we also get an improved two-source extractor with output length kΩ(1).

2.2 Affine extractor

On the high level, our construction of affine extractors follows the framework of the recent two-
source extractor construction by Chattopadhyay and Zuckerman [CZ15]. Specifically, we will first
reduce an affine source to a (q, t, γ)-non-oblivious bit-fixing source, and then apply our improved
deterministic extractor for such sources.

We now describe our reduction. We will mainly adapt techniques from previous work on ex-
tractors for independent sources. Specifically, by using ideas from alternating extraction (Figure 1)

2We can get rid of the intermediate negation gates with only a constant factor of blow-up in the circuit size, by
standard tricks.

3The original reduction in [Li15] only gives q = Ω(n), but a simple modification can also give q ≤ n1−δ for any
constant δ > 0.
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[DP07, DW09, Li13b, Li13a], one of the author’s previous work [Li15] obtained a somewhere ran-
dom source with N = poly(n) rows from two independent (n, k) sources with k ≥ polylog(n). The
somewhere random source is a random matrix, with the additional property that except for a small
fraction of “bad” rows, the rest of the rows are almost t-wise independent for t = kΩ(1) in the sense
that any t of these rows are γ = 2−k

Ω(1)
-close to uniform. Thus, these rows (or, say, taking one bit

each row) form exactly a (q, t, γ)-non-oblivious bit-fixing source.
Now we need to adapt that construction to affine sources. Of course we now only have one affine

source instead of two independent sources. However, due to the special structure of affine sources
we can still apply similar ideas as in [Li13a, Li15]. Specifically, we will use a special kind of strong
seeded extractors called linear seeded extractors. These extractors have the property that for any
fixed seed, the output is a linear function of the source. We take such a seeded extractor with seed
length O(log n) and error ε, and use every possible seed to extract from the affine source X. This
gives us a matrix (or somewhere random source) of N = poly(n) rows, where each row corresponds
to the output of the extractor on a particular seed. A standard argument shows that if X is affine,
then at least 1−2ε fraction of the rows are truly uniform, although they may depend on each other
in arbitrary ways. Note that this is even better for our purpose than in the case of two independent
general weak random sources, since there we have to use some other ideas to reduce the error, while
here the error in the somewhere random source is essentially zero. We further restrict the size of
each row, so that the length is much smaller than the entropy of X.

We can now use these rows and the source X itself to do the same alternating extraction
protocol as in [Li13a, Li15] to make the “good” rows almost t-wise independent for t = kΩ(1), with

error γ = 2−k
Ω(1)

. To see why alternating extraction works in this case, consider one particular
uniform row Y . Note that Y is a linear function of X, so Y is also an affine source. Recall that
the length of Y is much smaller than the entropy of X. A standard argument shows that X can
be decomposed into X = A + B where both A,B are affine sources, A = L(Y ) for some linear
bijection L, and B is independent of Y . Thus, to do the alternating extraction, we can first take
a small slice of Y to be S1, and use a linear seeded extractor Ext to compute R1 = Ext(X,S1).
Note that R1 = Ext(X,S1) = Ext(A,S1) + Ext(B,S1). By the property of a strong extractor we
know that with high probability over the fixing of S1, Ext(B,S1) is close to uniform (since S1 is
independent of B). Note that S1 is a deterministic function of A and A is independent of B, thus
R1 = Ext(A,S1) + Ext(B,S1) is also uniform conditioned on the fixing of S1.

Next, suppose the length of R1 is much smaller than the length of Y ,we can then use R1 and
apply Ext back to Y to extract S2 = Ext(Y,R1). The reason is that we can first fix Ext(A,S1).
Note that we have already fixed S1 so this is a deterministic function of A (or Y ). Therefore
after fixing it, Ext(B,S1) is still uniform and independent of Y (since now it is a deterministic
function of B), and now R1 = Ext(A,S1) + Ext(B,S1) is independent of Y . Since the length of R1

is small, conditioned on this fixing Y still has a lot of entropy left. Therefore we can now extract
S2 = Ext(Y,R1). After this we can further fix Ext(B,S1) and thus also R1. We know that with
high probability over this fixing, S2 is still close to uniform. Moreover conditioned on this fixing, B
still has a lot of entropy left, and is still independent of Y . Now S2 is a deterministic function of Y .
Continue doing this, we can see that alternating extraction works as long as we always use a strong
linear seeded extractor and keep the size of each Ri, Si to be small. Intuitively, it’s like alternating
extraction between the two independent affine sources Y and B. Now we can use similar arguments
as in [Li13a] to make the somewhere random source almost t-wise independent.4

4We remark that we can also use the flip-flop alternating extraction developed in [Coh15], which may result in an
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However, there are a few subtle technical problems we need to deal with. First, when we
generalize the above alternating extraction to run for t rows Y 1, Y 2, · · · , Y t simultaneously, we will
need to consider the concatenation Y = Y 1 ◦ Y 2 ◦ · · · ◦ Y t and decompose X into X = A + B =
L(Y )+B. This ensures that we can condition on the fixing of all the intermediate random variables
obtained from Y 1, Y 2, · · · , Y t without affecting B. We can do this if we choose the parameters
appropriately so that both t = kΩ(1) and the size of Y i are small compared to the entropy of X.
Thus in the decomposition B still has sufficient entropy. Another subtlety arises in the analysis as
follows. The alternating extraction will take some b < log n rounds, with each round consisting of
some kΩ(1) steps. In each round j, we start the alternating extraction using a random variable Y ij

obtained from Y i, and at the end we obtain a random variable Rij from X. Our goal is to show
that these {Rij} will gradually become independent of each other, until at the end they become all
independent, thus achieving t-wise independent. Towards this, at the end of round j, for each Y i

we need to use Rij to extract Y i(j+1) from Y i to start the next round. Here we would like to argue
that for those {R`j} that have already become independent of Rij , we can first fix all {Y `(j+1)} and
all the R variables produced in round j+1, and Y i(j+1) is still uniform. This ensures that whatever
is already independent will remain independent. While this is true in the case of two independent
sources, it is no longer true in the case of an affine source. The reason is that, as explained above,
when we fix R = Ext(A,S) +Ext(B,S), the part of Ext(A,S) is a function of A (and Y ). Thus this
fixing may cause Y i(j+1) to lose entropy (note that fixing Ext(B,S) will not since B is independent
of Y ). Fortunately, we can get around this by restricting the length of the R variables to be much
smaller than the length of Y i(j+1). We note that if we take a seeded extractor with error ε, and use
a seed that loses ` bits of entropy, then the extractor still works with error increased to 2`ε. Thus
by appropriately choosing the parameters (making ` small enough compared to the seed length of
the seeded extractor), we can still use Y i(j+1) to start the next round of alternating extraction, and
the whole construction goes through.

One final point is that the extractor for non-oblivious bit-fixing source in [CZ15], as well as our
improved extractor can only handle the case where q ≤ N1−δ for any constant δ > 0. This means
that to convert the affine source X into a somewhere random source in the first step, we need to
take a strong linear seeded extractor with seed length O(log n) and error ε = 1/poly(n), i.e., an
extractor with optimal seed length. Previously, such a linear seeded extractor was not known. In
this paper we construct such a strong linear seeded extractor by combining the lossless condenser
in [GUV09] and another strong linear seeded extractor in [SU05]. We note that the condenser in
[GUV09] itself may not be linear, but can be made linear with the same parameters by a careful
instantiation, following a result in [CI15]. Thus in this step we can use O(log n) bits to condense the
source into a (n′ = O(k), k) source with error 1/poly(n). We then use the linear seeded extractor

in [SU05], which has seed length d = O
(

log n′ + logn′

log k log
(

1
ε

))
. Note that n′ = O(k). Thus if we

take ε = 1/poly(n) we get d = O(log n). Altogether we get a strong seeded extractor with seed
length O(log n) and error ε = 1/poly(n). Since both the condenser and the extractor are linear,
the combined extractor is also linear.

