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Abstract

We consider several non-uniform variants of parameterized complexity classes that have been considered in the
literature. We do so in a homogenous notation, allowing a clear comparison of the various variants. Additionally, we
consider some novel (non-uniform) parameterized complexity classes that come up in the framework of parameterized
knowledge compilation. We provide some (inclusion and separation) results relating the different non-uniform classes
to each other. Moreover, we illustrate how these non-uniform parameterized complexity classes are useful in the
setting of parameterized knowledge compilation.
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1 Introduction
In various areas of parameterized complexity analysis, the notion of non-uniform computation shows up. In the
literature, several non-uniform variants of parameterized complexity classes have been considered, e.g., see [5, 8, 14].
These variants are defined in very different ways, and are not (or hardly) related to each other.

We give an overview of different non-uniform variants of parameterized complexity classes. We do so in a homo-
geneous notation, that allows a clear comparison of the different variants. Moreover, we provide some (inclusion and
separation) results relating the different non-uniform classes to each other.

Additionally, we illustrate how these non-uniform parameterized complexity classes are useful for various appli-
cations of the framework of parameterized complexity. Most notably, we discuss the relation between parameterized
knowledge compilation and non-uniform parameterized complexity. We introduce several novel (non-uniform) pa-
rameterized complexity classes that are useful in the setting of parameterized knowledge compilation. We show how
these classes can be used in this setting, and we relate them to the other non-uniform parameterized complexity classes
that we consider.

2 Non-uniform parameterized complexity classes
In this section, we give a definition of the non-uniform parameterized complexity classes that we discuss in the paper.
Most classes can be defined in a homogeneous way, namely by using advice. Only for the class XPnu, a natural non-
uniform variant of the commonly considered class XP, the most natural definition is of a different form. For the sake
of completeness, we begin with a brief overview of relevant (uniform) parameterized complexity classes.

An overview of all (non-uniform) parameterized complexity classes considered in this paper, including the classes
defined in this section can be found in Figure 1.

Preliminary definitions We briefly introduce some core notions from parameterized complexity theory. For an in-
depth treatment we refer to other sources [8, 9, 14, 26]. A parameterized problemL is a subset of Σ∗×N for some finite
alphabet Σ. In the remainder of this paper, we fix an arbitrary alphabet Σ. For an instance (x, k) ∈ Σ∗×N, we call x the
main part and k the parameter. A parameterized problem L is fixed-parameter tractable if there exists a computable
function f and a constant c such that there exists an algorithm that decides whether (x, k) ∈ L in time O(f(k)|x|c),
where |x| denotes the size of x. We let FPT denote the class of all fixed-parameter tractable parameterized problems.
We define XP to be the class of all parameterized problems L for which there exists a computable function f and an
algorithm that decides whether (x, k) ∈ L in time |x|f(k).

Let L ⊆ Σ∗ × N and L′ ⊆ (Σ′)∗ × N be two parameterized problems. An fpt-reduction from L to L′ is a
mapping R : Σ∗ × N → (Σ′)∗ × N from instances of L to instances of L′ such that there exist some computable
function g : N→ N such that for all (I, k) ∈ Σ∗ ×N: (i) (I, k) is a yes-instance of L if and only if (I ′, k′) = R(I, k)
is a yes-instance of L′, (ii) k′ ≤ g(k), and (iii) R is computable in fpt-time. Similarly, we call reductions that satisfy
properties (i) and (ii) but that are computable in time |x|f(k), for some fixed computable function f , xp-reductions.

When S is a set of parameterized problems, we let [S]fpt denote the closure of S under fpt-reductions, i.e., [S]fpt
consists of all parameterized problems that can be fpt-reduced to some problem S ∈ S.

For any parameterized problem L ⊆ Σ∗ × N and any positive integer k ∈ N, we call the unparameterized
problem Lk = {x : (x, k) ∈ L } the k-th slice of L.

Let C be a classical complexity class, e.g., NP. The parameterized complexity class para-C is then defined as the
class of all parameterized problems L ⊆ Σ∗ × N, for some finite alphabet Σ, for which there exist an alphabet Π, a
computable function f : N→ Π∗, and a problem P ⊆ Σ∗×Π∗ such that P ∈ C and for all instances (x, k) ∈ Σ∗×N
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of L we have that (x, k) ∈ L if and only if (x, f(k)) ∈ P . Intuitively, the class para-C consists of all problems that
are in C after a precomputation that only involves the parameter [13]. The class para-NP can also be defined as the
class of all parameterized problems that can be decided in nondeterministic fixed-parameter tractable time.

The parameterized complexity classes W[t], t ≥ 1, W[SAT] and W[P] are based on the satisfiability problems of
Boolean circuits and formulas. We consider Boolean circuits with a single output gate. We call input nodes variables.
We distinguish between small gates, with fan-in ≤ 2, and large gates, with fan-in > 2. The depth of a circuit is the
length of a longest path from any variable to the output gate. The weft of a circuit is the largest number of large gates
on any path from a variable to the output gate. A Boolean formula can be considered as a Boolean circuit where all
gates have fan-out ≤ 1. We adopt the usual notions of truth assignments and satisfiability of a Boolean circuit. We say
that a truth assignment for a Boolean circuit has weight k if it sets exactly k of the variables of the circuit to true. We
denote the class of Boolean circuits with depth u and weft t by CIRCt,u. We denote the class of all Boolean circuits
by CIRC, and the class of all Boolean formulas by FORM. For any class C of Boolean circuits, we define the following
parameterized problem.

WSAT(C)
Instance: A Boolean circuit C ∈ C, and an integer k.
Parameter: k.
Question: Does there exist an assignment of weight k that satisfies C?

The classes W[t] for t ≥ 1 and the classes W[SAT] and W[P] are defined as follows:

W[t] = [ {WSAT(CIRCt,u) : u ≥ 1 } ]fpt, for each t ≥ 1;
W[SAT] = [ WSAT(FORM) ]fpt; and

W[P] = [ WSAT(CIRC) ]fpt.

2.1 Fpt-size and xp-size advice
We begin our exposition of non-uniform parameterized complexity classes with several classes that are based on advice
depending on the input size n and the parameter value k. Such classes, where the advice string α is of fpt-size, have
been considered in the context of parameterized knowledge compilation [5]. We define these classes, as well as a
natural variant where xp-size advice is allowed.

Definition 1 (fpt-size advice). Let C be a parameterized complexity class. We define C/fpt to be the class of all
parameterized problems Q for which there exists a parameterized problem Q′ ∈ C, a computable function f and a
constant c such that for each (n, k) ∈ N × Σ∗ there exists some α(n, k) ∈ Σ∗ of size f(k)nc with the property that
for all instances (x, k) with |x| = n, it holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′.

The classes C/fpt have been defined by Chen as C/ppoly [5].

Definition 2 (xp-size advice). Let C be a parameterized complexity class. We define C/xp to be the class of all
parameterized problems Q for which there exists a parameterized problem Q′ ∈ C and a computable function f such
that for each (n, k) ∈ N×Σ∗ there exists some α(n, k) ∈ Σ∗ of size nf(k) with the property that for all instances (x, k)
with |x| = n, it holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′.

The above definitions have the following direct consequence.

Observation 3. It holds that FPT/xp = XP/xp. We will use the notation XP/xp for this class to emphasize that
an nf(k) running time is allowed for algorithms that witness membership in this class.

2.2 Slice-wise advice
We continue our exposition with non-uniform variants of parameterized complexity classes that get advice (of com-
putable size) for each slice.
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Definition 4 (slice-wise advice). Let C be a parameterized complexity class. We define C/slice to be the class of all
parameterized problems Q for which there exists a parameterized problem Q′ ∈ C and a computable function f such
that for each k ∈ Σ∗ there exists some advice string α(k) ∈ Σ∗ of size at most f(k) with the property that for all
instances (x, k) with |x| = n, it holds that (x, k) ∈ Q if and only if (x, α(k), k) ∈ Q′.

Intuitively, the difference between the definitions of the classes C/slice and C/xp can be explained as follows by
taking as example C = XP. For problems in the class XP/slice, for each parameter value k there must be a single
(uniformly defined) polynomial-time algorithm (whose descriptions must be of size computable in k). For problems in
the class XP/xp, for each parameter value k there can be a (non-uniformly defined) polynomial-time algorithm (with
similar size bounds).

Observation 5. The class FPT/slice can straightforwardly be shown to be equivalent to P/slice. Here we consider P
as a parameterized complexity class.

Observation 6. For each parameterized complexity class C, it holds that C ⊆ C/slice ⊆ C/fpt ⊆ C/xp.

2.3 Poly-size and kernel-size advice
Next, we present some additional natural non-uniform variants of parameterized complexity classes that are also based
on advice. These variants are natural notions of non-uniform complexity that come up in analogy to the classes defined
in Section 2.1.

Definition 7 (poly-size advice). Let C be a parameterized complexity class. We define C/poly to be the class of
all parameterized problems Q for which there exists a parameterized problem Q′ ∈ C and a constant c such that
for each (n, k) ∈ N × Σ∗ there exists some α(n, k) ∈ Σ∗ of size nc with the property that for all instances (x, k)
with |x| = n, it holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′.
Observation 8. For each parameterized complexity class C, we have that C ⊆ C/poly ⊆ C/fpt.

Definition 9 (kernel-size advice). Let C be a parameterized complexity class. We define C/kernel to be the class of all
parameterized problems Q for which there exists a parameterized problem Q′ ∈ C and a computable function f such
that for each (n, k) ∈ N×Σ∗ there exists some α(n, k) ∈ Σ∗ of size f(k) with the property that for all instances (x, k)
with |x| = n, it holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′.
Observation 10. For each parameterized complexity class C, we have that C ⊆ C/kernel ⊆ C/fpt.

2.4 Slice-wise non-uniformity
The last variant of non-uniformity that we consider can be called slice-wise non-uniformity. Firstly, we consider the
class FPTnu, where problems are required to be solvable in fpt-time, but the algorithm for each slice can be different.

Definition 11 ([8]). The parameterized complexity class FPTnu is defined as the class of all parameterized problemsQ
for which there exists a (possibly uncomputable) function f and a constant c such that for every k ∈ N, the k-th
slice Qk of Q is decidable in time f(k)nc, where n is the size of the instance.

Note that the class FPTnu is the class of parameterized problems that are non-uniformly fixed-parameter tractable
in the sense that is discussed in textbooks [8, 14]. Moreover, it coincides with a variant of the class FPT/slice, where
the function f bounding the size of the advice α(k) is not required to be computable (see [4, Theorem 1.3]).

Finally, we give a definition of the most prominent non-uniform variant of XP (that is also presented in textbooks
on parameterized complexity [8, 14]).

Definition 12 ([8]). The parameterized complexity class XPnu is defined as the class of all parameterized problems Q
for which for each k ∈ Σ∗, the slice Qk = {x : (x, k) ∈ Q } is polynomial-time solvable.

We point out that in the definition of the class XPnu, the order of the polynomial that is a bound on the running time
of the algorithm that solves slice Qk of a problem Q ∈ XPnu is allowed to vary for different values of k, but it does
not have to be bounded by a computable function of k. In contrast, for problems Q in FPTnu, each slice Qk must be
solvable in time O(nc) for some fixed constant c; here the factor f(k) hidden by the big-oh notation does in general
depend on k.
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para-NP

FPT/poly
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FPT/kernel

XP/kernel
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FPT/slice

XP/slice

para-NP/slice

XPnu

FPTnu

FPT/fpt

nu-few-NP

few-NP/fpt
XP/fpt

para-NP/fpt

FPT/xp = XP/xp

para-NP/xp

Figure 1: Overview of (non-uniform) parameterized complexity classes. Most classes are defined in Section 2. For a
definition of few-NP, nu-few-NP and few-NP/fpt, we refer to Section 4.3.
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3 Basic results
In this section, we provide some basic results about the different non-uniform parameterized complexity classes (that
we defined in the previous section). We begin with giving several alternative characterizations of some of the classes.
Then we relate several of the classes to each other, by giving some separation (non-inclusion) results. A graphical
overview of the relations between the classes can be found in Figure 1.

3.1 Alternative characterizations
We give alternative characterizations of the non-uniform complexity classes defined in Section 2, in terms of fpt-
reductions with advice, in terms of Boolean circuits, and by using slice-wise solvability.

3.1.1 Characterizations in terms of fpt-reductions with advice

We show that the classes C/fpt, C/kernel and C/poly can be defined by means of fpt-reductions with advice of ap-
propriate size. We start with defining fpt-reductions with fpt-size advice, and showing that C/fpt can be characterized
using such reductions.

Definition 13 (fpt-reductions with fpt-size advice). Let Q,Q′ be parameterized problems. We say that an fpt-
algorithm R is an fpt-reduction with fpt-size advice from Q to Q′ if there exist computable functions f, h and a
constant c such that for each (n, k) ∈ N × Σ∗ there is an advice string α(n, k) of length f(k)nc such that for each
instance (x, k) ∈ Σ∗ × N with |x| = n, it holds that (1) (x′, k′) = R(x, α(n, k), k) ∈ Q′ if and only if (x, k) ∈ Q,
and (2) k′ ≤ h(k).

When there exists an fpt-reduction with fpt-advice from Q to Q′, we say that Q is fpt-reducible to Q′ with fpt-size
advice.

Proposition 14. Let C be a parameterized complexity class that is closed under fpt-reductions. Then C/fpt coincides
with the class of parameterized problems that are fpt-reducible with fpt-size advice to some problem in C.

Proof. (⇒) Take an arbitrary problem Q ∈ C/fpt. Then, by definition, there exists some Q′ ∈ C such that for
each (n, k) ∈ N×Σ∗ there exists some advice string α(n, k) of fpt-size with the property that for each (x, k) ∈ Σ∗×Σ∗

with |x| = n it holds that (x, k) ∈ Q if and only if (x, α(n, k), k) ∈ Q′. We construct an fpt-reduction R with fpt-
size advice from Q to Q′. For each (n, k), we let the advice string for R be the string α(n, k). Moreover, we
let R(x, k) = (x, α(n, k), k). This proves that Q is fpt-reducible to some problem in C with fpt-size advice.

(⇐) Conversely, take an arbitrary parameterized problem Q that is fpt-reducible to some problem Q′ ∈ C with
fpt-size advice, by an fpt-reduction R. By definition, then, for each (n, k) ∈ N×Σ∗ there exists some fpt-size advice
string α(n, k) with the property that for each (x, k) ∈ Σ∗×Σ∗ with |x| = n, it holds thatR(x, α(n, k), k) = (x′, k′) ∈
Q′ if and only if (x, k) ∈ Q. We show that Q ∈ C/fpt by specifying fpt-size advice for each (n, k) ∈ N × Σ∗

and giving a problem Q′′ ∈ C such that for each (x, k) ∈ Σ∗ × Σ∗ with |x| = n it holds that (x, k) ∈ Q if
and only if (x, α(n, k), k) ∈ Q′′. For each (n, k) ∈ N × Σ∗ we let the advice string be α(n, k). Moreover, we
let Q′′ = { (x, y, k) ∈ Σ∗ × Σ∗ × Σ∗ : R(x, y, k) ∈ Q′ }. Since C is closed under fpt-reductions, we know
that Q′′ ∈ C. Therefore, Q ∈ C/fpt.

Next, we extend this characterization by introducting fpt-reductions with kernel-size and polynomial-size advice,
and showing that these can be used to characterize C/kernel and C/poly, respectively.

Definition 15 (fpt-reductions with kernel-size advice). Let Q,Q′ be parameterized problems. We say that an fpt-
algorithm R is an fpt-reduction with kernel-size advice from Q to Q′ if there exist computable functions f, h such that
for each (n, k) ∈ N×Σ∗ there is an advice string α(n, k) of length f(k) such that for each instance (x, k) ∈ Σ∗ ×N
with |x| = n, it holds that (1) (x′, k′) = R(x, α(n, k), k) ∈ Q′ if and only if (x, k) ∈ Q, and (2) k′ ≤ h(k).

