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Abstract

We study the problem of reconstructing a low-rank matrix, where the input is an n × m
matrix M over a field F and the goal is to reconstruct a (near-optimal) matrix M ′ that is low-
rank and close to M under some distance function ∆. Furthermore, the reconstruction must be
local, i.e., provides access to any desired entry of M ′ by reading only a few entries of the input
M (ideally, independent of the matrix dimensions n and m). Our formulation of this problem
is inspired by the local reconstruction framework of Saks and Seshadhri (SICOMP, 2010).

Our main result is a local reconstruction algorithm for the case where ∆ is the normalized
Hamming distance (between matrices). Given M that is ε-close to a matrix of rank d < 1/ε
(together with d and ε), this algorithm computes with high probability a rank-d matrix M ′ that
is O(

√
dε)-close to M . This is a local algorithm that proceeds in two phases. The preprocessing

phase reads only Õ(
√
d/ε3) random entries of M , and stores a small data structure. The query

phase deterministically outputs a desired entry M ′
i,j by reading only the data structure and 2d

additional entries of M .
We also consider local reconstruction in an easier setting, where the algorithm can read

an entire matrix column in a single operation. When ∆ is the normalized Hamming distance
between vectors, we derive an algorithm that runs in polynomial time by applying our main
result for matrix reconstruction. For comparison, when ∆ is the truncated Euclidean distance
and F = R, we analyze sampling algorithms by using statistical learning tools.

Key words: Sublinear-time algorithms, local reconstruction, low-rank matrix reconstruction,
matrix rigidity, subspace approximation.

1 Introduction

Suppose our input is a large data matrix M guaranteed to be decomposable as the sum

M = M̃ + S,

where M̃ is a low-rank matrix and S is a sparse matrix. A common question arising in many
application domains is whether M̃ can be recovered efficiently. This question actually has many
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variants — one has to specify the field used for operations (typically R), the way S is generated
to model noise (often in some random manner), and the output’s quality measure (e.g., exact
reconstruction of M̃). For example, major recent successes [CLMW11, CSPW11] in designing
robust versions of Principal Component Analysis considered the above question for real matrices,
assuming the singular vectors of M̃ are “well-spread”, and the nonzeros of S are located at random
entries (but can have arbitrary values), and their algorithms reconstruct M̃ exactly with high
probability.

We study this problem when the matrices are over a field F and the noise S is adversarial.
Under such weak conditions, the matrix M̃ need not be unique, and thus our goal is to reconstruct
some low-rank matrix M ′ that is close in Hamming distance to the input M , called henceforth
Matrix Reconstruction. Furthermore, our algorithm reconstructs M ′ in a local manner, i.e., every
desired entry of M ′ can be computed fast, meaning with runtime that is independent of the matrix
size, which in particular bounds the number of entries read from M (per entry of M ′). See more
in Section 1.1.

The above problem can be cast more generally as local reconstruction, a framework that was
introduced by Saks and Seshadhri [SS10], as follows. Suppose the input is a large dataset W that
ideally should satisfy some property P, but due to corruptions, W is only guaranteed to be close
to P. The goal is to find W ′ that is close to W and does have property P. Another instantiation
of this framework is Subspace Reconstruction, where the input is a set of vectors W ⊂ Fn that are
close (according to some distance) to some low-dimensional subspace, and the goal is to reconstruct
such a subspace in a local manner.

As an application of our main result for matrix reconstruction, we obtain an algorithm for
subspace reconstruction under Hamming distance between vectors (Section 1.2). The two problems
are similar except that in subspace reconstruction, the basic object is a vector, which can be viewed
as a whole column in a matrix. To further investigate the statistical aspects, we then study the
same subspace reconstruction problem but under Euclidean distance between real vectors, i.e.,
F = R (Section 1.4). This problem is known in the literature as Subspace Approximation, however
all previous work studied it in the offline model, in contrast to our interest in local algorithms.
We design local reconstruction algorithms by employing powerful statistical-learning machinery
like Rademacher complexity. These tools cannot be applied to Matrix Reconstruction, our main
problem, because they cannot handle the two-dimensional structure of matrices, in addition to
being ill-suited for finite fields and Hamming distance.

1.1 Matrix Reconstruction

For two matrices A and B of the same dimensions, let ∆(A,B) denote the normalized Hamming
distance between them. We say the matrices are ε-close if ∆(A,B) ≤ ε, and otherwise we say they
are ε-far. For what follows, we fix a field F. The choice of Hamming distance between matrices is
very natural when F is a finite field, but may also be relevant over the reals, e.g., to model faults
or corruptions.

In the Low-Rank Matrix Reconstruction problem, the input is a matrix M ∈ Fn×m together
with d ∈ N and ε > 0, with the guarantee that M is ε-close to some matrix M̃ of rank at most d.
The goal is to find (reconstruct) a matrix M ′ of rank at most d that is ε′-close to M , for ε′ as close
as possible to ε. As the above setup does not determine M̃ uniquely (e.g., modifying a row of M̃
changes its distance by 1/n), we define reconstruction as finding some matrix M ′ with guarantees
similar to M̃ .
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Suppose we want to provide direct access to any desired entry of M ′, without reading all of M
(analogously to local decoding, see e.g [GL89]). Specifically, how many queries to M are needed
to reconstruct a low-rank M ′ only in a single location? Can it depend only on d and ε (but not
on the matrix dimensions, n and m)? Formally, a reconstruction is called local if it consists of
the following two phases. In the preprocessing phase, the algorithm accesses a few entries of M
and creates a small data structure S. In the query phase, the algorithm is given (i, j) ∈ [n] × [m]
and has to output M ′i,j by using the data structure S and accessing a few more entries of M . We
insist that the query phase is deterministic and does not modify S, hence invoking it multiple times
would produce many entries of the same M ′. In particular, the low-rank matrix M ′ is determined
implicitly by the matrix M and the randomness of the preprocessing phase.1 We assume that a
single machine word can store either an index for a row/column or an element from the field F. We
suppress polylogarithmic factors by using the notation Õ(f) as a shorthand for f · (log f)O(1).

Definition 1.1 (Local Reconstruction). An algorithm whose input is M ∈ Fn×m together with
d ∈ N and ε > 0 is called an ε′-reconstructor (where ε′ is a function of ε and d), if:

1. its output is a matrix M ′ ∈ Fn×m of rank at most d; and

2. if M is ε-close to some M̃ of rank at most d, then Pr[∆(M,M ′) ≤ ε′] ≥ 2/3.

An ε′-reconstructor algorithm is called local with parameters qprep, tprep, s, qquery, tquery (which are
functions of ε and d) if it consists of two phases as above, where

3. the preprocessing phase runs in time tprep, accesses at most qprep entries of M , and creates a
data structure S of size s words; and

4. the query phase runs in time tquery and accesses at most qquery entries of M .

Theorem 1.2 (Main Theorem). For every field F there is a local O(
√
dε)-reconstructor with pa-

rameters qprep = Õ
(√

d
ε3

)
, tprep = Õ

(
1
ε

( (8e)2 ln2 d
dε

)d)
, s = O(d2), qquery = 2d and tquery = O(d2).

This theorem, which we prove in Section 3, is largely incomparable to prior work because our
setup is different. Our algorithm is local and thus its runtime for a single entry is independent
of the matrix-size parameters n and m, whereas all previous algorithms we are aware of (mostly
analysis of robust principle component, such as [CLMW11, CSPW11, XCM13]), require at least
time nm to read the entire input matrix.

Let us make a few remarks about our algorithm’s performance. First, its data structure S is
very small. The main reason is that it implicitly employs a factorization of the output matrix M ′ (of
rank at most d) as M ′ = ABC, where A ∈ Fn×d, B ∈ Fd×d, and C ∈ Fd×m. Second, the “closeness”
between the output M ′ and the input M is ε′ = O(

√
dε). We suspect the factor d is necessary

here, because our query phase uses just O(d) queries, in which case the probability that at least
one queried entry is “noisy” (i.e., where M and M̃ disagree) is about dε. Perhaps the square-root
operator could be avoided, and we in fact obtain such an improved bound ε′ = O(dε) when M is
Ω(1)-far from every rank d − 1 matrix. This last condition holds with high probability when M̃
is chosen uniformly at random from all matrices of rank at most d and ε is sufficiently small, see
Section 3.2. Third, achieving optimal reconstruction, i.e., ε′ = ε, is NP-hard even in the case d = 2.

