
Lower bounds: from circuits to QBF proof systems

Olaf Beyersdorff1, Ilario Bonacina2 and Leroy Chew1

1School of Computing, University of Leeds, UK
{o.beyersdorff,mm12lnc}@leeds.ac.uk

2Department of Computer Science, Sapienza University of Rome, Italy
bonacina@di.uniroma1.it

August 12, 2015

Abstract

A general and long-standing belief in the proof complexity community asserts that there is
a close connection between progress in lower bounds for Boolean circuits and progress in proof
size lower bounds for strong propositional proof systems. Although there are famous examples
where a transfer from ideas and techniques from circuit complexity to proof complexity has
been effective, a formal connection between the two areas has never been established so far.
Here we provide such a formal relation between lower bounds for circuit classes and lower
bounds for Frege systems for quantified Boolean formulas (QBF).

Starting from a propositional proof system P we exhibit a general method how to
obtain a QBF proof system P +∀red, which is inspired by the transition from resolution
to Q-resolution. For us the most important case is a new and natural hierarchy of QBF
Frege systems C-Frege+∀red that parallels the well-studied propositional hierarchy of C-Frege
systems, where lines in proofs are restricted to a circuit class C.

Building on earlier work for resolution (Beyersdorff, Chew, and Janota, 2015a) we establish
a lower bound technique via strategy extraction that transfers arbitrary lower bounds for the
circuit class C to lower bounds in C-Frege+∀red.

By using the full spectrum of state-of-the-art circuit lower bounds, our new lower bound
method leads to very strong lower bounds for QBF Frege systems:

(i) exponential lower bounds and separations for AC0[p]-Frege+∀red for all primes p;

(ii) an exponential separation of AC0[p]-Frege+ ∀red from TC0-Frege+∀red;

(iii) an exponential separation of the hierarchy of constant-depth systems AC0
d-Frege+∀red

by formulas of depth independent of d.

In the propositional case, all these results correspond to major open problems.

1 Introduction

Proof complexity investigates how difficult it is to prove theorems in different formal systems.
The main question asks, given a formula ϕ and a proof system P , typically comprised of axioms
and rules, what is the size of the smallest proof of ϕ in P . This question bears tight and fruitful
relations to a number of further areas, in particular to computational complexity, where lower
bounds to the size of proofs offer an approach towards the separation of complexity classes
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(Cook’s Programme), and to first-order logic (bounded arithmetic theories and their separations).
More recently, the tremendous success of SAT solving has been a main driver for proof complexity,
as the analysis of proof systems underlying SAT solvers provides the main theoretical framework
towards understanding the power and limitations of solving, cf. the survey of Buss (2012).

The bulk of research in proof complexity has concentrated on proof systems for classical
propositional logic. Regarding the central question above, propositional proof complexity has
made enormous progress over the past three decades in showing tight lower and upper bounds for
many principles in various proof systems. Arguably even more important, a number of general
lower bound techniques have been developed that can be employed to show lower bounds to the
size of proofs. These include the seminal size-width relationship (Ben-Sasson and Wigderson,
2001), the feasible interpolation technique (Kraj́ıček, 1997), or game-theoretic techniques (cf. the
recent overview in (Beyersdorff and Kullmann, 2014)).

Notwithstanding these advances, some of the most natural proof systems have resisted all
attempts for lower bounds for decades. Frege systems (also known as Hilbert-type systems) are
the typical textbook calculi comprised of axiom schemes and rules, and no non-trivial lower
bounds are known for Frege. While the power of Frege does not depend on the choice of axioms
or rules (Cook and Reckhow, 1979), their strength can be calibrated by restricting the class of
allowed formulas. In particular, a hierarchy of Frege systems can be obtained by considering
Boolean circuits of increasing strength as lines in Frege. These circuit classes comprise the
standard classes AC0 ⊂ AC0[p] ⊂ TC0 ⊆ NC1 ⊆ P/poly, giving rise to a similar hierarchy of Frege
systems.

While the strongest non-uniform lower bounds known in circuit complexity hold for the class
AC0[p] (Razborov, 1987; Smolensky, 1987), AC0-Frege is the strongest of the above Frege systems
with non-trivial lower bounds (Ajtai, 1994; Kraj́ıček et al., 1995; Pitassi et al., 1993). Despite
enormous efforts, all attempts to transfer Razborov’s and Smolensky’s AC0[p] circuit lower to
a proof size lower bound in AC0[p]-Frege have failed so far. More widely, it seems the common
belief in the proof complexity community that substantial progress in circuit complexity would
also give rise to major new lower bounds in proof complexity, for Frege (= NC1-Frege) or even
extended Frege (= P/poly-Frege). Though this connection has been often postulated (cf. e.g.
(Beame and Pitassi, 2001)), it could never have been made formal so far.

In this paper we establish a technique to transfer circuit lower bounds to proof size lower
bounds for proof systems for quantified Boolean formulas (QBF). Our technique lifts arbitrary
circuit lower bounds to proof size bounds for QBF Frege systems, yielding in particular exponential
lower bounds for AC0[p]-Frege for QBFs via (Razborov, 1987; Smolensky, 1987).

Before explaining our results in more detail, we discuss recent developments in QBF proof
complexity.

QBF proof complexity is a relatively young field studying proof systems for quantified Boolean
logic. Similarly as in the propositional case, one of the main motivations for the field comes via its
intimate connection to solving. SAT and QBF solvers are powerful algorithms that efficiently solve
the classically hard problems of SAT and QBF for large classes of practically relevant formulas,
with modern solvers routinely solving industrial instances in millions of variables for various
applications. Although QBF solving is at an earlier state, due to its PSPACE completeness, QBF
even applies to further fields such as formal verification or planning (Benedetti and Mangassarian,
2008; Egly et al., 2014; Rintanen, 2007).