Proposition 16. Let C be a parameterized complexity class that is closed under fpt-reductions. Then C/kernel
coincides with the class of parameterized problems that are fpt-reducible with kernel-size advice to some problem
in C.
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Proof. The proof of Proposition 14 can straightforwardly be modified to show this result.

Definition 17 (fpt-reductions with poly-size advice). Let Q,Q′ be parameterized problems. We say that an fpt-
algorithm R is an fpt-reduction with poly-size advice from Q to Q′ if there exist a computable function h and a
constant c such that for each (n, k) ∈ N × Σ∗ there is an advice string α(n, k) of length nc such that for each
instance (x, k) ∈ Σ∗ × N with |x| = n, it holds that (1) (x′, k′) = R(x, α(n, k), k) ∈ Q′ if and only if (x, k) ∈ Q,
and (2) k′ ≤ h(k).

Proposition 18. LetC be a parameterized complexity class that is closed under fpt-reductions. ThenC/poly coincides
with the class of parameterized problems that are fpt-reducible with poly-size advice to some problem in C.

Proof. The proof of Proposition 14 can straightforwardly be modified to show this result.

3.1.2 Circuit characterizations

We provide the following alternative characterizations of the classes FPT/fpt and para-NP/fpt, in terms of (families
of) circuits.

Let C be a circuit with m input nodes, and let x ∈ {0, 1}∗ be a bitstring of length n ≤ m. Then, by C[x] we denote
the circuit obtained from C by instantiating the first n input nodes according to the n values in x.

Proposition 19. The class FPT/fpt coincides with the set of all parameterized problems Q for which there exists a
computable function f and a constant c such that for each (n, k) ∈ N × Σ∗ there is some circuit Cn,k of size f(k)nc

that decides, for each input x ∈ {0, 1}n of length n, whether (x, k) ∈ Q.

Proof (sketch). LetQ be a problem that is solvable in fpt-time using an fpt-size advice string α(n, k) that only depends
on the input size n and the parameter value k. Then for any (n, k), one can “hard-code” this advice and its use by the
algorithm in an fpt-size circuit Cn,k that decides for inputs x of length n whether (x, k) ∈ Q.

Conversely, if for a problem Q, for each (n, k) there exists an fpt-size circuit Cn,k that decides for inputs x of
length n whether (x, k) ∈ Q, then one can decide Q in fpt-time by taking a description of this circuit as the advice
string α(n, k), and simulating the circuit on any input x of length n.

Proposition 20. The class para-NP/fpt coincides with the set of all parameterized problems Q for which there exists
a computable function f and a constant c such that for each (n, k) ∈ N×Σ∗ there is some circuit Cn,k of size f(k)nc

such that, for each input x ∈ {0, 1}n of length n, it holds that x ∈ Q if and only if Cn,k[x] is satisfiable.

Proof (idea). An argument similar to the one in the proof of Proposition 19 can be used to show this result. In addition,
one needs to use the well-known correspondence between nondeterministic algorithms and satisfiability of circuits, as
used in the Cook-Levin Theorem [7, 20].

3.2 Separations
Next, we give some (conditional) non-inclusion results between the various non-uniform complexity classes that we
considered. Some of these results can be shown rather straightforwardly, whereas others need a bit more technical
machinery.

The class XPnu clearly contains the class XP/slice, and its subclasses. We show that this containment is strict.

Proposition 21. There exists a parameterized problem Q ∈ (XPnu) \ (XP/slice).

Proof. Let g be an increasing function that grows faster asymptotically than every computable function. For instance,
we can let g be the busy-beaver function, where for each n ∈ N the value g(n) is the maximum number of steps
performed by any Turing machine with n states that halts on the empty string, when given the empty string as input.
By the Time Hierarchy Theorem [18], we know that for each m ∈ N there exists some problem Pm that is solvable in
time O(nm) but not in time O(nm−1), where n denotes the input size. We then let Q be the following parameterized
problem:

Q = { (x, k) : k ∈ N, x ∈ Pg(k) }.

7



For each value k, we know by assumption that Pg(k) is solvable in polynomial-time, namely in time O(ng(k)). There-
fore, Q ∈ XPnu.

We claim that Q 6∈ XP/slice. We proceed indirectly, and suppose that Q ∈ XP/slice. Then there exist a com-
putable function f such that for each k ∈ N, there exists some advice string α(k) such that the problem of deciding
if (x, k) ∈ Q, given (x, α(k), k), is solvable in time nf(k), where n = |x| denotes the input size. We know that g
grows faster asymptotically than f . Therefore, there exists some ` such that g(`) > f(`). Consider the slice Q`
of Q. By “hard-coding” the advice string α(`) in an algorithm A`, we can then solve Q` in time nf(`). However, by
construction of Q, the slice Q` is not solvable in time O(ng(`)−1), and thus also not solvable in time O(nf(`)), which
is a contradiction. Therefore, we can conclude that Q 6∈ XP/slice.

Corollary 22. XP/slice ( XPnu.

Next, we will show that the different notions of non-uniformity that are used in classes like FPT/fpt, on the one
hand, and the class XPnu, on the other hand, are incomparable. In order to show this, we begin by exhibiting a
parameterized problem that is in FPT/fpt (and that is in fact also contained in FPT/kernel and FPT/poly) but that is
not in XPnu.

Proposition 23. There exists a parameterized problem Q ∈ (FPT/fpt) \ (XPnu).

Proof. Let S be an undecidable unary set, e.g., the set of all strings 1m such that the m-th Turing machine (in some
enumeration of all Turing machines) halts on the empty input. We define the following parameterized problem Q:

Q = { (s, 1) : s ∈ S }.

Clearly, Q ∈ FPT/fpt, since for input size n there is at most one string s of length n such that (s, 1) ∈ Q. We claim
that Q 6∈ XPnu. We proceed indirectly, and we suppose that Q ∈ XPnu. Then there is an algorithm A that decides the
slice Q1 = {x : (x, 1) ∈ Q } in polynomial-time. However, then the algorithm A can straightforwardly be modified
to decide the undecidable set S, which is a contradiction. Therefore, Q 6∈ XPnu.

Corollary 24. There exists a parameterized problem Q ∈ (FPT/poly) \ (XPnu) and there exists a parameterized
problem Q ∈ (FPT/kernel) \ (XPnu).

Proof (sketch). The problem Q constructed in the proof of Proposition 23 is in fact contained both in (FPT/poly) and
in (FPT/kernel), and not in XPnu.

In order to complete our incomparability result, we show that there exists also a problem that is contained in XPnu,
but that is not contained in XP/xp. This result can also be seen as a strenghtened version of Proposition 21.

Proposition 25. There exists a parameterized problem Q ∈ (XPnu) \ (XP/xp).

Proof. In order to show this, we will use a few theoretical tools. Firstly, we will consider the busy-beaver function g :
N→ N, where g(n) is defined to be the maximum number of steps performed by any Turing machine with n states that
halts on the empty string. It is well-known and it can be shown straightforwardly that g grows faster asymptotically
than any computable function f .

Next, we will make use of the following facts. For each n ∈ N, there are 22n

possible Boolean functions F :
{0, 1}n → {0, 1}. Each such function is computed by a circuit of size at most c2n, for some fixed constant c. (By the
size of a circuit, we denote the number of bits required in a binary representation of the circuit.) Moreover, there are
at most 2f(n) circuits with n input nodes of size f(n). Additionally, we can enumerate all circuits Cn1 , Cn2 , . . . with n
input nodes (possibly allowing repetitions) in such a way that:

• for each m ∈ N, computing the m-th circuit Cnm in this enumeration can be done in time O(m · |Cnm|2); and

• for each `, `′ ∈ N such that ` < `′ it holds that all circuits of size ` come before all circuits of size `′ in this
enumeration.
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With these theoretical tools in place, we can begin constructing the problem Q. Since we want Q ∈ XPnu, we need
to ensure that all slices Qk of Q are solvable in polynomial-time. However, the order of the polynomials that bounds
the running time of the algorithms solving the slices Qk does not need to be bounded by a computable function. This
is exactly the property that we will exploit. We will construct Q in such a way that the running time needed to solve
the slices Qk grows so fast that any XP/xp algorithm will make a mistake on some slice Qk.

In addition to g, we will consider two other functions h1, h2, that are defined as follows. Consider the following
(infinite) sequences:

h1 = (

g(1) times︷ ︸︸ ︷
g(1)2, . . . , g(1)2,

g(2) times︷ ︸︸ ︷
g(2)2, . . . , g(2)2,

g(3) times︷ ︸︸ ︷
g(3)2, . . . , g(3)2, . . . ), and

h2 = (1, 2, . . . , g(1), 1, 2, . . . , g(2), 1, 2, . . . , g(3), 1, 2, . . . ).

We define h1(x) to be the x-th element in the sequence h1 and h2(x) to be the x-th element in the sequence h2.
We then define Q ⊆ {0, 1}∗×N to be the parameterized problem that is recognized by the following algorithm A.

We make sure that A runs in polynomial time on each slice Qk. On input (x, k) ∈ {0, 1}∗ × N, where |x| = n,
the algorithm A uses the enumeration Cn1 , Cn2 , . . . of circuits on n input nodes, and tries to compute the h2(k)-th cir-
cuit Cnh2(k). If this takes more than h1(k) steps, the algorithm accepts (x, k); otherwise, the algorithm simulates Cnh2(k)

on the input x ∈ {0, 1}n, and accepts if and only if x satisfies Cnh2(k). The algorithm A runs in time O(h1(k)2 · n), so
for each k ∈ N, it decides Qk in linear time.

We now show that Q 6∈ XP/xp. We proceed indirectly, and suppose that Q ∈ XP/xp. Then there exists some
computable function f : N → N such that for each (n, k) ∈ N × N there exists a circuit Cn,k of size nf(k) that
decides for inputs x ∈ {0, 1}n whether (x, k) ∈ Q. We now identify a pair (n0, k0) ∈ N × N of values such
that (n0)f(k0) < 22n0 and g(k0) ≥ c2n0 . In other words, we want (n0, k0) to satisfy the property that f(k0) <
2n0/ log n0 and c2n0 ≤ g(k0). We can do this as follows. Since g(k) grows faster asymptotically than any computable
function, we know that there exists some k0 such that g(k0) > c2f(k0). Moreover, we let n0 = f(k0). We then get
that g(k0) > c2n0 and f(k0) = n0 < 2n0/ log n0. Now, let k1 ∈ N be the least integer such that h1(k1) = g(k0).
Then, by construction of h1, for each 0 ≤ ` < g(k0), it holds that h1(k1 + `) = g(k0).

Now, since we know that (n0)f(k0) < 22n0 , we know that there exists some Boolean function F0 : {0, 1}n0 →
{0, 1} on n0 variables that is not computed by any circuit of size (n0)f(k0). However, this function F0 can be com-
puted by some circuit of size c2n0 . Therefore, because g(k0) > c2n0 , there is some 0 ≤ ` < g(k0) such that the cir-
cuit Cn0

h2(k1+`) computes F0. Moreover, we can choose ` in such a way that Cn0

h2(k1+`) is of size at most c2n0 < g(k0).
Therefore, computing Cn0

h2(k1+`), using the enumeration Cn0
1 , Cn0

2 , . . . , can be done in time h2(k1 +`)2 ≤ h1(k1 +`) =

g(k0).
Now consider the pair (n0, k0) ∈ N× N of values. We assumed that there is some circuit Cn0,k0 of size (n0)f(k0)

that decides for inputs x ∈ {0, 1}n0 whether (x, k0) ∈ Q. By construction ofQ and by the choice of (n0, k0), we know
that for each x ∈ {0, 1}n0 it must hold that (x, k0) ∈ Q if and only if F0(x) = 1. This means that the circuit Cn0,k0

computes F0. However, since Cn0,k0 is of size (n0)f(k0), this is a contradiction with the fact that F0 is not computable
by a circuit of size (n0)f(k0). Therefore, we can conclude that there exists no family of circuits Cn,k of size nf(k)

for (n, k) ∈ N× N. In other words, Q 6∈ XP/xp.

The above results (Propositions 23 and 25 and Corollary 24) give us the incomparability results that we were after,
which can be summarized as follows.

Corollary 26. Let C be a parameterized complexity class such that FPT/poly ⊆ C ⊆ XP/xp. Then C and XPnu are
incomparable w.r.t. set-inclusion, i.e., C 6⊆ XPnu and XPnu 6⊆ C.

Corollary 27. Let C be a parameterized complexity class such that FPT/kernel ⊆ C ⊆ XP/xp. Then C and XPnu
are incomparable w.r.t. set-inclusion, i.e., C 6⊆ XPnu and XPnu 6⊆ C.

In fact, the proof of Proposition 25 shows that there is a problem Q that is in FPTnu but not in XP/xp. This also
gives us the following results.

Corollary 28. There exists a problem Q ∈ (FPTnu)\(XP/xp).
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Proof. The problem Q constructed in the proof of Proposition 25 is in (FPTnu)\(XP/xp).

Corollary 29. Let C be a parameterized complexity class such that either FPT/poly ⊆ C ⊆ XP/xp or FPT/kernel ⊆
C ⊆ XP/xp. Then C and FPTnu are incomparable w.r.t. set-inclusion, i.e., C 6⊆ FPTnu and FPTnu 6⊆ C.

Next, we explore the power of the non-uniformity resulting from kernel-size and polynomial-size advice. Firstly,
we give an easy proof that both forms of non-uniformity are more powerful than the uniform setting.

Proposition 30. For every (nontrivial) decidable parameterized complexity class C, there is a parameterized prob-
lem Q ∈ (C/poly) \ C and a parameterized problem Q′ ∈ (C/kernel) \ C.

Proof. The problem Q as constructed in the proof of Proposition 23 is also contained in C/poly and C/kernel, for
each nontrivial C. However, since Q is undecidable, we know that Q 6∈ C.

Secondly, we show that the non-uniform parameterized complexity classes FPT/kernel and FPT/poly are incom-
parable.

Proposition 31. There is a parameterized problem Q ∈ (FPT/poly) \ (FPT/kernel).

Proof. To show this result, it suffices to give a (classical) problemQ that is in P/poly but that is not solvable in polyno-
mial time using constant-size advice. If we have such a problem Q, then the parameterized problem { (x, 1) : x ∈ Q }
is in (FPT/poly) \ (FPT/kernel).

We use a diagonalization argument to construct the problemQ. Let (A1, c1), (A2, c2), . . . be an enumeration of all
pairs (Ai, ci) consisting of a polynomial-time algorithm Ai and a constant ci. We will construct Q in such a way that
for each algorithm Ai and each advice string y of length ci, the algorithm Ai, when using the advice string y, makes a
mistake on some input. We construct Q in stages: one stage for each (Ai, ci). In stage i, we make sure that Ai makes
a mistake for each advice string y of length ci.

We now describe how to construct Q in a given stage i. Let (Ai, ci) be the pair consisting of a polynomial-
time algorithm Ai and a constant ci. Take an input size n that has not yet been considered in previous stages, and
such that n ≥ 2ci . Since we have infinitely many input sizes at our disposal, we can always find such an n. Next,
consider 2ci = u many (arbitrary, but different) input strings x1, . . . , xu of length n. Moreover, consider all possible
advice strings y1, . . . , yu of length ci. For each 1 ≤ j ≤ u, we let xj ∈ Q if and only if the algorithm Ai, using the
advice string yj , rejects the input string xj . For all other input strings x of length n, we let x 6∈ Q. Note thatQ contains
at most 2ci ≤ n many strings of length n. This completes stage i. For all input lengths n that are not considered in
any stage of our construction, we let Q contain no strings of length n.

We show that Q ∈ P/poly. We define the advice for input size n to be a table consisting of all strings in Q of
length n. Since for each input length n, Q contains at most n many strings of this length, this table is of polynomial
size. Deciding whether a string of length n is in Q can clearly be done in polynomial time, when given such a table.
Therefore, Q ∈ P/poly.