1This is exactly the viewpoint taken by [SS10], in which the preprocessing only determines “seed” coins, and the
query phase does the rest of the work.
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More precisely, we sketch now a proof due to Feige (private communication), that computing for
an input matrix M , a matrix M ′ of rank at most d that minimizes ∆(M ′,M), is NP-hard even
when d = 2 and all computations are over F2. (The case d = 1 appears to be open, see [Des07,
Section 4.2].) The proof is by reduction from the problem Hypercube 2-Segmentation (H2S), in
which the input is vectors v1, . . . , vn ∈ {0, 1}d and the goal is find two “medians” c1, c2 ∈ {0, 1}d
that minimize 1

n

∑n
i=1 min{∆(vi, c1),∆(vi, c2)}; this problem is known to be NP-hard, see [Fei14].

Given such an H2S instance, construct the matrix M ∈ {0, 1}n×7d by letting each row i be the
respective vi followed by 6d ones. It can be verified that the optimal value of the H2S instance
{vi}i is equal to the optimal value of the matrix reconstruction instance M .2

Potential Applications. We provide two directions for potential applications of our main theo-
rem, in addition to the application to Subspace Reconstruction (in Section 1.2), which we already
mentioned.

• Storage Reduction: Low-rank matrices clearly admit a succinct representation. We can par-
tially extend this to matrices that are close to having a low rank, by applying our main
theorem to compute a succinct approximation to the matrix in polynomial time (when d and
1/ε are small enough).

• Sublinear-time graph algorithms: If the adjacency matrix of a graph G is close to having rank
d over F2, then our main theorem can be used to quickly approximate the adjacency matrix
by a matrix of rank d, which can actually be guaranteed to be symmetric. The latter matrix
represents a vertex-weighted graph U with 2d vertices, because such a matrix can have at
most 2d distinct rows and columns, and we can now apply on U algorithms that estimate
various graph quantities, which in turn approximate these quantities in the graph G, much
faster than applying it on G. This is a well-known approach that was used, for instance, to
approximate the maximum cut in a dense graph [FK99], although their results apply to every
graph (we assume the graph is close to low rank, which may lead to faster algorithms) and
uses the cut-norm distance between matrices (instead of Hamming).

Related Work. The Matrix Reconstruction and Subspace Reconstruction problems follow the
local reconstruction framework of Saks and Seshadhri [SS10], who studied monotonicity of functions
f : [n]d → R, and were inspired by (non-local) reconstruction of Ailon, Chazelle, Comandur and
Liu [ACCL08]. A similar model of “repair” was proposed independently by Austin and Tao [AT10]
in the context of hypergraphs.

The informal concept of approximating a matrix by a low-rank matrix is ubiquitous in the lit-
erature, and includes for example truncated Singular Value Decomposition (SVD), rigidity [Val77],
cut-matrices [FK99], and ε-rank [Alo09], see also [ALSV13] and references therein. However, these
often do not require the difference to be sparse.

2Given an optimal solution c1, c2 for the H2S instance, construct M ′ by taking M and replacing each vi (in row i)
with cj that attains min{∆(vi, c1),∆(vi, c2)}; then rank(M ′) ≤ 2. In the other direction, given optimal M ′, its rows
must come from a set of the form {0, v, w, v+w}. This M ′ must contain a row i∗ in which the “padding part” has at
least 5d ones, as otherwise ∆(M,M ′) > (6d− 5d)n/(7dn) = 1/7 and M ′ is suboptimal. It follows that in every row
of M ′, the “padding part” has at least 5d ones, as otherwise this row can be replaced with row i∗. Consequently, the
vector 0 does not appear in M ′, and moreover, at most two vectors from {v, w, v+w} can appear in M ′, as otherwise
some coordinate would show 1 + 1 = 1 (mod 2). Thus, M ′ has at most two distinct rows, and moreover “padding
part” must be all ones, giving rise to two medians c1, c2.
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1.2 Subspace Reconstruction under Hamming Distance

We now consider a different model, which actually demonstrates an application of Theorem 1.2.
For two vectors w,w′ ∈ Fn, let ∆(w,w′) be their normalized Hamming distance, and define distance
from w to a set A ⊂ Fn as ∆(w,A) := mina∈A ∆(w, a). (For simplicity, we assume the minimum is
well-defined, as everything can be carried out also with an infimum.)

In the Low-Dimensional Subspace Reconstruction problem, the input is a set of vectors W ⊂ Fn
together with d ∈ N and ε > 0, with the guarantee there is a d-dimensional subspace Ṽ for which

E
w∈W

[∆(w, Ṽ )] ≤ ε

(in other words, W is generated as an adversarial perturbation of some W̃ ⊂ Ṽ ). The goal is to
find a subspace V ′ of dimension d such that Ew∈W [∆(w, V ′)] ≤ ε′ for ε′ that is close to ε.

This Subspace Reconstruction problem is equivalent to Matrix Reconstruction (the problem
defined in Section 1.1), by simply writing the vectors of W as columns of a matrix M . However,
from the perspective of local algorithms, it is a different problem because the basic object (to read,
or to output) is now a whole vector rather than a scalar. Another, more subtle, difference is that
now the algorithm inherently involves manipulations of n-dimensional vectors, and the runtime
should preferably be polynomial in n. A more formal discussion follows.

As before, a local algorithm has two phases. In the preprocessing phase, it accesses a few vectors
from the input W and creates a small data structure S that determines the output V ′ (represented
by some basis of V ′). In the query phase, the algorithm is given one vector w ∈ W and has to
output a corresponding vector w′ ∈ V ′ by using S (without further access to W ). See Section 4 for
a formal definition.

Applying Theorem 1.2 immediately yields a subspace reconstructor with ε′ = O(
√
dε) that is

local, namely, its preprocessing phase queries qprep = Õ
(√

d/ε3
)

vectors from W , and the size of
its data structure is |S| = O(d2) words. We point out that this reconstructor is explicit, meaning
that the query phase’s runtime is polynomial in n, which in general is a rather non-trivial problem
(for example, when V ′ and w are given as input, it is NP-hard to find a vector of V ′ with minimum
Hamming distance to w). See Section 4.1 for the precise statement and full details.

1.3 Technical Contribution

To illustrate our technical contribution, consider first a particularly easy setting of the Subspace
Reconstruction problem, where (1 − ε)-fraction of the input W ⊂ Fn is contained in some d-
dimensional subspace Ṽ . Recall that the goal is to find a d′-dimensional subspace V ′ containing
at least (1 − ε′)-fraction of W , while reading only a few vectors of W . Standard arguments using
statistical learning (namely, the VC-dimension of all d-dimensional subspaces in Fn is d, see Sec-
tion 4.4) imply that O(d/ε2) random samples from W suffice (with high probability) to compute
a subspace V ′ of dimension d′ ≤ d achieving ε′ = O(ε). But a straightforward analysis shows that
even O(d/ε) queries suffice to achieve d′ ≤ d and ε′ = O(ε).

In the general setting, W ⊂ Fn is only close to a d-dimensional subspace Ṽ , i.e., Ew∈W ∆(w, Ṽ ) ≤
ε. Notice that when ∆ is the Hamming distance, this problem is no longer trivial (in particular,
standard statistical learning tools seem inadequate), and here our study branches into two separate
directions. One studies (Subspace Reconstruction) under non-Hamming distances, where statistical
learning tools such as VC-dimension and Rademacher complexity are effective, see Section 1.4 for
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more details. A second direction develops a specialized machinery to solve Matrix Reconstruction
under Hamming distance, as we explain next.

