
Smooth Boolean functions are easy:
efficient algorithms for low-sensitivity functions

Parikshit Gopalan
Microsoft Research

parik@microsoft.com

Noam Nisan
Microsoft Research &
The Hebrew University

noam.nisan@gmail.com

Rocco A. Servedio
Columbia University

rocco@cs.columbia.edu

Kunal Talwar
Google Research

ktalwar@gmail.com

Avi Wigderson
IAS

avi@ias.edu

August 10, 2015

Abstract

A natural measure of smoothness of a Boolean function is its sensitivity (the largest number of Ham-
ming neighbors of a point which differ from it in function value). The structure of smooth or equivalently
low-sensitivity functions is still a mystery. A well-known conjecture states that every such Boolean func-
tion can be computed by a shallow decision tree. While this conjecture implies that smooth functions are
easy to compute in the simplest computational model, to date no non-trivial upper bounds were known
for such functions in any computational model, including unrestricted Boolean circuits. Even a bound
on the description length of such functions better than the trivial 2n does not seem to have been known.

In this work, we establish the first computational upper bounds on smooth Boolean functions:

• We show that every sensitivity s function is uniquely specified by its values on a Hamming ball of
radius 2s. We use this to show that such functions can be computed by circuits of size nO(s).

• We show that sensitivity s functions satisfy a strong pointwise noise-stability guarantee for random
noise of rate O(1/s). We use this to show that these functions have formulas of depth O(s log n).

• We show that sensitivity s functions can be (locally) self-corrected from worst-case noise of rate
exp(−O(s)).

All our results are simple, and follow rather directly from (variants of) the basic fact that the function
value at few points in small neighborhoods of a given point determine its function value via a majority
vote. Our results confirm various consequences of the conjecture. They may be viewed as providing a
new form of evidence towards its validity, as well as new directions towards attacking it.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 131 (2015)

1 Introduction

1.1 Background and motivation

The smoothness of a continuous function captures how gradually it changes locally (according to the metric
of the underlying space). For Boolean functions on the Hamming cube, a natural analog is sensitivity,
capturing how many neighbors of a point have different function values. More formally, the sensitivity of
a Boolean function f : {0, 1}n → {0, 1} at input x ∈ {0, 1}n, written s(f, x), is the number of neighbors
y of x in the Hamming cube such that f(y) 6= f(x). The max sensitivity of f , written s(f) and often
referred to simply as the “sensitivity of f”, is defined as s(f) = maxx∈{0,1}n s(f, x). So, 0 ≤ s(f) ≤ n,
and while not crucial, it may be good for the reader to consider this parameter as “low” when e.g. either
s(f) ≤ (log n)O(1) or s(f) ≤ no(1) (note that both upper bounds are closed under taking polynomials).

To see why low-sensitivity functions might be considered smooth, let δ(·, ·) denote the normalized Ham-
ming metric on {0, 1}n. A simple application of the triangle inequality gives

Ey:δ(x,y)=δ0 |f(x)− f(y)| ≤ δ0s(f).

Thus s(f) might be viewed as being somewhat analogous to the Lipschitz constant of f .
A well known conjecture states that every smooth Boolean function is computed by a shallow decision

tree, specifically of depth polynomial in the sensitivity. This conjecture was first posed in the form of a
question by Nisan [Nis91] and Nisan and Szegedy [NS94] but is now (we feel) widely believed to be true:

Conjecture 1. [Nis91, NS94] There exists a constant c such that every Boolean function f has a decision
tree of depth s(f)c.

The converse is trivial, since every Boolean function computable by a depth d decision tree has sen-
sitivity at most d. However, the best known upper bound on decision tree depth in terms of sensitivity is
exponential (see Section 1.3).

A remarkable series of developments, starting with Nisan’s paper [Nis91], showed that decision tree
depth is an extremely robust complexity parameter, in being polynomially related to many other, quite di-
verse complexity measures for Boolean functions, including PRAM complexity, block sensitivity, certificate
complexity, randomized decision tree depth, quantum decision tree depth, real polynomial degree, and ap-
proximating polynomial degree. Arguably the one natural complexity measure that has defied inclusion in
this equivalence class is sensitivity. Thus, there are many equivalent formulations of Conjecture 1; indeed,
Nisan originally posed the question in terms of sensitivity versus block sensitivity [Nis91]. See the extensive
survey [HKP11] for much more information about the conjecture and [BdW02] for background on various
Boolean function complexity measures.

Conjecture 1 is typically viewed as a combinatorial statement about the Boolean hypercube. However,
the conjecture also makes a strong assertion about computation, stating that smooth functions have very
low complexity; indeed, the conjecture posits that they are easy to compute in arguably the simplest com-
putational model — deterministic decision trees. This implies that smooth functions easy for many other
“low-level” computational models via the following chain of inclusions:

DecTree-depth(poly(s)) ⊆ DNF-width(poly(s)) ⊆ AC0-size(npoly(s))

⊆ Formula-depth(poly(s) log(n)) ⊆ Circuit-size(npoly(s)).

Given these inclusions, and the widespread interest that Conjecture 1 has attracted in the study of
Boolean functions, it is perhaps surprising that no non-trivial upper bounds were previously known on

1

low sensitivity functions in any computational model, including unrestricted Boolean circuits. Indeed, a
pre-requisite for a family of functions to have small circuits is an upper bound on the number of functions
in the family, or equivalently on the description length of such functions; even such bounds were not previ-
ously known for low sensitivity functions. This gap in our understanding of low sensitivity functions helped
motivate the present work.

An equivalent formulation of Conjecture 1 is that every sensitivity s function is computed by a real
polynomial whose degree is upper bounded by some polynomial in s. This is equivalent to saying that the
Fourier expansion of the function has degree poly(s):

Conjecture 2. [Nis91, NS94] (Equivalent to Conjecture 1) There exist a constant c such that every Boolean
function is computed by a real polynomial of degree s(f)c.

Given the analogy between sensitivity and the Lipschitz constant, this form of the conjecture gives a
natural discrete analog of continuous approximations of smooth Lipschitz functions by low-degree poly-
nomials, first obtained for univariate case by Weierstrass [Wei85], which has had a huge influence on the
development of modern analysis. This lead to a large body of work in approximation theory, and we mention
here the sharp quantitative version of the theorem [Jac30] and its extension to the multivariate case [NS64].

This formulation of the conjecture is also interesting because of the rich structure of low-degree poly-
nomials that low sensitivity functions are believed to share. For instance, low-degree real polynomials on
the Boolean cube are easy to interpolate from relatively few values (say over a Hamming ball). The inter-
polation procedure can be made tolerant to noise, and local (these follow from the fact that low-degree real
polynomials also have low degree over F2). Again, our understanding of the structure of low sensitivity
functions was insufficient to establish such properties for them prior to this work.

Finally, to every Boolean function f one can associate the bipartite graph Gf which has left and right
vertex sets f−1(0) and f−1(1), and which has an edge (x, y) if the Hamming distance d(x, y) is 1 and
f(x) 6= f(y). A function has max sensitivity s if and only the graph Gf has maximum degree at most s.
From this perspective one can view Conjectures 1 and 2 as a step towards understanding the graph-theoretic
structure of Boolean functions and relating it to their computational and analytic structure (as captured by
the Fourier expansion). In this paper, we propose proving various implications of the conjecture both as a
necessary first step towards the conjecture, and as a means to better understanding low sensitivity functions
from a computational perspective.

1.2 Our Results

Let F(s, n) denote the set of Boolean functions on n variables such that s(f) ≤ s. We sometimes refer to
this class simply as “sensitivity s functions” (n will be implicit).

The starting point for our results is an upper bound stating that low-sensitivity functions can be interpo-
lated from Hamming balls. This parallels the fact that a degree d polynomial can be interpolated from its
values on a Hamming ball of radius d.

Theorem 3. Every sensitivity s function on n variables is uniquely specified by its values on any Hamming
ball of radius 2s in {0, 1}n.

The simple insight here is that knowing the values of f at any set of 2s + 1 neighbors of a point x
uniquely specifies the value of f at x: it is the majority value over the 2s + 1 neighbors (else the point x
would be too sensitive). This implies the following upper bound on the number of sensitivity s functions:

|F(s, n)| ≤ 2(n
≤2s).

2

Our proof of Theorem 3 is algorithmic (but inefficient). We build on it to give efficient algorithms that
compute f at any point x ∈ {0, 1}n, given the values of f on a Hamming ball as advice.

