
On the Optimality of Bellman–Ford–Moore Shortest Path AlgorithmI

S. Juknaa,1, G. Schnitgera

aInstitute of Computer Science, Goethe University, Frankfurt am Main, Germany

Abstract

We prove a general lower bound on the size of branching programs over any semiring of zero charac-
teristic, including the (min,+) semiring. Using it, we show that the classical dynamic programming
algorithm of Bellman, Ford and Moore for the shortest s-t path problem is optimal, if only Min and Sum
operations are allowed.

Key words: Computational complexity, shortest paths, matrix multiplication, dynamic programming,
tropical semiring, lower bounds

1. Introduction

Dynamic programming algorithms for discrete minimization problems are actually (recursively con-
structed) circuits or branching programs over the (min,+) semiring, known also as tropical semiring.
So, in order to understand the limitations of the dynamic programming, we need lower-bounds argu-
ments for tropical circuits and branching programs.

In this note, we present such an argument for tropical branching programs. These programs corre-
spond to dynamic programming algorithms solving minimization problems f : Nn→ N of the form

f (x1, . . . ,xn) = min
a∈A

n

∑
i=1

aixi , (1)

where A⊂Nn is a finite set of nonnegative integer vectors a = (a1, . . . ,an). We prove that every tropical
branching program solving f must have at least f (1, . . . ,1) ·w(f) edges, where w(f) is the smallest size
of a subset S ⊆ [n] = {1, . . . ,n} such that, for every vector a ∈ A, there is a position i ∈ S with ai 6= 0
(Lemma 3). We then demonstrate this general lower bound by two almost optimal lower bounds.

Shortest paths. Our first application concerns the classical dynamic programming algorithm of Ford [5],
Moore [10], and Bellman [1] for the shortest s-t path problem. This algorithm actually solves the shortest
k-walk problem: given an assignment of nonnegative weights to the edges of the complete graph on
[n] = {1, . . . ,n}, find the minimum weight of a walk of length k from node s = 1 to the node t = n.
Recall that a walk of length k is an alternating sequence of k+ 1 nodes and connecting edges. A walk
can travel over any node (except of s and t) and any edge (including loops) any number of times. A path
is a walk which cannot travel over any node more than once.

In a related shortest k-path problem, the goal is to compute the minimum weight of an s-t path of
length at most k. Note that, if we give zero weight to all loops, then these two problems are equivalent.
This holds because weights are nonnegative, every s-t walk of length k contains an s-t path of length
6 k, and every s-t path of length 6 k can be extended to an s-t walk of length k by adding loops.

The Bellman–Ford–Moore algorithm gives a tropical branching program with kn nodes and kn2

edges solving the k-walk problem (see Lemma 4 below). By combining our general lower bound with

IResearch supported by the DFG grant SCHN 503/6-1.
1Affiliated with Institute of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 127 (2015)

a result of Erdős and Gallai [3] about the maximal number of edges in graphs without long paths, we
show (Theorem 1) that this algorithm is almost optimal, if only Min and Sum operations are allowed:
at least about kn(n− k) edges are also necessary in any tropical branching program solving the k-walk
problem.

Matrix multiplication. Our next application concerns the complexity of matrix multiplication over the
(min,+) semiring. Kerr [7] has shown that any (min,+) circuit, simultaneously computing all the
n2 entries of the product of two n× n matrices over the (min,+) semiring, requires Ω(n3) gates. This
showed that the dynamic programming algorithm of Floyd [4] and Warshall [16] for the all-pairs shortest
paths problem is optimal, if only Min and Sum operations are allowed. Later, Pratt [14], Paterson [12],
and Mehlhorn and Galil [9] independently proved the same lower bound even over the boolean semiring.
This showed that the dynamic programming algorithm of Floyd [4] and Warshall [16] for the all-pairs
shortest paths problem is optimal, if only Min and Sum operations are allowed.

These lower bounds, however, do not imply the same lower bound for the single-output version Mn

of this problem: compute the sum of all entries of the product matrix. Using our general lower bound,
we show that the minimum number of contacts in a branching program solving Mn over the (min,+)
semiring is 2n3 (Theorem 2).