Our main result (for Matrix Reconstruction) relies on characterizing matrices of rank d in a
robust way, i.e., it extends to matrices that are ε-close to having rank d, yet it is based on small
random submatrices and is thus local. Specifically, we show that random sets of rows and columns,
R ⊂ [n], C ⊂ [m] of size poly(d/ε), typically contain subsets R̃ ⊂ R, C̃ ⊂ C, of size |R̃| = |C̃| ≤ d,
for which the matrix

M ′
def
= M[n],C̃(MR̃,C̃)−1MR̃,[m] (1)

satisfies ∆(M,M ′) ≤ O(
√
dε). Observe that R̃, C̃ implicitly determine a low-rank matrix M ′ that

approximates M .
The implementation of the local reconstruction algorithm now follows easily. The preprocessing

phase chooses random R and C, enumerates over all possible R̃ ⊂ R, C̃ ⊂ C, to find a choice that
satisfies (1) (by testing it in a few random entries), and then store in the data structure S these
R̃, C̃ and the corresponding submatrix (MR̃,C̃)−1. The query phase, when asked for entry (i, j),

returns Mi,C̃(MR̃,C̃)−1MR̃,j , while reading from M only |R̃|+ |C̃| entries.

1.4 Subspace Reconstruction for Real Spaces

Subspace Reconstruction is appealing also under distance functions ∆ other than Hamming dis-
tance. (It is easy to verify that that the problem is well-defined under any metric space (Fn,∆),
and even the square of a metric.) Our main motivation to study other distances is to compare their
performance, which can potentially lead to new techniques or directions. In addition, Euclidean
and squared-Euclidean distances may be related to methods used in practice, such as Singular
Value Decomposition.

Euclidean-like distances. We first restrict attention to distances on Rn that are invariant un-
der unitary transformations of Rn, and where all distances are bounded by 1, referring to these
as invariant and bounded metrics, respectively. Primary examples are the truncated Euclidean
distance

min{‖w − w′‖2, 1},

the Gaussian kernel 1− e−‖w−w′‖2 , and the Laplacian kernel 1− e−‖w−w′‖.
Our results in this context analyze sampling, which is a key aspect of the preprocessing phase,

and show how effective is it to solve the problem on a (small) subset S chosen at random from the
large input W . These results are information-theoretic; they analyze every possible algorithm that
may be applied on S, without proposing any specific one. In statistical learning, such results are
called generalization bounds, and indeed our proofs boil down to standard machinery like analyzing
Rademacher complexity, see Section 4 for details.

Theorem 1.3. Let ∆bi be a metric on Rn that is bounded and invariant. Suppose W ⊂ Rn is finite
and admits a d-dimensional subspace Ṽ ⊂ Rn such that Ew∈W ∆bi(w, Ṽ ) = ε. Let S be a sample
of k ≥ d2 vectors, each drawn independently and uniformly from W . Then for every δ > 0, with
probability at least 1− δ (over the sample S), for every subspace V ′ ⊂ Rn, dim(V ′) ≤ k,

E
w∈W

[∆bi(w, V ′)] ≤ 2ε+ E
w∈S

[∆bi(w, V ′)] + 2

√
2d2 log(ek/d2)

k
+

√
log(2/δ)

2k
.
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One immediate consequence of Theorem 1.3 is a very simple bicriteria-approximation algo-
rithm, as follows. The preprocessing phase just picks a sample S by choosing independently at
random k = O((dε )

2 log 1
ε ) vectors from W , and outputs V ′ = span(S). Its dimension is clearly

at most k (which exceeds d), and by the theorem, with probability at least (say) 3/4, we have
ε′ = Ew∈W [∆bi(w, V ′)] ≤ 3ε. The query phase reports the orthogonal projection of any w onto this
V ′, yielding a reconstructor that is clearly local and explicit.

Another natural choice for V ′ is to be a d-dimensional space that minimizes Ew∈S [∆bi(w, V ′)].
In this case, Ew∈S [∆bi(w, V ′)] ≤ Ew∈S [∆bi(w, Ṽ )] and we can further use Hoeffding’s inequality
to bound the righthand-side, because its expectation (over S) is exactly ES [Ew∈S [∆bi(w, Ṽ )]] =
Ew∈W [∆bi(w, Ṽ )] = ε, and it is the average of iid bounded terms (because ∆bi is bounded). Com-
bining this with Theorem 1.3 and setting k as above would yield a true (not bicriteria) approxima-
tion, however, finding a minimizer V ′ might be computationally nontrivial, which motivates us to
study squared Euclidean distances, as follows.

Squared Euclidean distance. In the non-metric but important case of squared Euclidean dis-
tance, we design a local reconstructor with ε′ = O(

√
ε), under the assumption maxw∈W ‖w‖2 ≤ 1.

This is a variant of Theorem 1.3, as stated below. For a vector x ∈ Rn, a subspace V ⊂ Rn, and

p > 0, let us define `p2(x, V )
def
= minv∈V ‖x− v‖p2.

Theorem 1.4. Suppose a finite W ⊂ {x ∈ Rn : ‖x‖2 ≤ 1} admits a d-dimensional subspace Ṽ ⊂ Rn
such that Ew∈W [`22(w, Ṽ )] = ε. Let S be a sample of k ≥ d2 vectors, each drawn independently and
uniformly from W . Then for every δ > 0, with probability at least 1 − δ (over the sample S), for
every subspace V ′ ⊂ Rn, dim(V ′) ≤ k,

E
w∈W

[`22(w, V ′)] ≤ 8
√
ε+ E

w∈S
[`22(w, V ′)] + 2

√
2d2 log(ek/d2)

k
+

√
log(2/δ)

2k
.

One immediate application of the theorem is a straightforward sampling argument to speed up
the computation of truncated SVD of W . Specifically, let the sample S have size k = O(d

2

ε log 1
ε ),

and compute truncated SVD for S (instead of for W ). Then the output d-dimensional subspace

V ′ minimizes ε′S
def
= Ew∈S [`22(w, V ′)], which we can bound using Hoeffding’s inequality. Indeed, ε′S

is the average of iid terms, each bounded by `22(w, Ṽ ) ≤ ‖w‖22 ≤ 1, and has expectation ES [ε′S ] ≤

ES [Ew∈S [`22(w, Ṽ )]] = ε, thus, with probability at least (say) 1 − δ, we have ε′S ≤ ε +

√
2 ln(1/δ)

k .

Combined this with the theorem, with probability at least 1 − 2δ we have Ew∈W [`22(w, V ′)] ≤
O(
√
ε) + 2

√
log(2/δ)

k .

Related Work. A related problem is Subspace Approximation, defined as follows for a parameter
p > 0: Given a set W ⊂ Rn and some d > 0, find a d-dimensional subspace V ∗ ⊂ Rn that minimizes
Ew∈W [`p2(V ∗, w)]. In the special case p = 2 one can just use truncated SVD, and the case of general
p was studied e.g. in [Cla05, SV07, DV07, DTV11] (see also [HP06] for an even more Lp-fitting
problem). These results address the optimization problem of computing a subspace, while our result
for Subspace Reconstruction under a bounded invariant metric focuses on sampling, completely
avoiding the optimization problem. Another difference is that our results require the distances to
be invariant (rather than restricted to Euclidean powers) and also bounded.
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For squared-Euclidean distances, i.e., p = 2, the sampling approach was previously studied
in [FKV04, Theorem 2] and [DKM06, Theorem 4]. Their analysis is optimized to sampling vectors
from W non-uniformly (proportionally to their squared-length), and the result of applying it to
uniform sampling is incomparable to ours.

1.5 Relation To Property Testing

A related problem, called low-rank testing, is to distinguish whether an input matrix M has rank
at most d or is ε-far from all such matrices (here d and ε could be either fixed parameters or part
of the input). This problem was introduced in [KS03], who showed a testing algorithm that reads
a random submatrix of size O(d/ε) × O(d/ε), and the query complexity was improved to O(d2/ε)
in [LWW14] using an adaptive testing algorithm. The key lemma in [KS03] shows that if most
submatrices of M of size O(d/ε)×O(d/ε) have rank at most d, then M itself is ε-close to a rank-d
matrix. Our main result deals with a different regime, where M is guaranteed to be ε-close to a
low-rank matrix, and the goal is to locally reconstruct such a low-rank matrix. To this end, we
show that a typical random submatrix of size O(d/ε)×O(d/ε) suffices not just to learn about the
distance to a low-rank matrix, but rather almost determines a low-rank approximation of M , as
explained in Section 1.3.