The connection to proof complexity comes from the fact that each successful run of a solver
on an unsatisfiable instance can be interpreted as a proof of unsatisfiability; and modern SAT
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and QBF solvers are known to correspond to the resolution proof system and its variants.
In comparison to SAT, the picture is more complex in QBF as there exist two main solving
approaches utilising CDCL and expansion-based solving. To model the strength of these QBF
solvers, a number of resolution-based QBF proof systems have been developed. Q-resolution
(Q-Res) by Kleine Büning et al. (1995) forms the core of the CDCL-based systems. To capture
further ideas from CDCL solving, Q-Res has been augmented to long-distance resolution by
Balabanov and Jiang (2012), universal resolution QU-Res by Van Gelder (2012), and their
combinations (Balabanov et al., 2014). QBF resolution systems for expansion-based solving
were developed in (Beyersdorff et al., 2014; Janota and Marques-Silva, 2015). Recent progress
led to a complete understanding of the relative power of all these resolution-type QBF systems
(Balabanov et al., 2014; Beyersdorff et al., 2015a; Janota and Marques-Silva, 2015).

From a proof complexity perspective, resolution is considered as a weak system, witnessed
by the wealth of resolution lower bounds (cf. (Segerlind, 2007) for a survey); and the same
classification applies to all of the QBF resolution calculi mentioned above. In addition to these
weak QBF systems, there exist a number of very strong sequent calculi (Cook and Morioka,
2005; Egly, 2012; Kraj́ıček and Pudlák, 1990) as well as the general proof checking format QRAT
(Heule et al., 2014).

However, compared to propositional proof complexity, a number of other approaches is yet
missing in QBF. In particular, algebraic systems such as polynomial calculus (Clegg et al., 1996)
or systems based on integer programming as cutting planes (Cook et al., 1987) have received
great attention in recent years in propositional proof complexity. These systems are interesting as
they are of intermediate strength: stronger than resolution, but weaker than Frege. No analogues
of these systems have been considered in QBF so far; and even a QBF version of the propositional
Frege hierarchy mentioned above has not been considered in QBF prior to this paper.

1.1 Our contributions

Below we summarise our main contributions of this paper, sketching the main results and
techniques.

A. From propositional to QBF: new QBF proof systems. We exhibit a general method
how to transform a propositional proof system to a QBF proof system. Our method is both
conceptually simple and elegant. Starting from a propositional proof system P comprised
of axioms and rules, we design a system P + ∀red for closed prenex QBFs (Definition 3.1).
Throughout the proof, the quantifier prefix is fixed, and lines in the system P +∀red are
conceptually the same as lines in P , i.e. clauses in resolution, circuits from C in C-Frege, or
inequalities in cutting planes. Our new system P +∀red uses all the rules from P , and can apply
those on arbitrary lines, irrespective of whether the variables are existentially or universally
quantified. To make the system complete, we introduce a ∀red rule that allows to replace universal
variables by simple Herbrand functions, which can be represented as lines in P . The link to
Herbrand functions provides a clear semantic meaning for the ∀red rule, resulting in a natural
and robust system P + ∀red.

Our new systems P + ∀red are inspired by the approach taken in the definition of Q-Res
(Kleine Büning et al., 1995); and indeed when choosing resolution as the base system P , our
system P + ∀red coincides with the previously studied QU-Res (Van Gelder, 2012). While our
definitions are quite general and yield for example previously missing QBF versions of polynomial
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calculus or cutting planes, we concentrate here on exploring the hierarchy C-Frege+ ∀red of new
QBF Frege systems.

B. From circuit to QBF lower bounds: a general technique. As mentioned above, it
is a long-standing belief that circuit lower bounds correspond to proof size lower bounds, and
clearly some of the strongest lower bounds in proof complexity as those for AC0-Frege are inspired
by proof techniques in circuit complexity, cf. the survey of Beame and Pitassi (2001). Here we
give a precise and formal account on how any circuit lower bound for C can be directly lifted to
a proof size lower bound in C-Frege+∀red.

Conceptually, our lower bound method uses the idea of strategy extraction, an important
paradigm in QBF (Theorem 4.3). Semantically, a QBF can be understood as a game between
a universal and an existential player, where the universal player wins if and only if the QBF
is false. Winning strategies for the universal player can be very complex. However, we show
that from each refutation of a false QBF in a system C-Frege+∀red we can efficiently extract a
winning strategy for the universal player in a simple computational model we call C-decision lists.
We observe that C-decision lists are easy to transform into C circuits itself, with only a slight
increase in complexity.

To obtain a proof-size lower bound we need a function f that is hard for C. From f we construct
a family Q-fn of false QBFs such that each winning strategy of the universal player on Q-fn has
to compute f . By strategy extraction, refutations of Q-fn in C-Frege+ ∀red yield C-circuits for f ;
hence all such refutations must be long. In fact, we even show the converse implication to hold,
i.e. from small C-circuits for f we construct short proofs of Q-fn in C-Frege+ ∀red.

Our lower bound technique widely generalises ideas recently used by Beyersdorff et al. (2015a)
to show lower bounds for Q-Res and QU-Res for formulas originating from the Parity function.

C. Lower bounds and separations: applying our framework. We apply our proof
technique to a number of famous circuit lower bounds, thus obtaining lower bounds and separations
for C-Frege+ ∀red systems that are yet unparalleled in propositional proof complexity. The
following results are contained in Section 5.

