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Abstract

Let 0 < ϵ < 1/2 be a noise parameter, and let Tϵ be the noise operator acting on functions
on the boolean cube {0, 1}n. Let f be a nonnegative function on {0, 1}n. We upper bound
the entropy of Tϵf by the average entropy of conditional expectations of f , given sets of
roughly (1− 2ϵ)2 · n variables.
As an application, we show that for a boolean function f , which is close to a characteristic
function g of a subcube of dimension n− 1, the entropy of Tϵf is at most that of Tϵg.
This, combined with a recent result of Ordentlich, Shayevitz, and Weinstein shows that the
”Most informative boolean function” conjecture of Courtade and Kumar holds for balanced
boolean functions and high noise ϵ ≥ 1/2− δ, for some absolute constant δ > 0.
Namely, ifX is uniformly distributed in {0, 1}n and Y is obtained by flipping each coordinate
of X independently with probability ϵ, then, provided ϵ ≥ 1/2−δ, for any balanced boolean

function f holds I
(
f(X);Y

)
≤ 1−H(ϵ).

1 Introduction

This paper is motivated by the following conjecture of Courtade and Kumar [5].

Let (X,Y ) be jointly distributed in {0, 1}n such that their marginals are uniform and Y is
obtained by flipping each coordinate of X independently with probability ϵ. Let H denote the
binary entropy function H(x) = −x log2 x− (1− x) log2(1− x). The conjecture of [5] is:

Conjecture 1.1: For all boolean functions f : {0, 1}n → {0, 1},

I
(
f(X);Y

)
≤ 1 − H(ϵ)

This inequality holds with equality if f is a characteristic function of a subcube of dimension
n−1. Hence, the conjecture is that such functions are the ”most informative” boolean functions.

We express I(f(X);Y ) in terms of the ’value of the entropy functional of the image of f under
the noise operator’ (all notions will be defined shortly). The question then becomes:

Which boolean functions with are the ”stablest” under the action of the noise operator? That
is, for which functions the entropy functional decreases the least under noise.
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One can also consider a more general question of how the noise operator affects the entropy of
a nonnegative function.

Our main result is that for a nonnegative function f on {0, 1}n, the entropy of the image of f
under the noise operator with noise parameter ϵ is upper bounded by the average entropy of
conditional expectations of f , given sets of roughly (1− 2ϵ)2 · n variables.

As an application, we show that characteristic functions of (n− 1)-dimensional subcubes are at
least as stable under the noise operator as functions which are close to them.

This, in conjunction with a recent result of [10], and a theorem of [3] that show that for
high noise levels ϵ ∼ 1/2, balanced boolean functions which are potentially as stable as the
characteristic functions of (n − 1)-dimensional subcubes, have to be close to these functions,
implies the validity of Conjecture 1.1 for balanced functions and high noise levels.

1.1 Entropy of nonnegative functions and the noise operator

We introduce some relevant notions.

For a nonnegative function f : {0, 1}n → R, we let the entropy of f to be defined as

Ent
(
f
)

= E
x
f(x) log2 f(x) − E

x
f(x) · log2

(
E f(x)

)
We note for future use that entropy is nonnegative, homogeneous Ent

(
λf
)
= λ · Ent

(
f
)
and

convex in f [6].

Given 0 ≤ ϵ ≤ 1/2, we define the noise operator acting on functions on the boolean cube as
follows: for f : {0, 1}n → R, we let Tϵf at a point x be the expected value of f at y, where y
is ϵ-correlated with x. That is,

(Tϵf) (x) =
∑

y∈{0,1}n
ϵ|y−x| · (1− ϵ)n−|y−x| · f(y) (1)

Here | · | denotes the Hamming distance.

Note that Tϵf is a convex combination of shifted copies of f . Hence, convexity of entropy
implies that the noise operator decreases entropy. Our goal is to quantify this statement.

1.1.1 Connection between notions

Clearly, for a boolean function f : {0, 1}n → {0, 1}, and a random variable X uniformly
distributed in {0, 1}n,

H
(
f(X)

)
= Ent

(
f
)

+ Ent
(
1− f

)
We also have the following simple claim (proved in the Appendix)
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Lemma 1.2: In the notation above, for a boolean function f : {0, 1}n → {0, 1},

I
(
f(X);Y

)
= Ent

(
Tϵf
)

+ Ent
(
Tϵ(1− f)

)
Therefore, the conjecture above translates as follows:

Conjecture 1.3: (An equivalent form of Conjecture 1.1)

For any boolean function f : {0, 1}n → {0, 1} holds

Ent
(
Tϵf
)

+ Ent
(
Tϵ(1− f)

)
≤ 1 − H(ϵ)

1.2 Mrs. Gerber’s function and Mrs. Gerber’s lemma

We describe a result from information theory, and a related function, which will be important
for us 1.

Let ft be a function on the two-point space {0, 1}, which is t at zero and 2− t at one. We have

Ent
(
ft

)
= 1 − H

(
t

2

)
Let ϕ(x, ϵ) be a function on [0, 1]× [0, 1/2] defined as follows:

ϕ(x, ϵ) = Ent
(
Tϵft

)
(2)

where t is chosen so that Ent (ft) = x.

This function was introduced in [13]. We will now describe some of its properties.

Note that ϕ is increasing in x, starting from zero at x = 0.

In fact, it is easy to derive the following explicit expression for ϕ:

ϕ(x, ϵ) = 1 − H
(
(1− 2ϵ) ·H−1(1− x) + ϵ

)
A key property of ϕ is its concavity.

Theorem 1.4: ([13]) The function ϕ(x, ϵ) is concave in x for any 0 ≤ ϵ ≤ 1/2.

We mention a simple corollary.

1We are grateful to V. Chandar [2] for explaining the relevance of this result in connection to our previous
work [11] on the subject.
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Corollary 1.5: For all 0 ≤ ϵ ≤ 1/2,(
1−H(ϵ)

)
· x ≤ ϕ(x, ϵ) ≤ (1− 2ϵ)2 · x (3)

Proof: It’s easy to check ϕ(0, ϵ) = 0 and ϕ(1, ϵ) = 1−H(ϵ). And, it’s easy to check that ∂ϕ
∂x at

x = 0 is (1− 2ϵ)2.

From now on, when the value of ϵ is clear from the context, we omit the second parameter in
ϕ and write ϕ(x) instead of ϕ(x, ϵ).

We now describe an inequality of [13], which is known as Mrs. Gerber’s lemma. Following this
usage, we will refer to the function ϕ as Mrs. Gerber’s function.

This inequality upperbounds the entropy of the image of a nonnegative function under the
action of the noise operator. We present it in terms of the entropy functional and the noise
operator2.

Theorem 1.6: ([13]) Let f be a nonnegative function on {0, 1}n. Then

Ent
(
Tϵf
)

≤ nE f · ϕ
(
Ent(f)

nE f
, ϵ

)
(4)

1.3 Main results

For A ⊆ [n], and for a nonnegative function f : {0, 1}n → R, we denote

Ent
(
f | A

)
= Ent

(
E
(
f
∣∣∣ {xi}i∈A

))

Here E is the conditional expectation operator. That is, E
(
f | A

)
is the function of the

variables {xi}i∈A, defined as the expectation of f given the values of {xi}.3

Our main result states that the entropy of a nonnegative function f under noise is upper
bounded by the average entropy of the conditional expectations of f , given subsets of variables
of a certain size.

Theorem 1.7: Let f be a nonnegative function on the cube with expectation 1.

Let 0 < ϵ < 1 be a noise parameter. Let λ = (1 − 2ϵ)2. Assume n ≥ 10 ·
(

1
(1−λ2)

· ln
(

1
1−λ

))
.

Let v =
⌈
λ · n+

√
n lnn

⌉
.

2As pointed out to us by Chandar [2], this is equivalent to the standard information-theoretic formulation

H

(
Tϵf

)
≥ H

(
ϵ+ (1− 2ϵ) ·H−1

(
H(f)
n

))
.

3We also may (and will) view E
(
f | A

)
as a function on {0, 1}n, which depends only on the variables with

indices in A.
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Then, we have

Ent
(
Tϵf
)

≤ E
|B|=v

(
Ent

(
f | B

)
−
∑
i∈B

Ent
(
f | {i}

))
+

n∑
i=1

ϕ

(
Ent

(
f
∣∣∣ {i})) +

O

(√
lnn

n

)
· Ent

(
f
)

The asymptotic notation in the error term hides an absolute constant.

We discuss this claim in the next subsection, where we suggest it might be viewed as a strength-
ening of Mrs. Gerber’s inequality (4), at least for functions with small entropy.

Applying the inequality ϕ(x, ϵ) ≤ (1 − 2ϵ)2 · x (see (3)) to the claim of the theorem, gives the
following, more streamlined corollary. (However, the somewhat stronger claim of the theorem
is needed for the applications below.)

Corollary 1.8: In the notation of Theorem 1.7,

Ent
(
Tϵf
)

≤ E
|B|=v

Ent
(
f | B

)
+ O

(√
lnn

n

)
· Ent

(
f
)

Specializing to boolean functions, this implies the following claim.

Corollary 1.9: In the notation of Conjecture 1.1 and of Theorem 1.7, for a boolean function
f : {0, 1}n → {0, 1} holds

I
(
f(X);Y

)
≤ E

|B|=v
I
(
f(X); {Xi}i∈B

)
+ O

(√
lnn

n

)

Remark 1.10: Corollary 1.9 implies that, roughly speaking,

I
(
f(X);Y

)
. E

|B|=(1−2ϵ)2·n
I
(
f(X); {Xi}i∈B

)
As pointed out by Or Ordentlich [9], it seems instructive to compare this bound to the weaker
bound

I
(
f(X);Y

)
. E

|B|=(1−2ϵ)·n
I
(
f(X); {Xi}i∈B

)
which can be obtained by the following information-theoretic argument.
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An equivalent way to obtain Y from X is to replace each coordinate of X independently with
a random bit, with probability 2ϵ .

Let S be the set of indices where the input bits were replaced with random bits. Using the
chain rule of mutual information we have

I
(
f(X);Y

)
= I

(
f(X);Y, S

)
− I

(
f(X);S | Y

)
= I

(
f(X);Y | S

)
− I

(
f(X);S | Y

)
where the last equality follows since I

(
f(X);S

)
= 0.

In particular, by non-negativity of mutual information

I
(
f(X);Y

)
≤ I

(
f(X);Y | S

)
≈ E|B|=(1−2ϵ)·n I

(
f(X); {Xi}i∈B

)

As an application of Theorem 1.7, we prove the following result.