Organization. The rest of the paper is organized as follows. We give some preliminaries in
Section 3. In Section 4 we give our improved extractors for non-oblivious bit-fixing sources and two
independent sources. In Section 5 we define alternating extraction, an important ingredient in our

improvement in the constants. However in this paper we do not try to optimize the constant C in our final result
where k ≥ logC n.
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affine extractor construction. We present our construction of affine extractors in Section 6 and the
improved extractors for circuit sources in Section 7. Finally we conclude with some open problems
in Section 8.

3 Preliminaries

We use common notations such as ◦ for concatenation and [n] for {1, 2, · · · , n}. All logarithms are
to the base 2. We often use capital letters for random variables and corresponding small letters for
their instantiations.

3.1 Basic Definitions

Definition 3.1 (statistical distance). Let D and F be two distributions on a set S. Their statis-
tical distance is

|D − F | def= max
T⊆S

(|D(T )− F (T )|) =
1

2

∑
s∈S
|D(s)− F (s)|

If |D − F | ≤ ε we say that D is ε-close to F and write D ≈ε F .

3.2 Influence of variables

Following [CZ15], we define the influence of variables.

Definition 3.2. Let f : {0, 1}n → {0, 1} be any boolean function on variables x1, · · · , xn. The
influence of a set Q ⊆ {x1, · · · , xn} on f , denoted by IQ(f), is defined to be the probability that f
is undetermined after fixing the variables outside Q uniformly at random. Further, for any integer
q define Iq(f) = maxQ⊆{x1,··· ,xn},|Q|=qIQ(f).

More generally, let IQ,D(f) denote the probability that f is undermined when the variables
outside Q are fixed by sampling from the distribution D. We define IQ,t(f) = maxD∈DkIQ,D(f),
where Dt is the rest of all t-wise independent distributions. Similarly, IQ,t,γ(f) = maxD∈Dt,γIQ,D(f)
where Dt,γ is the set of all (t, γ)-wise independent distributions. Finally, for any integer q define
Iq,t(f) = maxQ⊆{x1,··· ,xn},|Q|=qIQ,t(f) and Iq,t,γ(f) = maxQ⊆{x1,··· ,xn},|Q|=qIQ,t,γ(f)

3.3 Somewhere Random Sources

Definition 3.3 (Somewhere Random sources). A source X = (X1, · · · , Xt) is (r, t) somewhere-
random (SR-source for short) if each Xi takes values in {0, 1}r and there is an i such that Xi is
uniformly distributed.

Definition 3.4. An elementary somewhere-k-source is a vector of sources (X1, · · · , Xt), such that
some Xi is a k-source. A somewhere k-source is a convex combination of elementary somewhere-k-
sources.

3.4 Strong Linear Seeded Extractors

We need the following definition and property of a specific kind of extractors.
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Definition 3.5. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) strong seeded extractor if
for every min-entropy k source X,

|Ext(X,R)− (Um, R)| ≤ ε,
where Um is the uniform distribution on m bits and R is the uniform distribution on d bits inde-
pendent of X. We say that the function is a linear strong seeded extractor if the function Ext(·, u)
is a linear function over GF(2), for every u ∈ {0, 1}d.

We have the following simple fact.

Lemma 3.6. If Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) strong seeded extractor, then for every
(n, k) source X and every independent (d, k′) source R,

|Ext(X,R)− (Um, R)| ≤ 2d−k
′
ε.

Proof. Without loss of generality we can assume that R is the uniform distribution over some subset
S of size 2k

′
. Then for any r ∈ S, we have Pr[R = r] = 2−k

′
. Thus

|Ext(X,R)− (Um, R)| =
∑
r∈S

2−k
′ |Ext(X, r)− Um| =

∑
r∈S

2d−k
′ · 2−d|Ext(X, r)− Um|

≤
∑

r∈{0,1}d
2d−k

′ |2−dExt(X, r)− 2−dUm| = 2d−k
′ |Ext(X,R)− (Um, R)|R←Ud

≤ 2d−k
′
ε.

Lemma 3.7 ([Rao09]). Let Ext : {0, 1}n×{0, 1}d → {0, 1}m be a linear strong seeded extractor for
min-entropy k with error ε < 1/2. Let X be any affine source with entropy k. Then,

Pr
u←RUd

[|Ext(X,u)− Um| = 0] ≥ 1− 2ε

Definition 3.8. (condenser) A function C : {0, 1}n × {0, 1}d → {0, 1}m is an k →ε k
′ condenser if

for every X with min-entropy at least k, C(X,Y ) is ε-close to a distribution with min-entropy k′,
when Y is uniformly distributed on {0, 1}d. A condenser is explicit if it is computable in polynomial
time. A condenser is called lossless if k′ = k + d.

3.5 The Structure of Affine Sources

The following lemma is proved in [Li11b].

Lemma 3.9. (Affine Conditioning). Let X be any affine source on {0, 1}n. Let L : {0, 1}n →
{0, 1}m be any linear function. Then there exist independent affine sources A,B such that:

• X = A+B.

• For every b ∈ Supp(B), L(b) = 0.

• H(A) = H(L(A)) and there exists an affine function L−1 : {0, 1}m → {0, 1}n such that
A = L−1(L(A)).
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3.6 Previous Work that We Use

We are going to use two constructions of linear seeded extractors in this paper. The first one is for
the purpose of obtaining small error. For this we use Trevisan’s extractor:

Theorem 3.10 ([Tre01, RRV02]). For every n, k,m ∈ N and ε > 0 such that m ≤ k ≤ n, there is

an explicit (k, ε) strong seeded extractor TrExt : {0, 1}n × {0, 1}d → {0, 1}m with d = O
(

log2(n/ε)
log(k/m)

)
.

This extractor is actually a linear seeded extractor. By setting the parameters appropriately,
we get the following corollary.

Corollary 3.11 ([Tre01, RRV02]). For every n, k ∈ N and ε > 0 such that k ≤ n, there is an explicit
(k, ε) strong linear seeded extractor TrExt : {0, 1}n × {0, 1}d → {0, 1}Ω(k) with d = O(log2(n/ε)).

The next one is for the purpose of obtaining a short seed (i.e., O(log n)). For this we need the
following extractor.

Theorem 3.12 ([SU05]). For every n ∈ N, constant δ > 0, ε ≥ 2−k
δ/4

, and k ≥ log4/δ n there
is an explicit (k, ε) strong linear seeded extractor SUExt : {0, 1}n × {0, 1}d → {0, 1}m with d =

O
(

log n+ logn
log k log

(
1
ε

))
and m = k1−δ.

We also note that the lossless condenser in [GUV09] can be made linear.

Theorem 3.13 ([CI15]). For any constant α > 0 and any n ∈ N, k ≤ n, ε > 0 there is an explicit
strong (k, ε)-lossless condenser Cond : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ (1 + 1/α)(log(nk/ε) +
O(1)) and m ≤ (1 + α)k. Moreover, Cond is a linear function for every fixed choice of the seed.

We now have the following theorem.

Theorem 3.14. There exists a constant c > 1 such that for every n, k ∈ N with c log8 n ≤ k ≤ n,
and ε ≥ n−2, there is an explicit (k, ε) strong linear seeded extractor LExt : {0, 1}n × {0, 1}d →
{0, 1}m with d = O(log n) and m =

√
k.

Proof. Given any (n, k) source X, we first take O(log n) bits and use Theorem 3.13 to condense X
into an (n′, k) source Y with length n′ = O(k), and error ε/2. We then use Theorem 3.12 to extract
m =

√
k bits from Y with error ε/2 (i.e., take δ = 1/2 in Theorem 3.12). One can check that the

conditions of that theorem are satisfied. This will use another O
(

log n′ + logn′

log k log
(

2
ε

))
= O(log n)

bits. Since both the condenser and the extractor are linear and strong, the composed extractor is
also a strong linear seeded extractor.

Lemma 3.15 ([BIW04]). Assume that Y1, Y2, · · · , Yt are independent random variables over {0, 1}n
such that for any i, 1 ≤ i ≤ t, we have |Yi − Un| ≤ ε. Let Z = ⊕ti=1Yi. Then |Z − Un| ≤ εt.

To prove our construction is an extractor, we need the following definition and lemma.