Our first algorithm takes a bottom-up approach. We know the values of f on a ball of small radius
around the origin, and wish to infer its value at some arbitrary point x. Imagine moving the center of the ball
from the origin to x along a shortest path. The key observation is that after shifting the ball by Hamming
distance 1, we can recompute the values of f on the shift using a simple Majority vote.

Our second algorithm uses a top-down approach, reducing computing f at x to computing f at O(s)
neighboring points of Hamming weight one less than x. We repeat this till we reach points of weight O(s)
(whose values we know from the advice). By carefully choosing the set of O(s) neighbors, we ensure that
no more than nO(s) values need to be computed in total:

Theorem 4. Every sensitivity s function is computed by a Boolean circuit of size O(sn2s+1) and depth
O(ns).

Simon has shown that every sensitivity s function depends on at most 2O(s) variables [Sim82]. Thus,
the circuit we construct has size at most 2O(s2).

A natural next step would be to parallelize this algorithm. Towards this goal, we show that low sensitivity
functions satisfy a very strong noise-stability guarantee: Start at any point x ∈ {0, 1}n and take a random
walk of length n/10s to reach a point y. Then f(x) = f(y) with probability 0.9, where the probability is
only over the coin tosses of the walk and not over the starting point x. Intutitively, this says that the value of
f at most points in a ball of radius n/10s around x equals the value at x (note that in contrast, Theorem 3
only uses the fact that most points in a ball of radius 1 agree with the center). We use this structural property
to get a small depth formula that computes f :

Theorem 5. Every sensitivity s function is computed by a Boolean formula of depth O(s log n) and size
nO(s).

(By [Sim82], these formulas have depth at most O(s2) and size at most 2O(s2) as before.) At a high
level, we again use the the values on a Hamming ball as advice. Starting from some arbitrary input x, we
use a variant of the noise-stability guarantee (which holds for “downward” random walks that only flip 1-
coordinates to 0) to reduce the computation of f at x to computing f on O(1) many points whose weight
is less than that of x by a factor of roughly (1 − 1/(10s)) (a majority vote on these serves to amplify the
success probability). Repeating this for each of these new points, recursively, for O(s log(n)) times, we
reduce computing f at x to computing f at various points in a small Hamming ball around the origin, which
we know from the advice.

We also show that low-sensitivity functions admit local self-correction. The setup here is that we are
given oracle access to an unknown function r : {0, 1}n → {0, 1} that is promised to be close to a low
sensitivity function. Formally, there exists a sensitivity s function f : {0, 1}n → {0, 1} such that

δ(r, f) := Pr
x∈{0,1}n

[r(x) 6= f(x)] ≤ 2−ds

for some constant d. We are then given an arbitrary x ∈ {0, 1}n as an input, and our goal is to return f(x)
correctly with high probability for every x, where the probability is over the coin tosses of the (randomized)
algorithm. We show that there is a self-corrector for f with the following guarantee:

Theorem 6. There exist a constant d such that the following holds. Let r : {0, 1}n → {0, 1} be such that
δ(r, f) ≤ 2−ds for some sensitivity s function f . There is an algorithm which, when given an oracle for r
and x ∈ {0, 1}n as input, queries the oracle for r at (n/s)O(s) points, runs in (n/s)O(s) time, and returns
the correct value of f(x) with probability 0.99.

3

Our self-corrector is similar in spirit to our formula construction: our estimate for f(x) is obtained by
taking the majority over a random sample of points in a ball of radius n/10s. Rather than querying these
points directly (since they might all be incorrect for an adversarial choice of x and r), we use recursion.
We show that O(s log(n)) levels of recursion guarantee that we compute f(x) with good probability. The
analysis uses Bonami’s hypercontractive inequality [O’D14].

Our results imply that low-degree functions and low sensitivity functions can each be reconstructed from
their value on small Hamming balls using simple but dissimilar looking “propagation rules”. We show how
degree and sensitivity can be chracterized by the convergence of these respective propagation rules, and use
this to present a reformulaion of Conjecture 1.

1.3 Related Work

The study of sensitivity originated from work on PRAMs [CDR86, Sim82]. As mentioned earlier, the
question of relating sensitivity to other complexity measures such as block sensitivity was posed in [NS94].
There has been a large body of work on Conjecture 1 and its equivalent formulations, and recent years have
witnessed significant interest in this problem (see the survey [HKP11] and the papers cited below). To date,
the biggest gap known between sensitivity and other measures such as block-sensitivity, degree and decision
tree depth is at most quadratic [Rub95, AS11]. Upper bounds on other measures such as block sensitivity
and certificate complexity in terms of sensitivity are given in [KK04, ABG+14, AP14, APV15] (see also
[AV15]). Very recently, a novel approach to this conjecture via a communication game was proposed in the
work of Gilmer et al. [GKS15].

1.4 Preliminaries

We define the 0-sensitivity, 1-sensitivity and the max sensitivity of an n-variable function f as

s0(f) = max
x∈f−1(0)

s(f, x), s1(f) = max
x∈f−1(1)

s(f, x), s(f) = max
x∈{0,1}n

s(f, x) = max(s0(f), s1(f)).

We denote the real polynomial degree of a function by deg(f) and its F2 degree by deg2(f). We write
wt(x) for x ∈ {0, 1}n to denote the Hamming weight of x (number of ones). We write δ(f, g) for f, g :
{0, 1}n → {0, 1} to denote Prx∈{0,1}n [f(x) 6= g(x)].

For x ∈ {0, 1}n, let B(x, r) ⊂ {0, 1}n denote the Hamming ball consisting of all points at distance at
most r from x. Let S(x, r) denote the Hamming sphere consisting of all points at distance exactly r from
x. Let N(x) denote the set of Hamming neighbors of x (so N(x) is shorthand for S(x, 1)), and let Nr(x)
denote the set of neighbors of Hamming weight r (points with exactly r ones).

The following upper bound on sensitivity in terms of degree is due to Nisan and Szegedy.

Theorem 7. [NS94] For every function f : {0, 1}n → {0, 1}, we have s(f) ≤ 4(deg(f))2.

We record Simon’s upper bound on the number of relevant variables in a low-sensitivity function:

Theorem 8. [Sim82] For every function f : {0, 1}n → {0, 1}, the number of relevant variables n′ is
bounded by n′ ≤ s(f)4s(f).

4

2 Structural properties of low sensitivity functions

2.1 Bounding the description length

We show that functions with low sensitivity have concise descriptions, so consequently the number of such
functions is small. Indeed, we show that knowing the values on a Hamming ball of radius 2s+ 1 suffices.

2.1.1 Reconstruction from Hamming balls and spheres.

The following simple but key observation will be used repeatedly:

Lemma 9. Let S ⊆ N(x) where |S| ≥ 2s+ 1. Then f(x) = Majy∈S(f(y)).

Proof: Let b ∈ {0, 1} denote the majority value of f over S and let Sb ⊂ S be the subset of S over which
f takes the value b. Note that |Sb| ≥ d|S|/2e ≥ s+ 1 since |S| ≥ 2s+ 1. If f(x) 6= b, then every vertex in
Sb represents a sensitive neighbor of x, and thus s(f, x) ≥ s+ 1 which is a contradiction.

Theorem 10. Every sensitivity s function is uniquely specified by its values on a ball of radius 2s.

Proof: Suppose that we know the values of f on B(x, 2s). We may assume by relabeling that x = 0n is the
origin. Note that B(0n, 2s) is just the set of points of Hamming weight at most 2s.

We will prove that f is uniquely specified on points x where wt(x) ≥ 2s by induction on r = wt(x).
The base case r = 2s is trivial. For the induction step, assume we know f for all points of weight up to r
for some r ≥ 2s. Consider a point x with wt(x) = r + 1. The set Nr(x) of weight-r neighbors of x has
size r + 1 ≥ 2s+ 1. Hence

f(x) = Maj
y∈Nr(x)

(f(y)). (1)

by Lemma 9.

Note that by Equation 1, we only need to know f on the sphere of radius r rather than the entire ball to
compute f on inputs of weight r + 1. This observation leads to the following sharpening for s ≤ n/4.

Corollary 11. Let s ≤ n/4. Every sensitivity s function is uniquely specified by its values on a sphere of
radius 2s.