Theorem 1.11: There exists an absolute constant δ > 0 such that for any noise ϵ ≥ 0 with
(1− 2ϵ)2 ≤ δ and for any boolean function f : {0, 1}n → {0, 1} such that

• 1
2 − δ ≤ E f ≤ 1

2 ;

• There exists 1 ≤ k ≤ n such that |f̂({k})| ≥ (1− δ) · E f

Holds

Ent
(
Tϵf
)

≤ 1

2
·
(
1−H(ϵ)

)
A simple corollary of this theorem, taken together with a recent result of [10] and a theorem of
[3], is the validity of Conjecture 1.1 for balanced boolean functions on the cube, provided the
noise parameter is close to 1/2.

Theorem 1.12: There exists an absolute constant δ > 0 such that for any noise ϵ ≥ 0 with
(1− 2ϵ)2 ≤ δ and for any boolean function f : {0, 1}n → {0, 1} with expectation 1/2 holds

I
(
f(X);Y

)
≤ 1 − H(ϵ)
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1.4 More on Theorem 1.7

In this subsection we give a high-level description of the proof of the theorem and argue that
its claim may be viewed as a strengthening of Mrs. Gerber’s lemma.

Notation: For a direction 1 ≤ i ≤ n we define the noise operator in direction i as follows:(
Tϵ{i}f

)
(x) = ϵ · f

(
x+ ei

)
+ (1− ϵ) · f(x)

where ei is the ith unit vector. The operators
{
Tϵ{i}

}
commute and, for R ⊆ [n], we define TϵR

to be the composition of Tϵ{i} , i ∈ R. Note that the noise operator Tϵ would be written in this
notation as Tϵ[n]

.

We start with the proof of (4). Since both sides of the inequality are homogeneous in f , we
may assume E f = 1.

By the chain rule for entropy, we have, for any σ ∈ Sn that

Ent
(
Tϵf
)

=

n∑
i=1

(
Ent

(
Tϵf | {σ(1), . . . , σ(i)}

)
− Ent

(
Tϵf | {σ(1), . . . , σ(i− 1)}

))
=

n∑
i=1

(
Ent

(
Tϵ{σ(1),...,σ(i)}f | {σ(1), . . . , σ(i)}

)
− Ent

(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i− 1)}

))
≤

n∑
i=1

ϕ

(
Ent

(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i)}

)
−Ent

(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i− 1)}

))
(5)

Let us explain the last inequality. Let y ∈ {0, 1}i−1. Let f̃y be a function on {0, 1} defined

by the restriction of the function E
(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i)}

)
, which we view as a

function on the i-dimensional cube, to the points in which the coordinates σ(k), k = 1, ..., i− 1
are set to be yk. Then, it is easy to see that

Ent
(
Tϵ{σ(1),...,σ(i)}f | {σ(1), . . . , σ(i)}

)
− Ent

(
Tϵ{σ(1),...,σ(i)}f | {σ(1), . . . , σ(i− 1)}

)
=

E
y
Ent

(
Tϵf̃y

)
= E

y

(
E f̃y · ϕ

(
Ent

(
f̃y

E f̃y

)))
≤ ϕ

(
E
y
Ent

(
f̃y

))
=

ϕ

(
Ent

(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i)}

)
− Ent

(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i− 1)}

))
The first equality in the second row follows from (2) and the linearity of entropy. The inequality

follows from concavity of the function ϕ and the fact that Ey E f̃y = E
(
Tϵ{σ(1),...,σ(i)}f | {σ(1), . . . , σ(i)}

)
= E f = 1.
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We now continue from (5).

For y ∈ {0, 1}i−1, let fy be a function on {0, 1} defined by the restriction of the function

E
(
f | {σ(1), . . . , σ(i)}

)
to the points in which the coordinates σ(k), k = 1, ..., i − 1 are set to

be yk.

Since the noise operator Tϵ{σ(1),...,σ(i−1)} is stochastic, the functions
{
f̃y

}
are a stochastic mixture

of the functions
{
fy

}
. Hence, since the Ent functional is convex, for any 0 ≤ ϵ ≤ 1 holds

Ent
(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i)}

)
− Ent

(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i− 1)}

)
=

E
y
Ent

(
f̃y

)
≤ E

y
Ent

(
fy

)
= (6)

Ent
(
f | {σ(1), . . . , σ(i)}

)
− Ent

(
f | {σ(1), . . . , σ(i− 1)}

)
And hence (5) is upper bounded by

n∑
i=1

ϕ

(
Ent

(
f | {σ(1), . . . , σ(i)}

)
− Ent

(
f | {σ(1), . . . , σ(i− 1)}

))
≤ n · ϕ

Ent
(
f
)

n


where in the last inequality the concavity of ϕ is used again.

1.4.1 Our improvement

We attempt to quantify the loss in inequality (6).

Let us introduce some notation. For a nonnegative function g on the cube, for a subset A ⊂ [n]
and for an element m ̸∈ A, we define

Ig(A,m) = Ent
(
g | A ∪ {m}

)
− Ent

(
g | A

)
− Ent

(
g | {m}

)
By supermodularity of the entropy functional, this quantity is always nonnegative. In fact, it is

easily seen to be proportional to the mutual information between
{
Xj

}
j∈A

and Xm, provided

the random variable X =
(
X1, ..., Xn

)
is distributed on {0, 1}n according to the distribution

Pg = g/
∑

g.

Coming back to (6), observe that Ent
(
Tϵ{σ(1),...,σ(i−1)}f | {σ(i)}

)
= Ent

(
f | {σ(i)}

)
.

Hence, taking A = {σ(1), . . . , σ(i− 1)} and m = {σ(i)}, the decrease in (6) is from If (A,m)
to ITϵA

f (A,m). Hence, our goal amounts to quantifying the decrease in mutual information in
the presence of noise.
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In the next two sections we consider a slightly more general question of upper bounding
ITϵA

f (A,m), given f , A, and m. In Section 2 we upper bound ITϵA
f (A,m) by the value of

a certain linear program. In Section 3 we introduce a symmetric version of this program and
a symmetric solution for the symmetric program, and show its value to be at least as large as
that of the original program.

We then find the value of the symmetric solution, as a function of f , A, and m. This value
provides an upper bound on the noisy mutual information.

In Section 4 we apply this bound in (6), averaging the chain rule for the entropy of Tϵf over all
permutations σ ∈ Sn. This proves Theorem 1.7.

The improved bound in (6) is the reason we suggest to view this theorem as a strengthening of
Mrs. Gerber’s lemma.

On the other hand, strictly speaking, this line of argument does not provide a direct improve-
ment of (4), since in the averaging step in Section 4 we have to replace ϕ(x, ϵ) by a larger linear
function (1− 2ϵ)2 · x, in order to be able to come up with manageable estimates.

With that, the two functions ϕ(x, ϵ) and (1− 2ϵ)2 ·x almost coincide for small values of x, and,
loosely speaking, if the entropy of f , the function in Theorem 1.7, is not too large, as is the
case for boolean functions, say, all the arguments of ϕ should lie very close to zero, meaning
not much lost in the linear approximation.

Organization of the paper

This paper is organized as follows. The proof of Theorem 1.7 is given in Sections 2 to 4.
Theorem 1.11 is proved in Section 5. The remaining proofs are presented in Section 6.

2 A linear programming bound for noisy mutual information

In this section we upper bound the noisy mutual information ITϵA
f (A,m) by the value of a

certain linear program.

Let f be a nonnegative function on the cube. Let A be a subset of [n] and let m ̸∈ A.

Let |A| = k. We will assume, without loss of generality, that A = [k] and that m = k + 1.

Notation: From now on, we write λ for (1− 2ϵ)2.

Consider the following linear optimization problem.

Optimization problem

Boundary data: For S ⊆ [k] and for i ∈ S, we write

yS,i = Ent
(
f | S ∪ {k + 1}

)
− Ent

(
f | S \ {i} ∪ {k + 1}

)
− Ent

(
f | S

)
+ Ent

(
f | S \ {i}

)
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The numbers
{
yS,i

}
are the boundary data for this problem 4.

Variables: xRS,i for R,S ⊆ [k] and i ∈ S.

The optimization problem: Given the boundary data, we want to upper bound µ, where

µ = Max
k∑

i=1

x
[k]
{1,...,i}; i (7)

under the following constraints.

Constraints:

1. x∅S,i = yS,i

2. xRS,i = xR∩S
S,i

3. For all σ, τ ∈ Sk holds

k∑
i=1

xR{σ(1),...,σ(i)}, σ(i) =

k∑
i=1

xR{τ(1),...,τ(i)}, τ(i)

4. If i ∈ R then

xRS,i ≤ λ ·
(
x
R\i
S,i

)
We then have the following claim.

Theorem 2.1: The noisy mutual information ITϵ[k]
f

(
[k], k + 1

)
is upperbounded by the value

of the optimization problem (7).

Proof:

First, consider the boundary data. We claim that for any permutation σ ∈ Sk holds

k∑
i=1

y{σ(1),...,σ(i)}, σ(i) = If

(
[k], k + 1

)
(8)

In fact, it is easy to see that the LHS is a telescopic sum, summing to

Ent
(
f | [k + 1]

)
− Ent

(
f | [k]

)
− Ent

(
f | {k + 1}

)
= If

(
[k], k + 1

)
Next we define a feasible solution for (7) whose value is ITϵ[k]

f

(
[k], k + 1

)
.

4Note that yS,i ≥ 0 for all S and i. This follows from supermodularity of the entropy functional. In fact, the
value of yS,i is proportional to the mutual information between i and k + 1, given S \ {i}.
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Fix R ⊆ [k]. Write fR for TϵRf . For S ⊆ [k] and i ∈ S set

xRS,i = Ent
(
fR | S ∪ {k + 1}

)
− Ent

(
fR | S \ {i} ∪ {k + 1}

)
− Ent

(
fR | S

)
+ Ent

(
fR | S \ {i}

)
Clearly, x∅S,i = yS,i and hence the first constraint of the program is satisfied.

As above, for any permutation σ ∈ Sk holds

k∑
i=1

xR{σ(1),...,σ(i)}, σ(i) = ITϵR
f
(
[k], k + 1

)
Hence, the third constraint is satisfied as well.

In particular,

k∑
i=1

x
[k]
{1,...,i}, i = ITϵ[k]

f
(
[k], k + 1

)

so, the value given by this solution is indeed ITϵ[k]
f
(
[k], k + 1

)
.

We continue to prove its feasibility. We claim that for anyA ⊆ [k] holds Ent
(
fR |A

)
= Ent

(
fR∩A |A

)
.

To see this, note that the noise operators commute with the conditional expectation operators,
and hence

E
(
TϵRf | A

)
= TϵR E

(
f | A

)
= TϵR\ATϵR∩A E

(
f | A

)
= TϵR∩A E

(
f | A

)
= E

(
TϵR∩Af | A

)
Hence, by definition, xRS,i = xR∩S

S,i for any R,S ⊆ [k], and the second constraint holds.

To conclude the proof of the theorem, it remains to show that for any R ⊆ S ⊆ [k] and i ∈ R
holds

xRS,i ≤ λ ·
(
x
R\i
S,i

)
(9)

This requires a somewhat longer proof, which will be done in a separate subsection.