One of the results in [DDG+15] analyzes the following algorithm for testing if a matrix has rank
at most 1: pick a 2× 2 submatrix of M and accept iff its rank is at most 1. They show that if M is
ε-far from every rank-1 matrix then the test rejects with probability at least ε; this is an oblivious
tester, i.e., the number of queries does not depend on ε. Using similar (but simpler) ideas to our
local reconstruction, we can extend that oblivious tester to any rank d. Specifically, the tester picks
a random (d + 1) × (d + 1) submatrix of M and accepts iff its rank is at most d. We can show
that if M is ε-far from every matrix of rank at most d, the test rejects with probability at least εd.
Details omitted.

2 Preliminaries

Let M ∈ Fn×m be a matrix over a field F. For S ⊂ [n], T ⊂ [m], we denote by MS,T the submatrix
of M confined to the rows S and columns T . For instance, we denote by MS,[n] (M[m],T ) the S-rows
(T -columns) of M . For a row i ∈ [n] (column j ∈ [m]) we denote by Mi,[m] (M[n],j) the i-th row
(j-th column) of M .

Recall that rank(M) is the dimension of M ’s columns space. For d, n,m ∈ N we denote

rank
n,m

(d) := {M ∈ Fn×m | rank(M) ≤ d},

and omit n,m whenever they are clear from the context.

Definition 2.1. Let F be a field, and let d, n,m ∈ N. We say that a matrix M ∈ Fn×m is ε-close
to rank(d) if there exists a matrix M̃ ∈ rankn,m(d), satisfying ∆(M̃,M) ≤ ε. Otherwise, we say
that M is ε-far from rank(d).
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3 Local Reconstruction of Low-Rank Matrices

3.1 Reconstruction from Adversarial Noise

In this section we prove our main result, Theorem 1.2, restated below.

Theorem 1.2 (Main Theorem). For every field F there is a local O(
√
dε)-reconstructor with pa-

rameters qprep = Õ
(√

d
ε3

)
, tprep = Õ

(
1
ε

( (8e)2 ln2 d
dε

)d)
, s = O(d2), qquery = 2d and tquery = O(d2).

Perhaps surprisingly, the proof of this theorem evolves from the following easy fact about
matrices of rank d (for completeness, we provide its proof in Appendix A). More precisely, the key
technical step in our proof is Lemma 3.3, which can be viewed as a “robust” version of the following
fact.

Fact 3.1. Let M ∈ Fn×m, and let R ⊂ [n], C ⊂ [m] be of size |R| = |C| = rank(M). If MR,C is
invertible,3 then

∀(i, j) ∈ [n]× [m], Mi,j = Mi,C (MR,C)−1MR,j .

This fact motivates the following definition.

Definition 3.2. Let R ⊂ [n], C ⊂ [m] be of size d ≥ 1. We say that the pair (R,C) is an ε-core of
M ∈ Fn×m if MR,C is invertible and

Pr
(i,j)

[Mi,j = Mi,C(MR,C)−1MR,j ] ≥ 1− ε.

In the case d = 0, we say that (R,C) = (∅, ∅) is an ε-core of M if

Pr
(i,j)

[Mi,j = 0] ≥ 1− ε.

For every M that is ε-close to rank(d), by Fact 3.1 there exists a pair (R,C) that is an ε-core
of M . Our key step, stated in Lemma 3.3, finds an ε′-core efficiently, i.e., the number of queries
depends only on d and ε.

Once we find (R,C) that constitutes an ε′-core of M , the preprocessing and the query phases can
be implemented as follows. The preprocessing phase stores R,C and (MR,C)−1 in the data structure
S. In the query phase, when a query (i, j) is given, the algorithm returns Mi,C(MR,C)−1MR,j ,
which requires access to only |R|+ |C| entries of M . This algorithm clearly provides direct access
to M ′ ∈ rank(d), and it remains to show that with high probability M ′ is ε′-close to M . A full
description of the reconstructor algorithm and its analysis appears in Section 3.1.1. First we prove
our main lemma.

Lemma 3.3 (Main Lemma). Let M ∈ Fn×m be ε-close to rank(d) with εd < 1
324 . Then for

ε′ = 18
√
dε,

Pr
R⊂[n],C⊂[m],

|R|=|C|=8
√
d/ε ln d

[
∃R̃ ⊂ R, C̃ ⊂ C, s.t. |R̃| = |C̃| ≤ d and (R̃, C̃) is ε′-core of M

]
≥ 11/12.

3Clearly, there always exist R ⊂ [n], C ⊂ [m] of size |R| = |C| = rank(M) such that MR,C is invertible.
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Proof. Let M̃ ∈ rank(d) be a matrix that is ε-close toM . A row r is called noisy if ∆(Mr,[m], M̃r,[m]) ≥
8
√
ε/d and similarly for a column. We need the following claim, which we shall prove soon.

Claim 3.4. Let M ∈ Fn×m be ε-close to M̃ where rank(M̃) = d and let R̃ ⊂ R, C̃ ⊂ C be each of
size t. The pair (R̃, C̃) is called a super-core if

• (R̃, C̃) is
√
dε-core of M̃ ;

• MR̃,C̃ = M̃R̃,C̃ ; and

• each r ∈ R̃, c ∈ C̃ is non-noisy.

Then

Pr
R,C: |R|=|C|=8

√
d/ε ln d

[
∃R̃ ⊂ R, C̃ ⊂ C such that (R̃, C̃) is a super-core

]
≥ 11/12.

To use the claim, it suffices to show that every super-core (R̃, C̃) is a ε′-core for M . To see this,
fix such R̃, C̃ and let M ′ defined by M ′i,j = Mi,C̃(M̃R̃,C̃)−1MR̃,j . Let us show that ∆(M,M ′) < ε′.

Indeed, since R̃, C̃ constitutes a
√
dε-core for M̃

Pr
(i,j)

[M̃i,j 6= M̃i,C̃(M̃R̃,C̃)−1M̃R̃,j ] <
√
dε.

Next, since every r ∈ R̃ and c ∈ C̃ is non-noisy, by straightforward union bound,

Pr
(i,j)

[
Mi,C̃ 6= M̃i,C̃ and MR̃,j 6= M̃R̃,j

]
< (|R̃|+ |C̃|) · 8

√
ε/d ≤ 16

√
dε.

When these two event do not occur M̃i,j = M ′i,j , and we thus have ∆(M ′, M̃) < 17
√
dε.

Recalling that Pr(i,j)[Mi,j 6= M̃i,j ] = ∆(M,M̃) < ε, we get by a union bound that ∆(M,M ′) <

18
√
dε, which proves Lemma 3.3.

Proof of Claim 3.4. Let M̃ ∈ rank(d) be a matrix that is ε-close to M . We shall consider the
random choice of R,C as if it is done in d steps, adding at each step 8 ln d/

√
ε rows and columns

(respectively).
If M̃ is

√
dε-close to the 0-matrix, then the claim trivially holds with R̃ = C̃ = ∅. Otherwise,

with probability at least
√
dε over the choice of (i, j) it holds that rank(M̃i,j) = 1. Next observe that

by averaging the fraction of noisy rows (and similarly columns) is bounded by
√
dε/8. Furthermore,

the probability that Mi,j 6= M̃i,j is bounded by ε. Overall, using a union bound, all three events,
namely rank(M̃i,j) = 1, both the i-th row and the j-th column are non-noisy, and Mi,j = M̃i,j ,
happen with probability at least

√
dε−2

√
dε/8−ε ≥

√
dε/2. Therefore, a pair (R1, C1) of cardinality

|R1| = |C1| = 8 ln(d)/
√
dε contains (i, j) such that rank(M̃i,j) = 1, both i and j are non-noisy and

Mi,j = M̃i,j with probability at least 1− (1−
√
dε/2)8 ln d/

√
dε ≥ 1− e−4 ln d ≥ 1− e−3

d ≥ 1− 1
6d .