Proof: As before we may assume that x = 0n. By Equation 1, the values of f on S(0n, r) fix the values at
S(0n, r + 1). Hence knowing f on S(0n, 2s) suffices to compute f at points of weight 2s+ 1 and beyond.
In particular, the value of f is fixed at all points of weight n/2 through n (since 2s ≤ n/2). Hence the value
of f is fixed at all points of the ball B(1n, 2s), and now Theorem 10 finishes the proof.

2.1.2 Upper and lower bounds on F(s, n).

Recall that |F(s, n)| denotes the number of distinct Boolean functions on n variables with sensitivity at
most s. We use the notation

(
n
≤k
)

to denote
∑k

i=0

(
n
i

)
, the cardinality of a Hamming ball of radius k.

As an immediate corollary of Theorem 10, we have the following upper bound:

Corollary 12. For all s ≤ n, we have |F(s, n)| ≤ 2(n
≤2s).

5

We have the following lower bounds:

Lemma 13. For all s ≤ n, we have |F(s, n)| ≥ max
((

n
s

)
22
s−1, (n− s+ 1)2

s−1
)
.

Proof: The first bound comes from considering s-juntas. We claim that there are at least 22
s−1 functions

on s variables that depend on all s variables. For any function f : {0, 1}s → {0, 1} on s variables, either f
or f ′ = f ⊕

∏s
i=1 xi is sensitive to all s variables. This is because f ⊕ f ′ =

∏s
i=1 xi, hence one of them

has full degree as a polynomial over F2, and hence must depend on all n variables. The bound now follows
by considering all subsets of n variables.

The second bound comes from the addressing functions. Divide the variables into s−1 address variables
y1, . . . , ys−1 and n− s+ 1 output variables x1, . . . , xn−s+1. Consider the addressing function computed by
a decision tree with nodes at the first s− 1 levels labelled by y1, . . . , ys−1 and each leaf labelled by some xi
(the same xi can be repeated at multiple leaves). It is easy to check that this defines a family of sensitivity s
functions, that all the functions in the family are distinct, and that the cardinality is as claimed.

In the setting when s = o(n), the gap between our upper and lower bounds is roughly 2n
s

versus n2
s
.

The setting where s = O(log(n)) is particularly intriguing.

Problem 14. Is |F(2 log(n), n)| = 2n
ω(1)

?

2.2 Noise Stability

We start by showing that functions with small sensitivity satisfy a strong noise-stability guarantee.
For a point x ∈ {0, 1}n and δ ∈ [0, 1], let N1−2δ(x) denote the δ-noisy version of x, i.e. a draw

of y ∼ N1−2δ(x) is obtained by independently setting each bit yi to be xi with probability 1 − 2δ and
uniformly random with probability 2δ. The noise sensitivity of f at x at noise rate δ, denoted NSδ[f](x), is
defined as

NSδ[f](x) = Pr
y∼N1−2δ(x)

[f(x) 6= f(y)].

The noise sensitivity of f at noise rate δ, denoted NSδ[f], is then defined as

NSδ[f] = E
x∼{0,1}n

[NSδ[f](x)] = Pr
x∼{0,1}n,y∼N1−2δ(x)

[f(x) 6= f(y)].

The next lemma shows that low-sensitivity functions are noise-stable at every point x ∈ {0, 1}n:

Lemma 15. Let f : {0, 1}n → {0, 1} have sensitivity s. For every x ∈ {0, 1}n and 0 ≤ δ ≤ 1/2, we have
NSδ[f](x) < 2δs.

Proof: Let t ∈ [n]. Consider a random process that starts at x and then flips a uniformly random subset
T ⊆ [n] of coordinates of cardinality t, which takes it from x to y ∈ {0, 1}n. We claim that PrT [f(x) 6=
f(y)] ≤ st

n−t+1 . To see this, we can view going from x to y as a walk where at each step, we pick the
next coordinate to walk along uniformly from the set of coordinates that have not been selected so far. Let
x = x0, x1, . . . , xt = y denote the sequence of vertices visited by this walk. At xi, we choose the next
coordinate to flip uniformly from a set of size n − i. Since xi has at most s sensitive coordinates, we have
Pr[f(xi) 6= f(xi+1)] ≤ s

n−i . Hence by a union bound we get

Pr[f(x0) 6= f(xt)] ≤
t−1∑
i=0

Pr[f(xi) 6= f(xi+1)] ≤
t−1∑
i=0

s

n− i
≤ st

n− t+ 1

6

as claimed.
Now we turn to noise sensitivity. We can view a draw of y ∼ N1−2δ(x) as first choosing the number t

of coordinates of x to flip according to the binomial distribution Bin(n, δ), and then flipping a random set
T ⊆ [n] of size t. From above, we have Pr[f(y) 6= f(x) | |T | = t] ≤ st

n−t+1 . Hence

Pr[f(x) 6= f(y)] ≤ E
t∼Bin(n,δ)

[
st

n− t+ 1

]
= s

n∑
t=1

δt(1− δ)n−t
(
n

t

)
· t

n− t+ 1

= s
n∑
t=1

δt(1− δ)n−t
(

n

t− 1

)

=
sδ

1− δ

n−1∑
t′=0

δt
′
(1− δ)n−t′

(
n

t′

)
=

sδ

1− δ
(1− δn)

which is less than 2δs for δ ≤ 1/2.

We can restrict the noise distribution and get similar bounds. The setting that we now describe, where we
only allow walks in the lower shadow of a vertex, will be useful later when we construct shallow formulas
for a low sensitivity function f .

Let D(x, t) denote the points in the lower shadow of x at distance t from it (so a point in D(x, t) is
obtained by flipping exactly t of the bits of x from 1 to 0). We show that a random point in D(x, t) is likely
to agree with x (for t ≤ wt(x)/2s).

Lemma 16. Let wt(x) = d ≥ s. Then if s(f) ≤ s, we have Pry∈D(x,t)[f(x) 6= f(y)] ≤ st
d−t .

Proof: We consider a family of random walks that we call downward walks. In such a walk, at each step
we pick a random index that is currently 1 and set it to 0. Consider a downward walk of length t and
let x = x0, x1, . . . , xt = y denote the sequence of vertices that are visited by the walk. We claim that
Pr[f(xi) 6= f(xi+1)] ≤ s

d−i . To see this observe that out of the d− i possible 1 indices in xi that could be
flipped to 0, at most s are sensitive. Hence we have

Pr[f(x0) 6= f(xt)] ≤
t−1∑
i=0

Pr[f(xi) 6= f(xi+1)] ≤
t−1∑
i=0

s

d− i
≤ st

d− t

Since y = xt is a random point in D(x, t), the proof is complete.

Corollary 17. Let wt(x) = d and t ≤ d/(10s+ 1). Then Pry∈D(x,t)[f(y) 6= f(x)] ≤ 1/10.

2.3 Bias and Interpolation

It is known that low sensitivity functions cannot be highly biased. For f : {0, 1}n → {0, 1}, let

µ0(f) = Pr
x∈{0,1}n

[f(x) = 0], µ1(f) = Pr
x∈{0,1}n

[f(x) = 1],

µ(f) = min(µ0(f), µ1(f))

7

Lemma 18. For f : {0, 1}n → {0, 1} we have

s0(f) ≥ log2

(
1

µ0(f)

)
if µ0(f) > 0

s1(f) ≥ log2

(
1

µ1(f)

)
if µ1(f) > 0.

Equality holds iff the set f−1(b) is a subcube.

We note that these bounds are implied by the classical isoperimetric inequality, which in fact shows that
Ex∈f−1(b)[s(f, x)] ≥ log(1/µb(f)) for b = 0, 1. We present a simple inductive proof of the max-sensitivity
bounds given by Lemma 18 in the appendix.

We say that a set K ⊆ {0, 1}n hits a set of functions F if for every f ∈ F , there exists x ∈ K such
that f(x) 6= 0. We say that K interpolates F if for every f1 6= f2 ∈ F , there exists x ∈ K such that
f1(x) 6= f2(x).

Corollary 19. Let k ≥ C22s
(
n
≤4s
)
, and let S be a random subset of {0, 1}n obtained by taking k points

drawn uniformly from {0, 1}n with replacement. The set S interpolates F(s, n) with probability 1 −
exp(−

(
n
≤4s
)
) (over the choice of S) .