2.1 Proof of (9)

We start with the following technical claim, which will be proved in Section 6.4

Proposition 2.2: Let h be a nonnegative function on {0, 1}2 Then

ITϵ{1}h

(
{2}, 1

)
≤ λ · Ih

(
{2}, 1

)
11



We observe that this claim, with the appropriate modification of indices, immediately implies
(9) in the case S is a singleton.

Indeed, in this case S = R = {i}, and (9) reduces to

Ent
(
Tϵ{i}f | {i, k + 1}

)
− Ent

(
Tϵ{i}f | {i}

)
− Ent

(
Tϵ{i}f | {k + 1}

)
≤

λ ·
(
Ent

(
f | {i, k + 1}

)
− Ent

(
f | {i}

)
− Ent

(
f | {k + 1}

))

Set h = E
(
f | {i, k + 1}

)
. This is a function of two variables i and k + 1, that is on a

2-dimensional cube.

Note that, by definition, Ent
(
f | {i, k+1}

)
−Ent

(
f | {i}

)
−Ent

(
f | {k+1}

)
= Ih

(
{k+1}, i

)
.

Similarly, Ent
(
Tϵ{i}f | {i, k+ 1}

)
−Ent

(
Tϵ{i}f | {i}

)
−Ent

(
Tϵ{i}f | {k+ 1}

)
= ITϵ{i}h

(
{k+

1}, i
)
.

Hence the inequality we need to show is equivalent to the claim of the proposition applied to
h, and renumbering i with 1 and k + 1 with 2.

Let now |S| > 1 and let i ∈ R ⊆ S. Set g = E
(
fR\{i}

∣∣∣ S ∪ {k + 1}
)
. Since g depends only

on the coordinates in S ∪ {k + 1}, we may (and will) view g as a function on the appropriate
cube, which we denote by {0, 1}S∪{k+1}.

For each y ∈ {0, 1}S\{i}, let hy be the function on the 2-dimensional cube obtained by restricting
g to the points whose restriction to S \ {i} is y. Note that the following three simple identities
hold

E
y
Ent

(
hy

)
= Ent

(
fR\{i}

∣∣∣ S ∪ {k + 1}
)
− Ent

(
fR\{i}

∣∣∣ S \ {i}
)

E
y
Ent

(
hy | {k + 1}

)
= Ent

(
fR\{i}

∣∣∣ S \ {i} ∪ {k + 1}
)

− Ent
(
fR\{i}

∣∣∣ S \ {i}
)

E
y
Ent

(
hy | {i}

)
= Ent

(
fR\{i}

∣∣∣ S) − Ent
(
fR\{i}

∣∣∣ S \ {i}
)

Combining these identities gives x
R\{i}
S,i = Ey Ihy

(
{k + 1}, i

)
.

Similarly, xRS,i = Ey ITϵ{i}hy

(
{k + 1}, i

)
.

Applying the claim of the proposition to each hy and averaging over y we obtain

xRS,i = E
y

ITϵ{i}hy

(
{k + 1}, i

)
≤ λ · E

y
Ihy

(
{k + 1}, i

)
= λ ·

(
x
R\i
S,i

)
This completes the proof of (9) and of the theorem.
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3 The optimization problem and its symmetric version

Let k ≥ 1. Consider the optimization problem (7). In this section, we introduce a symmetric
version of this problem and a specific symmetric feasible solution for the symmetric problem.
We will then argue that the value of this solution for the symmetric problem is at least as large
as the optimal value for the original problem. Hence this value would provide an upper bound
on the noisy mutual information.

3.1 The symmetric problem and solution

Let
{
xRS,i

}
be a feasible solution to the optimization problem (7) with boundary data

{
yS,i

}
.

We define the numbers y1, . . . , yk as follows. For 1 ≤ s ≤ k let

ys = E
(S,i)

yS,i (10)

where the expectation is taken over all pairs (S, i) such that |S| = s and i ∈ S.

For 0 ≤ r < s ≤ k we define xrs recursively in the following manner:

xrs =

{
ys if r = 0

λ · xr−1
s + (1− λ) · xr−1

s−1 otherwise
(11)

We now define the symmetric version of (7), by replacing the boundary data by a new, sym-
metric one. We set, for all i ∈ S ⊆ [k] with |S| = s:

ȳS,i = ys

Next we define the symmetric solution for the symmetric problem, in the following way. For
R ⊆ S, we set

x̄RS,i =

{
λ · xr−1

s if i ∈ R
xrs otherwise

and for general R,S we set

x̄RS,i = x̄R∩S
S,i

Proposition 3.1: The solution above is a feasible solution of the symmetric version of (7).

Moreover, for any R ⊆ [k] of cardinality r and for any τ ∈ Sk holds

k∑
i=1

x̄R{τ(1),...,τ(i)},τ(i) =
k−r∑
j=1

yj + λ ·
r−1∑
t=0

xtk−r+t+1 (12)

13



Proof:

The constraints 1 and 2 of (7) hold, by the definition of x̄RS,i. We pass to constraint 4. Clearly,
because of constraint 2, it suffices to prove it for R ⊆ S. In this case, taking i ∈ R, we have,
by the definition of x̄RS,i

x̄RS,i = λ · xr−1
s = λ · x̄R\{i}

S,i

Next, we note that (12) will imply validity of constraint 4, since the RHS of (12) does not
depend on τ .

It remains to prove (12). Let i1 < i2 < ... < ir be such that R = {τ (i1) , τ (i2) , ..., τ (ir)}. Then

k∑
i=1

x̄R{τ(1),...,τ(i)},τ(i) =

i1−1∑
j=1

+

i2−1∑
j=i1

+ . . . +

k∑
j=ir

=

i1−1∑
j=1

yj +

λ · yi1 +
i2−1∑

j=i1+1

x1j

 +

λ · x1i2 +
i3−1∑

j=i2+1

x2j

 + . . .

λ · xr−1
ir

+
k∑

j=ir+1

xrj


Expanding xts = λ · xt−1

s + (1− λ) · xt−1
s−1, we have the following exchange rule:

Two adjacent summands of the form λ·xtj+xt+1
j+1 can always be replaced by xtj+λ·xtj+1. Applying

this the appropriate number of times in each bracket, transforms the expression above into

i1−1∑
j=1

yj +

i2−2∑
j=i1

yj + λ · yi2−1

 +

i3−2∑
j=i2

x1j + λ · x1i3−1

 + . . .

k−1∑
j=ir

xr−1
j + λ · xr−1

k


Next we observe that the following rules apply in the original ordering of the summands: To
the right of xtj is always either xtj+1 or λ · xtj+1. To the right of λ · xrs is always either xr+1

s+1 or

λ · xr+1
s+1.

Moreover, this is easily verified to be preserved by the exchange rule above, by checking the
four arising cases.

This means that applying the exchange rule as many times as needed, we can ensure all the
summands multiplied by λ to be on the last r places on the right. Since the first summand is
always either y1 or λ · y1, these invariants guarantee that by doing so we obtain (12).
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3.2 Optimality of the symmetric solution

Theorem 3.2: Let
{
xRS,i

}
be a feasible set of solutions to the linear optimization problem (7).

Let x̄RS,i be the symmetric solution for the symmetric version of this problem.

Then, for any 0 ≤ r ≤ k holds:

E
|R|=r

k∑
i=1

xR{1,...,i},i ≤ E
|R|=r

k∑
i=1

x̄R{1,...,i},i

Corollary 3.3 : The optimal value of (7) is upper bounded by the value of the symmetric
solution to the symmetric version of the problem. This value is given by

λ ·
k−1∑
t=0

xtt+1

Proof: Apply the theorem with r = k and use (12).

Proof: (Of the theorem).

We proceed by double induction - on k and on 0 ≤ r ≤ k. For k = 1 the claim is easily seen to
be true.

Note also that the claim is true for any k and r = 0. This follows from constraints 1 and 3 of
the linear program (7) and the definition of the symmetric boundary data. In fact, we have

k∑
j=1

y{1,...,j},j = E
σ∈Sk

k∑
j=1

y{σ(1),...,σ(j)}, σ(j) =

k∑
j=1

E
σ∈Sk

y{σ(1),...,σ(j)}, σ(j) =

k∑
j=1

E
|S|=j, i∈S

yS,i =

k∑
j=1

yj =

k∑
j=1

ȳ{1,...,j},j

Let now numbers r and k, with 0 < r ≤ k be given. Assume the claim holds for k− 1, and also
for k, for all 0 ≤ t ≤ r − 1. We will argue it also holds for k and r.

We start with some simple properties of the linear program (7). We assume to be given
the boundary data and a specific feasible solution to (7), and the symmetric solution to the
symmetric version of (7), as in Theorem 3.2.

Lemma 3.4: Let M ⊆ [k]. Let
{
yK,i

}
i∈K⊆M

be the restriction of the boundary data to subsets

of M . For R ⊆ M , let
{
xRK,i

}
i∈K⊆M

be the restriction of the feasible solution to subsets of M .

Then
{
xRK,i

}
i∈K⊆M

is a feasible solution to the appropriate (smaller) optimization problem on

M .
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Proof:

Constraints 1, 2, and 4 are easy to check. As for constraint 3, let σ and τ be two permutations
from M to itself. Extend them in the same way to permutations σ′ and τ ′ on [k]. It is then
easy to see that constraint 3 holds for σ and τ in the smaller problem, since it holds for σ′ and
τ ′ in the larger one.

Lemma 3.5: Let M ⊆ [k], with |M | = m and let R ⊆ [k]. Let τ be a bijection from [m] to M .
Let

F
(
M,R, τ

)
=

m∑
j=1

x̄R{τ(1),...,τ(j)}, τ(j)

Then F
(
M,R, τ

)
depends only on m and |R ∩M |.

Proof:

Since the symmetric solution
{
x̄RS,i

}
satisfies constraint 2 of (7), we have

F
(
M,R, τ

)
=

m∑
j=1

x̄R{τ(1),...,τ(j)}, τ(j) =

m∑
j=1

x̄R∩M
{τ(1),...,τ(j)}, τ(j) = F

(
M,R ∩M, τ

)

Let r = |R ∩M |.

Proceeding exactly as in the proof of Proposition 3.1, we get that

F
(
M,R ∩M, τ

)
=

m−r∑
j=1

yj + λ ·
r−1∑
t=0

xtm−r+t+1

That is, F
(
M,R, τ

)
depends only on m and r = |R ∩M |, as claimed.

Next, we introduce some notation.

3.2.1 Notation

1. Let M ⊆ [k]. Let
{
yK,i

}
i∈K⊆M

be the restriction of the boundary data to the subsets of

M .