Assuming that happens, choose such a pair (i, j) and let R̃ = {i}, C̃ = {j}. If (R̃, C̃) is now
an
√
dε-core of M̃ then (R1, C1) is a super-core and the claim holds. Otherwise, with probability

at least
√
dε over i ∈ [n] \ R̃, j ∈ [m] \ C̃, it holds that rank(M̃R̃∪{i},C̃∪{j}) = 2. The probability

that both the i-th row and the j-th column are non-noisy is at least 1 −
√
dε/4. The probability

that Mi,C̃ = M̃i,C̃ , MR̃,j = M̃R̃,,j and Mi,j = M̃i,j is at least 1 − 3ε ≥ 1 −
√
dε/4. Therefore, for
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a random set (R2, C2) of cardinality |R2| = |C2| = 8 ln d/
√
dε, with probability at least 1− 1

6d the

following holds: (R1 ∪ R2, C1 ∪ C2) contains a pair (i, j) such that rank(M̃R̃∪{i},C̃∪{j}) = 2 both i

and j are non-noisy, and further Mi,C̃ = M̃i,C̃ , MR̃,j = M̃R̃,,j and Mi,j = M̃i,j . Assume that this

event happens, let (i, j) be such a pair, and set R̃ = R̃ ∪ {i}, C̃ = C̃ ∪ {j}.
If (R̃, C̃) is now a

√
dε-core of M̃ then (R̃, C̃) is a super-core and the claim holds. Otherwise,

we proceed to pick (R3, C3) and so on. In each step t < rank(M̃), there are two possible cases.
In the first case, (R1 ∪ . . . ∪ Rt−1, C1 ∪ . . . ∪ Ct−1) contains a super-core with probability 1 − 1

6d

(conditioned on previous steps). In the second case, with probability at least
√
dε/4 we can enlarge

R̃, C̃ to size t such that rank(M̃R̃,C̃) = t and in addition both the new row and column are non-noisy

and MR̃,C̃ = M̃R̃,C̃ .

At step t = rank(M̃) + 1 (if reached), with probability at least 1 − 1
6d (conditioned on success

of previous steps) we have that (R1 ∪ . . . ∪ Rt, C1 ∪ . . . ∪ Ct) contains R̃, C̃ with rank(M̃R̃,C̃) = d

and in addition both the new row and column are non-noisy and MR̃,C̃ = M̃R̃,C̃ . In this step we

cannot find i, j such rank(M̃R̃∪{i},C̃∪{j}) = d + 1. Nevertheless, by Fact 3.1, such a pair (R̃, C̃)

constitutes a 0-core, and certainly (R̃, C̃) is a super-core. The success probability over all steps is
at least (1− 1

6d)d ≥ 5
6 , and the claim follows.

In what follows we show that if M aside of being ε-close to rank(d) is also far from rank(d−1),
then a typical choice of Õ(dδε ) rows and column would contain an O(dε)-core, compared to O(

√
dε)

as in Claim 3.4. This in turn will be utilized for better reconstruction algorithm from random
matrices, see details in Section 3.2.

Claim 3.5. Let M ∈ Fn×m be ε-close to M̃ ∈ rank(d) and δ-far from rank(d − 1) where δ >
max{1/

√
ε, 8dε} and let R̃ ⊂ [n], C̃ ⊂ [m] be each of size t. The pair (R̃, C̃) is called a super-core if

• (R̃, C̃) is ε/δ-core of M̃ ;

• MR̃,C̃ = M̃R̃,C̃ ; and

• each r ∈ R̃ is non-noisy i.e., ∆(Mr,[m], M̃r,[m]) < 8ε/δ and similarly each c ∈ C̃.

Then for random R,C of size 8dδ ln d
ε

Pr
R,C

[ ∃R̃ ⊂ R, C̃ ⊂ C such that (R̃, C̃) is a super-core] ≥ 11/12.

Proof Sketch of Claim 3.5. Let M̃ ∈ rank(d) be a matrix that is ε-close to M , since M is δ-far from
rank(d − 1), then by the triangle inequality M̃ is δ − ε ≥ ε/2-far from rank(d − 1). As in the
proof of Claim 3.4 we shall consider the random choice of R,C as if it is done in d steps, adding at
each step 8 log dδ/ε rows and columns (respectively).

The key idea is that on each step t < d, with probability at least δ/2 we can enlarge R̃, C̃
such that rank(M̃R̃,C̃) = t and in addition both the new row and column are non-noisy and i, j are

such that Mi,C̃ = M̃i,C̃ and MR̃,j = M̃R̃,j (provided that (2t− 1)ε < δ/4). Therefore, by the same
reasoning applied in the proof of Claim 3.4, we can conclude the proof, we omit the details.

11



3.1.1 Proof of the main theorem

We can now prove Theorem 1.2. Let us first introduce the preprocessing and the query phases
of reconstruction algorithm. As mentioned earlier, our data structure S will consist of subsets
R̃ ⊂ [n], C̃ ⊂ [m] and a matrix A.

Algorithm 1 Preprocessing Algorithm

Input: M ∈ Fn×m (via direct access), d ∈ N and ε > 0.
Output: subsets R̃ ⊂ [n], C̃ ⊂ [m] of the same size ` ≤ d, and a matrix A ∈ F`×`.

1: ε′ = 36
√
dε

2: t = c
ε ln

(
ln d
dε

)
for suitable constant c > 0 {thus t = Õ(1

ε )}
3: pick T ⊂ [n]× [m] by drawing t pairs independently uniformly at random
4: if Pr(i,j)∈T [Mi,j = 0] ≥ 1− ε′ then
5: return R = C = ∅ and an empty matrix A

6: pick random R ⊂ [n], C ⊂ [m] of size |R| = |C| = 8
√

d
ε ln d

7: for ` = 1, . . . , d do
8: for all R̃ ⊂ R, C̃ ⊂ C of size ` do
9: if rank(MR̃,C̃) = ` and Pr(i,j)∈T [Mi,j = Mi,C̃ · (MR̃,C̃)−1 ·MR̃,j ] > 1− ε′ then

10: return (R̃, C̃) and MR̃,C̃

Algorithm 2 Query Phase Algorithm

Input: location (i, j) ∈ [n]× [m], matrix M ∈ Fn×m (via direct access), subsets R̃ ⊂ [n], C̃ ⊂ [m]
each of size ` ≤ d and a matrix A ∈ F`×`.
Output: M ′i,j .

1: return M ′i,j = Mi,C̃AMR̃,j

The next two lemmas, proved further below, analyze the effect of the random sample T in
Algorithm 1.

Lemma 3.6 (Completeness). With probability at least 5/6 over R, C and T , Algorithm 1 enumer-
ates over some R̃, C̃ that satisfy the condition in Step 9.

Lemma 3.7 (Soundness). With probability at least 5/6 over R, C and T , every choice in Algo-
rithm 1 of R̃, and C̃, that satisfies the condition in Step 9, satisfies also

Pr
(i,j)∈[n]×[m]

[Mi,j = Mi,C̃ · (MR̃,C̃)−1 ·MR̃,j ] ≥ 1− 2ε′.

Let us use these two lemmas to complete the proof of Theorem 1.2. These lemmas clearly show
that Algorithms 1 and 2 constitute a 2ε′-reconstructor. It is then immediate that the reconstructor is

local, and its parameters are (qprep, tprep, s, qquery, tquery) as follows. Clearly, tprep = O(d
(8√d/ε ln d

d

)2
·

td2) = Õ((8e ln d√
dε

)2dε−1), s = d2 + 2d, qquery = 2d and tquery = O(d2), and it thus remains to bound

qprep. Observe that for every (i, j) ∈ T and every choice of R̃, C̃ we use the entries Mi,j , MR̃,j , Mi,C̃
andMR̃,C̃ . We only need to queryM in the entries {Mi,j}(i,j)∈T , {Mi,C}i|∃j,(i,j)∈T , {MR, j}j|∃i(i,j)∈T ,
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and MR,C and therefore qprep = t(|C|+ |R|+ 1) + |R| · |C| = O(t · |R|) = O

(√
d
ε ln d · 1

ε ln( ln d
dε )

)
=

Õ

(√
d
ε3

)
. This proves Theorem 1.2, and it remains to prove the two lemmas.

Proof of Lemma 3.6. By Lemma 3.3, for a random choice of R,C with probability at least 11/12,
there exists R̃ ⊂ R, C̃ ⊂ C such that (R̃, C̃) is 18

√
dε-core of M . In such a case

Pr
(i,j)∈[n]×[m]

[Mi,j = Mi,C̃ · (MR̃,C̃)−1 ·MR̃,j ] ≥ 1− 18
√
dε = 1− ε′/2.