Proof: We first show that large sets hit F(t, n) with very high probability. Fix f ∈ F(t, n). Since
we have µ1(f) ≥ 2−t by Lemma 18, the probability that k random points all miss f−1(1) is bounded

by (1 − 2−t)k ≤ exp(−k/2t). By Corollary 12 we have F(t, n) ≤ 2(n
≤2t), so by the union bound, the

probability that S does not hit every function in this set is at most 2(n
≤2t) exp(−k/2t), which is exp(−

(
n
≤2t
)
)

for k ≥ C2t
(
n
≤2t
)
.

Next, we claim that if S hits F(2s, n) then it interpolates F(s, n). Given functions f1, f2 ∈ F(s, n), let
g = f1⊕ f2. It is easy to see that g ∈ F(2s, n). and that g−1(1) is the set of points x where f1(x) 6= f2(x),
so indeed if S hits F(2s, n) then it interpolates F(s, n). Given this, the corollary follows from our lower
bound on k, taking t = 2s.

3 Efficient algorithms for computing low sensitivity functions

3.1 Small circuits

In this subsection, we will prove Theorem 4. Recall that the proof of Theorem 10 gives an algorithm to
compute the truth table of f from an advice string which tells us the values on some Hamming ball of
radius 2s+ 1. In this section we present two algorithms which, given this advice, can (relatively) efficiently
compute any entry of the truth table without computing the truth-table in its entirety. This is equivalent to a
small circuit computing f . We first give a (non-uniform) “bottom-up” algorithm for computing f at a given
input point x ∈ {0, 1}n. In the appendix we describe a “top-down” algorithm with a similar performance
bound.

3.1.1 A Bottom-Up Algorithm

The algorithm takes as advice the values of f on B(0n, 2s). It then shifts the center of the ball along a
shortest path from 0n to x, computing the values of f on the shifted ball at each step. This computation is

8

made possible by a lemma showing that when we shift a Hamming ball B by a unit vector to get a new ball
B′, points in B′ either lie in B or are adjacent to many points in B, which lets us apply Lemma 9.

Let 1(S) denote the indicator of S ⊆ [n] and S∆T denote the symmetric difference of the sets S, T .
For B ⊆ {0, 1}n we write B ⊕ ei to denote the pointwise shift of B by the unit vector ei.

Lemma 20. For any y ∈ B(x⊕ ei, r) \ B(x, r), we have |N(y) ∩ B(x, r)| = r + 1.

Proof: Fix any such y. Since B(x⊕ ei, r) = B(x, r)⊕ ei, we have that

y = x′ ⊕ ei for some x′ ∈ B(x, r), where

x′ = x⊕ 1(S) for some S ⊆ [n], |S| ≤ r, and hence

y = x⊕ 1(S∆{i}).

If i ∈ S or |S| ≤ r − 1, then |S∆{i}| ≤ r; but this means that y ∈ B(x, r), which is in contradiction to
our assumption that y ∈ B(x⊕ei, r)\B(x, r). Hence i 6∈ S and |S| = r. But then we have y⊕ej ∈ B(x, r)
for precisely those j that belong to S ∪ {i}, which gives the claim.

Corollary 21. Knowing the values of f on B(x, 2s) lets us compute f on B(x⊕ ei, 2s).

Proof: Either y ∈ B(x⊕ ei, 2s) lies in B(x, 2s) so we know f(y) already, or by the previous lemma y has
2s+ 1 neighbors in B(x, 2s), in which case Lemma 9 gives f(y) = Majy′∈N(y)∩B(x,2s)(f(y′)).

Now we can give our algorithm for computing f(x) at an arbitrary input x ∈ {0, 1}n.

Bottom-Up
Advice: The value of f at all points in B(0n, 2s).
Input: x ∈ {0, 1}n.

1. Let 0n = x0, x1, . . . , xd = x be a shortest path from 0n to x.

2. For i ∈ {1, . . . , d} compute f on B(xi, 2s) using the values at points
in B(xi−1, 2s).

3. Output f(xd).

Theorem 22. The algorithm Bottom-Up computes f(x) for any input x in time O(sn2s+1) using space
O(n2s).

Proof: The values at B(0n, 2s) are known as advice. Corollary 21 tells us how to compute the values
at B(xi, 2s) using the values on B(xi−1, 2s). If we store the values at B(xi−1, 2s) in an array indexed by
subsets of size 2s, the value at any point y ∈ B(xi, 2s) can be computed in time O(s), by performing
2s+ 1 array lookups and then taking the majority. Thus computing the values over the entire ball takes time
O(sn2s), and we repeat this d ≤ n times. Finally, at stage i we only need to store the values of f on the
latest shift, B(xi−1, 2s), so the total space required is O(n2s).

9

3.2 Small-depth Formulas

Theorem 22 established that any n-variable sensitivity-s function f is computed by a circuit of sizeO(sn2s+1),
but of relatively large depth O(n2s). In this section we improve this depth by showing that shallow circuits
of essentially the same size (equivalently, formulas of small depth) can compute low-sensitivity functions.

For µ < 1/2, let B(c, µ) denote the product distribution over y ∈ {0, 1}c where Pr[yi = 1] = µ for
each i ∈ [c]. For constants 1/2 > µ > δ > 0, let c = c(µ, δ) ∈ Z be the smallest integer constant such that

Pr
y∼B(c,µ)

[Maj
i∈[c]

(yi) = 1] ≤ δ.

We now present a randomized parallel algorithm for computing f(x).

Parallel-Algorithm
Advice: f at all points in B(0n, 10s).
Input: x ∈ {0, 1}n.
Let d = wt(x), t = bd/(10s+ 1)c, c = c(1/5, 1/20).

1. If d ≤ 10s, return A(x) = f(x).

2. Else sample y1, . . . , yc randomly from D(x, t). Recursively run
Parallel-Algorithm to compute A(yi) in parallel for all i ∈ [c].

3. Return A(x) = Maji∈[c](A(yi)).

For brevity we use A to denote the algorithm above and A(x) ∈ {0, 1} to denote the random variable
which is its output on input x. For d ≥ 10s+ 1, the random choices of A in computing A(x) are described
by a c-regular tree. The tree’s root is labeled by x and its children are labeled by y1, . . . , yc; its leaves are
labeled by strings that each have Hamming weight at most 10s. Further, the various subtrees rooted at each
level are independent of each other.

Theorem 23. The algorithm runs in parallel time O(s log n) using nO(s) processors. For any x ∈ {0, 1}n,
we have PrA[A(x) 6= f(x)] ≤ 1

20 , where PrA denotes that the probability is over the random coin tosses of
the algorithm.

Proof: We first prove the correctness of the algorithm by induction on wt(x) = d. When d ≤ 10s, the
claim follows trivially. Assume that the claim is true for wt(x) ≤ d− 1, and consider an input x of weight
d. Note that every y ∈ D(x, t) has wt(y) = d− t ≤ d− 1, hence the inductive hypothesis applies to it. For
each i ∈ [c], we independently have

Pr
A

[A(y) 6= f(x)] ≤ Pr
A,yi

[A(yi) 6= f(yi)] + Pr
yi∈D(x,t)

[f(yi) 6= f(x)] ≤ 1

10
+

1

20
<

1

5
.

where the 1/10 bound is by Corollary 17 and the 1/20 is by the inductive hypothesis. The algorithm samples
c independent points yi ∈ D(x, t), computes A(yi) for each of them using independent randomness, and
then returns the majority of A(yi) over those i ∈ [c]. Hence, by our choice of c = c(1/5, 1/20), we have
that PrA[Maji∈[c](A(yi)) 6= f(x)] ≤ 1

20 .

10

To bound the running time, we observe that for d ≥ 10s+ 1,

t =

⌊
d

10s+ 1

⌋
≥ d

25s
, so d− t ≤ d

(
1− 1

25s

)
.

But this implies that in k = O(s log d) steps, the weight reduces below 10s+ 1. The number of processors
required is bounded by ck = nO(s).

By hardwiring the random bits and the advice bits, we can conclude that functions with low sensitivity
have small-depth formulas, thus proving Theorem 5.

4 Self-correction

In this section we show that functions with low sensitivity admit self-correctors. Recall that for Boolean
functions, f, g : {0, 1}n → {0, 1} we write δ(f, g) to denote Prx∈{0,1}n [f(x) 6= g(x)].