We will denote by
{
SM

[
xRK,i

]}
the symmetric solution to the symmetric version of the

smaller problem with this boundary data.
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2. Let L ⊆ [k], with L = {i1, ..., iℓ}, so that i1 < i2 < ... < iℓ. Let R ⊆ [k]. Write

µR(L) =

ℓ∑
j=1

xR{i1,...,ij}, ij

For L ⊆ M ⊆ [k], and R ⊆ M , we denote

S[µ]RM (L) =
ℓ∑

j=1

SM

[
xR{i1,...,ij}, ij

]
Note that this quantity depends on M . With that, by Lemmas 3.4 and 3.5, given M , it
depends only on the cardinalities |L| and |R ∩ L|.

3. Using the observation in the preceding paragraph, given R ⊆ L ⊆ M ⊆ [k], with |L| = ℓ,

and |R| = r, we may also write S[µ]rM
(
ℓ
)
for S[µ]RM (L).

In particular, note that the proof of Lemma 3.5 gives, in this notation

S[µ]r[k]
(
m
)

=

m−r∑
j=1

yj + λ ·
r−1∑
t=0

xtm−r+t+1 (13)

4. Finally, for M ⊆ [k] and 0 ≤ r ≤ |M |, we write

µr
M = E

|R|=r,R⊆M
µR(M) and S[µ]rM = E

|R|=r,R⊆M
S[µ]RM (M)

We have completed introducing the new notation. In this notation the claim of the theorem
amounts to:

µr
[k] ≤ S[µ]r[k] (14)

We start with a lemma connecting the value of a solution of the optimization problem to these
of smaller problems.

Lemma 3.6:

µr
[k] ≤ λ · µr−1

[k] + (1− λ) · E
i∈[n]

µr−1
[k]\{i} (15)

Proof:

Since the feasible solution
{
xRS,i

}
satisfies constraints 2 and 3 of (7), for any i ∈ R ⊆ [k] holds

µR
(
[k]
)

= µR\{i}
(
[k] \ {i}

)
+ xR[k],i.

Similarly, µR\{i}
(
[k]
)

= µR\{i}
(
[k] \ {i}

)
+ x

R\{i}
[k],i .
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Hence, by constraint 4,

xR[k],i ≤ λ ·
(
x
R\{i}
[k],i

)
= λ ·

(
µR\{i}

(
[k]
)

− µR\{i}
(
[k] \ {i}

))
Averaging,

µr
[k] = E

R⊆[k], |R|=r
µR
[k] = E

R, i∈R

(
µR\{i}

(
[k] \ {i}

)
+ xR[k],i

)
≤

E
R, i∈R

µR\{i}
(
[k] \ {i}

)
+ λ · E

R, i∈R

(
µR\{i}

(
[k]
)

− µR\{i}
(
[k] \ {i}

))
=

λ · E
R, i∈R

µR\{i}
(
[k]
)

+ (1− λ) · E
R, i∈R

µR\{i}
(
[k] \ {i}

)
It remains to note

E
R, i∈R

µR\{i}
(
[k] \ {i}

)
= E

i∈[k]
E

|T |=r−1, T⊆[k]\{i}
µT
(
[k] \ {i}

)
= E

i∈[k]
µr−1
[k]\{i}

and, similarly, ER, i∈R µR\{i}
(
[k]
)

= µr−1
[k] .

We now prove (14), starting from (15).

First, note that, by Lemma 3.4 and by the induction hypothesis for k−1, we have µr−1
[k]\{i} ≤ S[µ]r−1

[k]\{i},

for all i ∈ [k].

Next, note that, by the induction hypothesis for k and r − 1, we have µr−1
[k] ≤ S[µ]r−1

[k] .

This gives

µr
[k] ≤ λ · S[µ]r−1

[k] + (1− λ) · E
i∈[k]

S[µ]r−1
[k]\{i}

This implies that to prove (14) it suffices to show the following two identities:

1. E
i∈[k]

S[µ]r−1
[k]\{i} = S[µ]r−1

[k]

(
k − 1

)
2. S[µ]r[k] = λ · S[µ]r−1

[k] + (1− λ) · S[µ]r−1
[k]

(
k − 1

)
Lemma 3.7:

E
i∈[k]

S[µ]r−1
[k]\{i} = S[µ]r−1

[k]

(
k − 1

)
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Proof: We introduce the following notation. For i = 1, ..., k and for 0 ≤ r < s ≤ k − 1, let

ys,i = ys, [k]\{i} and xrs,i = xrs, [k]\{i}

The values on the RHS of these identities are defined as in (10) and in (11) for the corresponding
restricted problems.

We start with observing that Ei∈[k] ys,i = ys. In fact, by definition,

E
i∈[k]

ys,i = E
i∈[k]

E
|S|=s,S⊆[k]\{i},j∈S

yS,j = E
|S|=s,j∈S

yS,j = ys

Next, we claim that for all 0 ≤ r < s ≤ k − 1 holds Ei∈[k] xrs,i = xrs.

This is easy to verify by induction on r. Note that we already know the claim holds for r = 0,
and the induction step follows directly from the definitions and the induction hypothesis.

We now apply (12) to the restricted problems, to obtain that, for each 1 ≤ i ≤ k holds

S[µ]r−1
[k]\{i} =

k−r∑
j=1

yj, i + λ ·
r−2∑
t=0

xtk−r+t+1, i

Hence, we have:

E
i∈[k]

S[µ]r−1
[k]\{i} =

k−r∑
j=1

E
i∈[k]

yj, i + λ ·
r−2∑
t=0

E
i∈[k]

xtk−r+t+1, i =

k−r∑
j=1

yj + λ ·
r−2∑
t=0

xtk−r+t+1

This, by (13), equals to S[µ]r−1
[k] (k − 1), completing the proof of the lemma.

Lemma 3.8:

S[µ]r[k] = λ · S[µ]r−1
[k] + (1− λ) · S[µ]r−1

[k]

(
k − 1

)
Proof:

The proof of this lemma is similar to that of Lemma 3.6.

Since the symmetric solution S[k]

[
xRS,i

] (
which is the same as

{
x̄RS,i

})
satisfies constraints 2

and 3 of (7), for any i ∈ R ⊆ [k] holds

S[µ]R[k]
(
[k]
)

= S[µ]R\{i}
[k]

(
[k] \ {i}

)
+ S[k]

[
xR[k],i

]
Consider the notation we have introduced above. Using items 3 and 4 in the description of this

notation, and recalling S[k]

[
xR[k],i

]
= λ · xr−1

k , we can rewrite this equality as

S[µ]r[k] = S[µ]r−1
[k]

(
k − 1

)
+ λ · xr−1

k
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On the other hand, we have, for i ∈ R ⊆ [k]:

S[µ]R\{i}
[k]

(
[k]
)

= S[µ]R\{i}
[k]

(
[k] \ {i}

)
+ S[k]

[
x
R\{i}
[k],i

]
which is the same as

S[µ]r−1
[k] = S[µ]r−1

[k]

(
k − 1

)
+ xr−1

k

Combining these two identities immediately implies the claim of the lemma.

This completes the proof of (14) and of the theorem.

3.3 The value of the symmetric optimization problem

Let
{
x̄RS,i

}
be the symmetric solution for the symmetric version of (7). By Corollary 3.3, its

value depends linearly on the symmetric boundary data y1, ..., yk, since {xrt} are fixed linear
functions of y1, ..., yk. Let us denote this value by V (y1, ..., yk).

For 1 ≤ s ≤ k, let es be the initial data vector with ys = 1 and all the remaining yt vanishing.
Then V (y1, . . . , yk) =

∑k
s=1 ys · V (es).

Next, we find the values of the parameters xrt for initial data given by a unit vector.

Lemma 3.9: Let the initial data be given by the unit vector es, for some 1 ≤ s ≤ k. Then the
values of the parameters xrt , for 0 ≤ r < t ≤ k, are as follows.

xrt =

{ (
r

t−s

)
· λr−(t−s) · (1− λ)t−s if s ≤ t ≤ s+ r

0 otherwise

(We use the convention
(
0
0

)
= 1.)

Proof: The claim of the lemma is easily verifiable by induction on r, or by directly verifying
that (11) holds.

Corollary 3.10:

V (es) = λs ·
k−s∑
m=0

(
s+m− 1

m

)
· (1− λ)m = 1 −

s−1∑
j=0

(
k

j

)
λj(1− λ)k−j
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Proof: The first equality follows from Corollary 3.3. For the second equality, we proceed as
follows

V (es) =
λs

(s− 1)!
· ∂s−1

∂xs−1

[
(1 + x+ . . .+ xk−1

]
x=1−λ

=

λs

(s− 1)!
·

(
∂s−1

∂xs−1

[
1

1− x

]
x=1−λ

− ∂s−1

∂xs−1

[
xk

1− x

]
x=1−λ

)
=

1 − λs

(s− 1)!
· ∂s−1

∂xs−1

[
xk

1− x

]
x=1−λ

We have

∂t

∂xt

[
xk

1− x

]
=

t∑
i=0

(
t

i

)
∂i

∂xi

[
1

1− x

]
· ∂t−i

∂xt−i

[
xk
]

=

t∑
i=0

(
t

i

)
· i! · k!

(k − t+ i)!
· xk−t+i · 1

(1− x)i+1

Substituting j = t− i and rearranging, this is

t!

(1− x)t+1
·

t∑
j=0

(
k

j

)
(1− x)j · xk−j

Substituting t = s− 1, x = 1− λ, and simplifying, we get

V (es) = 1 −
s−1∑
j=0

(
k

j

)
λj(1− λ)k−j

Corollary 3.11:

V (y1, . . . , yk) =
k∑

s=1

1 −
s−1∑
j=0

(
k

j

)
λj(1− λ)k−j

 · ys

4 Proof of Theorem 1.7

We start with introducing some more notation.

21



4.0.1 Notation

• For a subset S of [n] of cardinality at most n− 2, and for distinct i, j ̸∈ S, we set

ZS;i,j = Ent
(
f | S ∪ {i, j}

)
− Ent

(
f | S ∪ {i}

)
− Ent

(
f | S ∪ {j}

)
+ Ent

(
f | S

)
• For s = 1, ..., n− 1, let ts = ES,i,j ZS;i,j .

Here the expectation is taken over all subsets S of [n] of cardinality s− 1, and, given S,
over all distinct i, j not in S.

• Let A be a subset of [n] of cardinality k < n and let m ̸∈ A. For 1 ≤ s ≤ k, let

Y (A,m, s) = E
S,i

ZS;i,m

where the expectation goes over subsets S ⊆ A of cardinality s− 1, and over i ∈ A \ S.

• For 1 ≤ s ≤ k ≤ n let

Λ(k, s, λ) = 1 −
s−1∑
j=0

(
k

j

)
λj(1− λ)k−j

Proposition 4.1: Let f be a nonnegative function on {0, 1}n. Let A be a subset of [n] of
cardinality k < n and let m ̸∈ A.

Then

ITeA
f (A,m) ≤

k∑
s=1

Λ(k, s, λ) · Y (A,m, s)

Proof:

By Theorem 2.1, the value of ITeA
f (A,m) is bounded by the value of the linear optimization

problem (7), with appropriate changes of indices.