(a) Lower bounds and separations for AC0[p]-Frege+ ∀red. By the seminal results of
(Razborov, 1987; Smolensky, 1987), Parity and more generally MODq are the classic examples
for functions that require exponential-size bounded-depth circuits with MODp gates, where
p and q are different primes. Using these functions, we define families of QBFs that require
exponential-size proofs in AC0[p]-Frege+∀red by strategy extraction.

To obtain separations of these proof systems, the exact formulation of the QBFs matters.
When defining the Parity or MODq formulas directly from (arbitrary) NC1-circuits computing
these functions, we obtain polynomial-size upper bounds in Frege+∀red. However, when care-
fully choosing specific and indeed very natural encodings, we can prove upper bounds for the
MODq formulas even in AC0[q ]-Frege+ ∀red, thus obtaining exponential separations of all the
AC0[p]-Frege+∀red systems for distinct primes p.

As mentioned before, lower bounds for AC0[p]-Frege (as well as their separations) are major
open problems in propositional proof complexity.

(b) Separating AC0[p]-Frege+ ∀red from TC0-Frege+ ∀red. Majority is another classic
function in circuit complexity, for which exponential lower bounds are known for constant-depth
circuits with MODp gates for each prime p (Razborov, 1987; Smolensky, 1987). Using our
technique, we transfer these to lower bounds in AC0[p]-Frege+ ∀red for all primes p. Carefully
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choosing the QBF encoding of Majority, we obtain polynomial upper bounds for the Majority
formulas in TC0-Frege+ ∀red, thus proving an exponential separation between AC0[p]-Frege+ ∀red
and TC0-Frege+ ∀red. Again, such a separation is wide open in propositional proof complexity.

(c) Separating the AC0
d-Frege+∀red hierarchy by CNFs. As a third example for our

approach we investigate the fine structure of AC0-Frege+ ∀red, comprising all AC0
d-Frege+ ∀red

systems, where all formulas in proofs are required to have at most depth d for a fixed constant
d. Resolution is an important example of such a system for depth d = 1. In circuit complexity
the Sipserd functions from (Boppana and Sipser, 1990) provide an exponential separation of
depth-(d−1) from depth-d circuits (H̊astad, 1986). With our technique, this separation translates
into a separation of AC0

d−3-Frege+ ∀red from AC0
d-Frege+ ∀red, where the increased gap of size 3

comes from our transformation of C-decision lists into C-circuits.
The Sipserd formulas achieving these separations are prenexed CNFs, i.e. the formulas

have depth 2. While in propositional proof complexity the hierarchy of AC0
d-Frege systems is

exponentially separated (Ajtai, 1994; Kraj́ıček et al., 1995; Pitassi et al., 1993), such a separation
by formulas of depth independent of d is a major open problem.

1.2 Relations to previous work

In addition to the developments in propositional and QBF proof complexity sketched in the
beginning, the main precursor of our work is the paper (Beyersdorff, Chew, and Janota, 2015a).
Strategy extraction for Q-Res and QU-Res was shown by Balabanov and Jiang (2012), but the
idea to turn this into a lower bound argument for the proof size originates from (Beyersdorff et al.,
2015a), where the AC0 lower bound for Parity is used to obtain exponential lower bounds for
Q-Res and QU-Res. However, the treatment in (Beyersdorff et al., 2015a) is solely confined to the
resolution case. Here we widely generalise these concepts and uncover the full potential of that
approach. In fact, quite weak circuit lower bounds would suffice for the proof-size lower bounds
of (Beyersdorff et al., 2015a), cf. Corollary 5.11 in the present paper; and from (Beyersdorff et al.,
2015a) it is not clear how the full spectrum of the state-of-the-art circuit lower bounds could be
used to get proof size lower bounds.

Feasible interpolation is another technique relating circuit lower bounds to proof size bounds.
Feasible interpolation has been successfully applied to show lower bounds for a number of
propositional proof systems, including resolution (Kraj́ıček, 1997) and cutting planes (Pudlák,
1997). Indeed, Beyersdorff, Chew, Mahajan, and Shukla (2015b) have recently shown that feasible
interpolation is also effective for QBF resolution calculi. Interpolation transfers monotone circuit
lower bounds to proof size lower bounds. Hence, different from strategy extraction, there is
no connection between the circuit model and the lines in the proof system. Also, by results of
(Bonet et al., 2000a, 2004; Kraj́ıček and Pudlák, 1998) feasible interpolation is not applicable
to strong systems such as AC0-Frege and beyond. Another restriction of interpolation is that it
only applies to special formulas, and for these — at least in the case of QBF resolution systems

— it can be understood as a special case of strategy extraction (Beyersdorff et al., 2015b).

1.3 Innovations

Our work opens up two lines of research that we believe will have a great influence on QBF proof
complexity and beyond.
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A. Exploring new QBF proof systems. The first of these is the study of natural and
powerful QBF proof systems that correspond to ideas developed in propositional proof complexity
for many years. While we concentrate here on the hierarchy C-Frege+ ∀red of new QBF Frege
systems, our definitions introduce meaningful versions of algebraic and geometric proof systems
for QBF. These systems will be very interesting to study from a theoretical perspective and
also might provide an important stimulus on QBF solving — analogous to the impact of integer
linear programming and polynomial calculus on SAT solving.

More widely, in Section 6, we complement the reduction systems P + ∀red by two further
general methods to lift propositional systems to QBF systems. The first method uses the idea
of expanding universal variables, thus generalising the resolution system for expansion-based
solving of Janota and Marques-Silva (2015). Comparing the P +∀red systems with the expansion
systems we prove that they are incomparable in strength (using the lower bounds from C. above).
This motivates our last general approach via instantiations, which unifies both reduction and
expansion systems in a natural way. These general instantiation systems are inspired by a QBF
resolution calculus recently introduced by Beyersdorff, Chew, and Janota (2014). Again the
theoretical study of these new expansion and instantiation systems might exert a fruitful influence
on QBF solving as modern solvers utilise these approaches.