Our self-corrector is given a function r : {0, 1}n → {0, 1} such that there exists f ∈ F(s, n) satisfying
δ(r, f) ≤ 2−cs for some constant c > 2 to be specified later. By Lemma 18, it follows that any two
sensitivity s functions differ in at least 2−2s fraction of points, so if such a function f exists, it must be
unique. We consider two settings (in analogy with coding theory): in the global setting, the self-corrector
is given the truth-table of r as input and is required to produce the truth-table of f as output. In the local
setting, the algorithm has black-box oracle access to r. It is given x ∈ {0, 1}n as input, and the desired
output is f(x).

At a high level, our self-corrector relies on the fact that small-sensitivity sets are noise-stable at noise
rate δ ≈ 1/s, by Lemma 15, whereas small sets of density µ ≤ c−s tend to be noise sensitive. The analysis
uses the hypercontractivity of the T1−2δ(·) operator.

Following [O’D14], for f : {0, 1}n → R, we define

T1−2δf(x) = E
y∼N1−2δ(x)

[f(y)],

where recall that a draw of y ∼ N1−2δ(x) is obtained by independently setting each bit yi to be xi with
probability 1 − 2δ and uniformly random with probability 2δ. We can view (x, y) where x ∼ {0, 1}n and
y ∼ N1−2δ(x) as defining a distribution on the edges of the complete graph on the vertex set {0, 1}n. We
refer to this weighted graph as the δ-noisy hypercube. The (2, q)-Hypercontractivity Theorem quantifies the
expansion of the noisy hypercube:

Theorem 24. ((2, q)-Hypercontractivity.) Let f : {0, 1}n → R. Then

‖T1−2δf‖q ≤ ‖f‖2 for 2 ≤ q ≤ 1 +
1

(1− 2δ)2
.

We need the following consequence, which says that for any small set S, most points do not have too
many neighbors in the noisy hypercube that lie within S. For S ⊆ {0, 1}n, let us define the set Λδ,θ(S) of
those points for which a θ fraction of neighbors in the δ-noisy hypercube lie in S. Formally,

Λδ,θ(S) = {x ∈ {0, 1}n s.t. Pr
y∼N1−2δ(x)

[y ∈ S] ≥ θ}.

Abusing the notation from Section 2.3, for S ⊆ {0, 1}n we write µ(S) to denote Prx∈{0,1}n [x ∈ S].

11

Lemma 25. We have

µ(Λδ,θ(S)) ≤
(
µ(S)

θ2

)1+2δ

.

Proof: Let f(x) = 1(x ∈ S). Then

T1−2δf(x) = Pr
y∈N1−2δ(x)

[y ∈ S].

Hence Λδ,θ(S) is the set of those x such that T1−2δf(x) ≥ θ.
Let q = 2(1 + 2δ). It is easy to see that q satsfies the hypothesis of Theorem 24. Hence we can bound

the qth moment of T1−2δf as

E
x∈{0,1}n

[(T1−2δf(x))q] ≤ ‖f‖q2 = µ(S)q/2.

Hence by Markov’s inequality,

Pr
x∈{0,1}n

[T1−2δf(x) ≥ θ] ≤ µ(S)q/2

θq
.

The claim follows from our choice of q.

Corollary 26. If µ(S) ≤ θ4+2/δ, then µ(Λδ,θ(S)) ≤ µ(S)1+δ.

Proof: By Lemma 25, it suffices that
(
µ(S)
θ2

)1+2δ
≤ µ(S)1+δ, and it is easy to check that this condition

holds for our choice of µ(S).

4.1 Global Self-correction

Our global self-corrector is given a function r : {0, 1}n → {0, 1} such that there exists f ∈ F(s, n)
satisfying δ(r, f) ≤ 2−c1s for some constant c1 > 2 to be specified later. By Lemma 18, it follows that any
two sensitivity s functions differ in at least 2−2s fraction of points, so such a function f if it exists must be
unique. Our self-corrector defines a sequence of functions f0, . . . , fT such that f0 = r and fT = f (with
high probability).

Global Self-corrector
Input: r : {0, 1}n → {0, 1}n such that δ(r, f) ≤ 2−c1s for some f ∈ F(s, n).
Output: The sensitivity-s function f.

Let f0 = r, k = c2s log(n/s), δ = 1/(20s).
For t = 1, . . . , k,

For every x ∈ {0, 1}n,
Let ft(x) = Majy∼N1−2δ(x)

(ft−1(y)).
Return fk.

The algorithm runs in time 2O(n), which is polynomial in the length of its output (which is a truth table
of size 2n). To analyze the algorithm, let us define the sets St for t ∈ {0, . . . , T} as

St = {x ∈ {0, 1}n such that ft(x) 6= f(x).}

The following is the key lemma for the analysis.

12

Lemma 27. We have St ⊆ Λδ,2/5(St−1).

Proof: For x ∈ St,
f(x) 6= Maj

y∼N1−2δ(x)
(ft−1(y)),

hence
Pr

y∼N1−2δ(x)
[f(x) 6= ft−1(y)] ≥ 1

2
.

We can upper bound this probability by

Pr
y∼N1−2δ(x)

[f(x) 6= ft−1(y)] ≤ Pr
y∼N1−2δ(x)

[f(x) 6= f(y)] + Pr
y∼N1−2δ(x)

[f(y) 6= ft−1(y)].

Since the distributions Noiseδ(x) and N1−2δ(x) are identical, we can bound the first term by Lemma 15,
which gives

Pr
y∼N1−2δ(x)

[f(x) 6= f(y)] ≤ 2sδ =
1

10
.

Hence
Pr

y∼N1−2δ(x)
[f(y) 6= ft−1(y)] ≥ 1

2
− 1

10
=

2

5
.

But f(y) 6= ft−1(y) implies y ∈ St−1, hence by definition of Λδ,θ(S) we have x ∈ Λδ,2/5(St−1).

We can now analyze our global self-corrector.

Theorem 28. There exist constants c1, c2 such that if δ(r, f) ≤ 2−c1s for some f ∈ F(s, n), then for
k ≥ c2s log(n/s), we have fk = f .

Proof: Let δ = 1/(20s). Assume that there exists f ∈ F(s, n) such that

δ(f, s) = µ(S0) ≤ 2−c1s ≤ (2/5)4+40s.

By Lemma 27 and Corollary 26, we have

µ(St) ≤ µ(Λδ,2/5(St−1)) ≤ µ(St−1)
1+δ ≤ µ(S0)

(1+δ)t .

For t ≥ c′2 ln(n/s)/δ = c2s log(n/s), we have

µ(St) ≤ µ(S0)
(1+δ)t < 2−n.

But since St ⊆ {0, 1}n, it must be the empty set, and this implies that ft = f .

4.2 Local Self-Correction

Recall that in the local self-correction problem, the algorithm is given x ∈ {0, 1}n as input and oracle access
to r : {0, 1}n → {0, 1} such that δ(r, f) ≤ 2−d1s for some constant d1 > 2 to be specified later. The goal is
to compute f(x). Our local algorithm can be viewed as derived from the global algorithm, where we replace
the Majority computation with sampling, and only compute the parts of the truth tables that are essential to
computing fT (x).

13

We define a distribution Tk(x) over c-regular trees of depth k rooted at x, where each tree node is
labelled with a point in {0, 1}n. To sample a tree T1(x) from T1(x), we place x at the root, then sample c
independent points from N1−2δ(x), and place them at the leaves. To sample a tree Tk(x) from Tk(x), we
first sample Tk−1(x) ∼ Tk−1(x) and then for every leaf xi ∈ Tk−1(x), we sample c independent points
according to N1−2δ(xi), and make them the children of xi. (Note the close similarity between these trees
and the trees discussed in Section 3.2. The difference is that the trees of Section 3.2 correspond to random
walks that are constructed to go downward while now the random walks corresponding to the noise process
N1−2δ(·) do not have this constraint.)

Given oracle access to r : {0, 1}n → {0, 1}, we use the tree Tk(x) to compute a guess for the value of
f(x), by querying r at the leaves and then using Recursive Majority. In more detail, we define functions
r̃0, r̃1, . . . , r̃k which collectively assign a guess for every node in Tk. (In more detail, each r̃i is a function
from L(Tk(x), i) to {0, 1}, where L(Tk(x), i) is the set of points in {0, 1}n that are at the nodes at depth
k − i in Tk(x).) For each leaf y, we let r̃0(y) = r(y). Once r̃k−t has been defined for nodes at depth t in
Tk(x), given y at depth t−1 in Tk(x), we set r̃k−t+1(y) to be the majority of r̃k−t at its children. We output
r̃k(x) as our estimate for f(x).