Remark 1. Let us stress that we are interested in proving small lower bounds: in both problems above,
we have N = Θ(n2) variables, and the bounds have, respectively, the form Ω(kN) and Ω(N3/2). On
the other hand, large, even exponential in N, lower bounds for some other problems are much easier to
obtain. For example, it is relatively easy to show (see, e.g. [6, Theorem 30]) that tropical branching
programs of exponential size are required to solve the minimum weight spanning tree, or the minimum
weight perfect matching problems. An argument allowing to prove up to N2 lower bounds for monotone
boolean branching programs was suggested by Moore and Shannon [11], and Markov [8] (Lemma 2).
Our general lower bound f (1, . . . ,1) ·w(f) on the size of tropical branching programs solving a mini-
mization problem f is an adoption of their argument.

2. Branching programs and their polynomials

Let (R,+,×,0,1) be a semiring with a “sum” (+) and “product” (×) operations. Recall that a
(multivariate) polynomial over R is a formal expression of the form

f (x1, . . . ,xn) = ∑
a∈A

ca

n

∏
i=1

xai
i , (2)

where A ⊂ Nn is a finite set of nonnegative integer vectors, and ca > 1 are integer coefficients. The
degree of a monomial p = ∏

n
i=1 xai

i is the sum a1 + a2 + · · ·+ an of its exponents. The support of p is
the set Xp = {xi : ai 6= 0} of all variables occurring in the monomial with nonzero degree. The degree of
a polynomial is the minimum degree of its monomial. A monomial of f is minimal, if its support does
not contain the support of any another monomial of f as a proper subset. Let Sup(f) denote the family
of supports of all minimal monomials of f .

Every polynomial f defines the function f : Rn→ R, whose value f (r) = f (r1, . . . ,rn) is obtained by
substituting elements ri ∈ R for xi in f . Over different semirings R, these functions may be different. For
example, in the boolean semiring, we have R = {0,1}, x+ y := x∨ y, x× y := x∧ y, 0 := 0, and 1 := 1,
whereas in the tropical semiring, we have R =N∪{+∞}, x+y := min{x,y}, x×y := x+y, 0 := ∞, and
1 := 0. Hence, over these two semirings, the functions defined by the polynomial (2) are, respectively,

f =
∨
a∈A

∧
i : ai 6=0

xi and f = min
a∈A

∑
i : ai 6=0

aixi .

A semiring (R,+,×,0,1) is of zero characteristic, if 1+1+ · · ·+1 6= 0 holds for any finite sum of the
unity 1. Note that both semirings above are such.

2

Lemma 1. If two polynomials f and g define the same function over a semiring of zero-characteristic,
then Sup(f) = Sup(g).

Proof. Let us first show the following auxiliary claim.

Claim 1. The support of every monomial of g must contain the support of at least one monomial of f ,
and vice versa.

Proof. Assume contrariwise that there is a monomial q of g such that Xp\Xq 6= /0 holds for all monomials
p of f . If we set to 1 all variables in Xq, and set to 0 all the remaining variables, then on the resulting
assignment a, we have that f (a) = 0, because every monomial of f contains at least one variable set to
0. But the monomial q of g is evaluated to 1. Since the semiring is of zero-characteristic, this yields
g(a) 6= 0, a contradiction.

Assume now that Sup(f) 6= Sup(g). Then, by symmetry, we may assume that there is a minimal
monomial p of f such that Xq 6= Xp holds for all monomials q of g. Then, for every q, we have either
Xq \Xp 6= /0, or Xq ⊂ Xp (proper inclusion). By Claim 1, the latter inclusion is impossible, since the
monomial p is minimal in f . Thus, we have that Xq \Xp 6= /0 must hold for all monomials q of g. If
we set to 1 all variables in Xp, and set to 0 all the remaining variables, then on the resulting assignment
a, we have that g(a) = 0. But since q(a) = 1 and the semiring is of zero-characteristic, we have that
f (a) 6= 0, a contradiction.

By a branching program with variables x1, . . . ,xn we will mean a directed acyclic graph G with two
specified nodes, the source node a and the target node b. Paths from a to b are called chains. Each
edge is either unlabeled (is a rectifier) or is labeled by some variable (is a contact). The graph may be
a multigraph, that is, several edges may have the same endpoints. The size of a program is the total
number of contacts, and the depth is the maximum number of edges in a chain.

Every branching program G produces a unique polynomial fG in a natural way. Namely, each chain
π in G defines a monomial Mπ , which is just the product of labels of contacts along π . The polynomial
fG is then the sum of monomials Mπ over all chains in G:

fG(x1, . . . ,xn) = ∑
π is a chain in G

Mπ .