On the other hand, we claim that Q is not solvable in polynomial time using a constant number of bits as advice.
We proceed indirectly, and suppose that there is a polynomial-time algorithm A that decides Q, when given c many
bits of advice for each input size, for some fixed constant c. We know that (A, c) appears in the enumeration of all pairs
of polynomial-time algorithms and constants. Let (Ai, ci) = (A, c), for some i ≥ 1. Then consider the input size n
that is used in stage i of the construction of Q. Moreover, let y be the advice string (of length c) that the algorithm A
uses to solve inputs of size n. We know that y appeared as some string yj of length ci in stage i of the construction
of Q. Now consider input xj . By definition of Q, we know that the algorithm A gives the wrong output for xj , when
using yj as advice. Thus, A does not solve Q using c many bits of advice. Since A and c were arbitrary, we can
conclude that Q is not solvable in polynomial time using a constant number of bits as advice.

Proposition 32. There is a parameterized problem Q ∈ (FPT/kernel) \ (FPT/poly).

Proof. We use a diagonalization argument to construct the problem Q. Let (A1, p1), (A2, p2), . . . be an enumeration
of all pairs (Ai, pi) consisting of an fpt-algorithm Ai and a polynomial pi. We will construct Q in such a way that for
each algorithm Ai and each polynomial pi, there is some input size n, such that for each advice string y of size pi(n),
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the algorithm Ai makes a mistake on some input x of length n when using y as advice. We construct Q in stages: one
stage for each (Ai, pi). In stage i, we make sure that Ai makes such a mistake for the polynomial pi.

We now describe how to construct Q in a given stage i. Let (Ai, pi) be the pair consisting of an fpt-algorithm Ai
and a polynomial pi. We may assume without loss of generality that for each such polynomial pi it holds for all n
that pi(n) ≥ n. Take an input size n that has not yet been considered in previous stages. Since we have infinitely many
input sizes at our disposal, we can always find such an n. Moreover, fix the parameter value k = pi(n). Then, consider
all possible advice strings y1, . . . , yu of length pi(n), where u = 2k. Also, consider u many (arbitrary, but different)
input strings x1, . . . , xu of length n. For each 1 ≤ j ≤ u, we let (xj , k) ∈ Q if and only if the algorithm Ai, using the
advice string yj , rejects the input string xj . For all other input strings x of length n, we let (x, k) 6∈ Q. Note that Q
contains at most 2k ≤ n many pairs (x, k), where x is a string of length n. This completes stage i. For all pairs (n, k)
consisting of an input length n and a parameter value k that are not considered in any stage of our construction, we
let Q contain no pairs (x, k), where x is a string of length n.

We show that Q ∈ FPT/kernel. We define the advice for the pair (n, k), consisting of input size n and parameter
value k, to be a table consisting of all strings x of length n such that (x, k) ∈ Q. Since for each input length n, Q
contains at most 2k many pairs (x, k), where x is a string of length n ≤ k, this table is of size f(k) = O(k2k). Given
a pair (x, k) with x of length n, and given such a table for (n, k), deciding whether (x, k) ∈ Q can clearly be done in
fpt-time. Therefore, Q ∈ FPT/kernel.

On the other hand, we claim that Q 6∈ FPT/poly. We proceed indirectly, and suppose that there is an fpt-
algorithm A that decides Q, when given p(n) many bits of advice for each input size n, for some fixed polynomial p.
We know that (A, p) appears in the enumeration of all pairs of fpt-algorithms and polynomials. Let (Ai, pi) = (A, p),
for some i ≥ 1. Then consider the input size n and the parameter value k = p(n) that are used in stage i of the
construction of Q. Moreover, let y be the advice string (of length p(n)) that the algorithm A uses to solve inputs of
size n. We know that y appeared as some string yj of length p(n) in stage i of the construction of Q. Now consider
input xj . By definition of Q, we know that the algorithm A gives the wrong output for (xj , k), when using yj as
advice. Thus, A does not solve Q using p(n) many bits of advice. Since A and p were arbitrary, we can conclude
that Q 6∈ FPT/poly.

As a consequence of the above results, for the case of the parameterized complexity class FPT the following
relations hold.

Corollary 33. It holds that:

• FPT ( FPT/poly ( FPT/fpt;

• FPT ( FPT/kernel ( FPT/fpt;

• FPT/poly 6⊆ FPT/kernel; and

• FPT/kernel 6⊆ FPT/poly.

In fact, this picture can be generalized to arbitrary (decidable) classes that contain FPT.

Proposition 34. For every decidable parameterized complexity class C, there is a parameterized problem Q ∈
(FPT/poly) \ (C/kernel) and a parameterized problem Q′ ∈ (FPT/kernel) \ (C/poly).

Proof. The proofs of Proposition 31 and 32 can straightforwardly be modified to show this result, by using an enu-
meration of all algorithms (rather than enumerating all polynomial-time or fpt-time algorithms).

Corollary 35. For every decidable parameterized complexity class C such that FPT ⊆ C, it holds that:

• C ( C/poly ( C/fpt;

• C ( C/kernel ( C/fpt;

• C/poly 6⊆ C/kernel; and

• C/kernel 6⊆ C/poly.
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Finally, we show that (under various complexity-theoretic assumptions), the class para-NP is not contained in any
of the classes C ⊆ XP/xp.

Observation 36. If para-NP ⊆ XP/slice, then P = NP.

Proposition 37. If para-NP ⊆ XP/kernel, then P = NP.

Proof. Consider the para-NP-complete language SAT1 = { (ϕ, 1) : ϕ ∈ SAT }. By our assumption that para-NP ⊆
XP/kernel, we get that SAT1 ∈ XP/kernel. That is, there is some computable function f such that for each n ∈ N
there exists some α(n) ∈ Σ∗ of size f(k) with the property that for each instance (x, 1) of SAT1 with |x| = n, we can
decide in fpt-time, given (x, α(n, 1), 1), whether (x, 1) is a yes-instance of SAT1. In other words, SAT is solvable in
polynomial time using a constant number of bits of advice for each input size n.

Then, by self-reducibility of SAT, in polynomial time, using constant-size advice, we can also construct an algo-
rithm A that computes a satisfying assignment of a propositional formula, if it exists, and fails otherwise. We now
show how to use this to construct an algorithm B that solves SAT in polynomial time. The idea is the following.
Since we only need a constant number of bits of advice for algorithm A, we can simply try out all (constantly many)
possible advice strings in a brute force fashion. Given a propositional formula ϕ, algorithm B iterates over all (con-
stantly many) possible advice strings. For each such string α, algorithm B simulates algorithm A on ϕ using α. If A
outputs a truth assignment for ϕ, algorithm B verifies whether this assignment satisfies ϕ. If it does, then clearly ϕ
is satisfiable, and so B accepts ϕ. If it does not, B continues with the next possible advice string. If for no advice
string, the simulation of A outputs a truth assignment, B rejects ϕ. In this case, we can safely conclude that ϕ is
unsatisfiable. Since at least one advice string leads to correct behavior of A, we know that if ϕ were satisfiable, a
satisfying assignment would have been constructed in some simulation of A. Thus, we can conclude that P = NP.

Proposition 38. If para-NP ⊆ XP/xp, then the PH collapses to the second level.

Proof. Assume that para-NP ⊆ XP/xp. Consider the NP-complete language SAT1 = { (ϕ, 1) : ϕ ∈ SAT }. This is
then in P/poly. Thus, NP ⊆ P/poly. By the Karp-Lipton Theorem [19], it follows that PH = Σp

2.

Corollary 39. It holds that para-NP 6⊆ FPT/fpt, para-NP 6⊆ XP/fpt, para-NP 6⊆ FPT/poly and para-NP 6⊆ XP/poly,
unless the PH collapses to the second level.

For a more detailed treatment of the Polynomial Hierarchy (PH), we refer to Section 5.

4 Relation to Parameterized Knowledge Compilation
In the previous sections, we have defined various non-uniform complexity classes that come up in the framework
of parameterized complexity. In this section, we show how some of these classes are related to the framework of
parameterized knowledge compilation.

Knowledge compilation is a technique of dealing with intractable problems where part of the input stays stable
for an extended amount of time. However, it turns out that many important problems do not lead to positive compi-
lation results. Parameterized knowledge compilation refers to the use of the parameterized complexity framework to
knowledge compilation, with the aim of increasing the possibility of positive compilation results [5].

However, unsurprisingly, there are also problems that cannot be compiled even in the parameterized setting. Most
of these negative results are in fact conditional on some non-uniform parameterized complexity classes being different.
We give an overview of the relation between parameterized incompilability results and non-uniform parameterized
complexity classes. In addition, we define some new non-uniform parameterized complexity classes that can be used
to get additional (conditional) parameterized incompilability results.

The (parameterized) compilability framework that we use is based on the work by Cadoli et al. [3] and Chen [5].
Relating non-uniform parameterized complexity to the more recent framework of compilability by Chen [6] remains
a topic for future research.

4.1 Parameterized Knowledge Compilation
We begin with reviewing the basic notions from (parameterized) knowledge compilability theory.

12



4.1.1 Compilability

We provide some basic notions from the theory of compilability. For more details, we refer to the work of Cadoli et
al. [3]. In the following, we fix an alphabet Σ.

Definition 40. A knowledge representation formalism (KRF) is a subset of Σ∗ × Σ∗.

Definition 41. We say that a function f : Σ∗ → Σ∗ is poly-size if there exists a constant c such that for each (x, k) ∈
Σ∗ it holds that |f(x)| ≤ nc, where n = |x|.

Definition 42. Let C be a complexity class. A KRF F belongs to comp-C if there exist (1) a computable poly-size
function f : Σ∗ → Σ∗ and a KRF F ′ in C such that for all pairs (x, y) ∈ Σ∗×Σ∗ it holds that (x, y) ∈ F if and only
if (f(x), y) ∈ F ′.

Note that, unlike the original definition by Cadoli et al. [3], we require the compilation function f to be computable.
This is a reasonable requirement for practically useful compilability results. To the best of our knowledge, there are
no natural problems where this distinction (between computable and possibly uncomputable compilation functions)
makes a difference.

Definition 43. Let C be a complexity class. A KRF F belongs to nucomp-C if there exist (1) a poly-size function f :
Σ∗ × 1∗ → Σ∗ and a KRF F ′ in C such that for all pairs (x, y) ∈ Σ∗ × Σ∗ it holds that (x, y) ∈ F if and only
if (f(x, 1|y|), y) ∈ F ′.

Definition 44. A KRF F is nucomp-reducible to a KRF F ′ (denoted by F ≤nucomp F
′) if there exist poly-size func-

tions f1, f2 : Σ∗ × 1∗× → Σ∗, an poly-time function g : Σ∗ × Σ∗ → Σ∗, such that for all pairs (x, y) ∈ Σ∗ × Σ∗ it
holds that (x, y) ∈ F if and only if (f1(x, 1|y|), g(f2(x, 1|y|), y)) ∈ F ′.

Note that we do not require the compilation function f witnessing membership in nucomp-C, and the compilation
functions f1 and f2, nucomp-reducibility, to be computable. The reason for this is that the class nucomp-C and the
corresponding nucomp-reductions are intended to show incompilability results, which are even stronger when possibly
uncomputable compilation functions are excluded.

We will use the following notation of compilation problems. Consider the compilation problem F given as follows.

F
Offline instance: x ∈ Σ∗ with property P1.
Online instance: y ∈ Σ∗ with property P2.
Question: does (x, y) have property P3?

We use this notation to denote the KRF F = { (x, y) ∈ Σ∗ × Σ∗ : (x, y) satisfies properties P1, P2, P3 }.

Definition 45. Let L be a decision problem. Then the KRF εL is defined as follows:

εL = {ε} × L = { (ε, x) : x ∈ L },

where ε is the empty string.

Proposition 46 ([3, Theorem 2.9]). Let C be a complexity class (that is closed under polynomial-time reductions).
Let S be a problem that is complete for C (under polynomial-time reductions). Then εS is complete for nucomp-C
under (polynomial-time) nucomp-reductions.

4.1.2 Parameterized Compilability

Next, we revisit the basic notions of parameterized compilability. For more details, we refer to the work of Chen [5].

Definition 47. A parameterized knowledge representation formalism (PKRF) is a subset of Σ∗ × Σ∗ × Σ∗. A PKRF
can also be seen as a parameterized problem by pairing together the first two strings of each triple.
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Definition 48. We say that a function f : Σ∗ × N → Σ∗ is fpt-size if there exists a constant c and a computable
function h : N→ N such that for each (x, k) ∈ Σ∗ × N it holds that |f(x, k)| ≤ h(k)nc, where n = |x|.

Definition 49. Let C be a parameterized complexity class. A PKRF F belongs to par-comp-C if there exist an fpt-size
computable function f : Σ∗ ×N→ Σ∗ and a PKRF F ′ in C such that for all triples (x, y, k) ∈ Σ∗ ×Σ∗ ×N and all
natural numbers m ≥ |y| it holds that (x, y, k) ∈ F if and only if (f(x, k), y, k) ∈ F ′.

Note that we require the compilation function f witnessing membership in par-comp-C to be computable. This is
a reasonable requirement for practically useful compilability results.

Definition 50. Let C be a parameterized complexity class. A PKRF F belongs to par-nucomp-C if there exist an
fpt-size function f : Σ∗ × 1∗ × N → Σ∗ and a PKRF F ′ in C such that for all triples (x, y, k) ∈ Σ∗ × Σ∗ × N and
all natural numbers m ≥ |y| it holds that (x, y, k) ∈ F if and only if (f(x, 1m, k), y, k) ∈ F ′.

Observation 51. Clearly, for each parameterized complexity class C it holds that par-comp-C ⊆ par-nucomp-C.

Definition 52. A PKRF F is fpt-nucomp-reducible to a PKRF F ′ (denoted by F ≤fpt
nucomp F ′) if there exist fpt-size

functions f1, f2 : Σ∗×1∗×N→ Σ∗, an fpt-time function g : Σ∗×Σ∗×N→ Σ∗, and a computable function h : N→ N
such that for all triples (x, y, k) ∈ Σ∗ × Σ∗ × N and all natural numbers m ≥ |y| it holds that (x, y, k) ∈ F if and
only if (f1(x, 1m, k), g(f2(x, 1m, k), y, k), h(k)) ∈ F ′.

Note that, like the original definition by Chen [5], we do not require the compilation function f witnessing mem-
bership in par-nucomp-C, and the compilation functions f1 and f2, fpt-nucomp-reducibility, to be computable. The
reason for this is that the class par-nucomp-C and the corresponding fpt-nucomp-reductions are intended to show
incompilability results, which are even stronger when possibly uncomputable compilation functions are excluded.
Moreover, allowing possibly uncomputable compilation functions allows us to establish closer connections to several
non-uniform parameterized complexity classes.

We will use the following notation of parameterized compilation problems. Consider the parameterized compila-
tion problem F given as follows.

F
Offline instance: x ∈ Σ∗ with property P1.
Online instance: y ∈ Σ∗ with property P2.
Parameter: f(x, y) = k.
Question: does (x, y) have property P3?

We use this notation to denote the PKRF F = { (x, y, k) ∈ Σ∗ × Σ∗ × N : k = f(x, y), (x, y, k) satisfies proper-
ties P1, P2, P3 }.

Definition 53. Let L be a parameterized decision problem. Then the PKRF εL is defined as follows:

εL = { (ε, x, k) : (x, k) ∈ L },

where ε is the empty string.

The following result is given without proof by Chen [5]. We provide a proof. The main lines of the proof follow
that of the proof of Proposition 46 (cf. [3, Theorem 2.9]).

Proposition 54 ([5, Theorem 17]). Let C be a parameterized complexity class. If the parameterized problem Q is
complete for C (under fpt-reductions), then εQ is complete for par-nucomp-C (under fpt-nucomp-reductions).