Local Self-corrector
Input: x ∈ {0, 1}n, oracle for r : {0, 1}n → {0, 1} such that δ(r, f) ≤ 2−d1s

for some f ∈ F(s, n).
Output: b ∈ {0, 1} which equals f(x) with probability 1− ε.

Let δ = 1/(20s), c = c(1/4, ε), k ∈ Z.
Sample Tk ∼ T (k, x).
For each leaf y ∈ Tk, query r(y).
For i = 0 to k, compute r̃i : L(Tk(x), i)→ {0, 1} as described above.
Output r̃k(x).

To analyze the algorithm, for k ∈ Z define

Sk =

{
x ∈ {0, 1}n such that Pr

Tk(x)∼Tk(x)
[r̃k(x) 6= f(x)] > ε

}
.

The following is analogous to Lemma 27:

Lemma 29. For k ≥ 1 and ε < 1/25, we have Sk ⊆ Λδ,1/10(Sk−1).

Proof: We have r̃k(x) = Maj1≤i≤c(bi) where each bi is drawn independently according to r̃k−1(N1−2δ(x)).
If x ∈ Sk, then by our choice of c = c(1/4, ε),

Pr
y∼N1−2δ(x)

Tk−1(y)∼Tk−1(y)

[r̃k−1(y) 6= f(x)] >
1

4
.

On the other hand, we also have

Pr
y∼N1−2δ(x)

Tk−1(y)∼Tk−1(y)

[r̃k−1(y) 6= f(x)] ≤ Pr
y∼N1−2δ(x)

Tk−1(y)∼Tk−1(y)

[f(y) 6= f(x)] + Pr
y∼N1−2δ(x)

Tk−1(y)∼Tk−1(y)

[r̃k−1(y) 6= f(y)].

14

The first term on the LHS is bounded by 1/10 by Lemma 15. Hence we have

Pr
y∼Nδ(x)

Tk−1(y)∼Tk−1(y)

[r̃k−1(y) 6= f(y)] ≥ 1

4
− 1

10
>

1

7
.

But by the definition of Sk−1,

Pr
y∼N1−2δ(x)

Tk−1(y)∼Tk−1(y)

[r̃k−1(y) 6= f(y)] ≤ ε · Pr
y∼N1−2δ(x)

[y 6∈ Sk−1] + Pr
y∼N1−2δ(x)

[y ∈ Sk−1]

≤ ε+ Pr
y∼N1−2δ(x)

[y ∈ Sk−1].

Hence for ε < 1/25,

Pr
y∼N1−2δ(x)

[y ∈ Sk−1] ≥
1

7
− ε ≥ 1

10
,

so by the definition of Λδ,θ(S) we have x ∈ Λδ,1/10(Sk−1).

We can now analyze our local self-corrector.

Theorem 30. There exist constants d1, d2 such that if δ(r, f) ≤ 2−d1s for some f ∈ F(s, n), then for
k ≥ d2s log(n/s) we have that r̃k(x) = f(x) with probability 0.99. The algorithm queries the oracle for r
at (n/s)O(s) points.

Proof: Let δ = 1/(20s). Let d1 > 0 be such that

2−d1s < (0.1)4+60s.

Assume there exists f ∈ F(s, n) such that

δ(r, f) ≤ 2−d1s.

Observe that r̃0(x) = r(x), so consequently µ(S0) = δ(r, f). By Lemma 29 and Corollary 26, we have

µ(Sk) ≤ µ(Λδ,1/10(Sk−1)) ≤ µ(Sk−1)
1+δ ≤ µ(S0)

(1+δ)k .

For k ≥ d′2 ln(n/s)/δ = d2s log(n/s), we have µ(St) < 2−n, so St must be the empty set. But this implies
that r̃k(x) = f(x) except with probability ε.

The number of queries to the oracle is bounded by the number of leaves in the tree, which is ck. Setting
ε = 1/100, since c(1/4, 1/100) = O(1), this is at most ck = (n/s)O(s). We can amplify the success
probability to 1− ε using c(1/100, ε) = O(log(1/ε)) independent repetitions.

Discussion. Every real polynomial of degree d computing a Boolean function is also a degree d polynomial
over F2. Hence, it has a natural self-corrector which queries the value at a random affine subspace of
dimension d + 1 containing x, and then outputs the XOR of those values. Conjecture 2 implies that this
self-corrector also works for low sensitivity functions. The parameters one would get are incomparable
to Theorem 6; we find it interesting that this natural self-corrector is very different from the algorithm of
Theorem 6.

We further remark that every Boolean function with real polynomial degree deg(f) ≤ d satsifies s(f) ≤
O(d2) (recall Theorem 7). Thus, Theorem 6 gives a self-corrector for functions with deg(f) ≤ d that
has query complexity nO(d2). It is interesting to note (by considering the example of parity), that this
performance guarantee does not extend to all functions with F2 degree deg2(f) ≤ d.

15

5 Propagation rules

We have seen that low-degree functions and low-sensitivity functions share the property that they are
uniquely specified by their values on small-radius Hamming balls. In either case, we can use these values
over a small Hamming ball to infer the values at other points in {0, 1}n using simple “local propagation”
rules. The propagation rules for the two types of functions are quite different, but Conjecture 2 and its con-
verse given by Theorem 7 together imply that the two rules must converge beyond a certain radius. In this
section, we discuss this as a possible approach to Conjecture 2 and some questions that arise from it.

5.1 Low sensitivity functions: the Majority Rule

If f : {0, 1}n → {0, 1} has sensitivity s, Theorem 10 implies that given the values of f on a ball of radius
2s, we can recover f at points at distance r + 1 ≥ 2s + 1 from the center by taking the Majority value
over its neighbors at distance r (see Equation (1)). It is worth noting that as r gets large, the Majority is
increasingly lopsided: at most s out of r points are in the minority. We refer to the process of inferring f ’s
values everywhere from its values on a ball via the Majority rule, increasing the distance from the center by
one at a time, as “applying the Majority rule”.

For concreteness, let us conder the ball centered at 0n. If there exists a sensitivity s function f :
{0, 1}n → {0, 1} such that the points in B(0n, 2s) are labelled according to f , then applying the Ma-
jority rule recovers f . However, not every labeling of B(0n, 2s) will extend to a low sensitivity function
on {0, 1}n via the Majority Rule. It is an interesting question to characterize such labelings; progress here
will likely lead to progress on Question 14. An obvious necessary condition is that every point in B(0n, 2s)
should have sensitivity at most s, but this is not sufficient. This can be seen by considering the DNF version
of the “tribes” function, where there are n/s disjoint tribes, each tribe is of size s, and n > s2. (So this
function f is an (n/s)-way OR of s-way ANDs over disjoint sets of variables.) Every x ∈ B(0n, 2s) has
s(f, x) ≤ s — in fact, this is true for every x ∈ B(0n, s(s − 1)) — but it can be verified that applying
the Majority rule starting from the ball of radius 2s does recover the Tribes function, which has sensitivity
n/s > s. Another natural question is whether there is a nice characterization of the class of functions that
can be obtained by applying the majority rule to a labeling of B(0n, 2s).

5.2 Low degree functions: the Parity Rule

It is well known that all functions f : {0, 1}n → R with deg(f) ≤ d are uniquely specified by their values
on a ball of radius d. This follows from the Möbius inversion formula. Again, let us fix the center to be 0n

for concreteness. Letting 1(T) denote the indicator vector of the set T , the formula (see e.g. Section 2.1 of
[Juk12]) states that

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi where cS =
∑
T⊆S

(−1)|S|−|T |f(1(T)). (2)

From this it can be inferred that if deg(f) ≤ d, then for |S| ≥ d+ 1, we have

f(1(S)) =
∑
T⊂S

(−1)|S|−|T |+1f(1(T)). (3)

We will refer to Equation (3) as the “Parity rule”, since it states that f is uncorrelated with the parity of the
variables in S on the subcube given by {1(T) : T ⊆ S}. We refer to the process of inferring f ’s values

16

everywhere from its values on a ball of radius d via the Parity rule, increasing the distance from the center
by one at a time, as “applying the Parity rule”.