Definition 3.16. (ε-biased space) A random variable Z over {0, 1} is ε-biased if |Pr[Z = 0]−Pr[Z =
1]| ≤ ε. A sequence of 0-1 random variables Z1, · · · , Zm is ε-biased for linear tests if for any
nonempty set S ⊂ {1, · · · ,m}, the random variable ZS =

⊕
i∈S Zi is ε-biased.

The following lemma is due to Vazirani. For a proof see for example [Gol95]

Lemma 3.17. Let Z1, · · · , Zm be 0-1 random variables that are ε-biased for linear tests. Then, the
distribution of (Z1, · · · , Zm) is ε · 2m/2-close to uniform.
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4 The Two-Source Extractor

In this section we give our improved two-source extractor. First, we describe our deterministic
extractor for an (q, t, γ)-non-oblivious bit-fixing source on n bits. We rely on the following result
from [CZ15].

Theorem 4.1 ([CZ15]). There exists a constant c > 0 such that for any δ > 0 and every large
enough n ∈ N the following is true. Let X be a (q, t, γ) non-oblivious bit-fixing source on n bits
with q ≤ n1−δ, t ≥ c log18 n and γ ≤ 1/nt+1. There exists a polynomial time computable monotone
boolean function BitExt : {0, 1}n → {0, 1} satisfying:

• BitExt is a depth 4 circuit in AC0 of size nO(1).

• |Ex←X [BitExt(x)]− 1
2 | ≤

1
nΩ(1) .

• For any q > 0, Iq,t,γ(BitExt) ≤ q/n1− δ
2 .

We need the following result by Braverman [Bra10] and Tal [Tal14] about fooling AC0 circuits
with t-wise independent distributions.

Theorem 4.2 ([Bra10, Tal14]). Let D be any t = t(m, d, ε)-wise independent distribution on
{0, 1}n. Then for any circuit C ∈ AC0 of depth d and size m,

|Ex∼Un [C(x)]− Ex∼D[C(x)]| ≤ ε,

where t(m, d, ε) = O(log(m/ε))3d+3.

Theorem 4.3 ([AGM03]). Let D be a (t, γ)-wise independent distribution on {0, 1}n. Then there
exists a t-wise independent distribution on {0, 1}n that is ntγ-close to D.

We also need an explicit asymptotically good binary linear codes:

Definition 4.4. A linear binary code of length n and rank k is a linear subspace C with dimension
k of the vector space Fn2 . If the distance of the code C is d we say that C is an [n, k, d]2 code. C is
asymptotically good if there exist constants 0 < δ1, δ2 < 1 s.t. k ≥ δ1n and d ≥ δ2n.

Note that every linear binary code has an associated generating matrix G ∈ Fk×n2 , and every
codeword can be expressed as vG, for some vector v ∈ Fk2.

It is well known that we have explicit constructions of asymptotically good binary linear code.
For example, the Justensen codes constructed in [Jus72].

Now we have the following construction and theorem:
We now present our extractor for a (q, t, γ) non-oblivious bit-fixing source.
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Algorithm 4.5 (BFExt(X) ).

Input: X— a (q, t, γ) non-oblivious bit-fixing source on n bits with q ≤ n1−δ, t ≥ c log21 n and
γ ≤ 1/nt+1.
Output: Z — a string on m bits that is n−Ω(1) close to uniform, with m = tΩ(1).

Sub-Routines and Parameters:
Let α = δ/4. Let BitExt be the one-bit extractor for non-oblivious bit-fixing source in The-
orem 4.1. Let G be the generating matrix of an asymptotically good [r,m, d]2 code with
r = O(m) ≤ nα and d = Ω(m). Thus G is an m× r binary matrix.

1. Divide X into ` = nα disjoint blocks, each with length n1−α.

2. For each block Xi, i ∈ [`], compute Yi = BitExt(Xi).

3. Let Y = (Y1, · · · , Yr) be the binary vector in Fr2. Compute Z = GY where all operations
are in F2.

We have the following theorem.

Theorem 4.6. There exists a constant c such that for any constant δ > 0 and all n ∈ N, there exists
an explicit extractor BFExt : {0, 1}n → {0, 1}m such that for any (q, t, γ) non-oblivious bit-fixing
source X on n bits with q ≤ n1−δ, t ≥ c log21 n and γ ≤ 1/nt+1, we have that

|BFExt(X)− Um| ≤ ε,

where m = tΩ(1) and ε = n−Ω(1).

Proof. Let the set of “bad” bits in X be Q, and the rest of the “good” bits be Q. Thus |Q| = q ≤
n1−δ. Therefore, any block Xi forms a (q, t, γ) non-oblivious bit-fixing source on n′ = n1−α = n1− δ

4

bits.
Note that q ≤ n1−δ < n(1− δ

4
)(1− 3δ

4
) = n′1−

3δ
4 . Thus by Theorem 4.1 we have that each Yi is

nΩ(1)-close to uniform. Moreover since q ≤ n1−δ we have that Iq,t,γ(BitExt) ≤ q/n′1−
3δ
8 < n−

3δ
8 .

For any i ∈ [`], the above means that with probability at least 1−n−
3δ
8 over the fixing of Xi∩Q,

we have that Yi is fixed regardless of what Xi ∩ Q is. Thus, it is also true that with probability

at least 1 − n−
3δ
8 over the fixing of Q, we have that Yi is fixed regardless of what Q is. By a

union bound, with probability at least 1 − n−
3δ
8 n

δ
4 = 1 − n−

δ
8 over the fixing of Q, we have that

(Y1, · · · , Y`) is fixed and thus Y = (Y1, · · · , Yr) is also fixed.
Now consider a different distribution X ′ where the bits in Q have the same distribution as X,

while the bits in Q are fixed to 0 independent of Q. Let Y ′ = (Y ′1 , · · · , Y ′r ) and Z ′ be computed
from X ′ using the same algorithm. Then, by the above argument, we have that

|Y − Y ′| ≤ n−
δ
8 and thus also |Z − Z ′| ≤ n−

δ
8 .

Now consider X ′, Y ′, Z ′. Note that by Theorem 4.3 X ′ is ntγ ≤ 1/n-close to a distribution
where the bits in Q are truly t-wise independent, and the bits in Q are fixed to 0. Thus from now
on we will think of X ′ as this distribution, since this only adds at most 1/n to the error.
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Let X ′′ be another distribution where the bits in Q are completely uniform and independent,
and the bits in Q are fixed to 0. Let Y ′′, Z ′′ be the corresponding random variables obtained from
X ′′ instead of X ′.

Take any non-empty subset S ⊆ [m], and consider the random variable V ′S =
⊕

i∈S Z
′
i.

Note that

V ′S =
⊕
i∈S

Z ′i =
⊕
i∈S

GiY
′ = (

∑
i∈S

Gi)Y
′,

where Gi stands for the i’th row of the matrix G. Since G is the generating matrix of a [r,m, d]2
code, for any non-empty subset S ⊆ [m], we have that

∑
i∈S Gi is a codeword. Thus it has at least

d 1’s.
Now let V ′′S be the corresponding random variable obtained from X ′′. Note that by Theorem 4.1

each Y ′′i is n−Ω(1)-close to uniform, and now the {Y ′′i }’s are independent of each other (since they
are functions applied to independent blocks of X ′′). Therefore by Lemma 3.15 we have that

|E[V ′′S ]− 1/2| ≤ (n−Ω(1))d = 2−Ω(m logn).

Moreover, observe that V ′S is the parity of at most r = O(m) Y ′i ’s. Since parity on r bits can
be computed by a depth-2 AC0 circuit (i.e., a DNF or CNF) of size 2O(r) = 2O(m), and every Y ′i is
computed by a depth-4 AC0 circuit with size nO(1), we have that V ′S can be computed by a depth-6
AC0 circuit with size at most 2O(m)poly(n).

We choose m = min{n0.9α, βt
1
21 } for some small constant 0 < β < 1, so that m = tΩ(1) (since

t ≤ n) and r = O(m) ≤ nα. Note that now the AC0 circuit size is at most 2O(m)poly(n) = 2O(m)

since t
1
21 = Ω(log n). Note that the bits in Q are fixed to 0, thus V ′S is computed by a depth-6 AC0

circuit with inputs from Q.
Setting ε = 2−m in Theorem 4.2, we see that to ε-fool a depth-6 AC0 circuit with size at most

2O(m), it suffices to take O(log(2O(m)))21 = O(m21)-wise independent distributions. By setting β
to be small enough, we can make this number less than t. Since in X ′, the bits in Q are t-wise
independent, we have that

|E[V ′S ]− E[V ′′S ]| ≤ 2−m.