Proof. Let Q be a parameterized problem that is C-complete under fpt-reductions. Moreover, let A be an arbitrary
PKRF in par-nucomp-C. Then there exist an fpt-size function f : Σ∗ × 1∗ × N→ Σ∗ and a PKRF Q′ in C such that
for all triples (x, y, k) ∈ Σ∗ × Σ∗ × N and all natural numbers m ≥ |y| it holds that:

(x, y, k) ∈ A if and only if (f(x, 1m, k), y, k) ∈ Q′.
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But Q′ ∈ C, so it can be reduced to Q by means of an fpt-reduction R:

(x, y, k) ∈ Q′ if and only if R(x, y, k) ∈ Q.

We now define an fpt-nucomp-reduction from A to εQ. We specify fpt-size functions f1, f2, an fpt-time function g,
and a computable function h, as follows:

f1(x, 1m, k) = ε,
f2(x, 1m, k) = f(x, 1m, k),
g(x′, y, k) = π1(R(x′, y, k)), and

h(k) = π2(R(x′, y, k)).

Here πi represents projection to the i-th element of a tuple. Since R is an fpt-reduction, we know that π2(R(x′, y, k))
only depends on k, and can thus be expressed as a function h that only depends on k.

We then get that for each m ≥ |y|:

(x, y, k) ∈ A if and only if (f(x, 1m, k), y, k) ∈ Q′
if and only if R(f(x, 1m, k), y, k) ∈ Q
if and only if (ε, R(f(x, 1m, k), y, k)) ∈ εQ
if and only if (f1(x, 1m, k), g(f2(x, 1m, k), y, k), h(k)) ∈ εQ.

Thus, this is a correct fpt-nucomp-reduction from A to εQ. Since A was an arbitrary PKRF in par-nucomp-C, we can
conclude that εQ is par-nucomp-C-complete.

4.2 (Conditional) incompilability results
To exemplify what role non-uniform parameterized complexity can play in parameterized incompilability results, we
give an example of a parameterized problem that does not allow an fpt-size compilation, unless W[1]/fpt ⊆ FPT/fpt.

As main example of a compilation problem in this paper, we will take the following problem CONSTRAINED-
CLIQUE. The definition of this problem is analogous to the definition of the Constrained Vertex Cover problem in the
seminal paper by Cadoli et al. [3].

CONSTRAINED-CLIQUE
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Question: is there a clique C ⊆ V in G of size u such that C ∩ V1 = ∅ and V2 ⊆ C?

Below, we will use the following parameterization of this problem to show the relation between parameterized
compilability and non-uniform parameterized complexity. The parameter of this problem is the number of vertices
that have to be added to V2 to create a clique of size u.

CONSTRAINED-CLIQUE(sol.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = u− |V2|.
Question: is there a clique C ⊆ V in G of size u such that C ∩ V1 = ∅ and V2 ⊆ C?

We begin by showing that CONSTRAINED-CLIQUE(sol.-size) is par-nucomp-W[1]-complete. In order to do so, we
will use the W[1]-compete problem MULTI-COLORED CLIQUE (for short: MCC) [11]. Instances of MCC are tu-
ples (V,E, k), where k is a positive integer, V is a finite set of vertices partitioned into k subsets V1, . . . , Vk, and (V,E)
is a simple graph. The parameter is k. The question is whether there exists a k-clique in (V,E) that contains a vertex
in each Vi.

Proposition 55. CONSTRAINED-CLIQUE(sol.-size) is par-nucomp-W[1]-complete. Moreover, hardness holds al-
ready for the restricted case where V2 = ∅ (and so u = k).
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Proof. To show membership in par-nucomp-W[1], it suffices to show membership in W[1]. We give an fpt-reduction
to CLIQUE, which is contained in W[1]. Let (G, (V1, V2, u), k) be an instance of CONSTRAINED-CLIQUE(sol.-size).
The reduction outputs the following instance (G′, k) of CLIQUE. The graph G′ is obtained from G by removing all
vertices in V1, removing all vertices in V2, and all vertices that are not connected to each vertex v ∈ V2.

To show hardness for par-nucomp-W[1], we give a fpt-nucomp-reduction from εMCC to CONSTRAINED-
CLIQUE(sol.-size). Since MCC is W[1]-hard, we know that the problem εMCC is par-nucomp-W[1]-hard (under
fpt-nucomp-reductions). We specify fpt-size functions f1, f2, a computable function h and an fpt-time function g such
that for each instance (δ,G, k) of εMCC it holds that for each m ≥ ||G||:

(δ,G, k) ∈ εMCC if and only if (f1(δ, 1m, k), g(f2(δ, 1m, k), G, k), h(k)) ∈ CONSTRAINED-CLIQUE(sol.-size).

Let (δ,G, k) be an instance of εMCC, where G = (V,E), where the set V of vertices is partitioned into sub-
sets V1, . . . , Vk, and where Vi = {vi1, . . . , vin}, for each 1 ≤ i ≤ k. We define f1(δ, 1m, k) to be the graph G′ =
(V ′, E′). Here we let V ′ =

⋃
1≤i≤k V

i ∪
⋃

1≤i<j≤kW
i,j , where for each 1 ≤ i ≤ k we let V i = { vi` : 1 ≤ ` ≤ m },

and for each 1 ≤ i < j ≤ k we let W i,j = {wi,`1,j,`2 : 1 ≤ `1, `2 ≤ m }. We let E′ consist of the following edges.
First, we connect all vertices between different sets V i, i.e., for each 1 ≤ i < j ≤ k, we connect each vertex vi` ∈ V i
with each vertex vj`′ . Next, we connect all vertices between different sets W i,j , i.e., for each 1 ≤ i < j ≤ k and
each 1 ≤ i′ < j′ ≤ k, we connect each vertex wi,`1,j,`2 with each vertex wi′,`′1,j′,`′2 . Then, we connect vertices
in W i,j and in V b for b 6= i and b 6= j, i.e., for each 1 ≤ i < j ≤ k, and each 1 ≤ b ≤ k such that b 6∈ {i, j}, we
connect each vertex wi,`1,j,`2 with each vertex vb` . Finally, we describe the edges between vertices inW i,j and vertices
in V i ∪ V j . Let 1 ≤ i < j ≤ k, and let 1 ≤ `1, `2 ≤ m. Then we connect wi,`1,j,`2 with vi`1 and with vj`2 . Then,
we define h(k) = k′ = k +

(
k
2

)
. We define f2(δ, 1m, k) = 1m. Finally, we let g(1m, G, k) = (U1, U2, u). Here we

let U1 = {wi,`1,j,`2 : 1 ≤ i < j ≤ k, (`1 > n ∨ `2 > n) } ∪ {wi,`1,j,`2 : 1 ≤ i < j ≤ k, {vi`1 , v
j
`2
} 6∈ E }. Moreover,

we let U2 = ∅, and we let u = |U2| + k′ = k′. Clearly f1 and f2 are fpt-size functions, g is an fpt-time computable
function, and h is a computable function.

All that remains to show is that G has a (multi-colored) clique of size k if and only if G′ has a clique of size u
that contains no vertex in V1. One direction is easy. Let C = {v1

`1
, . . . , vk`k} be a multicolored clique in G. Then the

set C ∪ {wi,`i,j,`j : 1 ≤ i < j ≤ k } is a clique in G′ of size k′ that contains no vertices in V1. Conversely, assume
that G′ has a clique C ′ of size k′ that contains no vertices in V1. We know that the set V ′ of vertices of G′ consists
of k′ many subsets for which holds that there are no edges between any two vertices of the same subset. Namely,
these subsets are V 1, . . . , V k,W 1,2, . . . ,W k−1,k. Therefore C ′ must contain one vertex from each of these subsets.
Let C = C ′ ∩ V . We know that C contains no vertex of the form vi` for n < ` ≤ m, because for each n < ` ≤ m,
the vertex vi` is not connected to any vertex W =

⋃
1≤i<j≤kW

i,j that is not contained in V1. Therefore, we know
that C ⊆ V and |C| = k. Let C = {v1

`1
, . . . , vk`k}, where for each 1 ≤ i ≤ k we have C ∩ Vi = {vi`i}. By

definition of G′, we know that C ′ must contain for each 1 ≤ i < j ≤ k the vertex wi,`i,j,`j . Then, because we know
that wi,`i,j,`j is not in V1, by construction of V1 we know that {vi`i , v

j
`j
} ∈ E. Therefore, we can conclude that C ′

is a (multicolored) clique in V . This concludes the correctness proof of our fpt-nucomp-reduction from εMCC to
CONSTRAINED-CLIQUE(sol.-size).

We can then use this completeness result to relate fpt-size compilability of this problem to an inclusion between
non-uniform parameterized complexity classes. In order to do so, we will first need the following results. These results
were already given without proof by Chen [5]. We provide a proof here.

Proposition 56 ([5, Proposition 16]). Let C be a parameterized complexity class. If a parameterized problem S is in
C/fpt, then εS ∈ par-nucomp-C.

Proof. Let S be a parameterized problem in C/fpt. Then, by definition, there exists an fpt-size function f and a
parameterized problem S′ ∈ C such that:

(y, k) ∈ S if and only if (f(1|y|, k), y, k) ∈ S′.

We show that εS ∈ par-nucomp-C. We specify an fpt-size function f ′ such that:

(ε, y, k) ∈ εS if and only if (f ′(ε, 1|y|, k), y, k).
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We let f ′(x, y, k) = f(1|y|, k). It is straightforward to modify f ′ in such a way that it works for each m ≥ |y|, rather
than just for |y|. This witnesses that εS ∈ par-nucomp-C.

The proof of the next proposition follows the main lines of the proof of its counterpart in classical compilability
(cf. [3, Theorem 2.12]).

Proposition 57 ([5, Theorem 18]). Let C and C ′ be parameterized complexity classes that are closed under fpt-
reductions and that have complete problems. The inclusion par-nucomp-C ⊆ par-nucomp-C ′ holds if and only if the
inclusion C/fpt ⊆ C ′/fpt holds.

Proof. First, we show that C/fpt ⊆ C ′/fpt implies that par-nucomp-C ⊆ par-nucomp-C ′. Suppose that C/fpt ⊆
C ′/fpt. Moreover, let S be a problem that is C-complete under fpt-reductions. Then, by Proposition 54, εS is
par-nucomp-C-complete. Also, since S ∈ C/fpt andC/fpt ⊆ C ′/fpt, we know that S ∈ C ′/fpt. Therefore, by Propo-
sition 56, εS ∈ par-nucomp-C ′. Then, since there is a par-nucomp-C-complete problem that is in par-nucomp-C ′, we
get the inclusion par-nucomp-C ⊆ par-nucomp-C ′.

Conversely, we show that par-nucomp-C ⊆ par-nucomp-C ′ implies that C/fpt ⊆ C ′/fpt. Suppose
that par-nucomp-C ⊆ par-nucomp-C ′. Let S be an arbitrary problem in C/fpt. We show that S ∈ C ′/fpt. By
definition, there exists an fpt-size function f and a PRKF S′ ∈ C such that:

(y, k) ∈ S if and only if (f(1|y|, k), k) ∈ S′.

From this it follows that the PKRF εS is in par-nucomp-C. Therefore, it is also in par-nucomp-C ′. This means that
there is an fpt-size function f ′ and a PKRF S′′ ∈ C ′ such that for all instances (x, y, k):

(x, y, k) ∈ εS if and only if (f ′(x, 1|y|, k), y, k) ∈ S′′.

Then, we get that:

(y, k) ∈ S if and only if (ε, y, k) ∈ εS if and only if (f ′(ε, 1|y|, k), y, k) ∈ S′′.

Since f ′(ε, 1|y|, k) is an fpt-size function that depends on 1|y| and k alone, and since S′′ ∈ C ′, we conclude that S ∈
C ′/fpt. Since S was an arbitrary problem in C/fpt, we can conclude that C/fpt ⊆ C ′/fpt.

Corollary 58. par-nucomp-W[1] ⊆ par-nucomp-FPT if and only if W[1]/fpt ⊆ FPT/fpt.

From this, we get the following result about CONSTRAINED-CLIQUE(sol.-size).

Proposition 59. CONSTRAINED-CLIQUE(sol.-size) is not in par-nucomp-FPT, and so it is not in par-comp-FPT,
unless W[1]/fpt ⊆ FPT/fpt.

4.3 Restricting the instance space
In order to connect the parameterized compilability of another natural parameterized variant of CONSTRAINED-
CLIQUE (that we will define in Section 4.4) to non-uniform parameterized complexity, we will need some additional
non-uniform parameterized complexity classes. In this section, we develop these classes.

Concretely, we will define two new parameterized complexity classes: few-NP and nu-few-NP. In order to define
these classes, we will consider a particular type of functions, and a parameterized decision problem based on such
functions.

Note that these classes are not directly connected to the class FEWP consisting of all NP problems with a
polynomially-bounded number of solutions [1], as we will see in more detail below. The classes few-NP and
nu-few-NP consist of problems that have few NP instances (each of which can have many solutions).

Definition 60 (generators). We say that a function γ : N3 → Σ∗ is a (SAT instance) generator if for each (n, `, k) ∈ N3

it holds that:

• if 1 ≤ ` ≤ nk, then γ(n, `, k) is a SAT instance, i.e., a propositional formula;
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• otherwise γ(n, `, k) is the trivial SAT instance ∅.

We say that a generator γ is nice if for each (n, `, k) the formula γ(n, `, k) has exactly n variables. We say that a
generator is a 3CNF generator if all the (nontrivial) instances that it generates are propositional formulas in 3CNF.

Moreover, we say that a generator is (uniformly) fpt-time computable if there exists an algorithm A, a computable
function f and a constant c such that for each (n, `, k) ∈ N3 the algorithm A computes γ(n, `, k) in time f(k)nc.

We say that a generator is non-uniformly fpt-time computable if there exist a computable function f and a con-
stant c such that for each (n, k) ∈ N2, there exists an algorithm A(n,k) that for each ` ∈ N computes γ(n, `, k) in
time f(k)nc (this corresponds to the non-uniformity notion of fpt-size advice).

Definition 61. Let γ be a generator. We define the parameterized decision problem FEWSATγ as follows.

FEWSATγ
Instance: (n, `, k) ∈ N3, where n is given in unary and `, k are given in binary.
Parameter: k.
Question: is γ(n, `, k) satisfiable?

Definition 62. Let γ be a generator. We define the parameterized decision problem FEWUNSATγ as follows.

FEWUNSATγ
Instance: (n, `, k) ∈ N3, where n is given in unary and `, k are given in binary.
Parameter: k.
Question: is γ(n, `, k) unsatisfiable?

Definition 63. We define the following parameterized complexity class few-NP:

few-NP = [{ FEWSATγ : γ is a uniformly fpt-time computable nice 3CNF generator }]fpt.

By using Definition 1, we could obtain the non-uniform variant few-NP/fpt of this parameterized complexity class
few-NP. However, we believe that the following definition of nu-few-NP captures a more natural non-uniform version
of the class few-NP.

Definition 64. We define the following parameterized complexity class nu-few-NP:

nu-few-NP = [{ FEWSATγ : γ is a non-uniformly fpt-time computable nice 3CNF generator }]fpt.

The intuition behind the classes few-NP and nu-few-NP is the following. Both the classes W[t] of the Weft-
hierarchy and the classes few-NP and nu-few-NP contain problems that are restrictions of problems in NP. For the
classes W[t] the set of possible witnesses is restricted from 2O(n) many to nO(k) many. The classes few-NP and
nu-few-NP are based on a dual restriction. For these classes, not the set of possible witnesses is restricted, but the
set of instances (for each n, k) is restricted from 2O(n) many to nO(k) many. In principle, such a restriction could be
exploited by fpt-algorithms to solve the restricted variants of the NP problems.

We illustrate the notion of (fpt-time computable) 3CNF generators using the following example.