B. Understanding the transfer from circuit to proof complexity. As far as we know,
for the first time in the literature, our lower bound technique via strategy extraction gives a
formal and rigorous account on the relation between a circuit class C and proof systems using
lines from C. Building on the previous work (Beyersdorff et al., 2015a) we establish this relation
for a full hierarchy of QBF systems. This yields very strong results in QBF proof complexity.
In the recent survey of Buss (2012), the propositional versions of our results C.(a) and (c) in
Section 1.1 are referenced as ‘the main open problems at the “frontier” of Cook’s program’.

We believe that this transfer has the potential to generate lots of further research, both in QBF
and indeed for further logics, possibly even including the most important classical propositional
case. As for QBFs, the hard formulas Q-f that we generate from a Boolean function f have a
special syntactic form, i.e. for all functions we use here they are prefixed by ∃∀∃. Can we also
apply our technique to conceptually different types of QBFs? It is also possible that similar
ideas are effective for further logics, possibly modal or intuitionistic logics as they share the same
PSPACE complexity, and strong lower bounds are known for Frege systems in these logics as well
(Hrubeš, 2009; Jeřábek, 2009).

1.4 Organisation of the paper

Section 2 contains definitions and notations on C-Frege systems and QBF. In Section 3 we
define the QBF proof systems C-Frege+∀red (Definition 3.1) and prove their soundness and
completeness (Theorem 3.2). Section 4 contains the proof of the Strategy Extraction Theorem
(Theorem 4.3), which is our main technical tool to relate circuit complexity and proof size.

In Section 5 we prove our exponential lower bounds for C-Frege+∀red for several circuit
classes C. All the results in this section ultimately rely on the Strategy Extraction Theorem
from Section 4 and on a general way to encode a circuit C in a (false) QBF Q-C (Definition 5.1).
The structure of Section 5 largely follows the order of the results already sketched in item C of
Section 1.1.

Section 6 explains and compares the three general ways of extending propositional proof
systems to QBF proof systems mentioned in Section 1.3 above. Section 7 concludes with some
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open problems.

2 Preliminaries

We assume familiarity with basic notions from computational complexity, cf. (Arora and Barak,
2009), as well as from logic, cf. (Kraj́ıček, 1995), but define all specific concepts needed in this
paper. For a formula ϕ we denote by ϕ[x1/θ1, . . . , xk/θk] the formula ϕ where variables xi have
been substituted by formulas θi.

Circuit classes. We recall the definitions of standard circuit classes used in this paper. The
class AC0 contains all languages recognisable by polynomial-size circuits over the Boolean basis
¬, ∨, ∧ with bounded depth and unbounded fan-in. When fixing the depth to a constant d,
we denote the circuit class by AC0

d. The class AC0[p] uses bounded-depth circuits with MODp

gates determining whether the sum of the inputs is 0 modulo p, and in TC0 bounded-depth
circuits with threshold gates are permitted. Stronger classes are obtained by using NC1 circuits
of polynomial size and logarithmic depth, and by P/poly circuits of polynomial size. For further
information we refer to the monograph (Vollmer, 1999).

Proof systems. According to Cook and Reckhow (1979) a proof system for a language L
is a polynomial-time onto function P : {0, 1}∗ → L. Each string ϕ ∈ L is a theorem and if
P (π) = ϕ, π is a proof of ϕ in P . Given a polynomial-time function P : {0, 1}∗ → {0, 1}∗ the
fact that P ({0, 1}∗) ⊆ L is the soundness property for L and the fact that P ({0, 1}∗) ⊇ L is the
completeness property for L.

Proof systems for the language TAUT of propositional tautologies are called propositional
proof systems and proof systems for the language TQBF of true QBF formulas are called QBF
proof systems. Equivalently, propositional proof systems and QBF proof systems can be defined
respectively for the languages UNSAT of unsatisfiable propositional formulas and FQBF of false
QBF formulas, in this second case we call them refutational.

Given two proof systems P and Q for the same language L, P p-simulates Q (denoted Q ≤p P )
if there exists a polynomial-time function t such that for each π ∈ {0, 1}∗, P (t(π)) = Q(π). Two
systems are called p-equivalent if they p-simulate each other.

A proof system P for L is called polynomially bounded if there exists a polynomial p such
that every x ∈ L has a P -proof of size ≤ p(|x|).

Frege systems. Frege proof systems are the common ‘textbook’ proof systems for propositional
logic based on axioms and rules (Cook and Reckhow, 1979). The lines in a Frege proof are
propositional formulas built from propositional variables xi and Boolean connectives ¬, ∧, and
∨. A Frege system comprises a finite set of axiom schemes and rules, e.g., ϕ ∨ ¬ϕ is a possible
axiom scheme. A Frege proof is a sequence of formulas where each formula is either a substitution
instance of an axiom, or can be inferred from previous formulas by a valid inference rule. Frege
systems are required to be sound and implicationally complete. The exact choice of the axiom
schemes and rules does not matter as any two Frege systems are p-equivalent, even when changing
the basis of Boolean connectives (Cook and Reckhow, 1979) and (Kraj́ıček, 1995, Theorem 4.4.13).
Therefore we can assume w.l.o.g. that modus ponens is the only rule of inference.

Usually Frege systems are defined as proof systems where the last formula is the proven
formula. To include also weak systems as resolution in this picture we use here the equivalent
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setting of refutation Frege systems where we start with the negation of the formula that we want
to prove and derive the contradiction ⊥.