Thus

|E[V ′S ]− 1/2| ≤ 2−Ω(m logn) + 2−m < 21−m.

Note that this holds for every non-empty subset S ⊆ [m]. Thus Z is ε′-biased for linear tests
with ε′ < 2 · 21−m = 22−m. By the Lemma 3.17 we have that

|Z ′ − Um| ≤ 2m/222−m = 2−Ω(m).

Adding back the errors, we have

|Z − Um| ≤ 2−Ω(m) + 1/n+ n−
δ
8 = n−Ω(1).

The following theorem is implicit in [Li15] and explicit in [CZ15]
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Theorem 4.7 ([Li15, CZ15]). There exist constants δ, c′ > 0 such that for every n, t ∈ N there
exists a polynomial time computable function reduce : {0, 1}n × {0, 1}n → {0, 1}N with N = nO(1)

satisfying the following property: if X,Y are two independent (n, k) sources with k ≥ c′t4 log2 n,
then

Pr
y∼Y

[reduce(X, y) is a (q, t, γ) non-oblivious bit-fixing source ] ≥ 1− n−ω(1),

where q = N1−δ and γ = 1/N t+1.

Together with Theorem 4.6 this immediately implies the following theorem.

Theorem 4.8. There exists a constant C > 0 such that for all n ∈ N, there exists a polynomial
time computable function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m satisfying the following: if X,Y are
two independent (n, k) sources with k ≥ logC n, then

|(2Ext(X,Y ), Y )− (Um, Y )| ≤ ε,

where m = kΩ(1) and ε = n−Ω(1).

Proof. We first use Theorem 4.7 to obtain a (q, t, γ) non-oblivious bit-fixing source Z on N = nO(1)

bits, with q = N1−δ and γ = 1/N t+1. We then apply the extractor for such sources in Theorem 4.6.
By choosing C large enough we can ensure that k ≥ c′t4 log2 n and t ≥ c log21 n (e.g., take C = 87).
Thus we see that t = kΩ(1).

Therefore, by Theorem 4.6 the extractor can output tΩ(1) = kΩ(1) bits with error n−Ω(1). Since
the reduction succeeds with probability 1−n−ω(1) over the fixing of Y , the extractor is also strong
in Y and the final error is ε = n−Ω(1) + n−ω(1) = n−Ω(1).

5 Alternating Extraction

An important ingredient in our construction is the following alternating extraction protocol, which
has been used a lot in recent constructions of independent source extractors [Li13b, Li13a]. Here
we will use it in the context of affine sources.

Quentin: Q,S1 Wendy: X

S1

S1

−−−−−−−−−−−−−→
R1

←−−−−−−−−−−−−− R1 = Extw(X,S1)

S2 = Extq(Q,R1)
S2

−−−−−−−−−−−−−→
R2

←−−−−−−−−−−−−− R2 = Extw(X,S2)

· · ·

St = Extq(Q,Rt−1)
St

−−−−−−−−−−−−−→
Rt = Extw(X,St)

Figure 1: Alternating Extraction.

16



Alternating Extraction. Assume that we have two parties, Quentin and Wendy. Quentin
has a source Q, Wendy has a source X. Also assume that Quentin has a uniform random seed S1

(which may be correlated with Q). Let Extq and Extw be the strong linear seeded extractors in
Corollary 3.11. Let ` be an integer parameter for the protocol. For some integer parameter t > 0,
the alternating extraction protocol is an interactive process between Quentin and Wendy that runs
in t steps.

In the first step, Quentin sends S1 to Wendy, Wendy computes R1 = Extw(X,S1). She sends
R1 to Quentin and Quentin computes S2 = Extq(Q,R1). In this step R1, S2 each outputs ` bits.
In each subsequent step i, Quentin sends Si to Wendy, Wendy computes Ri = Extw(X,Si). She
replies Ri to Quentin and Quentin computes Si+1 = Extq(Q,Ri). In step i, Ri, Si+1 each outputs
` bits. Therefore, this process produces the following sequence:

S1, R1 = Extw(X,S1), S2 = Extq(Q,R1), · · · , St = Extq(Q,Rt−1), Rt = Extw(X,St).

Look-Ahead Extractor. Now we can define our look-ahead extractor. Let Y = (Q,S1) be a
seed, the look-ahead extractor is defined as

laExt(X,Y ) = laExt(X, (Q,S1))
def
= R1, · · · , Rt.

We first prove the following lemma.

Lemma 5.1. Let X be an affine source on n bits, Z be a linear function of X, Y = (Y1 =
(Q1, S1), Y2 = (Q2, S2), · · · , Yh = (Qh, Sh)) and Y ′ be linear functions of Z, such that H(Y ′|Y ) ≥
k1, H(X|Z) ≥ k2. Assume the following hold: ∀i, Qi has m bits with m < n, and Si has ` bits;
H(Q1) = kq and S1 is uniform; kq ≥ 2ht`+10`, k1 ≥ ht`+10` and k2 ≥ ht`+10`. Let Extq and Extw
be strong linear seeded extractors as in Corollary 3.11, set up to use ` bits to extract from (m, 10`)
sources and (n, 10`) sources respectively, with error ε and ` = O(log2(n/ε)). For any i ∈ [h], let
(Ri1, · · · , Rit) = laExt(X,Yi) and {Sij , j = 1, · · · , t} denote the random variables corresponding to
{Sj} that are produced when computing laExt(X,Yi). For any j ∈ [t], let Sij = (Si1, · · · , Sij) for
i ∈ [h] and Rij = (Ri1, · · · , Rij) for i ∈ [h]. Then for any 0 ≤ j ≤ t, we have that

(R1j , {Sij , i ∈ [h]}, {Ri(j−1), i ∈ [h]}, Y )

≈(2j−1)ε(U`, {Sij , i ∈ [h]}, {Ri(j−1), i ∈ [h]}, Y ).

and

(S1(j+1), {Sij , i ∈ [h]}, {Rij , i ∈ [h]})
≈(2j)ε(U`, {Sij , i ∈ [h]}, {Rij , i ∈ [h]}).

Moreover, conditioned on ({Sij , i ∈ [h]}, {Ri(j−1), i ∈ [h]}), we have that X is still an affine source,
({Rij , i ∈ [h]}) are deterministic linear functions of X, H(Q1) ≥ kq − (2j − 1)h`, H(Y ′|Y ) ≥
k1 − (j − 1)h` and H(X|Z) ≥ k2 − (j − 1)h`; conditioned on ({Sij , i ∈ [h]}, {Rij , i ∈ [h]}), we have
that X is still an affine source, ({Si(j+1), i ∈ [h]}) are deterministic linear functions of {Y1, · · · , Yh}
respectively, H(Q1) ≥ kq − 2jh`, H(Y ′|Y ) ≥ k1 − jh` and H(X|Z) ≥ k2 − jh`.
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Proof. We prove the lemma by induction on j. When j = 0, the statement is trivially true. Now
we assume that the statement holds for some j and we prove it for j + 1.

We first fix ({Sij , i ∈ [h]}, {Rij , i ∈ [h]}). Note that after this fixing, X is still an affine source.
Since Y, Y ′ and Z are linear functions of X, they are still all affine sources as well. Thus by
Lemma 3.9, there exist independent affine sources A,B such that X = A + B and there exists
a linear bijection L between A and Z. Thus B is also independent of Z. Note that we have
H(X|Z) ≥ k2 − jh` ≥ 10`, thus H(B) ≥ 10`.

Since ({Si(j+1), i ∈ [h]}) are linear function of Y and Y is a linear function of Z, we have that
({Si(j+1), i ∈ [h]}) are also linear functions of Z; thus B is independent of (A, {Si(j+1), i ∈ [h]}, Y ).
If S1(j+1) is uniform, then by Corollary 3.11 we have

(Extw(B,S1(j+1)), S1(j+1)) ≈ε (U`, S1(j+1)).