Given a (partial) function f : B(0n, d) → {0, 1}, applying the Parity rule starting from the values of
f on B(0n, d) lets us extend f to all of {0, 1}n. Note that the resulting total function f is guaranteed to
have degree at most d, but it is not guaranteed to be Boolean-valued everywhere on {0, 1}n. Indeed, an easy
counting argument (see e.g. Lemma 31 of [MORS07]) shows that there are at most 2d

222d ·
(
n
d2d

)
degree-d

functions over {0, 1}n, whereas the number of partial functions f : B(0n, d) → {0, 1} is 2(n≤d). It is an
interesting question to characterize the set of partial functions f : B(0n, d) → {0, 1} whose extension by
the Parity rule is a Boolean function.

On the other hand, every partial function f : B(0n, d) → {0, 1} can be uniquely extended to a total
function f : {0, 1}n → {0, 1} such that deg2(f) = d. This follows from the Mobius inversion formula for
multilinear polynomials over F2:

f(x) =
∑
S⊆[n]

cS
∏
i∈S

xi where cS =
∑
T⊆S

f(1(T)) (4)

where the sums are modulo 2. If deg2(f) ≤ d, then cS = 0 for all S where |S| ≥ d+ 1. Hence by Equation
(2), for |S| ≥ d+ 1, we have the simple rule

f(1(S)) =
∑
T⊂S

f(1(T)). (5)

We can view this as a propagation rule for functions with deg2(f) ≤ d, which extends a labeling of the ball
B(0n, d) to the entire cube {0, 1}n. If we start from a labeling of the ball which corresponds to a function
f : {0, 1}n → {0, 1} with deg(f) ≤ d, then Equation (5) above coincides with the Parity rule.

5.3 When do the rules work?

Given a partial function g : B(x0, r)→ {0, 1}, we can extend it to a total function gMaj : {0, 1}n → {0, 1}
by applying the Majority rule (if there is not a clear majority among the neighbors queried, the value is
underetmined). We can also extend it to a total function gPar : {0, 1}n → R using the Parity rule. Given
a function f : {0, 1}n → {0, 1}, and a center x0, we define a series of partial functions f |B(x0,r) obtained
by restricting f to the ball of radius r around x0. We are interested in how large r needs to be for the Parity
and Majority rules to return the function f for every choice of center x0 . Formally, we define the following
quantities.

Definition 31. Let rPar(f) be the smallest r such that for every x0 ∈ {0, 1}n, the Parity rule applied to
B(x0, r) returns the function f . Formally,

rPar(f) = min{r : ∀x0 ∈ {0, 1}n, (f |B(x0,r))
Par = f}.

Similarly, let rMaj(f) be the smallest r such that for every x0 ∈ {0, 1}n, the Majority rule applied to
B(x0, r) returns the function f . Formally,

rMaj(f) = min{r : ∀x0 ∈ {0, 1}n(f |B(x0,r))
Maj = f}.

It is easy to see that rPar captures the real degree of f :

17

Lemma 32. For all f : {0, 1}n → {0, 1}, we have rPar(f) = deg(f).

Proof: The inequality rPar(f) ≤ deg(f) follows from the fact that the Parity rule correctly extends degree
d functions starting from any Hamming ball of radius d.

On the other hand for any center x0, running the Parity rule on f |B(x0,r) for some r < deg(f) results in a
function (f |B(x0,r))Par of degree at most r, since the Parity rule explicitly sets the coefficients of monomials
of degree higher than r to 0. But then it follows that (f |B(x0,r))Par 6= f , since their difference is a non-zero
multilinear polynomial.

The proof above shows that quantifying over x0 is not necessary in the definition of rPar(f), since for
every x0 ∈ {0, 1}n, we have

rPar(f) = min{r : (f |B(x0,r))
Par = f}.

We now turn to the Majority rule.

Lemma 33. For all f : {0, 1}n → {0, 1}, we have rMaj(f) = min(2s(f), n).

Proof: We have rMaj(f) ≤ n, since B(x0, n) is the entire Hamming cube. The upper bound rMaj(f) ≤
2s(f) follows from the definiton of the Majority rule and Theorem 10.

For the second part, we show that for every r < min(2s(f), n), there exists a center x0 such that
(f |B(x0,r))Maj 6= f . Let x be a point with sensitivity s(f), and let S ⊂ [n] be the set of s(f) sensitive
coordinates at x. We will pick x0 so that d(x, x0) = r+ 1 as follows. If r+ 1 ≤ s(f), we obtain x0 from x
by flipping some r + 1 coordinates from S. If r + 1 > s(f), then we obtained x0 from f by flipping all the
coordinates in S, and any r + 1− s(f) other coordinates T ⊆ [n] \ S. The condition r + 1 ≤ n guarantees
that a subset of the desired size exists, while r + 1 ≤ 2s(f) enures that |T | ≤ |S|.

Since d(x, x0) = r+ 1, the value at x is inferred using the Majority rule applied to the neighbors of x in
B(x0, r). These neighbors are obtained by either flipping coordinates in S or T (where T might be empty).
The former disagree with f(x) while the latter agree. Since |S| ≥ |T |, the Majority rule either labels x
wrongly, or leaves it undetermined (in the case when r = 2s(f)). This shows that (f |B(x0,r))Maj 6= f(x),
hence rMaj ≥ min(2s(f), n).

In contrast with Lemma 32, quantifying over all centers x0 in the defintion of rPar is crucial for the
lower bound in Lemma 33. This is seen by considering the n-variable OR function, where the sensitivity is
n. Applying the Majority rule to a ball of radius 2 around 0n returns the right function, but if we center the
ball at 1n, then the Majority rule cannot correctly infer the value at 0n, so it needs to be part of the advice,
hence rMaj(OR) = n.

5.4 Agreement of the Majority and Parity Rule

Lemmas 32 and 33 can be viewed as alternate characterizations of the degree and sensitivity of a Boolean
function. The degree versus sensitivity conjecture asserts that both these rules work well (meaning that they
only require the values on a small ball as advice) for the same class of functions. Given that the rules are so
simple, and seem so different from each other, we find this assertion surprising.

In particular, Conjecture 2 is equivalent to the following statement:

Conjecture 34. There exists constants d1, d2 such that

rPar(f) ≤ d1(rMaj)d2 . (6)

18

Along similar lines, one can use Theorem 7, due to [NS94], to show that the Majority rule recovers
low-degree Boolean functions:

rMaj(f) ≤ 8(rPar(f))2. (7)

Their proof uses Markov’s inequality from analysis. It might be interesting to find a different proof, which
one could hope to extend to proving Equation (6) as well.

6 Conclusion (and more open problems)

We have presented the first upper bounds on the computational complexity of low sensitivity functions.
We believe this might be a promising alternative approach to Conjecture 1 as opposed to getting improved
bounds on specific low level measures like block sensitivity or decision tree depth [KK04, ABG+14, AS11].

Conjecture 1 implies much stronger upper bounds than are given by our results. We list some of the ones
which might be more approachable given our results:

1. Every sensitivity s function has a TC0 circuit of size nO(s).

2. Every sensitivity s function has a polynomial threshold function (PTF) of degree poly(s).

3. Every sensitivity s function f has deg2(f) ≤ sc for some constant c.

References

[ABG+14] Andris Ambainis, Mohammad Bavarian, Yihan Gao, Jieming Mao, Xiaoming Sun, and Song
Zuo. Tighter relations between sensitivity and other complexity measures. In Automata, Lan-
guages, and Programming - 41st International Colloquium, ICALP 2014, pages 101–113, 2014.
1.3, 6

[AP14] Andris Ambainis and Krisjanis Prusis. A tight lower bound on certificate complexity in terms
of block sensitivity and sensitivity. In MFCS, pages 33–44, 2014. 1.3

[APV15] Andris Ambainis, Krisjanis Prusis, and Jevgenijs Vihrovs. Sensitivity versus certificate com-
plexity of boolean functions. CoRR, abs/1503.07691, 2015. 1.3

[AS11] Andris Ambainis and Xiaoming Sun. New separation between $s(f)$ and $bs(f)$. CoRR,
abs/1108.3494, 2011. 1.3, 6

[AV15] Andris Ambainis and Jevgenijs Vihrovs. Size of sets with small sensitivity: a generalization of
simon’s lemma. In Theory and Applications of Models of Computation - 12th Annual Confer-
ence, TAMC 2015, pages 122–133, 2015. 1.3