The branching program G computes a given polynomial f over a semiring R, if both polynomials fG

and f define the same function over R. Every polynomial f can be computed by a trivial branching
program which has a separate chain for each monomial of f . However, some polynomials allow much
more compact representation as branching programs (see Fig. 1).

Remark 2. It is well known (see, e.g. [6, Lemma 11]) that, for every polynomial f , every branching
program computing f over a semiring of zero characteristic must also compute f over the boolean semir-
ing ({0,1},∨,∧,0,1). Thus, every lower bound on the size of monotone boolean branching programs,
i.e. programs over the boolean semiring, also holds for branching programs over any semiring of zero
characteristic.

3. A general lower bound

Our starting point is the following lower bound on the size of branching programs in terms of their
“length” and “width”.

Lemma 2 (Moore–Shannon [11], Markov [8]). If every chain in a branching program has at least l
contacts, and if at least w contacts must be removed to destroy all chains, then there must be at least l ·w
contacts.

3

a • ◦ ◦ · · · ◦ ◦

◦ ◦ ◦ · · · ◦ ◦

◦ ◦ ◦ · · · ◦ ◦
...

...
...

...
...

◦ ◦ ◦ · · · ◦ • b

x1 // x2 // xk //

x2 // x3 // xk+1 //

x3 // x4 // xk+2 //

�� �� �� �� ��

�� �� �� �� ��

xn−k+1 // xn−k+2 // xn //

Figure 1: A branching program computing the elementary symmetric polynomial

f (x1, . . . ,xn) = ∑
|S|=k

∏
i∈S

xi

over any semiring. The polynomial has
(n

k

)
monomials, but the program has only k(n− k+1) contacts.

Over the (min,+) semiring, this polynomial corresponds to the minimization problem

f (x1, . . . ,xn) = min
|S|=k

∑
i∈S

xi .

In particular, if a monotone boolean function f has no minterm shorter than l and no maxterm shorter
than w, then every branching program computing f over the boolean (∨,∧) semiring must have at least
l ·w contacts. This, for example, implies that optimal branching programs over this semiring for the
threshold-k function of n variables (a boolean version of the elementary symmetric polynomial given in
Fig. 1) have exactly k(n− k+1) contacts.

Unfortunately, the boolean version of the k-walk problem has very short minterms, and Lemma 2
cannot yield any nontrivial lower bound over the boolean semiring. Even worse, we show in Sect. 6 that
there is no analogue of this lemma in the presence of short chains: then a branching program may have
much fewer than l ·w contacts.

Still, we will now prove a version of this lemma allowing us to show that Bellman–Ford–Moore is
optimal at least over the tropical (min,+) semiring.

Let f (x1, . . . ,xn) be a polynomial. To make our argument flexible in applications, we assume that
some of the variables x1, . . . ,xn are declared as good, and the remaining as bad.

After this declaration, define the degree of a monomial as the sum of exponents of its good variables.
Then the degree deg(f) of a polynomial f is the minimum degree of its monomial. If we treat polyno-
mials over some fixed semiring R, then it is natural to define the semantical degree d(f) of f to be the
smallest degree of a polynomial defining the same function as f over R.

Remark 3. Over the boolean (∨,∧) semiring, f is a monotone boolean function, and d(f) is the min-
imum number of good variables such that setting to 1 these variables and all bad variables, forces f
output 1, independently on the values of other variables.

Over the (min,+) semiring, the degree deg(f) of f is the value f (α) of f on the assignment α

which gives weight 1 to all good variables, and zero weight to the remaining variables. Hence, over this
semiring, we have that d(f) = deg(f) = f (α).

Define the width w(f) of a polynomial f to be the minimum number of good variables such that
every monomial of f contains at least one of these variables. In other words, w(f) is the minimum
number of variables such that setting these variables to 0 forces f to output 0 independently on the
values of the remaining variables.

Lemma 3 (Main Lemma). Every branching program G computing a polynomial f over a semiring of
zero characteristic must have at least d(f) ·w(f) contacts.

4

Proof. If d(f)= 0, there is nothing to prove. So, we can assume that d(f)> 1, and hence, also w(f)> 1.
Say that an edge e of G is good, if it is a contact labeled by a good variable; hence, rectifiers as well as
contacts labeled by bad variables are bad.

Claim 2. Every chain in G has at least d(f) good contacts.

Proof. Let l be the smallest number of good contacts in a chain of G. Since the program G computes f ,
the polynomial fG produced by G must define the same function as f . Hence, d(f) is at most the degree
l of fG, as claimed.