Fix this choice of R̃, and C̃. Since T is a random sample from [n]× [m],

E
T

[
Pr

(i,j)∈T
[Mi,j = Mi,C̃ · (MR̃,C̃)−1 ·MR̃,j ]

]
= Pr

(i,j)∈[n]×[m]
[Mi,j = Mi,C̃ · (MR̃,C̃)−1 ·MR̃,j ],

and now applying Höeffding bound, the event of additive deviation by ε′/2, namely,

Pr
(i,j)∈T

[Mi,j = Mi,C̃ · (MR̃,C̃)−1 ·MR̃,j ] < 1− ε′,

occurs with probability (over the choice of T ) at most e−Ω(t(ε′)2) < 1/12, for a suitable t = Ω(1/ε′2).
The claim follows.

Proof of Lemma 3.7. Similarly to Lemma 3.6, for every R̃ and C̃, the probability (over T ) that∣∣∣∣ Pr
(i,j)∈T

[Mi,j = Mi,C̃ · (MR̃,C̃)−1 ·MR̃,j ]− Pr
(i,j)∈[n]×[m]

[Mi,j = Mi,C̃ · (MR̃,C̃)−1 ·MR̃,j ]

∣∣∣∣ > ε′ (2)

is at most e−Ω(t(ε′)2) = e−Ω(tdε).

Observe that Algorithm 1 enumerates over
∑d

i=1

(8√d/ε ln d
i

)2
≤ d(8e ln d√

dε
)2d = eO(d ln( ln d

dε
)) values

for R̃ and C̃. The lemma follows by applying a union bound on all these values, using our choice
of t.

3.2 Reconstruction from Random Matrices

So far we have dealt with the reconstruction task under a worst case assumption, i.e., we only
assumed that M̃ is of low rank. Can we do better when M̃ is a random low rank matrix? Turns
out that in this case, with high probability we can do better.

Let M = M̃ +N be obtained by first picking a matrix M̃ (uniformly at random from rank(d))
and then adding some sparse matrix N i.e. ∆(N,0) < ε, where N is adversarially chosen posterior
of the choice of M̃ . The crucial observation is that with high probability M̃ is δ-far from any matrix
of rank(d− 1) (where δ > 0 is some absolute constant), yielding that M is ε-close to rank(d) but
(δ − ε)-far from rank(d− 1).

We now show that under the stronger assumption that M is ε-close to rank(d) but δ-far from
rank(d − 1), and ε � δ2, there exists a local reconstruction with much better parameters. In
particular ε′ = O(dε/δ) compared to O(d

√
ε) in Theorem 1.2.
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Theorem 3.8. Let F be a field. Let M ∈ Fn×m be ε-close to rank(d) and δ-far from rank(d−1),
where δ > max{1/

√
ε, 8dε}. Then there exists a local reconstructor for M with parameters ε′ =

O(dε/δ), qprep = Õ
(
δd2

ε3

)
, tprep = Õ((8δ ln d

ε )d), s = O(d2), qquery = 2d, and tquery = O(d2).

The proof is similar to the proof of Theorem 1.2 in Section 3.1.1. However, it uses Claim 3.5
instead of Claim 3.4. In particular we have to modify Algorithm 1 line 2 so that t = d

ε2
ln
(

8dδ ln d
ε

)
and line 6 so that |R| = |C| = 8dδ ln d

ε to get the parameters stated in Theorem 3.8.

4 Subspace Reconstruction

In this section, we study the Subspace Reconstruction problem, starting with a formal definition
of the problem. We then show (in Section 4.1) that under Hamming distance, we can solve this
problem as an immediate application of our Matrix Reconstruction result (Theorem 1.2).

We then study this problem for real spaces, where distances are Euclidean or similar. We start
by presenting some tools from statistical learning, like Rademacher complexity, VC-dimension and
generalization bounds, and then prove Theorems 1.3 and 1.4.

Definition 4.1. An algorithm whose input is a list w1, . . . , wm ⊂ Fn together with d ∈ N and ε > 0
is called an ε′-subspace reconstructor (where ε′ is a function of ε and d) if:

1. its output is a subspace V ′ of dimension at most d; and

2. if Ei∈[m][∆(wi, Ṽ )] ≤ ε for some subspace Ṽ of dimension at most d, then with probability at
least 2/3 we have Ei∈[m] ∆(wi, V

′) ≤ ε′.

An ε′-subspace reconstructor is called local with parameters qprep, tprep, s, tquery (which are functions
of ε and d) if it consists of two phases as above, where:

3. the preprocessing phase runs in time tprep and accesses at most qprep input vectors, and creates
a data structure S of size s words; and

4. the query phase runs in time tquery.

Such a local reconstructor is called explicit if tquery is polynomial in n.

4.1 Subspace Reconstruction under Hamming Distance

Observe that given a local matrix reconstructor we can easily design a local subspace reconstructor,
which has the same preprocessing phase (except that we now query whole vectors) and whose
query algorithm executes, for each entry in the desired column, the matrix reconstructor’s query
algorithm. Thus, Theorem 1.2 immediately implies the following result for subspace reconstruction.

Theorem 4.2. For every field F there is an O(
√
dε)-subspace reconstructor (with respect to Ham-

ming distance) with parameters qprep = Õ

(√
d
ε3

)
, tprep = Õ

(
1
ε (

(8e)2 ln2 d
dε )d

)
, s = O(d2), and

tquery = O(d2n).
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4.2 Generalization Bounds

For introduction to this subject we refer the reader to Chapter 3 in [MRT12].
Let D be a distribution over a domain Z, usually the uniform distribution, and let Dk be

the distribution of picking k elements from D independently. Let H be a set of subsets of Z,
we say H is an hypothesis set, (we deal with subsets, rather than a more general setting, to
allow a more pleasant treatment of the VC-dimension definition, see Section 4.4). For h ∈ H let
gh : z ∈ Z → [0, 1] be a loss function, we say g = {gh|h ∈ H} is the class of loss functions associated
with H. Let E [h, g] = Ez∼D [gh (z)] be the average loss of hypothesis h with respect to the loss
function class g and let ÊS [h, g] = Es∈RS [gh (s)] be similarly the empirical loss on the sample
S ⊂ Z . Define

Φ (H, g, Z, S) = sup
h∈H

(
E [h, g]− ÊS [h, g]

)
.

The following theorem can be derived from the proof of Theorem 3.1 in [MRT12].

Theorem 4.3. Let H be a hypothesis set and g be a class of loss functions. Then, for any δ > 0,
with probability 1− δ over a sample S of k elements from D,

∀h ∈ H, E [h, g] ≤ ÊS [h, g] + E
S′∼Dk

[
Φ
(
H, g, Z, S′

)]
+

√
log 2

δ

2k
.

4.3 Rademacher Complexity

The Rademacher complexity captures the richness of a family of hypothesis functions by measuring
the degree to which a hypothesis set can fit random noise. The following states the formal settings
and definitions of the empirical Rademacher complexity.

Let D be a distribution over a domain Z. Let H be a family of hypothesis functions, and
for each h ∈ H let gh : Z → [0, 1] denote the loss of hypothesis h on the element z ∈ Z. Let
g = {gh|h ∈ H}be a class of loss functions.

Let S = (s1, . . . , sk) be a fixed sample of size k from D.

Definition 4.4. The empirical Rademacher complexity4 of H with respect to the sample S is
defined as

R̂S(H, g) = E
σ∈{−1,1}k

[
sup
h∈H

1

k

k∑
i=1

σigh(si)

]
.

Definition 4.5. For any integer k ≥ 1, the order k Rademacher complexity of H is the expectation
of the empirical Rademacher complexity over all samples of size k drawn according to D:

Rk(H, g) = E
S∼Dk

[R̂S(H, g)].

The following inequality is used to derive a generalization bound when the hypothesis set, (and
the corresponding loss function) has a small Rademacher complexity (the proof of this inequality
can be easily derived from the proof of Theorem 4.7 in [MRT12]).

Theorem 4.6.
E

S∼Dk
[Φ (H, g, Z, S)] ≤ 2Rk(H, g).

4Here we use a definition with both loss function and hypothesis sets in order to make our arguments more clear.
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The following generalization bound is an immediate corollary of Theorem 4.3 and Theorem 4.6.