[BdW02] H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey.
Theoretical Computer Science, 288(1):21–43, 2002. 1.1

[CDR86] Stephen A. Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and lower time bounds for
parallel random access machines without simultaneous writes. SIAM J. Comput., 15(1):87–97,
1986. 1.3

19

[GKS15] Justin Gilmer, Michal Koucký, and Michael E. Saks. A new approach to the sensitivity conjec-
ture. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science,
ITCS 2015, pages 247–254, 2015. 1.3

[HKP11] Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the Sensitivity Conjecture.
Number 4 in Graduate Surveys. Theory of Computing Library, 2011. 1.1, 1.3

[Jac30] Dunham Jackson. The theory of approximation. New York, 19:30, 1930. 1.1

[Juk12] S. Jukna. Boolean Function Complexity: Advances and Frontiers. Springer, 2012. 5.2

[KK04] Claire Kenyon and Samuel Kutin. Sensitivity, block sensitivity, and l-block sensitivity of
Boolean functions. Information and Computation, pages 43–53, 2004. 1.3, 6

[MORS07] K. Matulef, R. O’Donnell, R. Rubinfeld, and R. Servedio. Testing Halfspaces. Technical Report
128, Electronic Colloquium in Computational Complexity, 2007. Full version in FOCS 2007.
5.2

[Nis91] Noam Nisan. Crew prams and decision trees. SIAM Journal on Computing, 20(6):999–1007,
1991. 1.1, 1, 1.1, 2

[NS64] DJ Newman and HS Shapiro. Jackson’s theorem in higher dimensions. In On Approximation
Theory/Über Approximationstheorie, pages 208–219. Springer, 1964. 1.1

[NS94] N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Comput.
Complexity, 4:301–313, 1994. 1.1, 1, 2, 1.3, 7, 5.4

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. 1.2, 4

[Rub95] David Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinatorica, pages
297–299, 1995. 1.3

[Sim82] Hans-Ulrich Simon. A tight omega(log log n)-bound on the time for parallel ram’s to compute
nondegenerated boolean functions. Information and Control, 55(1-3):102–106, 1982. 1.2, 1.2,
1.3, 8

[Wei85] Karl Weierstrass. Über die analytische darstellbarkeit sogenannter willkürlicher functionen
einer reellen veränderlichen. Sitzungsberichte der Königlich Preußischen Akademie der Wis-
senschaften zu Berlin, 2:633–639, 1885. 1.1

A Omitted Proofs and Results

Proof of Lemma 18: It suffices to prove the bound for s1. The proof is by induction on the dimension n.
Observe that if µ1(f) = 1 then the claim is trivial, so we may assume µ1 ∈ (0, 1). In the base case n = 1,
we must have µ1 = 1/2, in which case s(f) = 1 so the claim holds.

For any i ∈ [n], let fi,1 = f |xi=1 and fi,0 = f |xi=0 denote the restrictions of f to the subcubes defined
by xi. These are each functions on variables in [n] \ {i}. Then

µ1(f) =
µ1(fi,1) + µ1(fi,0)

2
.

20

If there exists b ∈ {0, 1} such that 0 < µ1(fi,b) ≤ µ1(f) then we can apply the inductive claim to the
restricted function fi,b to conclude that there exists a point x ∈ f−1i,b (1) so that

s(f, x) ≥ log

(
1

µ1(fi,b)

)
≥ log

(
1

µ1(f)

)
.

If not, it must be that f(x) = 1 implies xi = b for some b ∈ {0, 1}, so that

µ1(fi,b) = 2µ1(f) and µ1(fi,1−b) = 0.

But then every point x ∈ f−1(1) is sensitive to xi. Further, we can apply the inductive hypothesis to fi,b, to
conclude that there exists x ∈ f−1i,b (1) such that x is sensitive to

log

(
1

µ1(fi,b)

)
= log

(
1

2µ1(f)

)
= log

(
1

µ1(f)

)
− 1

coordinates from [n] \ {i}. Since x is also sensitive to i, we have

s1(f, x) ≥ log

(
1

µ1(f)

)
.

For the final claim, assume the above bound holds with equality. Then there do not exist i ∈ [n], b ∈
{0, 1} such that 0 < µ1(fi,b) < µ1(f) (if they did exist then we would get a stronger bound). So for every i,
either µ1(fi,b) = 0 for some b, or µ1(fi,0) = µ1(fi,1). In the former case, the set f−1(1) is contained in the
subcube xi = b. In the latter case, by induction we may assume that f−1(1) restricted to both xi = 0 and
x1 = 1 is a subcube of density exactly µ1(f) in {0, 1}[n]\{i}, so every point in these subcubes must have
sensitivity log(1/µ1(f)) We further claim that the two subcubes are identical as functions on {0, 1}[n]\{i}.
If they were not identical, then some point (in each subcube) would be sensitive to coordinate i, but then this
point would have sensitivity at least log(1/µ1(f)) + 1.

This implies that f−1(1) is a subcube defined by the equations xi = 1 − b for all pairs (i, b) such that
µ1(fi,b) = 0.

A.1 A Top-Down Algorithm

Next we describe a “top-down” algorithm for computing f(x) where f is a function of sensitivity s. This
algorithm has a similar performance bound to our “bottom-up” algorithm described earlier.

Associate the bit string x ∈ {0, 1}n with the integer z(x) =
∑n

i=1 xi2
i, and let x < x′ if z(x) < z(x′).

We refer to this as the colex ordering on strings.
The top-down algorithm also takes the values of f on B(0n, 2s) as advice. Given an input x ∈ {0, 1}n

where we wish to evaluate f , we recursively evaluate f at the first 2s+1 neighbors of x of Hamming weight
wt(x)−1 in the colex order. The recursion bottoms out when we reach an input of weight 2s. The restriction
to small elements in the colex order ensures that the entire set of inputs on which we need to evaluate f is
small. A detailed description of the algorithm follows:

21

Top-Down
Advice: f at all points in B(0n, 2s).
Input: x ∈ {0, 1}n.

1. If wt(x) ≤ 2s or if f(x) has been computed before, return f(x).

2. Otherwise, let x1, . . . , x2s+1 be the 2s + 1 smallest elements in
N(x) of weight wt(x) − 1 in the colex order. If some f(xi) has
not been computed yet, compute it recursively and store the
value.

3. Return f(x) = Maji∈[2s+1](f(xi)).

The key to the analysis is the following lemma.

Lemma 35. Let wt(x) = d. For 2s ≤ k ≤ d, the number of weight k vectors x′ for which f(x′) is computed
by the Top-Down algorithm is bounded by(

d− k + 2s

d− k

)
≤ d2s.

Proof: Given x ∈ {0, 1}n, for t ≤ wt(x), let R(t) ⊆ [n] denote the t largest indices i ∈ [n] where xi = 1.
We claim that all vectors x′ with wt(x′) = k that are generated by the algorithm are obtained by setting
d− k indices in R(d− k + 2s) to 0. This claim clearly implies the desired bound.

The claim is proved by induction on d− k. The case d− k = 1 is easy to see, since the 2s+ 1 smallest
neighbors of x in the colex order (of weight one less than x) are each obtained by setting one of the indices
in R(2s+ 1) to 0. For the inductive case, assume that wt(y) = k, and that y is generated as a neighbor of y′

with wt(y′) = k + 1. Inductively, y′ is obtained from x by setting indices in S ⊂ R(d− k − 1 + 2s) to 0,
where |S| = d− k − 1, and hence leaving 2s of them 1. Thus the 2s smallest neighbors of y′ are obtained
by setting indices in R(d − k − 1 + 2s) \ S to 0, and the (2s + 1)th neighbor is obtained by setting the
(d− k+ 2s)th 1 from the right to 0. In both cases, we get d− k indices from R(d− k+ 2s) being set to 0.
This completes the induction.

Theorem 36. The Top-Down algorithm computes f(x) for any input x in time O(sn2s+1) using space
O(n2s+1).

Proof: By the preceding lemma, for an input x of weight d, the total number of x′ for which f(x′) is
computed and stored is bounded by

d∑
k=2s

d2s ≤ d2s+1 ≤ n2s+1.

The cost of computing f at x given f ’s values at the relevant 2s+ 1 neighbors of x (see Step 3) is O(s), so
on average the amortized cost for computing f(x) at each x is bounded by O(s). Hence overall the running
time and space are bounded by O(sn2s+1) and O(n2s+1) respectively.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