A cut in a branching program is a set C of its good contacts such that every chain in G contains at
least one contact in C.

Claim 3. There are at least d(f) disjoint cuts in G.

Proof. Associate with every node u in G the minimum number l(u) of good contacts in a path from the
source node a to u. By Claim 2, the target node b has l(b)> d(f). Moreover, l(v)6 l(u)+1 holds for
every edge e = (u,v), and l(v) 6 l(u) if the edge e is bad. Let Ci be the set of all edges (u,v) such that
l(u) = i and l(v) = i+1. Since the Ci are clearly disjoint, and all edges in Ci must be good, it remains to
show that each Ci is a cut.

To show this, take an arbitrary chain (u1,u2, . . . ,um) with u1 = a and um = b. The sequence of
numbers l(u1), . . . , l(um) must reach the value l(b)> d(f) by starting at l(a) = 0. At each step, the value
can be increased by at most +1. So, there must be a j where a jump from l(u j) = i to l(u j+1) = i+ 1
happens, meaning that the edge (u j,u j+1) belongs to Ci, as desired.

Claim 4. Every cut in G has at least w(f) contacts.

Proof. Let C be a cut in G, and let XC denote the set of good variables labeling the contacts in C. It
is enough to show that every monomial p of f must contain at least one variable in XC, because then
|C|> |XC|> w(f).

The support Xp of p must contain the support Xq of some minimal monomial q of f . By Lemma 1,
there must be a chain π in G, the set of whose labels coincides with Xq. Since C is a cut, ar least one
good contact of π must belong to C; the label xi ∈ XC of this contact belongs then to Xq, and hence, also
to Xp.

Now, by Claim 3, the branching program G must have at least d(f) disjoint cuts. By Claim 4, each of
these cuts must have at least w(f) contacts. Hence, the program must have at least d(f) ·w(f) contacts,
as claimed.

4. Bellman–Ford–Moore

The k-walk polynomial Wn,k has one variable xi, j for each edge {i, j} of the complete graph Kn.
Each its monomial corresponds to a walk of length k, and has the form x1,i1xi1,i2 · · ·xik−2,ik−1xik−1,n for not
necessarily distinct nodes i1, . . . , ik−1 in {2, . . . ,n− 1}. That is, we assume that each node, except of 1
and n, has a loop.

Lemma 4 (Bellman [1], Ford [5], Moore [10]). Over any semiring, the polynomial Wn,k can be computed
by a branching program of depth k with at most kn nodes and at most kn2 edges.

Proof. The dynamic programming algorithm of Bellman, Ford and Moore is amazingly simple. It com-
putes Wn,k by recursively computing the polynomials F(l)

j whose monomials correspond to walks of

length l from node 1 to node j. It first sets F(1)
j = x1, j for all j = 2, . . . ,n−1, and uses the recursion

F(l+1)
j =

n−1

∑
i=2

F(l)
i × xi, j .

5

To construct the desired branching program, arrange the nodes of a branching program into k+1 layers
of nodes V0,V1, . . . ,Vk, where V0 = {a}, Vk = {b} and |V1| = . . . = |Vk−1| = n− 2; each Vi for i =
1, . . . ,k−1 is a disjoint copy of the set of nodes {2, . . . ,n−1}. Edges go only from one layer to the next
layer. The j-th node on the (l+1)-th layer is entered by a contact labeled by xi, j from the i-th node on the
previous l-th layer. The program has (k−1)(n−2)+2 6 kn nodes and (k−2)(n−2)2+2(n−2)6 kn2

edges.

Remark 4. The s-t connectivity function STCON(n) is a monotone boolean function which, given a
(directed or undirected) graph on n nodes, accepts this graph if and only if it has a path from s to
t. Lemma 4 implies that both directed and undirected versions of this problem can be solved by a
monotone boolean branching program with at most n3 edges. Another classical model for computing
boolean functions is that of switching networks. The only difference of this model from branching
programs is that now the underlying graph is undirected. Interestingly, in the monotone setting, this
later model can be super-polynomially weaker than that of branching programs. Namely, Potechin [13]
has shown that every monotone switching network for the directed version of STCON(n) must have
nΩ(logn) edges.

We now show that, over the (min,+) semiring, the upper bound given by Lemma 4 cannot be
substantially improved. Over this semiring, Wn,k turns into a minimization problem

Wn,k = min
{

x1,i1 + xi1,i2 + · · ·+ xik−1,n
}
. (3)

To spare parenthesis, we say that a function f (n) is at least about g(n), if f (n) = Ω(g(n)).