Given a circuit class C, a general definition of C-Frege is contained in (Jeřábek, 2005). Below
we explicitly present the definitions of C-Frege for the circuit classes we will need later.

There are several common restrictions that can be imposed on Frege; for example bounded-
depth Frege systems (or AC0-Frege) are Frege systems where lines are formulas with negations
only on variables and with a bounded number of alternations between ∧’s and ∨’s. If the number
of alternations is at most d, then the proof system is called AC0

d-Frege. Bounded-depth Frege is
called AC0-Frege since lines in an AC0-Frege proof are representable as AC0-circuits.

Resolution (Res) is a particular kind of AC0
1-Frege system1 introduced by Blake (1937) and

Robinson (1965). It is a refutational proof system manipulating unsatisfiable CNFs as sets of
clauses. The only inference rule is

C ∨ x D ∨ ¬x (Res rule),
C ∨D

where C,D denote clauses and x is a variable. A Res refutation derives the empty clause ⊥.
Given a prime p, the AC0[p]-Frege systems are defined to be bounded-depth Frege systems

in the language with Boolean connectives ¬, ∨, ∧ and modular gates MODp(x1, . . . , xn). The
MODp predicate is true when

∑
i xi ≡ 0 (mod p).

The TC0-Frege systems are defined to be bounded-depth Frege systems in the language with
Boolean connectives ¬, ∨, ∧ and threshold gates Tk(x1, . . . , xn). The Tk predicate is true when
at least k of its inputs are true. Two different, but equivalent, formalizations of TC0-Frege proof
systems are given by Buss and Clote (1996) and Bonet et al. (2000b).

(Unrestricted) Frege systems correspond to the complexity class NC1 in the same sense as
bounded-depth Frege corresponds to the class AC0. We will refer sometimes to Frege as NC1-Frege.

Extended Frege systems EF allow the introduction of new extension variables that abbreviate
formulas. EF can be understood as a Frege system that directly operates with Boolean circuits
rather than formulas, where extension variables can be used to define the circuit gates (see
(Jeřábek, 2005) for the precise formulation). Therefore we will refer to EF also as P/poly-Frege.
An alternative characterisation of EF is through substitution Frege systems SF that allow arbitrary
substitution instances of derived formulas (Cook and Reckhow, 1979; Kraj́ıček and Pudlák, 1989).

The Frege systems defined above form a hierarchy of proof systems

Res ≤p AC0-Frege ≤p AC0[p]-Frege ≤p TC0-Frege ≤p Frege ≤p EF.

Currently lower bounds are only known for Res (Haken, 1985) and AC0-Frege (Ajtai, 1994;
Kraj́ıček et al., 1995; Pitassi et al., 1993), whereas super-polynomial lower bounds for any of the
stronger systems constitute major problems in proof complexity.

Quantified Boolean Formulas. A (closed prenix) Quantified Boolean Formula (QBF) is a
formula in quantified propositional logic where each variable is quantified at the beginning of the
formula, using either an existential or universal quantifier. We denote such formulas as Q .ϕ,
where ϕ is a propositional Boolean formula in Conjunctive Normal Form (CNF), called matrix,
and Q is its quantifier prefix. We typically use xi for existentially quantified variables and ui for
universally quantified variables.

1We will consistently treat C-Frege systems as operating with lines from C. As Res operates with clauses we
will call it a AC0

1-Frege system even though it refutes CNFs, which are depth 2.
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Given a variable y, either existentially quantified or universally quantified in Q .ϕ, the
quantification level of y in Q .ϕ, qlv(y), is the number of alternations of quantifiers y has on its
left in the quantifier prefix of Q .ϕ. Given a variable y, we will sometimes refer to the variables
with quantification level lower than qlv(y) as variables left of y; analogously the variables with
quantification lever higher than qlv(y) will be right of y.

A QBF Q1x1 · · · Qkxk .ϕ can be seen as a game between two players: universal (∀) and
existential (∃). In the i-th step of the game, the player Qi assigns a value to the variable xi. The
existential player wins if ϕ evaluates to 1 under the assignment constructed in the game. The
universal player wins if ϕ evaluates to 0. Given a universal variable u with index i, a strategy for
u is a function from all variables of index < i to {0, 1}. A QBF is false if and only if there exists
a winning strategy for the universal player, that is if the universal player has a strategy for all
universal variables that wins any possible game (Arora and Barak, 2009; Goultiaeva et al., 2011).

QBF resolution calculi. Q-resolution (Q-Res) by Kleine Büning et al. (1995) is a resolution-
like calculus that operates on QBFs in prenex form where the matrix is a CNF. It uses the

propositional resolution rule C ∨ x D ∨ ¬x
C ∨D with the side conditions that variable x is

existential and if z ∈ C, then ¬z /∈ D. In addition Q-Res has a universal reduction rule

C ∨ u ,
C

where variable u is universal and all other variables x ∈ C are left of u in the quantifier prefix.
Universal resolution, QU-Res introduced by Van Gelder (2012), additionally allows to resolve

on universal variables, under the same side condition as in Q-Res not to derive tautologous
clauses.

For definitions of further resolution-based QBF proof system and their complexity we refer
to (Beyersdorff et al., 2015a).

3 Defining QBF Frege systems

In this section we provide a general method of transforming a propositional proof system into a
QBF proof system. While this method works for a wide range of proof systems operating with
lines and rules, we will concentrate here on the hierarchy of C-Frege systems introduced in the
previous section. However, our method also works for further propositional proof systems such
as polynomial calculus (Clegg et al., 1996) or cutting planes (Cook et al., 1987).