Example 65. For each n ∈ N, there are 28n3

possible different 3CNF formulas over the variables x1, . . . , xn, each
of which can thus be described by 8n3 bits. On the other hand, for each (n, k) ∈ N2, each integer 1 ≤ ` ≤ nk

can be described by k log n bits. We consider the following (abstract) example of an fpt-time computable 3CNF
generator. Using an pseudorandom generator, we construct a function that for each (n, k) ∈ N2 and each bitstring of
length k log n (representing the number `) produces a seemingly random bitstring of length 8n3 that is interpreted as
a 3CNF formula over the variables x1, . . . , xn. a

Before we put these newly introduced non-uniform parameterized complexity classes to use by employing them to
characterize the (in)compilability of certain parameterized compilation problems, we make a few digressions and pro-
vide some alternative characterizations of few-NP and nu-few-NP and relate them to other non-uniform parameterized
complexity classes.
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4.3.1 Normalization results

It will be useful to develop some normalization results for the classes few-NP and nu-few-NP. In this section, we will
do so.

Proposition 66. Let γ be a uniformly fpt-time computable 3CNF generator that is not nice. Then FEWSATγ ∈
few-NP.

Proof. We construct a nice 3CNF generator γ′ and we give an fpt-reduction from FEWSATγ to FEWSATγ′ . Let f be a
computable function and let c be a constant such that for each (n, `, k), γ(n, `, k) can be computed in time f(k)nc. We
consider the function π that is defined by π(n′, k) = b c

√
n′/f(k)c, i.e., for each (n′, k) ∈ N2 it holds that n′ = f(k)nc

where n = π(n′, k). This function π is fpt-time computable. Also, for each (n′, k) ∈ N2 it holds that π(n′, k) ≤ n′.
Next, we construct the uniformly fpt-time computable 3CNF generator γ′ as follows. We describe the algorithm

that computes γ′. On input (n′, `, k), the algorithm first computes n = π(n′, k). Then, it computes ϕ = γ(n, k, `).
The formula ϕ is of size at most f(k)nc, and thus contains at most f(k)nc many variables. The algorithm then
transform ϕ into an equivalent formula ϕ′ that has exactly f(k)nc many variables by adding dummy variables. Finally,
the algorithm returns ϕ′.

All that remains is to specify an fpt-reduction from FEWSATγ to FEWSATγ′ . Given an instance (n, `, k) of
FEWSATγ , the reduction returns the instance (f(k)nc, `, k) of FEWSATγ′ . Clearly, this is computable in fpt-time.
Since we know that γ′(f(k)nc, `, k) ≡ γ(n, `, k), this reduction is correct.

Proposition 67. Let γ be a non-uniformly fpt-time computable 3CNF generator that is not nice. Then FEWSATγ ∈
nu-few-NP.

Proof. Completely analogous to the proof of Proposition 66

Proposition 68. Let γ be a uniformly fpt-time computable generator (that is not necessarily a 3CNF generator).
Then FEWSATγ ∈ few-NP.

Proof. We construct a uniformly fpt-time computable 3CNF generator γ′ as follows. We describe the algorithm that
computes γ′. On input (n, `, k), the algorithm first computesϕ = γ(n, k, `). Using the well-known Tseitin transforma-
tion, the algorithm constructs a formulaϕ′ in 3CNF that is equivalent toϕ. The algorithm then returns γ′(n, `, k) = ϕ′.

The generator γ′ is a uniformly fpt-time computable 3CNF generator that is not necessarily nice. The identity
mapping is then an fpt-reduction from FEWSATγ to FEWSATγ′ . We know by Proposition 66 that FEWSATγ′ ∈
few-NP. From this we can conclude that FEWSATγ ∈ few-NP.

Proposition 69. Let γ be a non-uniformly fpt-time computable generator (that is not necessarily a 3CNF generator).
Then FEWSATγ ∈ nu-few-NP.

Proof. Completely analogous to the proof of Proposition 68

4.3.2 Relating few-NP and nu-few-NP to other classes

We situate the classes few-NP and nu-few-NP in the landscape of (non-uniform) parameterized complexity classes
that we considered in Section 2. We do so by giving inclusion as well as (conditional and unconditional) non-inclusion
results.

Observation 70. If P = NP, then nu-few-NP ⊆ FPT/fpt.

Proposition 71. We have the following inclusions:

1. FPT ⊆ few-NP;

2. few-NP ⊆ nu-few-NP;

3. few-NP ⊆ para-NP;
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4. nu-few-NP ⊆ para-NP/fpt;

5. few-NP ⊆ XP/xp;

6. nu-few-NP ⊆ XP/xp;

Proof. Inclusions 1 and 2 are trivial. Inclusion 3 can be shown as follows. For each uniformly fpt-time computable
generator γ, the problem FEWSATγ can be decided in nondeterministic fpt-time as follows. Firstly, compute ϕ =
γ(n, `, k) in deterministic fpt-time. Then, using nondeterminism, decide if ϕ is satisfiable.

Next, Inclusion 4 can be shown as follows. For each non-uniformly fpt-time computable generator γ, the
problem FEWSATγ can be decided in nondeterministic fpt-time using fpt-size advice as follows. Firstly, com-
pute ϕ = γ(n, `, k) in deterministic fpt-time using fpt-size advice. Then, using nondeterminism, decide if ϕ is
satisfiable.

Inclusion 6 can be shown as follows. For each non-uniformly fpt-time computable generator γ, the problem
FEWSATγ can be decided in xp-time using xp-size advice as follows. For each (n, k), the advice α(n, k) is a lookup-
table T of size O(nk) that contains for each 1 ≤ ` ≤ nk a bit T` ∈ {0, 1} that represents whether γ(n, `, k) is
satisfiable or not.

Then, Inclusion 5 follows directly from Inclusions 2 and 6.

Observation 72. By Proposition 38, we then have that few-NP ( para-NP, unless the PH collapses to the second
level.

In fact, we can get an even stronger result.

Proposition 73. If para-NP = few-NP, then P = NP.

Proof. Consider the NP-complete language SAT1 = { (ϕ, 1) : ϕ ∈ SAT }. We know that SAT1 is para-NP-complete.
By our assumption that para-NP = few-NP, we get that there exists some uniformly fpt-time computable generator γ
such that SAT1 is fpt-reducible to FEWSATγ . Call the fpt-reduction that witnesses thisR. We then know that there ex-
ists a computable function h such that for each instance (ϕ, 1) of SAT1, the resulting instance R(ϕ, 1) of FEWSATγ
is of the form (n, `, k′), for some 1 ≤ k′ ≤ h(1). Let Q be the restriction of FEWSATγ to instances (n, `, k′)
where 1 ≤ k′ ≤ h(1). Because h(1) is a constant, we then have that Q, when considered as a classical (nonparame-
terized) decision problem, is sparse, i.e., there is a constant c such that for each input size n there are at most nc many
yes-instances of Q of length n. The fpt-reduction R then also witnesses that SAT1, when considered as a classical
(nonparameterized) decision problem, is polynomial-time reducible toQ. Since SAT1 is NP-complete andQ is sparse,
by Mahaney’s Theorem [21], it then follows that P = NP.

Corollary 74. few-NP = para-NP if and only if P = NP.

Interestingly, this means that if P 6= NP, then the class few-NP lies strictly between FPT and para-NP.

Proposition 75. There exists a parameterized problem Q ∈ (nu-few-NP) \ (XPnu).

Proof (sketch). One can straightforwardly show that the problem constructed in the proof of Proposition 23 is also
contained in nu-few-NP. Since this problem was shown not to be in XPnu, the result then follows.

Remark 76. One could also analogously define a parameterized complexity class slice-few-NP. This class would be
based on the problems FEWSATγ for those (3CNF) generators γ that are uniformly fpt-time computable for each
fixed k (where the fpt-running time is upper bounded by a fixed expression f(k)nc for all k).

4.3.3 Complete problems

An interesting question is whether the class few-NP has any problems that are complete for it under fpt-reductions.
We briefly state an observation that could potentially be used to get more insight into this question.

Observation 77. If there is some parameterized problem Q that is complete for few-NP under fpt-reductions, then
there exists some uniformly fpt-time computable nice 3CNF generator γ such that FEWSATγ is few-NP-complete
(under fpt-reductions).
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4.3.4 Differences between non-uniform variants of few-NP

Above, we (implicitly) provided two different possible definitions of a non-uniformly defined variant of few-NP:
few-NP/fpt and nu-few-FPT. We give a few remarks about how they relate to each other.

The difference between few-NP/fpt and nu-few-NP can be described as follows. The class few-NP/fpt consists
of all parameterized problems that are non-uniformly fpt-reducible to the problem FEWSATγ , for some uniformly
fpt-time computable generator γ. The class nu-few-NP consists of all parameterized problems that are uniformly
fpt-reducible to the problem FEWSATγ , for some non-uniformly fpt-time computable generator γ. For the usual
parameterized complexity classes (such as FPT), adding non-uniformity (in the form of fpt-size advice) either (i) to
reductions or (ii) to the algorithms witnessing membership in a complexity class, yields the same outcome. This
is because one can simply “save” the advice in the problem input. However, since for any problem in few-NP, the
problem input can only contain O(k log n) bits, for any fixed (n, k), you cannot “save” the (fpt-size) advice string in
the problem input.

As shown above, the class nu-few-NP is the non-uniform variant of few-NP that results from the “circuit non-
uniformity” point of view. The class few-NP/fpt is the non-uniform variant of few-NP that results from the “advice
non-uniformity” point of view. Interestingly, for the parameterized complexity class few-NP these two different no-
tions of non-uniformity seem to differ. For all other parameterized complexity classes that we have considered, these
two notions of non-uniformity give rise to the same (non-uniform) class.

4.3.5 Characterizing few-NP in terms of 3-colorability

To illustrate that for the classes few-NP and nu-few-NP it does not matter what NP-complete “base problem” one
chooses, we give a different characterization of these classes in terms of a problem based on 3-colorability of graphs.

Definition 78 (graph generators). We say that a function γ : N3 → Σ∗ is a graph generator if for each (n, `, k) ∈ N3

it holds that:

• if 1 ≤ ` ≤ nk, then γ(n, `, k) is a graph;

• otherwise γ(n, `, k) is the trivial empty graph (∅, ∅).

We say that a graph generator γ is nice if for each (n, `, k) the graph γ(n, `, k) has exactly n vertices.
Moreover, we say that a generator is (uniformly) fpt-time computable if there exists an algorithm A, a computable

function f and a constant c such that for each (n, `, k) ∈ N3 the algorithm A computes γ(n, `, k) in time f(k)nc.
We say that a generator is non-uniformly fpt-time computable if there exist a computable function f and a con-

stant c such that for each (n, k) ∈ N2, there exists an algorithm A(n,k) that for each ` ∈ N computes γ(n, `, k) in
time f(k)nc.

Definition 79. Let γ be a graph generator. We define the parameterized decision problem FEW3COLγ as follows.

FEW3COLγ
Instance: (n, `, k) ∈ N3, where n is given in unary and `, k are given in binary.
Parameter: k.
Question: is γ(n, `, k) 3-colorable?

Using these definitions, we derive the following characterization of few-NP.

Proposition 80. It holds that few-NP = [{ FEW3COLγ : γ is a uniformly fpt-time computable graph generator }]fpt.

Proof. Firstly, we show that for each uniformly fpt-time computable graph generator γ it holds that FEW3COLγ ∈
few-NP. Let γ be such a graph generator. We construct the following uniformly fpt-time computable SAT instance
generator γ′. We describe the algorithm that computes γ′. On input (n, `, k), the algorithm firstly computes the
graph γ(n, `, k). By using the standard polynomial-time reduction from 3-colorability to propositional satisfiability,
we can construct (in polynomial time) a propositional formula ϕ that is satisfiable if and only if γ(n, `, k) is 3-
colorable. The algorithm then returns γ′(n, `, k) = ϕ. It is then straightforward to verify that the identity mapping is
an fpt-reduction from FEW3COLγ to FEWSATγ′ . Therefore, we can conclude that FEW3COLγ ∈ few-NP.
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Next, we show that for each problem Q ∈ few-NP, it holds that Q is fpt-reducible to FEW3COLγ for some uni-
formly fpt-time computable graph generator γ. For this, it suffices to show that for each uniformly fpt-time computable
nice 3CNF generator γ there exists some uniformly fpt-time computable graph generator γ′ such that FEWSATγ is
fpt-reducible to FEW3COLγ′ .

Let γ be a uniformly fpt-time computable nice 3CNF generator. We construct the following uniformly fpt-time
computable graph generator γ′. We describe the algorithm that computes γ′. On input (n, `, k), the algorithm firstly
computes the 3CNF formula ϕ = γ(n, `, k). By using the standard polynomial-time reduction from satisfiability of
3CNF formulas to 3-colorability, we can construct (in polynomial time) a graph G that is 3-colorable if and only if ϕ
is satisfiable. The algorithm then returns γ′(n, `, k) = G. It is then straightforward to verify that the identity mapping
is an fpt-reduction from FEWSATγ to FEW3COLγ′ . This concludes our proof.

Proposition 81. nu-few-NP = [{ FEW3COLγ : γ is a non-uniformly fpt-time computable graph generator }]fpt.

Proof. The proof is analogous to the proof of Proposition 80.

4.3.6 Characterizing few-NP by “filtering” para-NP problems

To illustrate the robustness of the classes few-NP and nu-few-NP even more, we give a different characterization of
these classes, in terms of applying “well-behaved efficiently computable filters” to para-NP problems.

We begin with the definition of xp-numberings. These functions will be the foundation of our notion of “filters.”

Definition 82. Let Q be a parameterized problem. We say that an xp-numbering of Q is a function ρ : Σ∗ ×Σ∗ → N
for which there exists a computable function f : N→ N such that:

• for each (n, k) ∈ N× Σ∗, ρ maps each instance (x, k) of Q with |x| = n to a number 0 ≤ ` ≤ nf(k);

• for any instance (x, k) of Q it holds that if ρ(x, k) = 0, then (x, k) 6∈ Q; and

• for each (n, k) ∈ N × Σ∗ and any two instances (x, k), (x′, k) ∈ Σ∗ × Σ∗ with |x| = |x′| = n it holds
that ρ(x, k) = ρ(x′, k) implies that (x, k) ∈ Q if and only if (x′, k) ∈ Q.

Moreover, we say that an xp-numbering is an fpt-time xp-numbering if it is computable in fixed-parameter tractable
time.

In the remainder of this section, we will consider the following class of parameterized problems:

{A ∩B : A has an fpt-time xp-numbering, B ∈ para-NP }.

Intuitively, in this definition, one can consider fpt-time xp-numberings as efficiently computable well-behaved
filters: They are efficiently computable, because they run in fpt-time. They are filters, because they reduce the para-NP
set to a set where for each (n, k), all instances can be decided by solving the problem for only nf(k) instances. Finally,
they are well-behaved, because one can identify for each instance if it boils down to one of these nf(k) “crucial”
instances, and if so, to which one of these instances (indicated by a number 1 ≤ ` ≤ nf(k)).

In fact, we will show that this class coincides with few-NP.

Proposition 83. {A ∩B : A has an fpt-time xp-numbering, B ∈ para-NP } ⊆ few-NP.

Proof. Let Q = A ∩ B for some problem A that has an fpt-time xp-numbering ρ and some B ∈ para-NP. We
show that Q ∈ few-NP by showing that Q is fpt-reducible to the problem FEWSATγ for some uniformly fpt-time
computable generator γ. The main idea of this proof is to encode the concatenation of the inverse computation of
the xp-numbering ρ and the non-deterministic check of membership in B into the SAT instance generated for some
number 1 ≤ ` ≤ nk.