Theorem 1. Every branching program computing Wn,k over the (min,+) semiring requires at least
about kn(n− k) contacts.

Proof. Call a variable xi, j of f = Wn,k good, if i, j 6∈ {s, t}; recall that s = 1 is the start node, and t = n
the target node in Kn. Thus, good variables xi, j correspond to the edges of the complete graph Kn−2
on {2, . . . ,n− 1}. Recall that, over the (min,+) semiring, the semantical degree d(f) of a polynomial
f is just its value f (α) on the assignment α which sets all good variables to 1, and the rest to 0 (see
Remark 3). Since every sum in (3) has only two bad variables, we have that d(f) > k− 2. To lower
bound the width w(f), we will use the following result of Erdős and Gallai [3, Theorem 2.6]:

• At least m(m− l)/2 edges must be removed from Km in order to destroy all paths of length l > 1.

Now let Y be a set of |Y | = w(f) good variables of f such that every sum of f contains at least one
of them. For every path p = (i1, . . . , ik−1) of length k− 2 in Kn−2, there is a sum xs,i1 + xi1,i2 + · · ·+
xik−2,ik−1 + xik−1,t in f . This sum must contain at least one variable xu,v in Y . Since this variable must
be good, we have that xu,v must be distinct from xs,i1 and xik−1,t , that is, {u,v} must be an edge of the
path p. Thus, removal from Kn−2 of all edges corresponding to variables in Y destroys all paths of
length k− 2 in Kn−2. When applied with m = n− 2 and l = k− 2, the Erdős–Gallai theorem implies
that w(f) = |Y |> (n−2)(n− k)/2. Since d(f)> k−2, Lemma 3 implies that every tropical branching
program computing f must have at least d(f) ·w(f) contacts, which is at least about kn(n− k).

5. Matrix multiplication

We now consider the problem of computing the sum of all entries of the product of two matrices
over the tropical semiring:

Mn(x,y) = ∑
i, j∈[n]

min
k∈[n]
{xi,k + yk, j} .

Theorem 2. The minimum number of contacts in a branching program computing Mn over the (min,+)
semiring is 2n3.

6

Proof. The upper bound 2n3 is trivial, since each minimum gi, j = {xi,k + yk, j} can be computed using a
bunch of 2n contacts. To prove the lower bound, we will again use Lemma 3. This time we declare all
variables of f =Mn as good. Since f (1,1, . . . ,1) = 2n2, the semantical degree of f is d(f)> 2n2. On the
other hand, in order to force f to output ∞, there must be at least one pair i, j ∈ [n] such that the minimum
gi, j outputs ∞. Thus, at least n variables must be set to ∞, implying that w(f) > n. By Lemma 3, any
tropical branching program computing f = Mn must have at least d(f) ·w(f)> 2n3 contacts.

6. Concluding remarks

We presented a general lower bound for (min,+) branching programs solving minimization prob-
lems with linear target functions. We then used it to show that the Bellman–Ford–Moore dynamic pro-
gramming algorithm for the shortest s-t path problem, as well as a trivial matrix multiplication algorithm
over the (min,+) semiring are essentially optimal, if only Min and Sum operations are allowed.

The most interesting in this context problem is to extend these lower bounds to branching programs
over the boolean (∨,∧) semiring, i.e. to boolean monotone branching programs. The reason why
Lemma 2 cannot yield any nontrivial lower bound for the boolean versions of the considered polynomials
is that then their semantical degree is small: d(f)6 3 for f =Wn,k, and d(f)6 2n for f = Mn.

When stated differently, Lemma 2 says that, if all chains in a program have length at least l, then it is
enough to remove an at most a 1/l fraction of all edges to destroy all chains. But what happens, if short
chains may be present – is it then also enough to remove an at most about a fraction 1/l of the edges to
destroy all chains of length l or longer? Shorter chains, as well as long paths between other nodes may
then survive.

Unfortunately, there exists no analogue of Moore–Shannon–Markov lemma (Lemma 2) for branch-
ing programs with short chains: then even a constant fraction of edges may be necessary to remove,
even for large path-lengths l. Namely, a sequence of directed acyclic graphs Hn of constant maximum
degree d on n = m2m nodes is constructed in [15] with the following property:

• For every constant 0 6 ε < 1 there is a constant c > 0 such that, if any subset of at most cn nodes
is removed from Hn, the remaining graph contains a path of length at least 2εm.