Theorem 4.7. Let H be a family of hypothesis sets and g be a class of loss function. Then, for
any δ > 0, with probability 1− δ over a sample S of k elements from D,

∀h ∈ H, E [h, g] ≤ ÊS [h, g] + 2RS(H, g) +

√
log 2

δ

2k
.

4.4 VC-dimension

In this section we define the VC-dimension, which intuitively captures the richness of a hypothesis
set. We note that the VC-dimension is affected only by the hypothesis set and not by any loss
function class associated with it or by the distribution of sample points.

Definition 4.8. Given a set S ⊂ Z we say h ∈ H separates A ⊆ S if h ∩ S = A. A hypothesis set
shatters a set S if for every A ⊆ S there exists h ∈ H such that h separates A.

Definition 4.9. The VC-dimension of a hypothesis set H is the size of the largest set that can be
shattered by H.

The following theorem can be found in [MRT12].

Theorem 4.10. Let H be a hypothesis set with VC-dimension d. For all k ≥ 1,

Rk
(
H, {1h}h∈H

)
≤

√
2d log ek

d

k
.

For the rest of this section assume Z = Fn, where F is an arbitrary field. We also define the
hypothesis set of d-dimensional subspaces.

Definition 4.11. Vd = {v|v is a d-dimensional subspace of Fn} .

Theorem 4.12. The VC-dimension of Vd is d.

Proof. To see that the VC-dimension of Vd is at least d let S be an independent set of d vectors in
Fn. For every A ⊆ S we can separate A with span (A), which is of dimension at most d. It follows
that an independent set of d vectors in Fn is shattered by Vd.

Now we show that the VC-dimension of Vd is at most d. Assume by contradiction that there
exists a set S of cardinality larger than d that is shattered by Vd. If dim (S) > d then no v ∈ Vd can
separate all of S, i.e., S ⊆ v as otherwise dim (v) ≥ dim (S) > d. Thus assume dim (S) ≤ d < |S|.
Hence there exists a set of points A ⊂ S and a point p′ ∈ S\A such that p′ ∈ span (A). But then for
any v ∈ Vd if A ⊆ v then also p′ ∈ v, this means that A cannot be separated, a contradiction.

4.5 Proof of Theorem 1.3

Let W = {w1, w2, ..., wm},∆, ε be as in Theorem 1.3. Let ṽ be a subspace that attains

ε = min
v:dim(v)=d

E
i∈[m]

[∆(wi,v)] .

Define W̃ = {w̃1, w̃2, ..., w̃m} to be such that w̃i ∈ ṽ is the closest vector to wi, under distance ∆.

16



Theorem 4.13. [Restatement of Theorem 1.3]. For any δ > 0, with probability 1−δ (for a random
set S of k samples from [m], where each sample is drawn independently and uniformly), for every
k-dimensional subspace v of Rn,

E
i∈[m]

[∆ (wi, v)] ≤ E
i∈S

[∆ (wi, v)] + 2

√
2d2 log ek

d2

k
+ 2ε+

√
log 2

δ

2k
.

Proof of Theorem 4.13. Denote WS = {wi : i ∈ S} and W̃S = {w̃i : i ∈ S}, and recall Defini-
tion 4.11. In order to use the generalization bounds presented above in Theorem 4.3, we bound
ES [Φ (Vd′ ,∆,W,WS)]. In order to do so we first present a series of claims. The first claim shows,
roughly speaking, that we can analyze as if the sampled points were from W̃ rather than from W .

Claim 4.14. ES [Φ (Vd′ ,∆,W,WS)] ≤ ES
[
Φ
(
Vd′ ,∆, W̃ , W̃S

)]
+ 2ε.

Proof. Fix S. Then by the triangle inequality,

Φ (Vd′ ,∆,W,WS) = sup
v∈Vd′

(
E [∆(wi,v)]− ÊS [∆(wi,v)]

)
(3)

≤ sup
v∈Vd′

(
E

i∈[m]

[
∆(wi, w̃i) + ∆(w̃i,v)

]
− E
i∈S

[
∆(w̃i,v)−∆(w̃i, wi)

])
= sup

v∈Vd′

(
E

i∈[m]
[∆(w̃i,v)]− E

i∈S
[∆(w̃i,v)]

)
+ E
i∈[m]

[∆(wi, w̃i)] + E
i∈S

[∆(w̃i, wi)] .

Note that

ES

[
E

i∈[m]
[∆(wi, w̃i)] + E

i∈S
[∆(w̃i, wi)]

]
= 2 E

i∈[m]
[∆(wi, w̃i)] ≤ 2ε.

Taking the expectation of (3) over S completes the proof.

For v a d′-dimensional vector subspace of Rn and t ∈ [0, 1], define

vt := {x ∈ Rn|∆ (v, x) > t} .

Define the following hypothesis set

V ′d′,n =
{
vt| v is a d′-dimensional vector subspace of Rn, t ∈ [0, 1]

}
,

when the second subscript n is clear from the context we omit it.
The following claim shows that we can analyze a simpler loss function, the 0− 1 loss function

rather than ∆, at the price of analyzing a more complex, VC-dimension wise, hypothesis set,
V ′d′ rather than Vd′ . The benefit of analyzing the 0 − 1 loss function is that the VC-dimension
generalization bound applies in the 0−1 loss function case. We note that even in the case of d′ = 2
one can show that the VC-dimension of V ′2 is at least n as opposed to the VC-dimension of V2

which by Theorem 4.12 is 2.

Claim 4.15. ES⊂[m]

[
Φ
(
Vd′ ,∆, W̃ , W̃S

)]
≤ ES⊂[m]

[
Φ
(
V ′d′ , {1vt}vt∈V ′d′ , W̃ , W̃S

)]
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Proof. A proof with similar arguments (albeit with a different statement) can be found in [MRT12,
Chapter 10], and we provide the proof for completeness. Fix S ∈ [m], then

Φ
(
Vd′ ,∆, W̃ , S

)
= sup

v∈vd′

(
E

i∈[m]
[∆(w̃i,v)]− E

i∈S
[∆(w̃i,v)]

)

now using the identity E [X] =
∫∞
t=0 Pr [x > t] dt which holds for any positive random variable,

= sup
v∈Vd′

∫ 1

t=0

(
Pr
i∈[m]

[∆(w̃i,v) > t]− Pr
i∈S

[∆(w̃i,v) > t]

)
dt,

≤ sup
v∈Vd′ ,t∈[0,1]

(
Pr
i∈[m]

[∆(w̃i,v) > t]− Pr
i∈S

[∆(w̃i,v) > t]

)
= sup

v∈Vd′ ,t∈[0,1]

(
E

i∈[m]

[
1∆(w̃i,v)>t

]
− E
i∈S

[
1∆(w̃i,v)>t

])
= Φ

(
V ′d′ , {1vt}vt∈V ′d′ , W̃ , W̃S

)
.

Define the hypothesis set of quadratic polynomials.

QPn :=

{
{x ∈ Rn | P (x) > 0} | P is an n-variate polynomial of degree 2

}
.

Now we show an analysis of V ′d′ . The analysis relies on the following geometric observation.

Claim 4.16. V ′d′ ⊆ QPn.

Proof. Let vt ∈ V ′d′ . We show that vt = {x ∈ Rn|∆ (v, x) > t} can be expressed as a quadratic
polynomial strict inequality. Let u′1, ..., u

′
d′ ∈ Rn be an orthonormal basis for v and let u1, ..., un−d′

be an orthonormal basis for the orthogonal complement of v,

v⊥ =
{
x ∈ Rn|∀0 ≤ i ≤ d′

〈
x, u′i

〉
= 0
}
.

Define Av to be the matrix with the i-th column equal ui. It follows that x ∈ vt if and only if

xtAv (Av)
t x > t2 .

Note that the last inequality is a quadratic polynomial.