Let f be the computable function such that for each input (x, k) with |x| = n it holds that ρ(x, k) ≤ nf(k). We will
construct the uniformly fpt-time generator γ below. Firstly, we will specify the fpt-reduction R from Q to FEWSATγ .
Let (x, k) be an instance of Q, with |x| = n. We let R(x, k) = (n, `, f(k)), where ` = ρ(x, k) ≤ nf(k). Next,
we will specify the generator γ. Since it is more informative to describe the non-deterministic computation encoded
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in the SAT instance that γ outputs, we do so without spelling out the resulting SAT instance. On input (n, `, k),
the computation γ(n, `, k) firstly computes k′ = f−1(k), i.e., the k′ such that f(k′) = k. This can be done in
deterministic fpt-time. Next, the computation γ(n, `, k) non-deterministically computes an instance x of length n for
which it holds that ρ(x, k) = `. Since for all instances x, x′ with ρ(x, k) = ρ(x′, k) it holds that (x, k) ∈ A if and
only if (x′, k) ∈ A, we can allow the computation to find any such instance x. Finally, the computation γ(n, `, k)
non-deterministically verifies that (x, k) ∈ B. Since B ∈ para-NP, this can be done in non-deterministic fpt-time. As
explained above, technically, γ encodes this non-deterministic fpt-time computation γ(n, `, k) in a SAT instance of fpt-
size. We get for each instance (x, k) with |x| = n that (x, k) ∈ Q if and only if R(x, k) = (n, `, f(k)) ∈ FEWSATγ .
Therefore, Q ∈ few-NP.

Lemma 84. Let Q = A ∩ B be a parameterized problem, where A is a problem that has an fpt-time xp-numbering,
and B ∈ para-NP. Moreover, let Q′ be a parameterized problem that is fpt-reducible to Q. Then Q′ = A′ ∩ B′ for
some problem A′ that has an fpt-time xp-numbering and some B′ ∈ para-NP.

Proof. We construct A′ and B′. Let R be the fpt-reduction from Q′ to Q. We let A′ be the set consisting of the
following instances. We let (x, k) ∈ A′ if and only if R(x, k) ∈ A. We show that A′ has an fpt-time xp-numbering,
by constructing such an xp-numbering ρ′. We know that A has an fpt-time xp-numbering ρ. On input (x, k), the
xp-numbering ρ′ returns the value ` = ρ(R(x, k)). Since R is an fpt-reduction, is straightforward to construct a
computable function f ′ such that ` ≤ nf

′(k) for each instance (x, k) with |x| = n. Moreover, since both R and ρ are
fpt-time computable, the xp-numbering ρ′ is also fpt-time computable.

Next, we construct the setB′, in a similar way. For each instance (x, k), we let (x, k) ∈ B′ if and only ifR(x, k) ∈
B. Since B ∈ para-NP and since para-NP is closed under fpt-reductions, we get that B′ ∈ para-NP.

These definitions then have the consequence that for each instance (x, k) it holds that (x, k) ∈ Q′ if and only
if (x, k) ∈ A′ ∩ B′. Namely, we get that (x, k) ∈ Q′ if and only if R(x, k) ∈ Q, if and only if both R(x, k) ∈ A
and R(x, k) ∈ B, if and only if both (x, k) ∈ A′ and (x, k) ∈ B′, if and only if (x, k) ∈ A′ ∩B′.

Proposition 85. few-NP ⊆ {A ∩B : A has an fpt-time xp-numbering, B ∈ para-NP }.

Proof. Let Q ∈ few-NP. We know that there is an fpt-reduction R from Q to FEWSATγ , for some uniformly fpt-time
computable generator γ. We show that Q is fpt-reducible to a problem Q′ = A ∩ B, for some problem A that has an
fpt-time xp-numbering and some B ∈ para-NP. By Lemma 84, this suffices to show that Q itself is of the required
form.

We specify the fpt-reduction R′, the problem A with its fpt-time xp-numbering ρ, and the problem B ∈ para-NP.
We begin with the fpt-reduction R′. On input (x, k) with |x| = n, the reduction first computes R(x, k) = (n′, `′, k′).
Here we know that k′ ≤ f(k) for some computable function f . Next, it computes γ(n′, `′, k′) = ϕ. The reduction
then outputs R(x, k) = (x, ϕ, `′, k). We let the set A consist of all instances (x, ϕ, `′, k) such that γ(n′, `′, k′) = ϕ,
whereR(x, k) = (n′, `′, k′), i.e.,A checks whether ϕ and `′ are computed correctly from (x, k), according toR and γ.
Next, we specify the xp-numbering ρ ofA. On input (x, ϕ, `′, k), the xp-numbering ρ checks whether (x, ϕ, `′, k) ∈ A;
if so, it outputs ρ(x, ϕ, `′, k′) = `′; otherwise, it outputs ρ(x, ϕ, `′, k′) = 0. Since `′ ≤ |x|f(k), we know that ρ is
in fact an xp-numbering. Moreover, ρ is fpt-time computable. Finally, we specify the set B ∈ para-NP. For each
input (x, ϕ, `′, k), we let (x, ϕ, `′, k) ∈ B if and only if ϕ is satisfiable. Clearly, then, B ∈ para-NP. Now, since A
checks whether ϕ is computed correctly from (x, k) according toR and γ, and sinceB checks whether ϕ is satisfiable,
we get that (x, k) ∈ Q if and only if R′(x, k) ∈ A ∩B. This concludes our proof.

Theorem 86. The class few-NP can be characterized in the following way:

few-NP = {A ∩B : A has an fpt-time xp-numbering, B ∈ para-NP }.

Proof. The result follows directly from Propositions 83 and 85.

In an entirely analogous way, we can now derive the following characterization of nu-few-NP, using xp-
numberings ρ that are in (the search variant of) FPT/fpt.
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Theorem 87. The class nu-few-NP can be characterized in the following way:

nu-few-NP = {A ∩B : A has an xp-numbering ρ computable by a FPT/fpt algorithm, B ∈ para-NP }.

Proof. The proof is entirely analogous to the proofs of Theorem 86, Lemma 84, and Propositions 83 and 85.

We illustrate this characterization of few-NP in terms of filtering by using it to show that the following example
problem is in few-NP. We consider the binary expansion of irrational numbers. For instance, take

√
2. We can

compute the first n bits of the binary expansion of
√

2 in time polynomial in n. Let bits(n,
√

2) denote the first n bits
in the binary expansion of

√
2.

Example 88. The following parameterized problem 3SATbdist-
√

2c is in few-NP:

3SATbdist-
√

2c = { (x, k) ∈ {0, 1}∗ × N :
x encodes a satisfiable propositional formula, |x| = n,

the Hamming distance between x and bits(n,
√

2) is at most k }.

To see this, we express 3SATbdist-
√

2c as a problem of the form A ∩ B, where A has an fpt-time computable xp-
numbering and where B ∈ para-NP. We let B = 3SAT × N, which is clearly in para-NP. Then we describe A
and its fpt-time xp-numbering ρ. On input (x, k), with |x| = n, we first compute y = bits(n,

√
2). Then we

compute z = x⊕ y (where ⊕ denotes the bitwise exclusive-or operator). This can be done in polynomial time. Then,
if z has more than k ones, we let (x, k) 6∈ A, and ρ(x, k) = 0. Otherwise, if z has at most k ones, we let (x, k) ∈ A
and we compute ρ(x, k) as follows. Let i1, . . . , iu, with u ≤ k, be the indices of the bits in z = z1 . . . zn with ones,
i.e., zij = 1 for all 1 ≤ j ≤ u. We can extend this sequence of indices to a sequence i′1, . . . , i

′
k by adding k − u

zeroes to the beginning. We then concatenate i′1, . . . , i
′
k (each described using log n bits) into a single bitstring i, and

interpret this as a number `. We then let ρ(x, k) = `+ 1. Since each i′j is described by log n bits, we have that i is of
length k log n, and thus 1 ≤ ` ≤ nk. Thus ρ is an xp-numbering. a

In fact, there is nothing special about the number
√

2 (at least for this example), except for the fact that the
first n bits of its binary expansion are computable in polynomial time. Consequently, for any other real number r
for which we can compute the first n bits of its binary expansion in polynomial time (in n), the similarly defined
problem SATbdist-rc is in few-NP.

4.4 The parameterized compilability of finding small cliques
Using the non-uniform parameterized complexity classes defined in the previous section, we can relate the parame-
terized compilability of several problems to (non-)inclusion properties in the landscape of non-uniform parameterized
complexity. We use another natural parameterized variant of CONSTRAINED-CLIQUE as an example to illustrate this.

We consider the following parameterization of CONSTRAINED-CLIQUE.

CONSTRAINED-CLIQUE(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = |V1|+ |V2|.
Question: is there a clique C ⊆ V in G of size u such that C ∩ V1 = ∅ and V2 ⊆ C?

We now characterize the parameterized compilation complexity of CONSTRAINED-CLIQUE(constr.-size) using
the parameterized complexity classes nu-few-FPT and FPT/fpt. In order to do so, we consider the following auxiliary
parameterized compilation problem.

SATQUERY(query-size)
Offline instance: a propositional formula ϕ.
Online instance: a set L of literals.
Parameter: k = |L|.
Question: is ϕ ∧

∧
l∈L l satisfiable?
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Proposition 89. The problem SATQUERY(query-size) is equivalent to the restriction of SATQUERY(query-size) to
offline instances in 3CNF (under fpt-nucomp-reductions).

Proof. We give an fpt-nucomp-reduction from SATQUERY(query-size) to itself, where the resulting offline instance
is in 3CNF. In order to do so, we need to specify fpt-size functions f1, f2, a computable function h and an fpt-time
function g such that for each instance (ϕ,L, k) of SATQUERY(query-size) it holds that for each m ≥ |L|, (ϕ,L, k) ∈
SATQUERY(query-size) if and only if (f1(ϕ, 1m, k), g(f2(ϕ, 1m, k), L, k), h(k)) ∈ SATQUERY(query-size). By
using the standard Tseitin transformations [32], we can in polynomial time transform the formula ϕ into a 3CNF
formula ϕ′ with the property that Var(ϕ) ⊆ Var(ϕ′) and that for each truth assignment α : Var(ϕ) → {0, 1} it holds
that ϕ[α] is true if and only if ϕ′[α] is satisfiable. We then let f1(ϕ, 1m, k) = ϕ′. Moreover, we let f2(ϕ, 1m, k) = ∅,
we let g(∅, L, k) = L, and we let h(k) = k. It is straightforward to verify the correctness of this fpt-nucomp-
reduction.

Proposition 90. Let γ be a non-uniformly fpt-time computable generator. Then FEWSATγ ≤fpt
nucomp

SATQUERY(query-size).

Proof (sketch). We need to specify fpt-size functions f1, f2, a computable function h and an fpt-time function g such
that for each instance (n, `, k) of FEWSATγ it holds that for each m ≥ |`|:

(n, `, k) ∈ FEWSATγ if and only if (f1(n, 1m, k), g(f2(n, 1m, k), `, k), h(k)) ∈ SATQUERY(query-size).

We let f2(n, 1m, k) = n. In addition, we let g(n, `, k) be an encoding L` of ` in terms of a set of literals of size k over
the variables xi,j , for 1 ≤ i ≤ n, 1 ≤ j ≤ k. Then, we let f2(n, 1m, k) = ϕ be a 3CNF formula that is satisfiable in
conjunction with L` if and only if γ(n, `, k) is satisfiable, for each 1 ≤ ` ≤ nk. This can be done as follows.

By Proposition 69, we may assume without loss of generality that γ is a 3CNF generator. Firstly, the formula ϕ
contains clauses to ensure that at most k variables xi,j are true. Then, we add 8n3 many variables yi, corresponding
to the 8n3 possible clauses c1, . . . , c8n3 of size 3 over the variables x1, . . . , xn. Then, since for each (n, k) ∈ N2,
the function γ(n, ·, k) is computable in ftp-time, we can construct fpt-many clauses that ensure that, whenever L` is
satisfied, the variables yi must be set to true for the clauses ci ∈ γ(n, `, k). Finally, for each such possible clause ci,
we add clauses to ensure that whenever yi is set to true, then the clause ci must be satisfied.

Proposition 91. The class nu-few-FPT coincides with the set of all parameterized problems Q for which there exists
a computable function f and a constant c such that for each (n, k) ∈ N×Σ∗ there is some circuit Cn,k of size f(k)nc

such that, for each ` ∈ {0, 1}k logn, it holds that (n, `, k) ∈ Q if and only if Cn,k[`] is satisfiable.

Proof (idea). An argument similar to the one in the proof of Proposition 20 can be used to show this result.

Proposition 92. Let γ be a generator. Then FEWSATγ ∈ par-nucomp-FPT if and only if FEWSATγ ∈ FPT/fpt.

Proof. (⇒) Assume that there exists an fpt-size function f1, an fpt-time function g a computable function h and a
parameterized problem Q ∈ FPT such that for each instance (n, `, k) of FEWSATγ and each m ≥ |`| it holds that:

(n, `, k) ∈ FEWSATγ if and only if (f1(n, 1m, k), g(`, k), h(k)) ∈ Q.

We show that FEWSATγ ∈ FPT/fpt. Take an arbitrary (n, k) ∈ N2. Consider the string α = f1(n, 1m, k) as advice,
for some m ≥ |`| = k log n. Then deciding for some 1 ≤ ` ≤ nk whether (n, `, k) ∈ FEWSATγ can be done in
fpt-time using the advice string α, by checking whether (α, g(`, k), h(k)) ∈ Q.

(⇐) Conversely, assume that FEWSATγ ∈ FPT/fpt, i.e., that there exist a computable function f and a
constant c such that for each (n, k) ∈ N2 there exists some advice string α(n, k) of length f(k)nc such that,
given (α(n, k), n, `, k), deciding whether (n, `, k) ∈ FEWSATγ is fixed-parameter tractable. We then construct a
fpt-size function f1, an fpt-time function g and a computable function h such that there exists a parameterized prob-
lem Q ∈ FPT such that for each instance (n, `, k) of FEWSATγ and each m ≥ |`| it holds that:

(n, `, k) ∈ FEWSATγ if and only if (f1(n, 1m, k), g(`, k), h(k)) ∈ Q.

We let f1(n, 1m, k) = (α(n, k), n), we let g(`, k) = ` and we let h(k) = k. Then, by assumption,
given (f1(n, 1m, k), g(`, k), h(k)), deciding whether (n, `, k) ∈ FEWSATγ is fixed-parameter tractable.
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Proposition 93. If FEWSATγ ∈ FPT/fpt for each non-uniformly fpt-time computable generator γ,
then SATQUERY(query-size) ∈ par-nucomp-FPT.

Proof. In order to show that SATQUERY(query-size) ∈ par-nucomp-FPT, we specify an fpt-size function f1, an fpt-
time function g, a computable function h and a parameterized problem Q ∈ FPT such that for all instances (ϕ,L, k)
of SATQUERY(query-size) and each m ≥ |L| = k it holds that:

(ϕ,L, k) ∈ SATQUERY(query-size) if and only if (f1(ϕ, 1m, k), g(L, k), h(k)) ∈ Q.

Assume without loss of generality that ϕ contains the variables x1, . . . , xn. There are (at most) 2nk ≤ n2k many
set of k literals over the variables x1, . . . , xn. Let L1, . . . , Lu be an enumeration of these clauses. We consider the
following non-uniformly fpt-time computable generator γϕ. Given a triple (n′, `, k′) ∈ N3, we define γϕ(n′, `, k′) = ∅
if n′ 6= n, or k′ 6= 2k, or ` > u; otherwise, we define γϕ(n′, `, k′) = γϕ(n, `, 2k) to be a propositional formula ϕ′

that is satisfiable if and only if ϕ ∧
∧
L` is satisfiable. Then, (n′, `, k′) ∈ FEWSATγϕ if and only if (ϕ,L`, k) ∈

SATQUERY(query-size). By assumption, FEWSATγϕ ∈ FPT/fpt, and therefore there exists some algorithm A(n′,k′)

that decides whether (n′, `, k′) ∈ FEWSATγϕ in fpt-time. We now let f1(ϕ, 1m, k) = α(n′,k′) be a description of
the algorithm A(n′,k′). Since A(n′,k′) runs in fixed-parameter tractable time, we know that its description α(n′,k′)

is of fpt-size. Moreover, we let g(L, k) = `, for L = L`; and we let h(k) = k′ = 2k. The problem Q consists
of simulating the algorithm A(n′,k′) on input (n′, `, k′), which is fixed-parameter tractable. This completes our fpt-
nucomp-reduction.