For the following we fix a circuit class C with some natural properties, e.g., closure under
restrictions. In particular, C can be any of the circuit classes mentioned in Section 2.

Definition 3.1 (C-Frege+ ∀red). A refutation of a false QBF Q .ϕ in the system C-Frege+ ∀red
is sequence of lines L1, . . . , L` where each line is a circuit from the class C, L1 = ϕ,2 L` = ⊥
and each Li is inferred from previous lines Lj using the inference rules of C-Frege or using the
following rule

Lj
(∀red),

Lj [u/B]

2In the case where C is AC0
1 we require that ϕ = L1 ∧ · · · ∧ Lm where Lj are lines in AC0

1-Frege.
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where Lj [u/B] belongs to the class C, u is the innermost variable among the variables of Lj and
B is a circuit from the class C containing only variables left of u.

The formal justification why C-Frege+ ∀red is a sound and complete QBF proof system is
given in Theorem 3.2 below. However, let us pause a moment to see why adding the ∀red rule
results in a natural proof system C-Frege+ ∀red. Recall that we consider C-Frege+ ∀red as a
refutation system; hence we aim to refute false quantified C formulas. A standard approach to
witness the falsity of quantified formulas is through Herbrand functions, which replace a universal
variable u by a function in the existential variables left of u. These functions can be viewed as
‘counterexample functions’. In Definition 3.1, B plays the role of the Herbrand function. Clearly,
when restricting formulas to a class C we should also restrict B to that class, and substituting
the Herbrand function into the formula should again preserve C.

Note that we are even allowed to choose different Herbrand functions B for the same variable
u in different parts of the proof. In general, this will be unsound (unless variables right of u are
renamed, cf. Section 6.3 for a stronger proof system implementing this). However, it is safe to do
if the line Lj does not contain any variables right of u.

It is illustrative to see how our construction compares to previously studied QBF resolution
systems. Choosing Res as our propositional proof system, which is an AC0

1-Frege system, we
obtain Res+ ∀red. In Res+ ∀red the ∀red rule can substitute a universal u by either another
variable or by a constant 0/1. In the former case, we simply obtain a weakening step. In the latter
case, if u appears positively in the clause then substituting u by 0 precisely corresponds to an
application of the ∀red rule in Q-Res, whereas substituting u by 1 results in the useless tautology
>.3 As Res+∀red can resolve on existential and universal variables, our system Res+ ∀red is
exactly the well-known QU-Res (with weakening).

We now proceed to show soundness and completeness of the new QBF systems.

Theorem 3.2. For every circuit complexity class C, C-Frege+∀red is a refutational QBF proof
system.

Proof. Res+ ∀red is complete as it p-simulates Q-Res, which is complete for QBF (Kleine Büning
et al., 1995). To obtain the completness for C-Frege+ ∀red we first use de Morgan’s rules to
expand the formula into a CNF. This is possible as, by definition, C-Frege is implicationally
complete. Now we can refute the CNF by Res+ ∀red. C-Frege+ ∀red p-simulates Res+ ∀red and
hence C-Frege+ ∀red is complete.

Regarding the soundness of C-Frege+∀red, let (L1, . . . , L`) be a refutation of Q .ϕ in the
system C-Frege+ ∀red and let

ϕi =

{
ϕ if i = 0,

ϕ ∧ L1 ∧ · · · ∧ Li otherwise.

By induction on i we prove that Q .ϕ semantically entails Q .ϕi, i.e. Q .ϕ |= Q .ϕi. Hence, at
step i = ` we will immediately obtain that Q .ϕ is false, since L` = {⊥} and Q .ϕ` ≡ ⊥.

Since Q .ϕ = Q .ϕ0 the base case of the induction holds.
We show now that Q .ϕ |= Q .ϕi implies Q .ϕ |= Q .ϕi+1. By definition, ϕi+1 = (ϕi ∧ Li+1)

and Li+1 was either introduced by a C-Frege rule or by the ∀red rule. If Li+1 was introduced by
a C-Frege rule then ϕi |= Li+1, so ϕi |= ϕi+1 and clearly Q .ϕ |= Q .ϕi |= Q .ϕi+1.

3Note that, contrasting the usual setting of Q-Res (Kleine Büning et al., 1995), our definition of Res+∀red does
not need to disallow tautologous resolvents as these will always be reduced to >.
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Suppose now that Li+1 was introduced by the ∀red rule, say Li+1 = Lj [u/B] with j ≤ i,
u the innermost variable among the ones in Lj and B relying only on the variables left of u.
Moreover suppose that Q .ϕi = Q1~x ∀uQ2~y .ϕi, then we have the following chain of equivalences

Q .ϕi = Q1~x ∀uQ2~y .ϕi (1)

≡ Q1~x ∀uQ2~y .ϕi ∧ Lj (2)

≡ Q1~x
((
Q2~y .ϕi[u/0] ∧ Lj [u/0]

)
∧
(
Q2~y .ϕi[u/1] ∧ Lj [u/1]

))
(3)

≡ Q1~x
(
Lj [u/0] ∧ Lj [u/1] ∧

(
Q2~y .ϕi[u/0]

)
∧
(
Q2~y .ϕi[u/1]

))
(4)

≡ Q1~x
(
Lj [u/0] ∧ Lj [u/1] ∧ ∀uQ2~y .ϕi

)
(5)

≡ Q1~x
(
Lj [u/0] ∧ Lj [u/1] ∧ Lj [u/B] ∧ ∀uQ2~y .ϕi

)
(6)

≡ Q1~x∀uQ2~y .ϕi ∧ Lj [u/0] ∧ Lj [u/1] ∧ Lj [u/B]. (7)

In (3) and (5) we used the definition of semantic expansion of a universal variable in a QBF; in
(4), (6) and (7) we used the fact that Lj [u/0], Lj [u/1] and Lj [u/B] do not contain ~y variables.
From (7) follows, by weakening, that

Q .ϕi |= Q1~x∀uQ2~y .ϕi ∧ Lj [u/B],

hence Q .ϕ |= Q .ϕi+1.