Note that R1(j+1) = Extw(X,S1(j+1)) = Extw(A,S1(j+1))+Extw(B,S1(j+1)) since Extw is a linear
seeded extractor. Thus for any fixing of S1(j+1), we have that Extw(B,S1(j+1)) is a deterministic
linear function of B, and is thus independent of (Extw(A,S1(j+1)), {Si(j+1), i ∈ [h]}, Y ). Therefore,
we also have that

(R1(j+1), {Si(j+1), i ∈ [h]}, Y ) ≈ε (U`, {Si(j+1), i ∈ [h]}, Y ).

Adding back the error, we have

(R1(j+1), {Si(j+1), i ∈ [h]}, {Rij , i ∈ [h]}, Y )

≈(2j+1)ε (U`, {Si(j+1), i ∈ [h]}, {Rij , i ∈ [h]}, Y ). (1)

Moreover, note that initially ({Si(j+1), i ∈ [h]}) are deterministic linear functions of {Y1, · · · , Yh}
respectively. Thus if we further condition on the fixing of ({Si(j+1), i ∈ [h]}) (i.e, conditioned on

({Si(j+1), i ∈ [h]}, {Rij , i ∈ [h]})), we have that X is still an affine source, and ({Ri(j+1), i ∈ [h]}) are
deterministic linear functions of X. Furthermore H(Q1) ≥ kq−2jh`−h` = kq−(2(j+1)−1)h`. On
the other handH(Y ′|Y ) andH(X|Z) will remain the same since ({Si(j+1), i ∈ [h]}) are deterministic
linear functions of Y . So H(Y ′|Y ) ≥ k1 − (j + 1− 1)h` and H(X|Z) ≥ k2 − (j + 1− 1)h`.

Now, recall that ∀i, we have Ri(j+1) = Extw(X,Si(j+1)) = Extw(A,Si(j+1)) + Extw(B,Si(j+1)).

Let RAi(j+1) = Extw(A,Si(j+1)) and RBi(j+1) = Extw(B,Si(j+1)), thus Ri(j+1) = RAi(j+1) +RBi(j+1). We

now fix ({Si(j+1), i ∈ [h]}). Note that we have just shown that conditioned on this further fixing,

X is still an affine source; thus Y, Y ′ and Z are all still affine sources as well. Note that now RAi(j+1)

is a deterministic linear function of A, and RBi(j+1) is a deterministic linear function of B. Thus

(RAi(j+1), i ∈ [h]) is independent of (RBi(j+1), i ∈ [h]).

We now further fix all RAi(j+1). Note that these are all linear functions of A with size `; thus
conditioned on these fixings, we have that X is still an affine source. Since there is a bijection
between A and Z, we have that now H(Q1) ≥ kq − (2j + 1)h` − h` = kq − 2(j + 1)h` ≥ 10`.
Moreover H(Y ′|Y ) ≥ k1− jh`−h` = k1− (j+ 1)h`. On the other hand H(X|Z) remains the same
since A is a linear function of Z.

Now note that ∀i, Ri(j+1) = RAi(j+1) +RBi(j+1) is a linear function of B, and is thus independent

of (A,Z, Y, Y ′). If we ignore the error in Equation 1, we know that conditioned on these fixings,
R1(j+1) = RA1(j+1) +RB1(j+1) is uniform. Therefore by Corollary 3.11 we have
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(S1(j+2), R1(j+1)) ≈ε (U`, R1(j+1)).

Note that conditioned on R1(j+1), we have that S1(j+2) is a deterministic linear function of Y1,
and is thus independent of (B, {Ri(j+1), i ∈ [h]}). Therefore we also have

(S1(j+2), {Ri(j+1), i ∈ [h]}) ≈ε (U`, {Ri(j+1), i ∈ [h]}).

Adding back the error from Equation 1, we have

(S1(j+2), {Si(j+1), i ∈ [h]}, {Ri(j+1), i ∈ [h]})
≈2(j+1)ε(U`, {Si(j+1), i ∈ [h]}, {Ri(j+1), i ∈ [h]}).

We can now further fix (RBi(j+1), i ∈ [h]). Since (RAi(j+1), i ∈ [h]) have already been fixed, this will

fix (Ri(j+1), i ∈ [h]) and thus we have fixed ({Si(j+1), i ∈ [h]}, {Ri(j+1), i ∈ [h]}). Since (RBi(j+1), i ∈
[h]) are linear functions of B, conditioned on these fixings X is still an affine source. Moreover, this
fixing will not affect H(Q1) or H(Y ′|Y ) since B is independent of (A,Z, Y, Y ′). Thus we have that
H(Q1) ≥ kq − 2(j + 1)h`, H(Y ′|Y ) ≥ k1− (j + 1)h` and H(X|Z) ≥ k2− jh`− h` = k2− (j + 1)h`.

Note that j ≤ t, thus the lemma is proved.

6 The Affine Extractor

In this section we describe our affine extractor. First we have the following algorithm that obtains
a somewhere random source.
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Algorithm 6.1 (SR(X)).

Input: X— an (n, k)-affine source with k ≥ polylog(n).
Output: W — a source that is close to an SR-source.

Sub-Routines and Parameters:
Let 0 < α < β < 1 be two constants to be chosen later. Let ` = kβ. Pick an integer h such that
kα ≤ h < 2kα and h = 2l for some integer l > 0. Let Extq,Extw be strong linear extractors from
Corollary 3.11, set up to extract from ((h2 + 12)`, 10`) sources and (n, 10`) sources respectively,

with seed length ` > log2 n, error ε = 2−Ω(
√
`) and output length `. These will be used in laExt.

Let Ext1,Ext2,Ext3 be strong linear extractors from Corollary 3.11, with parameters as follows.

• Let d > log2 n be an integer such that when we use d uniform bits to extract from an

(n, k) source as in Corollary 3.11, the error ε′ = 2−Ω(
√
d) satisfies that 2(2h3+h2+11h)`ε′ ≤

ε = 2−Ω(
√
`). Note that it suffices to take d = ch6`2 for some constant c > 1.

• Ext1 uses d bits to extract from (n, 10`) sources, with error ε′ and output length `.

• Ext2 uses ` bits to extract from (
√
k, (4h2 + 20)`) sources, with error ε = 2−Ω(

√
`) and

output length (2h2 + 10)`.

• Ext3 uses ` bits to extract from from (
√
k, 2d) sources, with error ε = 2−Ω(

√
`) and output

length d.

1. Let LExt be the linear seeded extractor in Theorem 3.14, which uses d′ = O(log n) bits to
extract from an (n, k) source and output m =

√
k bits with error n−2. Let N = 2d

′
=

poly(n) and enumerate all possible choices of the seed r1, · · · , rN . For every i ∈ [N ]
compute Y i = LExt(X, ri).

2. For every i = 1, · · · , N , use X and Y i to compute W i as follows.

(a) Compute the binary expression of i− 1, which consists of d′ = logN = O(log n) bits.
Divide these bits sequentially from left to right into b = dd′l e blocks of size l (the last
block may have less than l bits, then we add 0s at the end to make it l bits). Now
from left to right, for each block j = 1, · · · , b, we obtain an integer Indij ≤ 2l such
that the binary expression of Indij − 1 is the same as the bits in block j.

(b) Let Y i1 be the first d bits of Y i. Set j = 1. While j < b do the following.

i. Compute Rij0 = Ext1(X,Y ij) and Y ′ij = Ext2(Y i, Rij0 ).

ii. Compute (Rij1 , · · · , R
ij
h ) = laExt(X,Y ′ij), where Q = Y ′ij and S1 is the first `

bits of Y ′ij .

iii. Compute Y i(j+1) = Ext3(Y i, RijIndij ).

iv. Set j = j + 1.

(c) Finally, compute (Rib1 , · · · , Ribh ) = laExt(X,Y ib) and set W i = RibIndib .