Take now two new nodes a and b, and draw an edge from a to every node of Hn, and an edge from every
node of Hn to b. The resulting graph Gn still has at most 2n+dn = O(n) edges, and has the property:

• For every constant 0 6 ε < 1, there is a constant c′ > 0 such that, if any subset of at most c′n edges
is removed from Gn, the remaining graph contains an a-b path with 2εm or more edges.

Proof. Call the nodes of Hn inner nodes of Gn. Remove any subset of at most c′n edges from Gn, where
c′ = c/2. After that, remove an inner node if it was incident to a removed edge. Note that at most
2c′n = cn inner nodes are then removed. None of the edges incident to survived nodes was removed.
In particular, each survived inner node is still connected to both nodes a and b. By the above property
of Hn, there must remain a path of length 2εm consisting entirely of survived inner nodes. Since the
endpoints of each of these paths survived, each of them can be extended to an a-b path in Gn.

In branching programs considered above, contacts are labeled by single variables. One can extend
the model of (min,+) branching programs by allowing the labels of contacts to be arbitrary linear
combinations ∑i∈S aixi with integer coefficients. Albeit the Bellman–Ford–Moore (min,+) branching
program does not use this additional feature, it may be helpful for some other minimization problems.
Consider, for example, the problem

f (x1, . . . ,xn) = min
{ n

∑
i=1

aixi :
n

∑
i=1

ai = k
}
.

Since d(f) = k and w(f) = n, every (ordinary) (min,+) branching program for f must have at least kn
contacts. But since f (x) = min{kx1, . . . ,kxn}, already n contacts are enough for extended programs. So,

7

it would be interesting to know whether extended (min,+) branching programs for Wn,k must still be of
size Ω(kn2)? Note that Lemma 2 fails for extended (min,+) branching programs as well. The reason is
that then Claim 2 needs not to hold: the number of contacts in a chain may be much smaller than d(f).

References

[1] Bellman, R., 1958. On a routing problem. Quarterly of Appl. Math. 16, 87–90.
[2] Dijkstra, E., 1959. A note on two problems in connection with graphs. Numerische Math. 1, 269–271.
[3] Erdős, P., Gallai, T., 1959. On maximal paths and circuits in graphs. Acta Math. Acad. Sci. Hungar. 10, 337–356.
[4] Floyd, R., 1962. Algorithm 97, shortest path. Comm. ACM 5, 345.
[5] Ford, L., 1956. Network flow theory. Tech. Rep. P-923, The Rand Corp.
[6] Jukna, S., 2015. Lower bounds for tropical circuits and dynamic programs. Theory of Comput. Syst. 57 (1), 160–194,
[7] Kerr, L., 1970. The effect of algebraic structure on the computation complexity of matrix multiplications. Ph.D. thesis,

Cornell Univ., Ithaca, N.Y.
[8] Markov, A., 1962. Minimal relay-diode bipoles for monotonic symmetric functions. Problemy Kibernetiki 8, 117–121,

english transl. in Problems of Cybernetics 8 (1964), 205–212.
[9] Mehlhorn, K., Galil, Z., 1976. Monotone switching circuits and boolean matrix product. Computing 16 (1-2), 99–111.

[10] Moore, E., 1957. The shortest path through a maze. In: Proc. Internat. Sympos. Switching Theory. Vol. II. Harvard Univ.
Press 1959, pp. 285–292.

[11] Moore, E., Shannon, C., 1956. Reliable circuits using less reliable relays. J. Franklin Inst. 262 (3), 281–297.
[12] Paterson, M., 1975. Complexity of monotone networks for boolean matrix product. Theoret. Comput. Sci. 1 (1), 13–20.
[13] Potechin, A., 2010. Bounds on monotone switching networks for directed connectivity. In: 51th Ann. IEEE Symp. on

Foundations of Comput. Sci., FOCS. pp. 553–562.
[14] Pratt, V., 1975. The power of negative thinking in multiplying boolean matrices. SIAM J. Comput. 4 (3), 326–330.
[15] Schnitger, G., 1983. On depth-reduction and grates. In: Proc. of 24th IEEE Ann. Symp. on Foundations of Comput. Sci.

pp. 323–328.
[16] Warshall, S., 1962. A theorem on boolean matrices. J. ACM 9, 11–12.

8

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