Clearly lower bounds on the complexity of C-Frege+ ∀red follow from lower bounds on C-Frege.
The lower bounds we show later will be of a different kind as they will be ‘purely for QBF proof
systems’ in the sense that they will lower bound the number of occurrences of the ∀red rule in
refutations.

4 Strategy extraction for QBF Frege systems

We introduce now the simple computational model of C-decision lists.

Definition 4.1 (C-decision list). A C-decision list is a programme of the following form

if C1(~x) then u← B1(~x);
else if C2(~x) then u← B2(~x);

...

else if C`−1(~x) then u← B`−1(~x);
else u← B`(~x),

where C1, . . . , C`−1 and B1, . . . , B` are circuits in the class C. Hence a decision list as above
computes a Boolean function u = g(~x).

This definition generalises decision lists from (Rivest, 1987), where the conditions Ci(~x) are
expressible as terms. We note that for many cases C-decision lists can be easily transformed into
C-circuits.
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Proposition 4.2. Let D be a C-decision list using circuits C1, . . . , C`−1 and B1, . . . , B`, such
that D computes the Boolean function g. Then there exists a circuit D′ ∈ C computing the same
function g, such that the size of D′ is linear in the size of D and

depth(D′) ≤ max

{
max

1≤i≤`−1
{depth(Ci)}, max

1≤i≤`
{depth(Bi)}

}
+ 2.

Proof. We have that

u ≡
∨̀
j=1

Cj(~x) ∧Bj(~x) ∧
∧
k<j

¬Ck(~x)

 ,

where C` is a circuit computing the constant 1.

Balabanov and Jiang (2012) proved a strategy extraction result for QU-Res. Here we generalise
that result to the full hierarchy of C-Frege+ ∀red QBF proof systems. This result is the main
tool we use to prove size lower bounds in such systems.

Theorem 4.3 (Strategy Extraction Theorem). Given a false QBF Q .ϕ and a refutation π of
Q .ϕ in C-Frege+ ∀red, it is possible to extract in linear time (w.r.t. |π|) a collection of C-decision
lists D computing a winning strategy on the universal variables of ϕ.

Proof. Let π = (L1, . . . , L`) be a refutation of the false QBF Q .ϕ and let

πi =

{
∅ if i = `,

(Li+1, . . . , L`) otherwise.

We show, by downward induction on i, that from πi it is possible to construct in linear time
(w.r.t. |πi|) a winning strategy σi for the universal player for the QBF formula Q .ϕi, where

ϕi =

{
ϕ if i = 0,

ϕ ∧ L1 ∧ · · · ∧ Li otherwise,

such that for each universal variable u in Q .ϕ, there exists a C-decision list Di
u computing σiu as

a function of the variables in Q left of u, having size O(|πi|).
The statement of the Strategy Extraction Theorem correspond to the case when i = 0. The

base case of the induction is for i = `. In this case σ` is trivial since ϕ` contains the line L` = ⊥,
and we can define all the D`

u as u← 0.
We show now how to construct σi−1u and Di−1

u from σiu and Di
u:

• If Li is derived by some Frege rule, then for each universal variable u we set σi−1u = σiu and
Di−1
u = Di

u.

• If Li is the result of an application of a ∀red rule, that is
Lj

Lj [u/B]
, where u is the

rightmost variable in Lj , Lj [u/B] is a circuit in C using only variables on the left of u, and
Lj(u/B) = Li. Let ~xu′ denote the variables on the left of u′ in the quantifier prefix of Q .ϕ.
Then we define

σi−1u′ (~xu′) =


σiu′(~xu′) if u′ 6= u,

B(~xu) if u′ = u and Lj [u/B](~xu) = 0,

σiu(~xu) if u′ = u and Lj [u/B](~xu) = 1.

Moreover for each u′ 6= u we set Di−1
u′ = Di

u′ and we set Di−1
u as follows:
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if ¬Lj [u/B](~xu) then u← B(~xu);
else Du

i (~xu).

We now check that for each u′, σi−1u′ respects all the properties of the inductive claim.

I σi−1u′ and Di−1
u′ are well defined. By construction Lj [u/B] is a formula in the variables ~x left of

u. This immediately implies that, for each universal variable u′, the strategy σi−1u′ is well defined
and Di−1

u is also well defined. By induction hypothesis Di
u is a C-decision list, so Di−1

u is also a
C-decision list.

I σi−1 and Di−1
u′ are constructed in linear time w.r.t. |πi−1|. This holds by inductive hypothesis

and the fact that computing ¬Lj(u/B) is linear in |πi−1|.
I Di−1

u′ computes σi−1u′ . For u′ 6= u, by induction hypothesis, Di−1
u′ computes σiu′ . The same

happens, by construction, for u′ = u.

I σi−1 is a winning strategy for Q .ϕi−1. Fix an assignment ρ to the existential variables of ϕ.
Let τi be the complete assignment to existential and universal variables, constructed in response
to ρ under the strategy σi. By induction hypothesis τi falsifies ϕi. We need to show that τi−1
falsifies ϕi−1. To show this we distinguish again two cases.