3. Let W = W 1 ◦ · · · ◦WN .
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We now introduce some notation. For any i ∈ [N ] and j ∈ [b], we let Y i(≤j) denote (Y i1, · · · , Y ij)

and similarly Y ′i(≤j) denote (Y ′i1, · · · , Y ′ij); let R
i(≤j)
Indi(≤j)

denote (Ri1Indi1 , · · · , R
ij
Indij

) and let f j(i)

denote the integer whose binary expression is the concatenation of the binary expression of i − 1
from block 1 to block j. Recall that for any i, j, when computing laExt(X,Y ij) we will com-
pute Sij1 , · · · , S

ij
h and Rij1 , · · · , R

ij
h . Let Sij = (Sij1 , · · · , S

ij
max(Indvj−1,Indij)

) and similarly Rij =

(Rij1 , · · · , R
ij
max(Indvj−1,Indij)

); let Si(≤j) = (Si1, · · · , Sij) and similarly Ri(≤j) = (Ri1, · · · , Rij). We

have the following lemma.

Lemma 6.2. Assume that k ≥ 9b2d2h2. Fix any v ∈ [N ] such that Y v is uniform. Let T ⊂ [N ]
be any subset with |T | = h and v ∈ T , and let ZT be the concatenation of all Y i where i ∈ T . For
any j ∈ [b], define T jv = {i ∈ T : f j(i) < f j(v)} and let Tv = T bv . Let T̃ jv = Tv \ T jv . Then for any
j ∈ [b] , we have that

• At the beginning of iteration j, conditioned on ({Y ′i(≤j−1), Y i(≤j−1), Si(≤j−1), Ri(≤j−1), i ∈
Tv}), we have

1. X is still an affine source.

2. {Y ij , i ∈ Tv} are linear functions of ZT .

3. H(Y v) ≥
√
k − 2(j − 1)dh, H(X|ZT ) ≥ k − h

√
k − 2(j − 1)h2`.

4. With probability 1 − εj1 over the fixing of {Y ′i(≤j−1), Y i(≤j−1), Si(≤j−1), Ri(≤j−1), i ∈
Tv}, {Y ij , i ∈ T j−1

v }, we have Y vj = Ud. Here εj1 = 4j(h+ 1)ε.

• At the end of iteration j, we have

(RvjIndvj , {Y
′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T jv })

≈εj2(U`, {Y ′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T jv }),

where εj2 = 4j(h+ 1)ε+ (2h+ 1)ε.

Proof. We prove the lemma by induction on j. Note that Tv = {i ∈ T : i < v} and T̃ jv = Tv \ T jv
contains all the numbers in T that are less than v but have the same binary expression in the first
j blocks.

We first show that properties 1, 2 and 3 in the first part of the statement hold. When j = 1
these are trivially true. Now suppose they hold for some j and we’ll show that they hold for j + 1.
We first fix ({Y ′i(≤j−1), Y i(≤j−1), Si(≤j−1), Ri(≤j−1), i ∈ Tv}) and we know that conditioned on this
fixing, properties 1, 2 and 3 hold. We now further fix {Y ij , i ∈ Tv}. Note that conditioned on
this fixing, X is still an affine source, and {Rij0 , i ∈ Tv} are deterministic linear functions of X.

We then further fix {Rij0 , i ∈ Tv}. Note that conditioned on this fixing, X is still an affine source,
and {Y ′ij , i ∈ Tv} are deterministic linear functions of {Y i, i ∈ Tv} respectively. We thus further
fix {Y ′ij , i ∈ Tv}. Note that conditioned on this fixing, X is still an affine source. Now for any
i ∈ Tv, in the computation of (Rij1 , · · · , R

ij
h ) = laExt(X,Y ′ij) we can fix Rij1 , R

ij
2 , · · · one by one, and

we note that conditioned on the fixing of the previous one, the next one is a deterministic linear
function of X. Thus we can fix {Rij , i ∈ Tv} and after this fixing, X is still an affine source. Note
that once {Rij , i ∈ Tv} are fixed, {Sij , i ∈ Tv} are also fixed since they are functions of {Rij , i ∈ Tv}
and {Y ′ij , i ∈ Tv}. Thus we have fixed ({Y ′i(≤j), Y i(≤j), Si(≤j), Ri(≤j), i ∈ Tv}) and conditioned on

21



this fixing, X is still an affine source. Furthermore now {Y i(j+1), i ∈ Tv} are linear functions of
{Y i, i ∈ Tv} = ZT .

Next we look at the H(Y v) and H(X|ZT ). We note that since Y v and ZT are linear functions
of X, whenever X is an affine source, they are also both affine sources. We can now repeat
the argument above, and since each time we are conditioning on some linear functions of X, the
conditional entropy will decrease by at most the size of the random variables being conditioned
on. We further note that when we condition on Rijt , t = 0, · · · , h, we may lose entropy in both
H(Y v) and H(X|ZT ); while when we condition on Y ij and Y ′ij, we only lose entropy in H(Y v)
since they are deterministic functions of ZT . Note that the total size of {Rijt , t = 0, · · · , h, i ∈ Tv}
is at most h(h + 1)` < 2h2`, while the total size of {Y ij , Y ′ij , Rijt , t = 0, · · · , h, i ∈ Tv} is at most
h(d + (2h2 + 10)`) + h(h + 1)` < 2dh. Thus we know that at the beginning of iteration j + 1, we
have H(Y v) ≥

√
k−2(j−1)dh−2dh =

√
k−2jdh and H(X|ZT ) ≥ k−h

√
k−2(j−1)h2`−2h2` =

k − h
√
k − 2jh2`.

Now we show that property 4 in the first part and the second part hold. Again we use induction.
When j = 1, we note that Y v1 = U`. Thus property 4 holds. Now suppose property 4 holds for
some j; we will show that the second part of the statement is true for iteration j, and that property
4 holds for iteration j + 1. This will establish the lemma.

We first note that by our choice of the parameters, even if conditioned on all the ({Y ′i(≤b), Y i(≤b),

Si(≤b), Ri(≤b), i ∈ Tv}), we have that H(Y v) ≥
√
k−2bdh ≥ bdh and H(X|ZT ) ≥ k−h

√
k−2bh2` >

0.9k. Thus no matter when we apply Ext1, Ext2 or Ext3 in the case of i = v, the source always has
enough entropy for extraction.

We now first fix ({Y ′i(≤j−1), Y i(≤j−1), Si(≤j−1), Ri(≤j−1), i ∈ Tv}). Note that conditioned on this
fixing, X is still an affine source. Note that ZT is a linear function of X and {Y ij , i ∈ Tv} are linear
functions of ZT , thus they are all affine sources. We will now further fix {Y ij , i ∈ T j−1

v }. Note that
since they are all linear functions of ZT , conditioned on this fixing X is still an affine source. By
induction hypothesis, with probability 1− εj1 over the fixing of all these random variables, Y vj is
uniform.

Note that now for any i ∈ T j−1
v , we have Rij0 = Ext1(X,Y ij) is a deterministic linear function

of X. We can now further fix all {Rij0 , i ∈ T
j−1
v } and conditioned on this fixing, X is still an affine

source. After this fixing, for any i ∈ T j−1
v , we have Y ′ij = Ext2(Y i, Rij0 ) is a deterministic function of

Y i. We can now further fix all {Y ′ij , i ∈ T j−1
v }. Conditioned on this fixing X is still an affine source,

and now we have that all the {Rijt , i ∈ T
j−1
v } are deterministic functions of X. Moreover, for any

i ∈ T j−1
v , if we fix Rijt , then Rijt+1 is a deterministic linear function of X. Thus for any i ∈ T j−1

v , we

can fix all {Rijt , t = 1, · · · ,max(Indvj−1, Indij)} one by one, and conditioned on all these fixings, X

is still an affine source. Note that this also fixes all {Sijt , t = 1, · · · ,max(Indvj−1, Indij)} since they

are deterministic functions of {Rijt } and {Y ′ij}. Thus we have fixed all {Y ij , Y ′ij , Sij , Rij , i ∈ T j−1
v }.