The next definitions help to use the property that W̃ is contained in a d dimensional subspace
of Rn. Let D = span(W̃ ), as D is a subspace there exists ψ : Rn → Rd, an isometry5, (that is
a linear map) with respect to D. Given any set or multi-set S of elements of D, not necessarily
finite, ψ (S) = {ψ (s) | s ∈ S}. Let H be any hypothesis set on Rn. Define a restriction operator as
follows

Resψ (H, D) =: {ψ (h ∩D) |h ∈ H} .
5∀w1, w2 ∈ Rn ‖ψ (w1)− ψ (w2)‖2 = ‖w1 − w2‖2
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Claim 4.17. Resψ (QPn, D) = QPd.

Proof. For simplicity assume D is such that x ∈ D if and only if (x)i = 0 for all d+ 1 ≤ i ≤ n. Use
the following maping ψ (y)i = (y)i. Let

P =
∑

1≤i≤j≤n
ai,jxixj ,

be a degree 2 polynomial such that q = {x ∈ Rn|P (x) > 0} ∈ QPn. It holds that

ψ (q) =

{
x ∈ Rd |

∑
1≤i≤j≤d

ai,jxixj > 0

}
∈ QPd .

Similar arguments proves for general D, details omitted.

We note that it may be possible to present analysis directly on V ′d′,n but also note that
Resψ(V ′d′,n, D) is a more complicated hypothesis set than V ′d′,d. For example in the case where
n = 3 and d = 2 it is easy to see that there are ellipsoids in Resψ(V ′d, D), see Figure 1.

We will need the following fact, which can be found e.g. in [MRT12].

Lemma 4.18. The VC-dimension of QPd is at most d2.

We can now use the above to bound ES⊂[m] [Φ (Vk,∆,W, S)]. Using Claim 4.14,

E
S⊂[m]

[Φ (Vd′ ,∆,W,WS)] ≤ E
S⊂[m]

[
Φ
(
Vd′ ,∆, W̃ , W̃S

)]
+ 2ε

now Claim 4.15,

≤ E
S⊂[m]

[
Φ
(
V ′d′ , {1vt}vt∈V ′d′ , W̃ , W̃S

)]
+ 2ε

now Claim 4.16,

≤ E
S⊂[m]

[
Φ
(
QPn, {1P }P∈QPn , W̃ , W̃S

)]
+ 2ε

= E
S⊂[m]

[
Φ
(
Resψ (QPn, D) , {1P }P∈Resψ(QPn,D) , ψ(W̃ ), ψ(W̃S)

)]
+ 2ε

now Claim 4.17,

= E
S⊂[m]

[
Φ
(
QPd, {1P }P∈QPd , ψ(W̃ ), ψ(W̃S)

)]
+ 2ε

now Theorem 4.6,

≤ 2Rk
(
QPd, {1P }P∈QPd

)
+ 2ε
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and now Theorem 4.10 and Lemma 4.18,

≤ 2

√
2d2 log ek

d2

k
+ 2ε.

Finally, we apply Theorem 4.3 and conclude that for any δ > 0, with probability 1 − δ over a
sample of k elements from v,

E
i∈[m]

[∆ (wi,v)] ≤ E
i∈S

∆(wi,v) +

√
8d2 log ek

d2

k
+ 2ε+

√
log 2

δ

2k
.

Note that we applied Theorem 4.3 for the hypothesis set Vk with respect to the loss function ∆.
Other hypothesis sets were introduced only to bound Φ.

Figure 1: Ellipsoids in Resψ (V ′d, D).

4.6 Proof of Theorem 1.4

Let W = {w1, w2, ..., wm} and ε be as in Theorem 1.4, and let v be a subspace that attains

ε = min
v:dim(v)=d

E
i∈[m]

[`22(wi,v)].

Define W̃ = {w̃1, w̃2, ..., w̃m} where each w̃i is the vector in v that has minimum `22 distance to wi.

Theorem 4.19. [Restatement of Theorem 1.4]. Let S be a set of k random samples, each drawn
independently and uniformly from [m]. For every δ > 0, with probability 1 − δ, for every k-
dimensional subspace v ⊂ Rn,

E
i∈[m]

[`22(wi, v)] ≤ 8
√
ε+ E

i∈S
[`22(wi, v)] + 2

√
2d2 log ek

d2

k
+

√
log 2

δ

2k
.

The proof is similar to that of Theorem 1.3, except that we need the following variant of
Claim 4.14 (one can check that the other claims apply also to `22). Denote WS = {wi : i ∈ S} and
W̃S = {w̃i : i ∈ S}, and recall Definition 4.11.
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Claim 4.20. ES
[
Φ
(
Vd′ , `

2
2,W,WS

)]
≤ ES

[
Φ
(
Vd′ , `

2
2, W̃ , W̃S

)]
+ 8
√
ε.

Proof. For every wi ∈W and every subspace v,

`22(wi,v) = min
v∈v
‖wi − v‖22.

The minimizer v ∈ v is an orthogonal projection of wi, hence ‖v‖2 ≤ ‖wi‖2, and similarly ‖w̃i‖2 ≤
‖wi‖2. Writing

‖wi − v‖22 = ‖wi − w̃i + w̃i − v‖22
= ‖wi − w̃i‖22 + ‖w̃i − v‖22 + 2〈wi − w̃i, w̃i − v〉,

we now bound the inner-product using Cauchy-Schwartz, the triangle inequality, and our bounds
from above, to get

|〈wi − w̃i, w̃i − v〉| ≤ ‖wi − w̃i‖2 · ‖w̃i − v‖2
≤ ‖wi − w̃i‖2 · (‖w̃i‖2 + ‖v‖2)

≤ ‖wi − w̃i‖2 · 2‖wi‖2.

Altogether, we obtain

`22(wi,v) ≤ ‖wi − w̃i‖22 + min
v∈v
‖w̃i − v‖22 + 4‖wi − w̃i‖2 · ‖wi‖2,

`22(wi,v) ≥ ‖wi − w̃i‖22 + min
v∈v
‖w̃i − v‖22 − 4‖wi − w̃i‖2 · ‖wi‖2.

Using the last two inequalities, we can bound Φ for a fixed S by

Φ
(
Vd′ , `

2
2,W,WS

)
= sup

v∈Vd′

(
E
[
`22 (wi, v)

]
− ÊS

[
`22 (wi, v)

])
≤ E

i∈[m]
‖wi − w̃i‖22 − E

i∈S
‖wi − w̃i‖22

+ sup
v∈Vd′

(
E

i∈[m]

[
min
v∈v
‖w̃i − v‖22

]
− E
i∈S

[
min
v∈v
‖w̃i − v‖22

])
+ 4 E

i∈[m]

[
‖wi − w̃i‖2 · ‖wi‖2

]
+ 4 E

i∈S

[
‖wi − w̃i‖2 · ‖wi‖2

]
.

Now take the expectation over S; then every expectation over i ∈ S, immediately becomes expec-
tation over i ∈ [m] (because ES Ei∈S fi = Ei∈[m] fi). In addition, using Cauchy-Schwartz,

E
i∈[m]

[
‖wi − w̃i‖2 · ‖wi‖2

]
≤
(

E
i∈[m]

‖wi − w̃i‖22 · E
i∈[m]

‖wi‖22
)1/2

≤
√
ε.

Altogether, ES
[
Φ(Vd′ , `

2
2,W,WS)

]
≤ ES

[
Φ(Vd′ , `

2
2, W̃ , W̃S)

]
+ 8
√
ε.
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A Proof of Fact 3.1

For convenience we recall Fact 3.1.

Fact 3.1. Let M ∈ Fn×m, and let R ⊂ [n], C ⊂ [m] be of size |R| = |C| = rank(M). If MR,C is
invertible,6 then

∀(i, j) ∈ [n]× [m], Mi,j = Mi,C (MR,C)−1MR,j .

Proof. Since every matrix of rank d has a sub-matrix A ∈ Fd×d of (full) rank d, the fact follows
immediately from the following assertion: Let A ∈ Fd×d be a matrix of rank d, let x, y ∈ Fd be a

row vectors, let z ∈ F, and suppose A′ =

[
A y
xT z

]
has rank d; then z = xTA−1y.

To prove this assertion, suppose towards contradiction that z′
def
= xTA−1y 6= z. Then

rank(A′) = rank

([
A y
xT z

])
= rank

([
A y y
xT z z′

])
≥ rank

([
A ~0
xT z − z′

])
= rank

([
A ~0
~0T 1

])
= d+ 1,

a contradiction.
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