By Theorem 3.2, this last value is upperbounded by the value of the symmetric version of the
problem, which, according to Corollary 3.11, and tracing out the appropriate changes in indices
and notation, is given by

∑k
s=1 Λ(k, s, λ) · Y (A,m, s).

Proof: (Of the theorem)

The proof relies on several lemmas. We start with a technical claim.

Lemma 4.2: Let 1 ≤ s ≤ n− 1 be integer parameters. Let 0 < λ < 1. Then

n−1∑
k=s

Λ(k, s, λ) =

(
n− s

λ

)
+

1

λ
·
s−1∑
j=0

j∑
t=0

(
n

t

)
λt(1− λ)n−t
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Proof:

n−1∑
k=s

Λ(k, s, λ) =
n−1∑
k=s

(
1 −

s−1∑
j=0

(
k

j

)
λj(1− λ)k−j

)
=

(
n− s

)
−

n−1∑
k=s

s−1∑
j=0

(
k

j

)
λj(1− λ)k−j =

(
n− s

)
−

s−1∑
j=0

λj ·
n−1∑
k=s

(
k

j

)
(1− λ)k−j

A simple calculation, similar to that in the proof of Corollary 3.10, gives

λj ·
n−1∑
k=s

(
k

j

)
(1− λ)k−j =

1

λ
·

(
j∑

t=0

(
s

t

)
λt(1− λ)s−t −

j∑
t=0

(
n

t

)
λt(1− λ)n−t

)

The proof of the lemma is completed by summing the RHS over j, and observing

s−1∑
j=0

j∑
t=0

(
s

t

)
λt(1− λ)s−t = (1− λ) · s

Lemma 4.3: Let f be a nonnegative function on {0, 1}n with expectation 1. Then

Ent
(
Tϵf
)

≤
n∑

i=1

ϕ

(
Ent

(
f | {i}

))
+

n−1∑
s=1

ws · ts

where

ws =
(
λn− s

)
+

s−1∑
j=0

j∑
t=0

(
n

t

)
λt(1− λ)n−t

Lemma 4.4: Let f be a nonnegative function on {0, 1}n. For any 0 ≤ u ≤ n− 1 holds

E
|B|=u+1

Ent
(
f | B

)
− (u+ 1) · E

i∈[n]
Ent

(
f | {i}

)
=

u∑
s=1

(
u− s+ 1

)
· ts

Next, we derive the theorem, assuming Lemmas 4.3 and 4.4 to hold.

We are going to apply the Chernoff bound in the following form [1]:

Let Xk ∼ B(k, λ) be a Bernoulli random variable. Then for any a ≥ 0 holds Pr
{∣∣∣Xk − λk

∣∣∣ >
a
}
≤ e−2a2/k.

Let us set ds =
∑s−1

j=0

∑j
t=0

(
n
t

)
λt(1 − λ)n−t. Note that ds =

∑s−1
j=0 Pr

{
Xn ≤ j

}
, and that

ws =
(
λn− s

)
+ ds.
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Remark 4.5: We note, for future use, the following two probabilistic interpretations for ws:

ws =
(
λn− s

)
+

s−1∑
j=0

Pr
{
Xn ≤ j

}
and ws = λ ·

n−1∑
k=s

Λ(k, s, λ) = λ ·
n−1∑
k=s

Pr
{
Xk ≥ s

}

Using the Chernoff bound for Xn gives that for s < λn−
√
n lnn holds

ds =

s−1∑
j=0

Pr
{
Xn ≤ j

}
≤ 1

n

Applying the bound to Xk ∼ B(k, λ) gives that for s > λn+
√
n lnn holds

ws = λ ·
n−1∑
k=s

Λ(k, s, λ) ≤
n−1∑
k=s

Pr
{
Xk > s

}
<

1

n

In the first step we used Lemma 4.2.

Finally, applying the bound to Xn again, we have for λn−
√
n lnn ≤ s ≤ λn+

√
n lnn

ds =

s−1∑
j=0

Pr
{
Xn ≤ j

}
=

λn−
√
n lnn∑

j=0

Pr
{
Xn ≤ j

}
+

s−1∑
j=λn−

√
n lnn+1

Pr
{
Xn ≤ j

}
≤

O
(√

n lnn
)

Combining the two lemmas, taking u = λn+
√
n lnn− 1 in Lemma 4.4, and setting v = u+ 1,

we have

Ent
(
Tϵf
)

≤ E
|B|=v

Ent
(
f | B

)
− v

n
·

n∑
i=1

Ent
(
f | {i}

)
+

n∑
i=1

ϕ

(
Ent

(
f
∣∣∣ {i})) +

v∑
s=1

ds · ts +
n−1∑

s=v+1

ws · ts =

E
|B|=v

(
Ent

(
f | B

)
−
∑
i∈B

Ent
(
f | {i}

))
+

n∑
i=1

ϕ

(
Ent

(
f
∣∣∣ {i})) + E(n),

where E(n) is an error term.
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We now estimate E(n). Observe that Lemma 4.4 applied with u = n− 1 implies

n−1∑
s=1

(n− s) · ts ≤ Ent
(
f
)

In particular

λn+
√
n lnn∑

s=λn−
√
n lnn

ts ≤ O

(
1

n

)
· Ent

(
f
)

Assuming n ≥ 10 ·
(

1
(1−λ)2

· log
(

1
1−λ

))
, the asymptotic notation in the above expression hides

an absolute constant.

Hence, by the above discussion,

v∑
s=1

ds · ts =

λn−
√
n lnn∑

s=1

ds · ts +

v∑
s=λn−

√
n lnn+1

ds · ts ≤ O

(√
lnn

n

)
· Ent

(
f
)

where both summands in the middle expression are upperbounded by the maximum of ds on
the corresponding domain, times the sum of ts on that domain.

Similarly,

n−1∑
s=v+1

ws · ts ≤ max
v+1≤s≤n

ws ·
n−1∑

s=v+1

ts ≤ O

(
1

n

)
· Ent

(
f
)

Hence E(n) ≤ O

(√
lnn
n

)
· Ent

(
f
)
.

This completes the proof of the theorem, given the lemmas hold.

It remains to prove the lemmas.

Proof: (Of Lemma 4.3)

Recall that, by the chain rule for noisy entropy (5), for any permutation σ ∈ Sn holds that

Ent
(
Tϵf
)
is bounded from above by

n∑
i=1

ϕ

(
Ent

(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i)}

)
− Ent

(
Tϵ{σ(1),...,σ(i−1)}f | {σ(1), . . . , σ(i− 1)}

))

Using the notation introduced in Subsection 1.4.1, we can write this as

n∑
i=1

ϕ

(
Ent

(
f | {σ(i)}

)
+ ITϵ{σ(1),...,σ(i−1)}f

({
σ(1), . . . , σ(i− 1)

}
, σ(i)

))
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Observe that the function ϕ is concave, and ϕ(0) = 0. Hence ϕ(x + y) ≤ ϕ(x) + ϕ(y) for any
0 ≤ x, y ≤ 1. By this subbaditivity of ϕ, the last expression is at most

n∑
i=1

ϕ

(
Ent

(
f | {i}

))
+

n∑
k=2

ϕ

(
ITϵ{σ(1),...,σ(k−1)}f

({
σ(1), . . . , σ(k − 1)

}
, σ(k)

))

Averaging this expression over all σ ∈ Sn, we obtain

Ent
(
Tϵf
)

≤
n∑

i=1

ϕ

(
Ent

(
f | {i}

))
+ µ,

where

µ = E
σ

n∑
k=2

ϕ

(
ITϵ{σ(1),...,σ(k−1)}f

({
σ(1), . . . , σ(k − 1)

}
, σ(k)

))

Next, we upper bound µ. By transitivity of action of the symmetric group and by concavity of
ϕ we have

µ ≤
n−1∑
k=1

ϕ
(
bk

)
where bk = E

A,m
TϵAf

(
A,m

)
where the expectation is over all A ⊆ [n] of cardinality k and m ̸∈ A.

Applying Proposition 4.1, we get

bk ≤ E
A,m

k∑
s=1

Λ
(
k, s, λ

)
· Y
(
A,m, s

)
=

k∑
s=1

Λ
(
k, s, λ

)
· E
A,m

Y
(
A,m, s

)

By the definition of Y
(
A,m, s

)
,

E
A,m

Y
(
A,m, s

)
= E

A,m
E
S,i

ZS;i,m = E
S,i,m

ZS;i,m · E
A

1 = E
S,i,m

ZS;i,m

where in the second expression the first expectation is over k-subsets A of [n] and m ̸∈ A, and
the second expectation is over (s − 1)-subsets S of A and over i ∈ A \ S. Rearranging, we
get the third expression in which the first expectation is over all subsets S of [n] of cardinality
s− 1 and over all distinct i,m ̸∈ S, and the second expectation is over all supersets A of S of
cardinality k with i ∈ A and m ̸∈ A.

Recalling the definition of ts above, we deduce bk =
∑k

s=1 Λ
(
k, s, λ

)
· ts.

Using the inequality ϕ(x) ≤ λx, and Lemma 4.2, we have

µ ≤ λ ·
n−1∑
k=1

bk = λ ·
n−1∑
k=1

k∑
s=1

Λ
(
k, s, λ

)
· ts =
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n−1∑
s=1

ts ·

(
λ ·

n−1∑
k=s

Λ
(
k, s, λ

))
=

n−1∑
s=1

ws · ts

Proof: (of Lemma 4.4)

By (8), for any subset A of [n] of cardinality 1 ≤ k ≤ n−1, for any m ̸∈ A, and for any bijection
τ : [k] → A holds, in the notation of this section,

k∑
s=1

Z{τ(1),...,τ(s−1)};τ(s),m = If

(
A,m

)
We now average over all the variables, setting

ck = E
A,m,τ

k∑
s=1

Z{τ(1),...,τ(s−1)};τ(s),m

On one hand, we have

ck = E
A,m

If

(
A,m

)
= E

A,m

(
Ent

(
f | A ∪ {m}

)
− Ent

(
f | A

)
− Ent

(
f | {m}

))
=

E
|B|=k+1

Ent
(
f | B

)
− E

|A|=k
Ent

(
f | A

)
− E

i∈[n]
Ent

(
f | {i}

)
On the other hand, similarly to the computation in the preceding lemma, we have

ck =
k∑

s=1

E
A,m,τ

Z{τ(1),...,τ(s−1)};τ(s),m =
k∑

s=1

E
A,S,i,m

ZS;i,m =
k∑

s=1

ts

where the expectation in the third expression is over k-subsets A of [n], over (s− 1)-subsets S
of A, over m ̸∈ A and i ∈ A \ S.