Note that in the above process, we may lose entropy in Y vj when we fix {Rijt , t = 0, · · · ,max(Indvj−
1, Indij), i ∈ T j−1

v } and {Y ′ij , i ∈ T j−1
v }. However, note that the size of all these random variables

is at most |T j−1
v |((h + 1)` + (2h2 + 10)`) ≤ h((h + 1)` + (2h2 + 10)`) = (2h3 + h2 + 11h)`, thus

H(Y v1) ≥ d− (2h3 + h2 + 11h)`.
Now by Lemma 3.9, there exist independent affine sources A,B such that X = A+B and there

exists a linear bijection L between A and ZT . Thus B is also independent of (ZT , {Yi, i ∈ Tv}).
Note that H(B) = H(X|ZT ) ≥ 0.9k and H(Yv) ≥ d−(2h3 +h2 +11h)`. Since Y vj is a deterministic
function of Yv, by Lemma 3.6 we have
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(Ext2(B, Y vj), Y vj) ≈ε (U`, Y
vj).

Note that Rvj0 = Ext2(A, Y vj) + Ext2(B, Y vj). Let RA = Ext2(A, Y vj) and RB = Ext2(B, Y vj),

thus Rvj0 = RA + RB. We now fix Y vj . Note that after this fixing, RB is a deterministic linear
function of B, and is thus independent of (A, Y i, i ∈ Tv). If we ignore the error, then RB is still
uniform. Thus we can further fix all {Y ij , i ∈ T̃ j−1

v } (since they are deterministic linear functions
of Y i) and RB is still uniform. Note that after this fixing X is still an affine source. Now, all the
{Ext2(A, Y ij), i ∈ T̃ j−1

v } become deterministic linear functions of A, and are thus independent of
RB. So we can now further fix all {Ext2(A, Y ij), i ∈ T̃ j−1

v } and RB is still uniform and independent
of {Y i, i ∈ Tv}. Note that conditioned on this fixing we have Rvj0 = RA + RB is uniform and

independent of all {Y i, i ∈ T̃ j−1
v }. Thus by Corollary 3.11 we have

(Y ′vj , Rvj0 ) ≈ε (U(2h2+10)`, R
vj
0 ).

We can now further fix RB, and conditioned on this fixing Y ′vj is a deterministic function of Y v,
and is thus independent of all {Ext(B, Y ij), i ∈ T̃ j−1

v } since they are deterministic linear functions
of B. We can therefore fix all {Ext(B, Y ij), i ∈ T̃ j−1

v } and Y ′vj is still close to uniform. Note since
{Ext(A, Y ij), i ∈ T̃ j−1

v } have been fixed before, now we have fixed all {Rij0 , i ∈ T̃
j−1
v }. Now adding

back all the error, we get that after all these fixings,

Y ′vj ≈2ε U(2h2+10)`.

Ignoring the error, we can now apply Lemma 5.1 (where Y = (Y ′ij , i ∈ Tv), Y ′ = Y v and Z =
ZT ). Thus conditioned on the further fixing of {Sij1 , · · · , S

ij
Indvj−1, i ∈ T̃

j−1
v } and {Rij1 , · · · , R

ij
Indvj−1, i ∈

T̃ j−1
v }, we have that X is still an affine source, and {SijIndvj , i ∈ T̃

j−1
v } are deterministic linear func-

tions of {Y ′ij , i ∈ T̃ j−1
v } respectively. Moreover H(X|ZT ) ≥ 0.9k > 10`. Therefore again by

Lemma 3.9, there exist independent affine sources A,B such that X = A+B and there exists a lin-
ear bijection L between A and ZT . Thus B is also independent of ZT and H(B) = H(X|ZT ) > 10`.

Lemma 5.1 also tells us that

(SvjIndvj , {S
ij
1 , · · · , S

ij
Indvj−1, R

ij
1 , · · · , R

ij
Indvj−1, i ∈ T̃

j−1
v })

≈(2(Indvj−1))ε(U`, {S
ij
1 , · · · , S

ij
Indvj−1, R

ij
1 , · · · , R

ij
Indvj−1, i ∈ T̃

j−1
v }).

Ignoring the error, conditioned on the further fixing of {Sij1 , · · · , S
ij
Indvj−1, i ∈ T̃

j−1
v } and

{Rij1 , · · · , R
ij
Indvj−1, i ∈ T̃

j−1
v }, we have that SvjIndvj is uniform. Since SvjIndvj is a deterministic linear

function of Y v, it is independent of B. Thus by Corollary 3.11 we have

(Extw(B,SvjIndvj ), S
vj
Indvj

) ≈ε (U`, S
vj
Indvj

).

Note that for any i ∈ T̃ j−1
v , we have RijIndvj = Extw(X,SijIndvj ) = Extw(A,SijIndvj )+Extw(B,SijIndvj ).

Thus for any fixing of SvjIndvj , we have Extw(B,SvjIndvj ) is a deterministic linear function of B, and is

thus independent of (A,ZT = {Y i, i ∈ Tv}). Therefore it is also true that
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(RvjIndvj , {S
ij
Indvj

, i ∈ T̃ j−1
v }, {Y ′ij , i ∈ T̃ j−1

v }) ≈ε (U`, {SijIndvj , i ∈ T̃
j−1
v }, {Y ′ij , i ∈ T̃ j−1

v }).

Now we add back all the error, and notice that we have already fixed all {Y ′i(≤j−1), Y i(≤j−1),

Si(≤j−1), Ri(≤j−1), i ∈ Tv}, {Y ij , i ∈ Tv}, {Y ′ij , i ∈ T j−1
v }, {Sij , Rij , i ∈ T j−1

v }. Furthermore notice
that for any i ∈ T jv \ T j−1

v , we must have Indij < Indvj , thus max(Indvj − 1, Indij) = Indvj − 1.

Therefore for these i when we fix {Rij1 , · · · , R
ij
Indvj−1} we have fixed Rij . On the other hand for any

i ∈ Tv we have that Indij ≤ Indvj so if we fix all Sij1 , · · · , S
ij
Indvj

we have fixed Sij . Thus we have

(RvjIndvj , {Y
′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T jv })

≈εj2(U`, {Y ′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T jv }),

where εj2 = εj1 + 2ε+ (2(Indvj−1))ε+ ε ≤ εj1 + (2h+ 1)ε = 4j(h+ 1)ε+ (2h+ 1)ε. Thus the second
part of the statement for iteration j is true.

Now conditioned on the fixing of {Y ′i(≤j), Y i(≤j), Si(≤j), i ∈ Tv}, {Ri(≤j), i ∈ T jv }, we have that
Extw(B,SvjIndvj ) is still uniform (ignoring the error) and is a deterministic linear function of B. We

will now further fix all {Extw(A,SijIndvj ), i ∈ T̃
j−1
v }. Since these are all deterministic linear functions

of A, conditioned on these fixings we have X is still an affine source, and Extw(B,SvjIndvj ) is still

uniform. Now RvjIndvj = Extw(A,SvjIndvj ) + Extw(B,SvjIndvj ) is still uniform and is a deterministic

linear function of B, and is thus independent of (ZT , Y
v). Moreover, all {RijIndij , i ∈ T jv } have

been fixed and all {RijIndvj , i ∈ T̃ jv } are deterministic linear functions of B. Therefore now all

{Y i(j+1) = Ext3(Y i, RijIndij ), i ∈ T
j
v } are deterministic linear functions of {Y i, i ∈ T jv } respectively.

We can thus now further fix all these {Y i(j+1), i ∈ T jv } and conditioned on this fixing, X is still an
affine source and Y v still has enough entropy. Now by Corollay 3.11 we have

(Y v(j+1), RvjIndvj ) ≈ε (Ud, R
vj
Indvj

).

Note that conditioned on RvjIndvj , we have that Y v(j+1) is a deterministic function of Y v, and is

thus independent of all {RijIndvj , i ∈ T̃
j
v } since they are deterministic functions of B. Note that for

any i ∈ T̃ jv , we must have Indij = Indvj and thus max(Indvj − 1, Indij) = Indij . Therefore it is also
true that

(Y v(j+1), {RijIndij , i ∈ T̃
j
v }) ≈ε (Ud, {RijIndij , i ∈ T̃

j
v }).