The above results together give us the following characterization theorem.

Theorem 94. SATQUERY(query-size) ∈ par-nucomp-FPT if and only if nu-few-NP ⊆ FPT/fpt.

Proof. (⇒) Assume that SATQUERY(query-size) ∈ par-nucomp-FPT. Then by Proposition 90, we know that
FEWSATγ ∈ par-nucomp-FPT, for each non-uniformly fpt-time computable generator γ. Then, by Proposi-
tion 92, we know that FEWSATγ ∈ FPT/fpt, for each non-uniformly fpt-time computable generator γ. In other
words, nu-few-NP ⊆ FPT/fpt.

(⇐) Conversely, assume that nu-few-NP ⊆ FPT/fpt. Then for each non-uniformly fpt-time computable
generator γ, it holds that FEWSATγ ∈ FPT/fpt. Then, by Proposition 93, we know that SATQUERY(query-
size) ∈ par-nucomp-FPT.

With this characterization of the parameterized compilability of SATQUERY(query-size), we can return to the
problem CONSTRAINED-CLIQUE(constr.-size).

Proposition 95. CONSTRAINED-CLIQUE(constr.-size) is equivalent to SATQUERY(size) under fpt-nucomp-
reductions.

Proof. Firstly, we give an fpt-nucomp-reduction from SATQUERY(query-size) to CONSTRAINED-CLIQUE(constr.-
size). Before we specify this reduction, we will look at a well-known polynomial-time reduction from 3SAT to
CLIQUE. Let ϕ = c1 ∧ · · · ∧ cb, and let Var(ϕ) = {x1, . . . , xn}. We construct a graph G = (V,E) as follows. We
let V = { (cj , l) : 1 ≤ j ≤ b, l ∈ cj } ∪ {xi, xi : 1 ≤ i ≤ n }. We describe the edges of G as three sets: (1) the
edges between two vertices of the form (cj , l), (2) the edges between two vertices of the form xi, xi, and (3) the edges
between a vertex of the form (cj , l) and a vertex of the form xi, xi. We describe set (1). Let (cj , l) and (cj′ , l

′) be two
vertices. These vertices are connected by an edge if and only if both j 6= j′ and l 6= l′. Next, we describe set (2).
Two vertices v1, v2 ∈ {xi, xi : 1 ≤ i ≤ n } are connected by an edge if and only if v1 and v2 are not complementary
literals xi and xi, for some 1 ≤ i ≤ n. Finally, we describe set (3). Let (cj , l) and v ∈ {xi, xi : 1 ≤ i ≤ n } be two
vertices. Then (cj , l) and v are connected by an edge if and only if l and v are not complementary literals xi and xi,
for some 1 ≤ i ≤ n. We have that G has a clique of size n+ b if and only if ϕ is satisfiable. Moreover, each satisfying
assignment α : {x1, . . . , xn} → {0, 1} of ϕ corresponds to a clique C = { l ∈ {xi, xi : 1 ≤ i ≤ n } : α(l) = 1 }∪D
of size n + b, for some D ⊆ { (cj , l) ∈ V : α(l) = 1 }, and vice versa. This direct correspondence between cliques
and satisfying truth assignments has the following consequence. Let L be a set of literals. There exists a clique of
size n + b in G that does not contain the vertices l ∈ L if and only if there exists a satisfying truth assignment of ϕ
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that does not satisfy any literal l ∈ L, which is the case if and only if there exists a satisfying truth assignment of ϕ
that satisfies the complement l of each l ∈ L.

We are now ready to specify our fpt-nucomp-reduction. In order to do so, we need to specify fpt-size func-
tions f1, f2, a computable function h and an fpt-time function g. Let (ϕ,L, k) be an instance of SATQUERY(query-
size). We may assume without loss of generality that ϕ is in 3CNF. We let f1(ϕ, 1m, k) = G, where G is the
graph constructed from ϕ as in the polynomial-time reduction from 3SAT to CLIQUE that is described above. We
let f2(ϕ, 1m, k) = u = n + b; we let g(u, L, k) = (u, V1, ∅), where V1 = { l : l ∈ L } is the set of vertices l
in V corresponding to the complements of the literals in L. Finally, we let h(k) = k. As argued above, we have
that ϕ ∧

∧
l∈L l is satisfiable if and only if G has a clique of size u that does not contain any vertex in V1. Therefore,

this reduction is correct.
Next, we give an fpt-nucomp-reduction from CONSTRAINED-CLIQUE(constr.-size) to SATQUERY(query-size).

In order to do so, we consider a polynomial-time reduction from CLIQUE to 3SAT. It is straightforward to construct,
given a graphG = (V,E) and an integer 1 ≤ u ≤ |V |, a 3CNF formula ϕu in polynomial time, such that ϕu is satisfi-
able if and only ifG contains a clique of size u. Moreover, we can do this in such a way that the formulas ϕ1, . . . , ϕ|V |
share a set of variables {xv : v ∈ V } with the property that for each 1 ≤ u ≤ |V | and each two subset V1, V2 ⊆ V it
holds that G has a clique C ⊆ V of size u that contains no vertex in V1 and that contains all vertices in V2 if and only
if the formula ϕu ∧

∧
l ∈ L is satisfiable, where L = {xv : v ∈ V1 } ∪ {xv : v ∈ V2 }.

Now, we are ready to specify our fpt-nucomp-reduction. In order to do so, we need to specify fpt-size
functions f1, f2, a computable function h and an fpt-time function g. Let (G, (V1, V2, u), k) be an instance
of CONSTRAINED-CLIQUE(constr.-size). We let f1(G, 1m, k) = ψ, where we define ψ =

∧
1≤j≤|V |(yj → ϕj),

where the formulas ϕj are constructed as in the polynomial-time reduction from CLIQUE to 3SAT that is described
above. We let f2(G, 1m, k) = ∅, we let g(∅, (V1, V2, u), k) = L∪ {yu}, where L = {xv : v ∈ V1 } ∪ {xv : v ∈ V2 },
and we let h(k) = k+ 1. As argued above, we have that G has a clique of size u that does not contain any vertex in V1

and that contains all vertices in V2 if and only if ϕ∧
∧
l∈L l∧ yu is satisfiable. Therefore, this reduction is correct.

Corollary 96. CONSTRAINED-CLIQUE(constr.-size) ∈ par-comp-FPT implies that nu-few-NP ⊆ FPT/fpt.

4.4.1 Clique size as part of the offline instance

In fact, requiring that the size of the cliques is part of the offline instance (rather than part of the online instance)
does not make a difference for the compilability of the problem. Consider the following parameterized compilation
problem, where the size of the cliques is part of the offline instance.

CONSTRAINED-CLIQUEoffline-size(constr.-size)
Offline instance: a graph G = (V,E), and a positive integer u ≥ 1.
Online instance: two subset V1, V2 ⊆ V of vertices.
Parameter: k = |V1|+ |V2|.
Question: is there a clique C ⊆ V in G of size u such that C ∩ V1 = ∅ and V2 ⊆ C?

Proposition 97. CONSTRAINED-CLIQUEoffline-size(constr.-size) is equivalent to SATQUERY(query-size) under fpt-
nucomp-reductions.

Proof. The proof of Proposition 95 can be easily modified to show this result.

4.5 Other parameterized compilation problems
We consider some other parameterized compilation problems that bear a similar relation to a collapse in the non-
uniform complexity landscape as CONSTRAINED-CLIQUE(constr.-size).

4.5.1 Hamiltonian Paths and the Travelling Salesman Problem

Using ideas similar to the ones used in the above section with compilation problems related to cliques, we can show
for some parameterized compilation problems related to finding Hamiltonian paths and related to the Travelling Sales-
person Problem that they are equivalent to SATQUERY(query-size) (under fpt-nucomp-reductions). The main idea
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that we use to show these equivalences is that the standard polynomial-time reductions from 3SAT to finding Hamil-
tonian paths in (undirected or directed) graphs or to the TSP result in instances where specific edges in the solutions
correspond to the assignment of specific literals to specific truth values in satisfying assignments of the original 3CNF
formula. We consider the following parameterized compilation problems.

CONSTRAINED-HP-UNDIRECTED(constr.-size)
Offline instance: an undirected graph G = (V,E).
Online instance: two subsets E1, E2 ⊆ E of edges.
Parameter: k = |E1|+ |E2|.
Question: is there a Hamiltonian path π in G such that π includes no edge in E1 and includes each edge
in E2?

CONSTRAINED-HP-DIRECTED(constr.-size)
Offline instance: a directed graph G = (V,E).
Online instance: two subsets E1, E2 ⊆ E of edges.
Parameter: k = |E1|+ |E2|.
Question: is there a Hamiltonian path π in G such that π includes no edge in E1 and includes each edge
in E2?

CONSTRAINED-TSP(constr.-size)
Offline instance: a directed graph G = (V,E), and a cost c(e) ∈ N (given in binary) for each edge e ∈ E.
Online instance: two subsets E1, E2 ⊆ E of edges, and a positive integer u ≥ 1 (given in binary).
Parameter: k = |E1|+ |E2|.
Question: is there a Hamiltonian cycle π in G of total cost ≤ u such that π includes no edge in E1 and
includes each edge in E2?

Proposition 98. The following three parameterized compilation problems are equivalent to SATQUERY(query-size)
(under fpt-nucomp-reductions):

• CONSTRAINED-HP-UNDIRECTED(constr.-size),

• CONSTRAINED-HP-DIRECTED(constr.-size), and

• CONSTRAINED-TSP(constr.-size).

Proof (sketch). The problems of finding a Hamiltonian path (in an undirected or in a directed graph), finding a
Hamiltonian cycle (in an undirected or in a directed graph), and finding a tour of length ≤ u for an instance of
the TSP are classic NP-complete problems. The well-known polynomial-time reductions from these problems to
3SAT and from 3SAT to these problems have a direct correspondence between solutions of these problems and
satisfying assignments of the 3SAT instances, similar to the correspondence used in the proof of Proposition 95. Us-
ing arguments that are completely analogous to the arguments used in these proofs, we can show that the problems
CONSTRAINED-HP-UNDIRECTED(constr.-size), CONSTRAINED-HP-DIRECTED(constr.-size), and CONSTRAINED-
TSP(constr.-size) are equivalent under fpt-nucomp-reductions to SATQUERY(query-size).

Note that the standard reductions can be modified straightforwardly to work also for the restrictions of
CONSTRAINED-HP-UNDIRECTED(constr.-size), CONSTRAINED-HP-DIRECTED(constr.-size), and CONSTRAINED-
TSP(constr.-size), where E1 = ∅, as well as for the restriction where E2 = ∅.

4.5.2 Graph Colorability

Next, we look at parameterized compilation problems that are based on graph colorability problems. Again, by
exploiting the well-known polynomial-time reductions to and from 3SAT, and the direct correspondence between
solution to the coloring problems and the satisfiability problem, we can establish equivalence between the following
problems and SATQUERY(query-size). We omit the straightforward proofs. In addition, we can derive classical
(in)compilability results hold for unparameterized variants of the following problems, similarly to the cases in the
above sections.
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CONSTRAINED-3COL(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: a partial 3-coloring ρ, that assigns a color in {1, 2, 3} to a subset V ′ ⊆ V of vertices.
Parameter: k = |V ′|.
Question: is there a proper 3-coloring ρ′ of G that extends ρ?

Let r ≥ 1 be a fixed positive integer.

CONSTRAINED-rCOL(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: a partial r-coloring ρ, that assigns a color in {1, 2, 3} to a subset V ′ ⊆ V of vertices.
Parameter: k = |V ′|.
Question: is there a proper r-coloring ρ′ of G that extends ρ?

Proposition 99. The following parameterized compilation problems are equivalent to SATQUERY(query-size) (under
fpt-nucomp-reductions):

• CONSTRAINED-3COL(constr.-size), and

• CONSTRAINED-rCOL(constr.-size).

4.5.3 Other Problems

Again, using similar ideas, exploiting well-known polynomial time reductions to and from 3SAT, we observe that
the following parameterized compilation problems are equivalent to SATQUERY(query-size) (under fpt-nucomp-
reductions). We omit the straightforward proofs.

CONSTRAINED-IS(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = |V1|+ |V2|.
Question: is there an independent set C ⊆ V in G of size ≥ u such that C ∩ V1 = ∅ and V2 ⊆ C?

CONSTRAINED-VC(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = |V1|+ |V2|.
Question: is there a vertex cover C ⊆ V of G of size ≤ u such that C ∩ V1 = ∅ and V2 ⊆ C?

CONSTRAINED-DS(constr.-size)
Offline instance: a graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices, and a positive integer u ≥ 1.
Parameter: k = |V1|+ |V2|.
Question: is there a dominating set C ⊆ V of G of size ≤ u such that C ∩ V1 = ∅ and V2 ⊆ C?

CONSTRAINED-HS(constr.-size)
Offline instance: a finite set T , and a collection S = {S1, . . . , Sb} of subsets of T .
Online instance: two subsets T1, T2 ⊆ T of elements, and a positive integer u ≥ 1.
Parameter: k = |T1|+ |T2|.
Question: is there a hitting set H ⊆ T of S of size ≤ u such that H ∩ T1 = ∅ and T2 ⊆ H?

A kernel in a directed graph G = (V,E) is a set K ⊆ V of vertices such that (1) no two vertices in K are adjacent,
and (2) for every vertex u ∈ V \K there is a vertex v ∈ K such that (u, v) ∈ E.
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CONSTRAINED-KERNEL(constr.-size)
Offline instance: a directed graph G = (V,E).
Online instance: two subsets V1, V2 ⊆ V of vertices.
Parameter: k = |V1|+ |V2|.
Question: is there a kernel K ⊆ V of G such that K ∩ V1 = ∅ and V2 ⊆ C?

CONSTRAINED-EC(constr.-size)
Offline instance: a finite set T , and a collection S = {S1, . . . , Sb} of subsets of T .
Online instance: two subsets S1,S2 ⊆ S.
Parameter: k = |S1|+ |S2|.
Question: is there an exact cover C ⊆ S of T , i.e., a set C such that

⋃
C = T and for each S, S′ ∈ C

with S 6= S′ it holds that S ∩ S′ = ∅, such that C ∩ S1 = ∅ and S2 ⊆ C?

CONSTRAINED-EC3S(constr.-size)
Offline instance: a finite set T , and a collection S = {S1, . . . , Sb} of subsets of T , each of size 3.
Online instance: two subsets S1,S2 ⊆ S.
Parameter: k = |S1|+ |S2|.
Question: is there an exact cover C ⊆ S of T , i.e., a set C such that

⋃
C = T and for each S, S′ ∈ C

with S 6= S′ it holds that S ∩ S′ = ∅, such that C ∩ S1 = ∅ and S2 ⊆ C?

CONSTRAINED-KNAPSACK(constr.-size)
Offline instance: a finite set T of elements, and for each t ∈ T a cost c(t) ∈ N and a value v(t) ∈ N, both
given in binary.
Online instance: two subsets T1, T2 ⊆ T , and two positive integers u1, u2 ≥ 1, both given in binary.
Parameter: k = |T1|+ |T2|.
Question: is there an subset S ⊆ T such that

∑
s∈S c(s) ≤ u1, such that

∑
s∈S v(s) ≥ u2, and such

that S ∩ T1 = ∅ and T2 ⊆ S?

Proposition 100. The following parameterized compilation problems are equivalent to SATQUERY(query-size) (un-
der fpt-nucomp-reductions):

• CONSTRAINED-IS(constr.-size),

• CONSTRAINED-VC(constr.-size),

• CONSTRAINED-DS(constr.-size),

• CONSTRAINED-HS(constr.-size),

• CONSTRAINED-KERNEL(constr.-size),

• CONSTRAINED-EC(constr.-size),

• CONSTRAINED-EC3S(constr.-size), and

• CONSTRAINED-KNAPSACK(constr.-size).