Hence, for any 1 ≤ u ≤ n− 1 holds

E
|B|=u+1

Ent
(
f | B

)
− (u+ 1) · E

i∈[n]
Ent

(
f | {i}

)
=

u∑
k=1

ck =

u∑
s=1

(
u− s+ 1

)
· ts

completing the proof of the lemma and of the theorem.
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5 Proof of Theorem 1.11

Let δ be the constant in the theorem. We will assume in the following argument that δ is
sufficiently small.

Let 0 < ϵ < 1/2 be a noise parameter, such that (1− 2ϵ)2 ≤ δ. Let λ = (1− 2ϵ)2.

Let f : {0, 1}n → {0, 1} be a boolean function, satisfying the constraints of the theorem. Let
1 ≤ k ≤ n be the coordinate such that |f̂(k)| is large. W.l.o.g. assume that k = 1 and that
f̂(1) is positive.

We introduce some additional notation.

Notation

• Let 0 ≤ α ≤ δ be such that f̂(1) = (1− α) · E f .

• Let 0 ≤ β ≤ δ be such that E f = 1/2− β. Let γ = α+ β.

• If α ≤ λ, we define τ =
(
1−λ
1−α

)2
, and define auxiliary noise ϵτ , such that

(
1− 2ϵτ

)2
= τ .

If α > λ, we set τ = 1 and ϵτ = 0.

• Let ϵ1 be such that Tϵ = Tϵ1Tϵτ . Let λ1 = (1− 2ϵ1)
2. Note that λ = τ · λ1.

• Let h = Tϵτ f . Note that Tϵf = Tϵ1h, and hence Ent
(
Tϵf
)
= Ent

(
Tϵ1h

)
.

We will first show that the claim of the theorem holds up to a small error. That is,

Ent
(
Tϵf
)

≤ 1

2
·
(
1−H(ϵ)

)
+ e(n) (16)

Here and from now on in this section e(n) defines an error term which goes to zero with n. We
will use the same notation for different error terms. We justify this abuse of notation by the
fact that it is not hard to verify all these error terms go to zero uniformly with n.

This would be the main part of the proof. We will then show, in Subsection 5.2, that the error
term may be removed by a direct product argument.

We start with applying Theorem 1.7 to the function h with noise ϵ1. The theorem is stated for
functions with expectation 1. We modify it, using the linearity of entropy, to obtain

Ent
(
Tϵ1h

)
≤ E

|B|=v

(
Ent

(
h | B

)
−
∑
i∈B

Ent
(
h | {i}

))
+

Eh ·
n∑

i=1

ϕ

(
Ent

(
h

Eh

∣∣∣ {i}) , ϵ1

)
+ O

(√
lnn

n

)
· Ent

(
h
)
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Here v =
⌈
λ1 · n+

√
n lnn

⌉
.

Note that, since there are several noise parameters involved, we now write the function ϕ with
the noise parameter stated explicitly.

Let λ2 = v/n. Let ϵ2 be such that (1− 2ϵ2)
2 = λ2. Then the statement above as implies:

Ent
(
Tϵ1h

)
≤ E

|B|=λ2n

(
Ent

(
h | B

)
−
∑
i∈B

Ent
(
h | {i}

))
+

Eh ·
n∑

i=1

ϕ

(
Ent

(
h

Eh

∣∣∣ {i}) , ϵ2

)
+ e(n)

To see this, note that ϵ2 ≤ ϵ1, that ϕ(x, ϵ) decreases in ϵ, and that Ent
(
h
)
≤ Ent

(
f
)
≤ 1.

Next, note that, by (3), for any 1 ≤ i ≤ n holds

Eh · ϕ

(
Ent

(
h

Eh

∣∣∣ {i}) , ϵ2

)
≤ λ2 · Ent

(
h | {i}

)
Hence the previous inequality implies

Ent
(
Tϵ1h

)
≤ λ2 · E

|B|=λ2n,1∈B

(
Ent

(
h | B

)
− Ent

(
h | {1}

))
+

(1− λ2) · E
|B|=λ2n,1 ̸∈B

Ent
(
h | B

)
+ Eh · ϕ

(
Ent

(
h

Eh

∣∣∣ {1}) , ϵ2

)
+ e(n) (17)

The claim in (16) will be based on three lemmas, which upperbound each of the three significant
summands in the RHS of (17).

Lemma 5.1:

E
|B|=λ2n, 1∈B

(
Ent

(
h | B

)
− Ent

(
h | {1}

))
≤ O

(
λ2 · γ + γ2 ln

(
1

γ

))
+ e(n)

Lemma 5.2:

E
|B|=λ2n, 1̸∈B

Ent
(
h | B

)
≤ O

(
λ2
2 · γ + λ2 · γ2 ln

(
1

γ

))
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Lemma 5.3:

Eh · ϕ

(
Ent

(
h

Eh

∣∣∣ {1}) , ϵ2

)
≤ 1

2
·
(
1−H(ϵ)

)
− Ω

(
λ · γ

)
+ e(n)

The asymptotic notation in each of the lemmas hides absolute constants.

Given the lemmas, (16) is easy to verify. Indeed, it is easy to check that λ ≤ λ2 ≤ c · λ+ e(n),
for some absolute constant c. Hence, the lemmas and (17) imply that

Ent
(
Tϵf
)

= Ent
(
Tϵ1h

)
≤ 1

2
·
(
1−H(ϵ)

)
− Ω

(
λ · γ

)
+ oλ,γ→0

(
λ · γ

)
+ e(n)

That is, for a sufficiently small δ > 0, such that 0 ≤ α, β, λ ≤ δ, the claim of (16) holds.

It remains to prove the lemmas. For that purpose, we will need the following version of the
logarithmic Sobolev inequality for the boolean cube.

Lemma 5.4: Let g be a nonnegative function on {0, 1}n. Let E(g, g) be the Dirichlet form,

given by E(g, g) = Ex∈{0,1}n Ey∼x

(
g(y)− g(x)

)2
. Then

E(g, g) ≥ 2 ln 2 · E g · Ent
(
g
)

Proof:

We start with a simple auxiliary claim.

Let x1 ≥ x2 ≥ ... ≥ xN be nonnegative numbers summing to 1. Then the numbers yk =
x2
k∑N

i=1 x
2
i

,

for k = 1, ..., N , majorize {xk}, that is

y1 ≥ x1, y1 + y2 ≥ x1 + x2, . . . , y1 + ...+ yN = 1 = x1 + ...+ xN

To see this, fix some 1 ≤ t ≤ N . We have to show
∑t

k=1 x
2
k ≥

(∑t
k=1 xk

)
·
(∑N

k=1 x
2
k

)
.

We may and will assume that all of the xk are strictly positive. After some rearrangement, the
claim reduces to showing

∑t
k=1 x

2
k∑t

k=1 xk
≥

∑N
m=t+1 x

2
m∑N

k=t+1 xm

This holds because the LHS is lowerbounded by xt, and the RHS is upperbounded by xt+1.

A simple corollary of this claim is that for any nonnegative not identically zero function g on a
finite domain endowed with uniform measure, holds that g2/E g2 majorizes g/E g.
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This is well-known (see [7]) to imply that g/E g is a convex combination of permuted versions
of g2/E g2. Since the entropy functional is linear and convex, this implies

Ent
(
g2
)

≥ E g2

E g
· Ent

(
g
)

≥ E g · Ent
(
g
)

The claim of the lemma follows from this inequality combined with the logarithmic Sobolev
inequality [6]

E(g, g) ≥ 2 ln 2 · Ent
(
g2
)

We are going to use the Walsh-Fourier expansion for functions on the boolean cube, writing a

function g as
∑

S⊆[n] ĝ(S) ·WS , where
{
WS

}
S⊆[n]

is the Walsh-Fourier basis [8]. In particular,

for the Dirichlet form, we have E(g, g) = 4·
∑

S⊆[n] |S|ĝ2(S). Hence the preceding lemma implies

Ent
(
g
)

≤ 2

ln 2
· 1

E g
·
∑
S⊆[n]

|S| ĝ2(S) (18)

We will also need the following precise version of an inequality of [3], due to [4]:

Theorem 5.5 : There exists a universal constant L > 0 with the following property. For

g : {0, 1}n → {−1, 1}, let ρ =
(∑

A⊆[n]:|A|≥2 ĝ
2(A)

)1/2
. Then there exists some B ⊆ [n] with

|B| ≤ 1 such that∑
A⊆[n]:|A|≤1,A̸=B

ĝ2(A) ≤ L · ρ4 ln
(
2

ρ

)

and |ĝ(B)|2 ≥ 1 − ρ2 − L · ρ4 ln
(
2
ρ

)
.

Consider the boolean function f given in Theorem 1.11. Let g = 2f − 1. Then g : {0, 1}n →
{−1, 1}. Note that ĝ(0) = 2f̂(0)− 1, and that ĝ(S) = 2f̂(S), for |S| > 0.

In particular, ĝ(0) = 2E f − 1 = −2β, and ĝ({1}) = 2(1− α)E f = (1− α)(1− 2β).

Recall that 0 ≤ α, β ≤ δ, and that γ = α+ β. Hence, assuming δ is sufficiently small, we have∑
|A|≥2

f̂2(A) ≤
∑
|A|≥2

ĝ2(A) ≤ 1 − ĝ2({1}) ≤ L · γ, (19)

for some absolute constant L.

Applying Theorem 5.5 to the function g, we get, for a sufficiently large constant L1,

n∑
k=2

f̂2
(
{k}
)

≤
n∑

k=2

ĝ2
(
{k}
)

≤ L1 · γ2 ln
(
1

γ

)
(20)
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Proof of Lemma 5.2

Fix B ⊆ [n], with |B| = λ2n. Let gB = E
(
h | B

)
.

Note that gB =
∑

S⊆B ĥ(S) ·WS , and hence, by (18), we have

Ent
(
gB

)
≤ 2

ln 2
· 1

E gB
·
∑
S⊆[B]

|S| ĥ2(S) =
2

ln 2
· 1

Eh
·
∑
S⊆[B]

|S| ĥ2(S)

Hence,

E
|B|=λ2n,1̸∈B

Ent
(
h | B

)
≤ 2

ln 2
· 1

Eh
· E

|B|=λ2n,1̸∈B

∑
S⊆[B]

|S| ĥ2(S) ≤

2

ln 2
· 1

Eh
·
∑
S,1̸∈S

|S|λ|S|
2 ĥ2(S)

Recall that h = Tϵτ f . This means (see [8]) that for any S ⊆ [n], holds ĥ(S) = τ |S|/2 · f̂(S).

In particular, |ĥ(S)| ≤ |f̂(S)|. Applying (19) and (20), we have that, for a sufficiently large
absolute constant L, the last expression is bounded by

L ·
(
λ2
2 · γ + λ2 · γ2 ln

(
1

γ

))
This concludes the proof of the lemma.

Proof of Lemma 5.3

Let g = E
(

f
E f

∣∣∣ {1}). Then g is a function on a 2-point space {0, 1}, with g(0) = 2 − α and

g(1) = α.