Therefore we have that

(Y v(j+1), {Y ′i(≤j), Y i(≤j), Si(≤j), Ri(≤j), i ∈ Tv}, {Y i(j+1), i ∈ T jv })

≈ε′(U`, {Y ′i(≤j), Y i(≤j), Si(≤j), Ri(≤j), i ∈ Tv}, {Y i(j+1), i ∈ T jv }),

where ε′ = 2ε + (2(Indvj − 1))ε + ε + ε ≤ 2(h + 1)ε. This is conditioned on the event that Y vj is
uniform at the beginning of iteration j, which happens with probability 1−εj1. By Lemma 3.7, now
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with all but another 2ε′ ≤ 4(h + 1)ε probability, conditioned on {Y ′i(≤j), Y i(≤j), Si(≤j), Ri(≤j), i ∈
Tv}, {Y i(j+1), i ∈ T jv } we have that Y v(j+1) is uniform. Thus property 4 in the first part holds for
iteration j + 1 with ε(j+1)1 = εj1 + 4(h+ 1)ε = 4(j + 1)(h+ 1)ε.

We now have the following lemma.

Lemma 6.3. Assume that k ≥ 9b2d2h2 and X is an (n, k)-affine source. Let N = 2d
′

= poly(n)
and W = W 1 ◦ · · · ◦WN = SR(X). Then there exists a subset S ⊂ [N ] with |S| ≥ (1− 2

n2 )N such
that for any subset S′ ⊂ S with |S′| = h, we have that

(W i, i ∈ S′) ≈ε Uh`,

where ε = 2−Ω(
√
`).

Proof. First note that LExt is a strong linear seeded extractor with seed length d′ = O(log n) and
error n−2. Thus by Lemma 3.7 there exists a subset S ⊂ [N ] with |S| ≥ (1 − 2

n2 )N such that
∀i ∈ S, we have that Y i is uniform.

Now consider any subset S′ ⊂ S with |S′| = h. We order the elements in S′ to be i1 < i2 <
· · · < ih. Since S′ ⊂ S, for any j ∈ [h] we have that Y ij is uniform. We now apply Lemma 6.2 to
the set S′. Note that f b(i) = i − 1, thus for any v ∈ S′ we have S′bv = {i ∈ S′ : i < v}. Also note
that W i = RibIndib for any i ∈ [N ]. Thus by Lemma 6.2, for any j ∈ [h] we have that

(W ij ,W i1 , · · · ,W ij−1) ≈
O(bh2−Ω(

√
`))

(U`,W
i1 , · · · ,W ij−1).

Thus we have that

(W i1 , · · · ,W ih) ≈ε Uh`,

where ε = O(bh22−Ω(
√
`)) = 2−Ω(

√
`) since ` = kβ > kα, h < 2kα and b < log n = kO(1).

We can now state our affine extractor.

Algorithm 6.4 (AExt(X)).

Input: X— an (n, k)-affine source with k ≥ polylog(n).
Output: Z — a bit that is n−Ω(1)-close to uniform.

Sub-Routines and Parameters:
Let SR be the function in Algorithm 6.1. Let BFExt be the extractor for non-oblivious bit-fixing
sources in Theorem 4.6.

1. Let W = W 1 ◦ · · · ◦WN = SR(X) where N = poly(n). Take the first bit of each W i and
let V be the concatenation.

2. Compute Z = BFExt(V ).

We now have the following theorem.
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Theorem 6.5. There exists a constant C > 1 such that for any (n, k) affine source X with k ≥
logC n, we have that

|AExt(X)− Um| ≤ ε,

where m = kΩ(1) and ε = n−Ω(1).

Proof. By Lemma 6.3, if k ≥ 9b2d2h2 then there exists a subset S ⊂ [N ] with |S| ≥ (1− 2
n2 )N such

that for any subset S′ ⊂ S with |S′| = h, we have that

(W i, i ∈ S′) ≈ε′ Uh`,

where ε′ = 2−Ω(
√
`).

Therefore by definition V is a (q, t, γ)-non-oblivious bit-fixing source with q = 2N/n2, t = h

and γ = ε′ = 2−Ω(
√
`). We now apply Theorem 4.6. Note that q = 2N/n2 ≤ N1−δ for some

constant δ > 0 since N = poly(n). We also need that t = h ≥ O(log21(N)) = O(log21 n)and
γ ≤ 1/N t+1 = 1/nO(t).

Note that b < log n, d = O(h6`2), ` = kβ, and kα ≤ h < 2kα. Thus altogether all conditions
are satisfied if

k ≥ ck14α+4β log2 n, kα ≥ c1 log21 n, and
√
` = kβ/2 ≥ c2k

α log n,

for some constants c, c1, c2.
It is now easy to check that if we take α, β to be small enough with α < β/2 and k ≥ logC n

for a big enough constant C > 1, then all the above conditions are satisfied. Thus by Theorem 4.1
the output of AExt is ε-close to uniform with ε = N−Ω(1) = n−Ω(1). Note that N = poly(n) so the
extractor can be computed in polynomial time.

7 Improved Extractors for Circuit Sources

The following theorems are proved in [Vio11].

Theorem 7.1. [Vio11] For every d = O(1), γ > 0, any (n, k) source generated by an ac circuit of
depth d and size nd is 1/nω(1)-close to a convex combination of affine sources with entropy k2/n1+γ.

Using our affine extractor, this immediately implies the following theorem.

Theorem 7.2. For any constant α > 0, d = O(1) and k ≥ n1/2+α, there is an explicit extractor
acExt : {0, 1}n → {0, 1}m with m = kΩ(1) such that if X is an (n, k) source generated by a depth-d
AC0 circuit of size nd, then

|acExt(X)− Um| ≤ ε,

where ε = n−Ω(1).

Proof. Let γ = α and apply Lemma 7.1, we see that X is 1/nω(1)-close to a convex combination of
affine sources with entropy k2/n1+γ = nα. Thus we can apply the affine extractor from Theorem 1.9
and output m = kΩ(1) bits with error 1/nω(1) + n−Ω(1) = n−Ω(1).
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8 Conclusions and Open Problems

Constructing explicit two-source extractors and affine extractors are two related challenging prob-
lems. Through a long line of research, the recent breakthrough result of Chattopadhyay and Zuck-
erman [CZ15] has finally brought us close to the optimal two-source extractor. In this paper we
managed to improve the output length of the two-source extractors in [CZ15] from 1 to kΩ(1) in the
strong case, and to k in the non-strong case. We also construct the first explicit affine extractor for
poly-logarithmic entropy, thus bringing affine extractors close to optimal. Our affine extractor has
output length kΩ(1). However, in both two-source extractors and affine extractors the error remains
n−Ω(1). The most obvious open problem is to improve the error (say to exponentially small).

This seems challenging and requiring new ideas. Specifically, the current approach is to first
reduce the sources to a (q, t, γ) non-oblivious bit-fixing source, and then apply a deterministic
extractor for such sources. However, the extractor for non-oblivious bit-fixing sources crucially
depends on resilient functions, where the analysis is done by bounding the influence of a coalition
of variables. If the non-oblivious bit-fixing source has length nO(1) (to ensure polynomial time
computability), then even one bit can have influence Ω(log n/nO(1)) by the result of Kahn, Kalai
and Linial [KKL88]. Therefore we cannot hope to get error n−ω(1) through this approach alone.

Another related open problem left here is to increase the output length of our affine extractor.
Currently our affine extractor only outputs kΩ(1) bits. We note that we can use a general technique
by Shaltiel [Sha06] to try to improve the output length. However for that purpose we need to use
a linear seeded extractor with seed length O(log n), since the error will be increased by a factor of
2d where d is the seed length. A linear seeded extractor with such seed length can possibly achieve
output length k0.9 [SU05], but we are not aware of any construction with output length Ω(k). On
the other hand, if we can make the error smaller, then we can afford a larger seed length (such as
O(log2 n)), which is enough to output almost all the entropy.

In the case of NC0 and AC0 sources, there is still much room for improvement. Currently it is
not known how to extract from sources with min-entropy smaller than n1/2, even if the source is
generated by an NC0 circuit where each output bit depends on at most 2 input bits.

Finally, an interesting observation of our work is that actually the bias of the one bit extractor
in [CZ15] is not very important (in [CZ15] it has bias n−Ω(1)). Indeed, even if it only has constant
bias, after the step of using the generating matrix G, we can see that the XOR of Ω(m) copies
will have bias 2−Ω(m). However, at this moment this observation doesn’t seem to help improve the
parameters.
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