5 Relation to (a Parameterized Variant of) the Polynomial Hierarchy
We give an overview of the relation between non-uniform parameterized complexity classes and a parameterized
variant of the Polynomial Hierarchy (PH). We begin with reviewing the PH and its parameterized variant [15]. Then,
we show that certain inclusions of non-uniform parameterized complexity classes entail collapses in the parameterized
variant of the PH.
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The Polynomial Hierarchy There are many natural decision problems that are commonly assumed not to be con-
tained in the classical complexity classes P and NP (under some common complexity-theoretic assumptions). The
Polynomial Hierarchy [23, 27, 31, 33] contains a hierarchy of increasing complexity classes Σp

i , for all i ≥ 0. We
give a characterization of these classes based on the satisfiability problem of various classes of quantified Boolean
formulas. A quantified Boolean formula (in prenex form) is a formula of the form Q1X1Q2X2 . . . QmXmψ, where
each Qi is either ∀ or ∃, the Xi are disjoint sets of propositional variables, and ψ is a Boolean formula over the vari-
ables in

⋃m
i=1Xi. The quantifier-free part of such formulas is called the matrix of the formula. Truth of such formulas

is defined in the usual way. Let γ = {x1 7→ d1, . . . , xn 7→ dn} be a function that maps some variables of a formula ϕ
to other variables or to truth values. We let ϕ[γ] denote the application of such a substitution γ to the formula ϕ. We
also write ϕ[x1 7→ d1, . . . , xn 7→ dn] to denote ϕ[γ]. For each i ≥ 1 we define the following decision problem.

QSATi
Instance: A quantified Boolean formula ϕ = ∃X1∀X2∃X3 . . . QiXiψ, where Qi is a universal quantifier
if i is even and an existential quantifier if i is odd.
Question: Is ϕ true?

Input formulas to the problem QSATi are called Σp
i -formulas. For each nonnegative integer i ≥ 0, the complexity

class Σp
i can be characterized as the closure of the problem QSATi under polynomial-time reductions [31, 33]. The Σp

i -
hardness of QSATi holds already when the matrix of the input formula is restricted to 3CNF for odd i, and restricted
to 3DNF for even i. Note that the class Σp

0 coincides with P, and the class Σp
1 coincides with NP. For each i ≥ 1, the

class Πp
i is defined as co-Σp

i .
The classes Σp

i and Πp
i can also be defined by means of nondeterministic Turing machines with an oracle. For any

complexity class C, we let NPC be the set of decision problems that is decided in polynomial time by a nondetermin-
istic Turing machine with an oracle for a problem in C. Then, the classes Σp

i and Πp
i , for i ≥ 0, can be equivalently

defined by letting Σp
0 = Πp

0 = P, and for each i ≥ 1 letting Σp
i = NPΣp

i−1 and Πp
i = co-NPΣp

i−1 .

A parameterized variant of the Polynomial Hierarchy Problems in NP and co-NP can be encoded into SAT in
such a way that the time required to produce the encoding and consequently also the size of the resulting SAT instance
are polynomial in the input (the encoding is a polynomial-time many-one reduction). Typically, the SAT encodings of
problems proposed for practical use are of this kind (cf. [29]). For problems that are “beyond NP,” say for problems
on the second level of the PH, such polynomial SAT encodings do not exist, unless the PH collapses. However, for
such problems, there still could exist SAT encodings which can be produced in fpt-time in terms of some parameter
associated with the problem. In fact, such fpt-time SAT encodings have been obtained for various problems that lie
on the second level of the PH or that are even harder [10, 12, 16, 28]. The classes para-NP and para-co-NP contain
exactly those parameterized problems that admit such a many-one fpt-reduction to SAT and UNSAT, respectively.
Thus, with fpt-time encodings, one can go significantly beyond what is possible by conventional polynomial-time SAT
encodings.

Fpt-time encodings to SAT also have their limits. Clearly, para-Σp
2-hard and para-Πp

2-hard parameterized problems
do not admit fpt-time encodings to SAT, even when the parameter is a constant, unless the PH collapses. There are
problems that apparently do not admit fpt-time encodings to SAT, but seem not to be para-Σp

2-hard nor para-Πp
2-hard

either. Recently, several complexity classes have been introduced to classify such intermediate problems [16, 15].
These parameterized complexity classes are dubbed the k-∗ class and the ∗-k hierarchy, inspired by their definition,
which is based on the following weighted variants of the quantified Boolean satisfiability problem that is canonical for
the second level of the PH. Let C be a class of Boolean circuits. The problem ∃k∀∗-WSAT(C) provides the foundation
for the k-∗ class.

∃k∀∗-WSAT
Instance: A quantified Boolean formula ∃X.∀Y.ψ, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X with weight k such that for all truth assignments β
to Y the assignment α ∪ β satisfies ψ?

Similarly, the problem ∃∗∀k-WSAT(C) provides the foundation for the ∗-k hierarchy.
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∃∗∀k-WSAT(C)
Instance: A Boolean circuit C ∈ C over two disjoint sets X and Y of variables, and an integer k.
Parameter: k.
Question: Does there exist a truth assignment α to X such that for all truth assignments β to Y with
weight k the assignment α ∪ β satisfies C?

The parameterized complexity class ∃k∀∗ (also called the k-∗ class) is then defined as follows:

∃k∀∗ = [ ∃k∀∗-WSAT ]fpt.

Similarly, the classes of the ∗-k hierarchy are defined as follows. Remember that we denote the class of Boolean
circuits with depth u and weft t by CIRCt,u, the class of all Boolean circuits by CIRC and the class of all Boolean
formulas by FORM.

∃∗∀k-W[t] = [ { ∃∗∀k-WSAT(CIRCt,u) : u ≥ 1 } ]fpt, for each t ≥ 1;

∃∗∀k-W[SAT] = [ ∃∗∀k-WSAT(FORM) ]fpt; and

∃∗∀k-W[P] = [ ∃∗∀k-WSAT(CIRC) ]fpt.

Note that these definitions are entirely analogous to those of the parameterized complexity classes W[t] of the Weft
hierarchy [8]. The following inclusion relations hold between the classes of the ∗-k hierarchy:

∃∗∀k-W[1] ⊆ ∃∗∀k-W[2] ⊆ · · · ⊆ ∃∗∀k-W[SAT] ⊆ ∃∗∀k-W[P].

Dual to the classical complexity class Σp
2 is its co-class Πp

2, whose canonical complete problem is comple-
mentary to the problem QSAT2. Similarly, we can define dual classes for the k-∗ class and for each of the pa-
rameterized complexity classes in the ∗-k hierarchy. These co-classes are based on problems complementary to
the problems ∃k∀∗-WSAT and ∃∗∀k-WSAT, i.e., these problems have as yes-instances exactly the no-instances of
∃k∀∗-WSAT and ∃∗∀k-WSAT, respectively. Equivalently, these complementary problems can be considered as vari-
ants of ∃k∀∗-WSAT and ∃∗∀k-WSAT where the existential and universal quantifiers are swapped, and are therefore
denoted with ∀k∃∗-WSAT and ∀∗∃k-WSAT. We use a similar notation for the dual complexity classes, e.g., we denote
co-∃∗∀k-W[t] by ∀∗∃k-W[t].

Parameterized Variants of the Karp-Lipton Theorem Next, we move to results relating inclusions between cer-
tain non-uniform parameterized complexity classes to collapses in the parameterized variant of the PH. The following
results are analogues of the Karp-Lipton Theorem related to non-uniform parameterized complexity and parameterized
complexity at higher levels of the PH.

In order to develop these results, we consider another non-uniform variant of parameterized complexity classes,
based on advice of size f(k) log n (we call this log-kernel-size advice).

Definition 101 (log-kernel-size advice). Let C be a parameterized complexity class. We define C/log-kernel to be
the class of all parameterized problems Q for which there exists a parameterized problem Q′ ∈ C and a computable
function f such that for each (n, k) ∈ N×Σ∗ there exists some α(n, k) ∈ Σ∗ of size f(k) log n with the property that
for all instances (x, k) with |x| = n, it holds that (x, k) ∈ Q if and only if (x, α(|x|, k), k) ∈ Q′.

Proposition 102. If W[P] ⊆ FPT/log-kernel, then ∀∗∃k-W[P] ⊆ ∃k∀∗.

Proof. Suppose that W[P] ⊆ FPT/log-kernel. Then there exists a computable function f such that for each (n, k) ∈
N × N there is some advice string α(n, k) of length f(k) log n such that for any instance (x, k) of WSAT(CIRC)
with |x| = n, deciding whether (x, k) ∈ WSAT(CIRC), given (x, α(n, k), k) is fixed-parameter tractable.
Then, by self-reducibility of WSAT(CIRC), we can straightforwardly transform this fpt-algorithm A1 that decides
whether (x, k) ∈ WSAT(CIRC) into an fpt-algorithm A2 that, given (x, α(n, k), k), computes a satisfying assign-
ment for x of weight k, if it exists, and fails otherwise. Here we assume without loss of generality that instances of
WSAT(CIRC) are encoded in such a way that we can instantiate variables to truth values without changing the size of
the instance.
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Our assumption that W[P] ⊆ FPT/log-kernel only implies that for each (n, k), a suitable advice string α(n, k)
exists. The idea of this proof is that we can guess this advice string using (bounded weight) existential quantification.
For any guessed string α(n, k), we can use it to execute the fpt-algorithm A2 to compute a satisfying assignment
(of weight k) for an instance of ∀∗∃k-WSAT(CIRC) and to verify that this is in fact a correct satisfying assignment.
Moreover, we know that (at least) one of the advice strings α(n, k) is correct, so if no guess leads to a satisfying
assignment of weigth k, we can conclude that no such assignment exists.

We show that the ∀∗∃k-W[P]-complete problem ∀∗∃k-WSAT(CIRC) is contained in ∃k∀∗. This suffices to show
that ∀∗∃k-W[P] ⊆ ∃k∀∗. We do so by giving an algorithm that solves ∀∗∃k-WSAT(CIRC) and that can be implemented
by an ∃k∀∗-machine [15, 17], i.e., an algorithm that can use f(k) log n existential nondeterministic steps, followed
by f(k)nc universal nondeterministic steps, where n is the input size, f is some computable function and c is some
constant.

Take an arbitrary instance of ∀∗∃k-WSAT(CIRC) consisting of the quantified Boolean instance ∀X.∃Y.C(X,Y )
and the positive integer k. Let n denote the size of this instance. We construct the following algorithm B. Firstly, B
guesses an advice string α(n, k) ∈ {0, 1}f(k) logn. Since we have an upper bound of f(k) log n on the length of this
string, we can guess this string in the f(k) log n existential nondeterministic steps of the algorithm. Next, the algorithm
needs to verify that for all truth assignments γ (of any weight) to the variables in X , the instance C(X,Y )[γ] of
WSAT(CIRC) is a yes-instance. Using universal nondeterministic steps, the algorithm B guesses a truth assignment γ
to the variables in X . We assume without loss of generality that for any γ the instance C(X,Y )[γ] is of size n; if
this instance is smaller, we can simply add some padding to ensure that it is of the right size. Then, using the guessed
string α(n, k), the algorithm simulates the (deterministic) fpt-algorithm A2 to decide whether (C(X,Y )[γ], k) ∈
WSAT(CIRC). Moreover, it verifies whether the truth assignment of weight k that is constructed by A2 (if any) in
fact satisfies C(X,Y )[γ]. Clearly, this can be done using universal nondeterministic steps, since deterministic steps
are a special case of universal nondeterministic steps. Finally, the algorithm accepts if and only if C(X,Y )[γ] has a
satisfying assignment of weight k.

To see that the algorithm B correctly decides ∀∗∃k-WSAT(CIRC), we observe the following. If the algorithm ac-
cepts an instance (C, k), then it must be the case that for all truth assignments γ to the universal variables ofC the algo-
rithm verified that there exists a satisfying assignment of weight k for C[γ]. Therefore, (C, k) ∈ ∀∗∃k-WSAT(CIRC).
Conversely, if B rejects an instance (C, k), it means that for all advice strings α(n, k) of length f(k) log n, there is
some truth assignment γ to the universal variables of C such that simulating A2 with α(n, k) does not yield a satisfy-
ing assignment. Then, since by assumption, at least one such advice string α(n, k) leads to correct behavior of A2, we
get that there exists some truth assignment γ to the universal variables of C such that C[γ] does not have a satisfying
assignment of weight k. In other words, (C, k) 6∈ ∀∗∃k-WSAT(CIRC).

Corollary 103. W[P] 6⊆ FPT/kernel and W[P] 6⊆ FPT/slice, unless ∀∗∃k-W[P] ⊆ ∃k∀∗.

Proposition 104. For each t ≥ 1, it holds that W[t] ⊆ FPT/log-kernel implies ∀∗∃k-W[t] ⊆ ∃k∀∗. Also, W[SAT] ⊆
FPT/log-kernel implies ∀∗∃k-W[SAT] ⊆ ∃k∀∗

Proof. The proof of Proposition 102 can straightforwardly be modified to show this result.

Corollary 105. For each t ≥ 1, it holds that W[1] 6⊆ FPT/kernel and W[1] 6⊆ FPT/slice, unless ∀∗∃k-W[1] ⊆ ∃k∀∗.

Corollary 106. It holds that W[SAT] 6⊆ FPT/kernel and W[SAT] 6⊆ FPT/slice, unless ∀∗∃k-W[SAT] ⊆ ∃k∀∗.

In addition, a straightforward modification of the proof of Proposition 102 can be used to relate the inclu-
sions W[t] ⊆ FPT/fpt to the parameterized variant of the PH.

Proposition 107. For each t ∈ {n ≥ 1 : n ∈ N } ∪ {SAT,P} it holds that W[t] 6⊆ FPT/fpt, unless ∀∗∃k-W[t] ⊆
para-Σp

2.

Proof. The proof of Proposition 102 can straightforwardly be modified to show this result.
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6 Relation to Probabilistic Parameterized Complexity
In this section, we briefly discuss the relation between probabilistic (and randomized) parameterized complexity and
non-uniform parameterized complexity classes.

The class BPFPT [24] is one parameterized analogue of BPP, which is contained in XP. However, one can also
consider the class para-BPP (which has also been called para-NP-BPFPT in the literature [25]). We have that BPFPT ⊆
para-BPP [25]. In analogy to the inclusion BPP ⊆ P/poly, we get that para-BPP ⊆ FPT/fpt, but para-BPP 6⊆
FPT/slice unless BPP = P.

Proposition 108. para-BPP ⊆ FPT/fpt.

Proof (sketch). Entirely analogous to the proof that BPP ⊆ P/poly (cf. [2, Theorem 7.14]).

Proposition 109. para-BPP 6⊆ FPT/slice unless BPP = P.

Proof. Suppose that para-BPP ⊆ FPT/slice. We show that BPP ⊆ P. Let Q ∈ BPP be an arbitrary problem.
Then consider the parameterized problem Q′ = { (x, 1) : x ∈ Q }. Clearly, Q′ ∈ para-BPP. By assumption, then
also Q′ ∈ FPT/slice. Then the slice Q′1 of Q′ where the parameter value is 1 is polynomial-time solvable. From this,
it easily follows that Q ∈ P. Thus, we can conclude that BPP ⊆ P.

Corollary 110. para-BPP ⊆ FPT/slice if and only if BPP = P.

7 Conclusion
We gave an overview of different non-uniform variants of parameterized complexity classes, in a homogeneous nota-
tion allowing a clear comparison of the different variants. We provided some (inclusion and separation) results relating
the different non-uniform classes to each other. Additionally, we discussed the relation between parameterized knowl-
edge compilation and non-uniform parameterized complexity.

Future work includes investigating the connections between the various non-uniform parameterized complexity
classes and the compilability framework by Chen [6] that is phrased in terms of parameterized complexity classes that
are contained in FPT.
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