Observe that the noise operator commutes with the projection operator. Hence, since h = Tϵτ f ,

we have g1 := E
(

h
Eh

∣∣∣ {1}) = Tϵτ g.

Observe also that, by the definition of Mrs. Gerber’s function ϕ, we have

ϕ

(
Ent

(
h

Eh

∣∣∣ {1}) , ϵ2

)
= Ent

(
Tϵ2g1

)
= Ent

(
Tϵ2Tϵτ g

)
≤

Ent
(
Tϵ1Tϵτ g

)
+ e(n) = Ent

(
Tϵg
)

+ e(n)

The inequality follows from the definition of ϵ1 and ϵ2, and the last equality follows from the
definition of ϵ1 and ϵτ .
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It is easy to verify that Tϵg(0) = 1 + (1− α) · λ1/2 and that Tϵg(1) = 1− (1− α) · λ1/2.

Hence, Ent
(
Tϵg
)
= 1−H

(
1−(1−α)·λ1/2

2

)
.

Recall that

H

(
1− x

2

)
= 1 − 1

ln 2
·

∞∑
k=1

1

2k(2k − 1)
· x2k

with the series converging absolutely for −1 ≤ x ≤ 1.

Let F (x) = 1−H
(
1−

√
x

2

)
, for 0 ≤ x ≤ 1. Then F (x) = 1

ln 2 ·
∑∞

k=1
1

2k(2k−1) · x
k.

It is a convex function on [0, 1], and hence for any 0 ≤ x < y ≤ 1 holds F (y) − F (x) ≥
(y − x) · F ′(x). The derivative F ′ is given by F ′(x) = 1

2 ln 2 ·
∑∞

k=1
1

2k−1 · xk−1, with the series
converging absolutely for x bounded away from 1.

Hence F ′ ≥ 1
2 ln 2 on (0, 1), and F (y) − F (x) ≥ 1

2 ln 2 · (y − x). Applying this with y = λ and
x = (1− α)2 · λ, we get(

1−H(ϵ)
)

− Ent
(
Tϵg
)

= F (λ) − F
(
(1− α)2 · λ

)
≥ c1 · λ · α

where c1 > 0 is an absolute constant.

To conclude the proof of the lemma, note that, for a sufficiently small α, we have Ent
(
Tϵg
)
≥

c2 · λ, for an absolute constant c2, and hence

Eh · ϕ

(
Ent

(
h

Eh

∣∣∣ {1}) , ϵ2

)
≤

(
1

2
− β

)
· Ent

(
Tϵg
)

+ e(n) ≤

1

2
·
(
1−H(ϵ)

)
− c · λ · (α+ β) + e(n) =

1

2
·
(
1−H(ϵ)

)
− c · λ · γ + e(n)

for a sufficiently small absolute constant c.

This completes the proof of the lemma.

The proof of Lemma 5.1 is somewhat harder. We present it in the next subsection.

5.1 Proof of Lemma 5.1

We proceed similarly to the proof of Lemma 5.2, and use the notation introduced in that proof.

Given a function g on the boolean cube, we write E
(
g | x1 = 0, x2, ..., xk

)
for the restriction

of E
(
g | x1, x2, ..., xk

)
on the subcube x1 = 0, and similarly for E

(
g | x1 = 1, x2, ..., xk

)
.
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We note that for g =
∑

S⊆[n] ĝ(S) ·WS , we have

E
(
g | x1 = 0, x2, ..., xn

)
=

∑
T⊆[n],1̸∈T

(
ĝ(T ) + ĝ(T ∪ {1})

)
·WT

and

E
(
g | x1 = 1, x2, ..., xn

)
=

∑
T⊆[n],1̸∈T

(
ĝ(T ) − ĝ(T ∪ {1})

)
·WT

We will also use the following easily verifiable identity, holding for nonnegative functions g:

Ent
(
g
)

− Ent
(
g | {1}

)
=

1

2
· Ent

(
g | x1 = 0, x2, ..., xn

)
+

1

2
· Ent

(
g | x1 = 1, x2, ..., xn

)
As before, let gB = E

(
h | B

)
, for a subset B ⊆ [n], with |B| = λ2n. Note that if 1 ∈ B, then

E
(
gB | {1}

)
= E

(
h | {1}

)
.

Hence

E
|B|=λ2n, 1∈B

(
Ent

(
h | B

)
− Ent

(
h | {1}

))
= E

|B|=λ2n, 1∈B

(
Ent

(
gB

)
− Ent

(
gB | {1}

))
=

1

2
· E
|B|=λ2n, 1∈B

Ent
(
gB | x1 = 0, x2, ..., xn

)
+

1

2
· E
|B|=λ2n, 1∈B

Ent
(
gB | x1 = 1, x2, ..., xn

)
We will prove the lemma by showing that, for a sufficiently large absolute constant L, holds
both

E
|B|=λ2n, 1∈B

Ent
(
gB | x1 = 0, x2, ..., xn

)
≤ L · λ2 · γ (21)

and

E
|B|=λ2n, 1∈B

Ent
(
gB | x1 = 1, x2, ..., xn

)
≤ L ·

(
λ2 · γ + γ2 ln

(
1

γ

))
+ e(n) (22)
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Proof of (21)

Fix a subset B ⊆ [n], with |B| = λ2n, and 1 ∈ B. Recall that gB =
∑

S⊆B ĥ(S) ·WS , and hence

E
(
gB | x1 = 0, x2, ..., xn

)
=

∑
T⊆B\{1}

(
ĥ(T ) + ĥ(T ∪ {1})

)
·WT

In particular,

E
(
gB | x1 = 0

)
= ĥ(0) + ĥ({1}) = f̂(0) + τ1/2 · f̂({1}) ≥ E f

Applying (18), we have, for a sufficiently large constant L1,

Ent
(
gB | x1 = 0, x2, ..., xn

)
≤ 2

ln 2
· 1

E f
·
∑

T⊆B\{1}

|T | ·
(
ĥ(T ) + ĥ(T ∪ {1})

)2
≤

L1 ·
∑

T⊆B\{1}

|T | ·
(
ĥ2(T ) + ĥ2(T ∪ {1})

)

Averaging over B, we have

E
|B|=λ2n, 1∈B

Ent
(
gB | x1 = 0, x2, ..., xn

)
≤ L1 ·

( ∑
T,1 ̸∈T

|T |λ|T |
2 ĥ2(T ) +

∑
T,1 ̸∈T

|T |λ|T |
2 ĥ2(T ∪ {1})

)

Using the fact that |ĥ(S)| ≤ |f̂(S)| for all S ⊆ [n], and applying (19) and (20), we have, for a
sufficiently large constant L2,

∑
T,1 ̸∈T

|T |λ|T |
2 ĥ2(T ) ≤ L2 ·

(
λ2 · γ2 ln

(
1

γ

)
+ λ2

2 · γ
)

and ∑
T,1 ̸∈T

|T |λ|T |
2 ĥ2(T ∪ {1}) ≤ L2 · λ2 · γ

Summing up, this gives (21).
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Proof of (22)

Similarly to the above,

E
(
gB | x1 = 1, x2, ..., xn

)
=

∑
T⊆B\{1}

(
ĥ(T ) − ĥ(T ∪ {1})

)
·WT

Which means that

E
(
gB | x1 = 1

)
= ĥ(0) − ĥ({1}) = f̂(0) − τ1/2 · f̂({1}) = E f ·

(
1 − τ1/2 · (1− α)

)
Recall that τ1/2 = 1 if α ≥ λ and τ1/2 = 1−λ

1−α otherwise. In both cases, note that we have

E
(
gB | x1 = 1

)
≥ λ · E f .

Applying (18), and averaging over B, we have, for a sufficiently large constant L1,

E
|B|=λ2n, 1∈B

Ent
(
gB | x1 = 1, x2, ..., xn

)
≤ L1 ·

1

λ
·
∑

T,1̸∈T
|T |λ|T |

2 ·
(
ĥ(T ) − ĥ(T ∪ {1})

)2

Let g = E
(
h | x1 = 1, x2, ..., xn

)
. Then g =

∑
T⊆[n],1 ̸∈T

(
ĥ(T ) − ĥ(T ∪ {1})

)
·WT . Hence

E
|B|=λ2n, 1∈B

Ent
(
gB | x1 = 1, x2, ..., xn

)
≤ L1 ·

1

λ
·
∑

T,1̸∈T
|T |λ|T |

2 · ĝ2(T ) (23)

Consider the function g. Since h = Tϵτ f , we have

g = ϵτ · Tϵτ

(
E
(
f | x1 = 0, x2, ..., xn

))
+
(
1 − ϵτ

)
· Tϵτ

(
E
(
f | x1 = 1, x2, ..., xn

))

For i = 0, 1, let fi = E
(
f | x1 = i, x2, ..., xn

)
, and let ti = Tϵτ fi. Note that for i = 0, 1 and for

any T , 1 ̸∈ T , holds |t̂i(T )| ≤ |f̂i(T )|.

Therefore, since g = ϵτ · t0 +
(
1− ϵτ

)
· t1, we have, for any T , 1 ̸∈ T that

ĝ2(T ) ≤ ϵτ · t̂0
2
(T ) +

(
1 − ϵτ

)
· t̂1

2
(T ) ≤ ϵτ · f̂0

2
(T ) +

(
1 − ϵτ

)
· f̂1

2
(T )

Hence,

∑
T,1 ̸∈T

|T |λ|T |
2 · ĝ2(T ) ≤ ϵτ ·

∑
T,1 ̸∈T

|T |λ|T |
2 f̂0

2
(T ) +

(
1− ϵτ

)
·
∑

T,1̸∈T
|T |λ|T |

2 f̂1
2
(T ) (24)
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Exactly as above, we have the following upper bound for the first summand: For a sufficiently
large constant L2 holds

∑
T,1 ̸∈T

|T |λ|T |
2 f̂0

2
(T ) =

∑
T,1̸∈T

|T |λ|T |
2

(
f̂(T ) + f̂(T ∪ {1})

)2
≤ L2 · λ2 · γ

Consider the second summand. The function f1 is a boolean function, whose expectation equals
f̂(0)− f̂({1}) = α · E f ≤ α. Similarly, E f2

1 = E f1 ≤ α.

We now apply the inequality of [12], which states that

For a boolean function g : {0, 1}m → {0, 1} with expectation µ ≤ 1/2 holds
∑m

k=1 ĝ
2({k}) ≤

L3 · µ2 · ln (1/µ), for a sufficiently large absolute constant L3.

In our case, this implies
∑n

k=2 f̂1
2
(
{k}
)
≤ L3 · α2 · ln

(
1
α

)
, for a sufficiently large constant L3.

This means that, for a sufficiently large constant L4, we can upperbound the second summand
in (24) by

∑
T,1 ̸∈T

|T |λ|T |
2 f̂1

2
(T ) ≤ L4 ·

(
λ2 · α2 ln

(
1

α

)
+ λ2

2 · α
)

Recall that for α < λ, we have ϵτ = 1−τ1/2

2 = 1−(1−λ)/(1−α)
2 ≤ L5 · λ, for an absolute constant

L5; and that for α ≥ λ, we have ϵτ = 0. Plugging these estimates into (24), we have

∑
T,1 ̸∈T

|T |λ|T |
2 · ĝ2(T ) ≤ L2 · L5 · λ · λ2 · γ + L4 ·

(
λ2 · α2 ln

(
1

α

)
+ λ2

2 · α
)

And hence, coming back to (23), and recalling that λ ≤ λ2 ≤ c · λ + e(n), for some absolute
constant c, we have, for sufficiently large absolute constants L, L′, that

E
|B|=λ2n, 1∈B

Ent
(
gB | x1 = 1, x2, ..., xn

)
≤ L′ ·

(
λ2 · γ + α2 ln

(
1

α

)
+ λ2 · α

)
+ e(n) ≤

L ·
(
λ2 · γ + γ2 ln

(
1

γ

))
+ e(n)

This completes the proof of (22), of Lemma 5.1, and of (16).
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5.2 Removing the error in (16)

We show that the error term in (16) can be removed, by considering the claim for direct products
of a function f with other functions.

Notation: For f : {0, 1}n → R and g : {0, 1}k → R, let the direct product f×g : {0, 1}n+k → R
be given by

(f × g)(x, y) = f(x) · g(y)

The following properties are easily verifiable (and well-known):

1. E(f × g) = E f · E g

2. More generally, for all S ⊆ [n] and T ⊆ [k] holds

f̂ × g(S, T ) = f̂(S) · ĝ(T )

3. Tϵ(f × g) = Tϵf × Tϵg

4. Ent(f × g) = E f · Ent(g) + E g · Ent(f)

Let now f : {0, 1}n → {0, 1} be a function satisfying the conditions of Theorem 1.11. Let N
be a large integer, let g be a constant-1 function on {0, 1}N , and let F = f × g.

By the properties above, it is easy to see that EF = E f and that for any S ⊆ [n] holds
F̂ (S, 0) = f̂(S). Hence F also satisfies the conditions of Theorem 1.11, and we have, by (16),
and by the properties above, that

Ent
(
Tϵf
)

= Ent
(
TϵF

)
≤ 1

2
·
(
1−H(ϵ)

)
+ e(N + n),

where e(·) is the error term in (16).

LettingN go to infinity shows Ent
(
Tϵf
)
≤ 1

2 ·
(
1−H(ϵ)

)
, completing the proof of Theorem 1.11.

6 Remaining proofs

6.1 Proof of Lemma 1.2

We have

I
(
f(X);Y

)
= H

(
f(X)

)
− H

(
f(X)|Y

)
= H

(
f(X)

)
− E

y
H
(
f(X)|Y = y

)
=

H
(
f(X)

)
− E

y
H
(
(Tϵf) (y)

)
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Clearly

H
(
f(X)

)
= E f log

1

E f
+ (1− E f) log

1

1− E f

We also have (all the logarithms are binary)

E
y
H
(
(Tϵf) (y)

)
= E

y

(
(Tϵf) (y) log

1

(Tϵf) (y)
+
(
1− (Tϵf) (y)

)
log

1

1− (Tϵf) (y)

)
=

−
(
Ent

(
Tϵf
)

+ ETϵf logETϵf

)
−

(
Ent

(
Tϵ(1− f)

)
+ ETϵ(1− f) logETϵ(1− f)

)
=

−
(
Ent

(
Tϵf
)
+ Ent

(
Tϵ(1− f)

))
+ E f log

1

E f
+ (1− E f) log

1

1− E f

In the last step we have used the fact ETϵg = E g for any function g. The claim of the lemma
follows.

6.2 Proof of Corollary 1.9

Note that for a boolean function f holds Ent
(
f
)
+ Ent

(
1 − f

)
≤ 1. Hence, applying Corol-

lary 1.8 to the functions f and 1− f , we obtain, by Lemma 1.2:

I
(
f(X);Y

)
= Ent

(
Tϵf
)

+ Ent
(
Tϵ(1− f)

)
≤

E
|B|=v

Ent
(
f | B

)
+ E

|B|=v
Ent

(
(1− f) | B

)
+ O

(√
log n

n

)

To conclude the proof of the corollary, it suffices to show that for any B ⊆ [n] holds

Ent
(
f | B

)
+ Ent

(
(1− f) | B

)
= I

(
f(X); {Xi}i∈B

)
To see this, we proceed exactly as in the proof of Lemma 1.2, observing that, by the definition,

Pr
{
f(X) = 1

∣∣∣ {Xi}i∈B
}

= E
(
f | B

)
Here we interpret both sides as functions of {Xi}, i ∈ B.
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6.3 Proof of Theorem 1.12

Let δ be the constant in the theorem. We will assume in the following argument that δ is
sufficiently small, and, in particular, is at most as large as the constant in Theorem 1.11,

Let ϵ be a noise parameter, such that (1− 2ϵ)2 ≤ δ. Denote λ = (1− 2ϵ)2.

Let f : {0, 1}n → {0, 1} be a balanced function, that is E f = 1/2.

Notation: In the following argument Li, with i = 1, ..., 3, denote absolute constants.

Applying the result of [10] (Corollary 1), we have (in our notation) that, for a sufficiently small
λ, holds

I
(
f(X);Y

)
≤

(
2

ln 2
·

n∑
k=1

f̂2({k})

)
· λ + L1 · λ2

Next, note that, as in the proof of Lemma 5.3, we have 1−H(ϵ) = 1−H
(
1−λ1/2

2

)
≥ 1

2 ln 2 · λ.

Therefore, if
∑n

k=1 f̂
2({k}) < 1

4 − L2·λ, for a sufficiently large L2, then I
(
f(X);Y

)
< 1−H(ϵ).

Hence, we may assume
∑n

k=1 f̂
2({k}) > 1

4 − L2 · λ.

Let g = 2f − 1. Then g : {0, 1}n → {−1, 1}, and
∑n

k=1 ĝ
2({k}) > 1− 4L2 · λ.

If λ is sufficiently small, we may apply Theorem 5.5, obtaining that there exists an index
1 ≤ k ≤ n such that ĝ2({k}) ≥ 1− L3 · λ, for some sufficiently large L3.

This means that

|f̂({k})| ≥ 1

2
− L3

2
· λ = (1− α) · E f,

with α = L3 · λ.

Therefore, f satisfies the conditions of Theorem 1.11.

Since E(1 − f) = 1/2 and 1̂− f(S) = −f̂(S), for |S| > 0, the function 1 − f satisfies these
conditions as well.

Hence,

Ent
(
Tϵf
)

≤ 1

2
·
(
1 − H(ϵ)

)
and Ent

(
Tϵ(1− f)

)
≤ 1

2
·
(
1 − H(ϵ)

)
This, by Lemma 1.2, gives

I
(
f(X);Y

)
= Ent

(
Tϵf
)

+ Ent
(
Tϵ(1− f)

)
≤ 1 − H(ϵ),

completing the proof.
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6.4 Proof of Proposition 2.2

We repeat the statement of the proposition for the reader’s convenience.

Proposition: Let h be a nonnegative function on {0, 1}2 Then

ITϵ{1}h

(
{2}, 1

)
≤ (1− 2ϵ)2 · Ih

(
{2}, 1

)
Proof:

By homogeneity, we may and will assume Eh = 1.

Note that

Ih

(
{2}, 1

)
= Ih

(
{1}, 2

)
= Ent(h) − Ent

(
h | {1}

)
− Ent

(
h | {2}

)
=

1

2
· Ent

(
h | x2 = 0

)
+

1

2
· Ent

(
h | x2 = 1

)
− Ent

(
h | {1}

)
Similarly

ITϵ{1}h

(
{2}, 1

)
=

1

2
· Ent

(
Tϵ{1}h | x2 = 0

)
+

1

2
· Ent

(
Tϵ{1}h | x2 = 1

)
− Ent

(
Tϵ{1}h | {1}

)
Let us write E(x) = Ent

(
x, 2− x

)
, for 0 ≤ x ≤ 2.

Set θ = 1
2 · E

(
h | x2 = 0

)
. Note that Eh = 1 implies 1− θ = 1

2 · E
(
h | x2 = 1

)
.

Finally, take s = 2 · Pr
{
x1 = 0 | x2 = 0

}
and t = 2 · Pr

{
x1 = 0 | x2 = 1

}
. Observe that

0 ≤ s, t ≤ 2.

In this new notation,

Ih

(
{2}, 1

)
= θ · E(s) + (1− θ) · E(t) − E

(
θE(s) + (1− θ)E(t)

)
And, using (2), we have

ITϵ{1}h

(
{2}, 1

)
= θ · ϕ

(
E(s)

)
+ (1− θ) · ϕ

(
E(t)

)
− ϕ

(
E
(
θs+ (1− θ)t

))
The statement of the proposition can be now rephrased as follows:

θ · ϕ
(
E(s)

)
+ (1− θ) · ϕ

(
E(t)

)
− ϕ

(
E
(
θs+ (1− θ)t

))
≤

(1− 2ϵ)2 ·
(
θ · E(s) + (1− θ) · E(t) − E

(
θs+ (1− θ)t

))
(25)
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For all 0 ≤ s, t ≤ 2, 0 ≤ θ ≤ 1, and 0 ≤ ϵ ≤ 1/2.

Let F (x) = (1− 2ϵ)2 · E(x)− ϕ(E(x)). Then this claim is equivalent to

θ · F (s) + (1− θ) · F (t) ≥ F
(
θs+ (1− θ)t

)
That is, to the fact that F is a convex function on [0, 2]. We will verify this in the next lemma.

Lemma 6.1: The second derivative F ′′ is nonnegative on (0, 2).

Proof: Recall that ϕ(x) = ϕ(x, ϵ) = 1−H
(
(1− 2ϵ) ·H−1(1− x) + ϵ

)
.

Note also that E(s) = 1−H (s/2), for 0 ≤ s ≤ 2. Hence ϕ(E(s)) = 1−H
(
(1/2− ϵ) · s+ ϵ

)
.

We need to show that (1− 2ϵ)2 · E′′ ≥
(
ϕ(E)

)′′
. Computing the second derivatives,

(ϕ(E))′′ (s) =
(1− 2ϵ)2

ln 2
· 1(

(1− 2ϵ) · s+ 2ϵ
)
·
(
(2− 2ϵ)− (1− 2ϵ) · s

)
And E′′ = 1

ln 2 · 1
s(2−s) . Hence we need to check

s · (2− s) ≤
(
(1− 2ϵ) · s+ 2ϵ

)
·
(
(2− 2ϵ)− (1− 2ϵ) · s

)
and this is easily verifiable.
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