If Li is derived by some Frege rule, then σi−1 = σi and τi−1 = τi. Hence by induction
hypothesis, τi falsifies a conjunct from ϕi. To argue that τi−1 also falsifies a conjunct from ϕi−1
we only need to look at the case when the falsified conjunct is Li. As Li is false under τi and Li
is derived by a sound Frege rule, one of the parent formulas of Li in the application of the Frege
rule must be falsified as well. Hence τi−1 falsifies ϕi−1.

Let now Li = Lj [u/B] for some j < i. In this case, our strategy σi−1 changes the assignment
τi only when τi made the universal player win by falsifying Li. As we set u to B(τi(~x)), the
modified assignment τi−1 falsifies Lj . Otherwise, if τi does not falsify Li we keep τi−1 = τi and
hence falsify one of the conjuncts of ϕi−1 by induction hypothesis.

From the proof of the Strategy Extraction Theorem it is clear that the size of the C-decision
list computing the winning strategy extracted from the refutation π has size that is actually linear
in the number of applications of the ∀red rule in π. More precisely, the size of the C-decision list
computing the winning strategy for variable u corresponds exactly to the number of ∀red rules
on u in π.

5 Separations and lower bounds via circuit complexity

We now introduce a class of QBFs defined from some circuits Cn computing a function f .
Choosing different functions f , these formulas will form the basis of our lower bounds.

Definition 5.1 (Q-Cn). Let n be an integer and Cn be a circuit with inputs x1, . . . , xn. Let
t1, . . . , tm−1 be a topological ordering of the internal gates of Cn, and let the output gate of Cn be
tm. We define

Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm . (u↔ ¬tm) ∧
m∧
i=1

Gi,

where u↔ ¬tm ≡ (u ∨ tm) ∧ (¬u ∨ ¬tm) and Gi expresses as a CNF the function computed in
the circuit Cn at gate i, e.g. if node ti computes the ∧ of tj and tk then

Gi = ti ↔ (tj ∧ tk) ≡ (¬ti ∨ tj) ∧ (¬ti ∨ tk) ∧ (ti ∨ ¬tj ∨ ¬tk),
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similarly if gate i computes ¬, ∨, ⊕, MODp, Tk or some other Boolean function.

Informally, the QBF Q-Cn expresses that there exists an input ~x such that Cn(~x) evaluates
to both 0 and 1, an obvious contradiction. Using these formulas together with the Strategy
Extraction Theorem, we now establish a deep connection between the circuit class C and
C-Frege+ ∀red.

Theorem 5.2. Let C be one of the circuit classes AC0, AC0[p], TC0, NC1, P/poly and let (Cn)n∈N
be a non-uniform family of circuits where Cn is a circuit with n inputs. Then the following
implications hold:

(i) if the QBFs Q-Cn have C-Frege+ ∀red refutations of size bounded by a function q(n), then
for each n, Cn is equivalent to a circuit C ′n where C ′n is of size O(q(n)) and uses the gates
and depth allowed in C;

(ii) if (Cn)n∈N is a polynomial-size circuit family from C then the QBFs Q-Cn have polynomial-
size refutations in C-Frege+ ∀red.

Proof. Regarding (i), by the Strategy Extraction Theorem and Proposition 4.2, if the QBF Q-Cn
has a refutation in C-Frege+ ∀red of size S then a winning strategy for the universal player can
be computed by a circuit C ′n ∈ C of size O(S). We have that in Q-Cn the quantifier prefix looks
like ∃x1 · · · ∃xn∀u∃~t. Now, by construction, u 6≡ Cn(x1, . . . , xn), hence a winning strategy for
the universal player must consist of playing u = Cn(x1, . . . , xn). This means that the circuit C ′n
computing the winning strategy for the universal player is equivalent to the circuit Cn and the
size bound follows.

Regarding (ii), let Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm . (u↔ ¬tm) ∧ ϕn, where ϕn is a formula
depending on the circuit Cn. By definition, the ti are indexed w.r.t. a topological ordering of the
nodes of Cn.

We prove, by induction on i, that there exists a circuit Di ∈ C such that ti ↔ Di is derivable
in C-Frege with size polynomial in |Di|. Suppose that ti corresponds to a gate �(tj1 , . . . , tj`)
with fan-in `, where � could be an ∧,∨,¬,⊕,MODp, Tk, . . . from the gates allowed in the class
C. By the inductive property we know that tjk ↔ Djk is provable in C-Frege with proofs of size
polynomial in |Djk |. Moreover, C-Frege is able to prove

tj1 ↔ Dj1 · · · tj` ↔ Dj` ti ↔ �(tj1 , . . . , tj`)

ti ↔ �(Dj1 , . . . , Dj`)
.

Let then Di = �(Dj1 , . . . , Dj`). At the m-th step C-Frege proves that tm ↔ Dm, from which
follows that

tm ↔ Dm u↔ ¬tm
u↔ ¬Dm

.

Since now u is universal and the innermost variable of u ↔ ¬Dm, we can apply the ∀red rule
and get

0↔ ¬Dm, 1↔ ¬Dm,

which leads to an immediate contradiction in C-Frege+∀red.

In particular, a Boolean function f is computable by polynomial-size C circuits if and only
if Q-Cn have polynomial-size C-Frege refutations for each choice of Boolean circuits (Cn)n∈N
computing f . Note that the circuits Cn are not necessarily circuits from the class C.

In the remainder of this section we apply Theorem 5.2 to a number of circuit classes and
transfer circuit lower bounds to proof size lower bounds.
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5.1 Lower bounds for bounded-depth Frege systems

Parity is one of the best-studied functions in terms of its circuit complexity. With Theorem 5.2
we can immediately transfer circuit lower bounds for Parity to AC0[p]-Frege+ ∀red, regardless
of the encoding for Parity.

Corollary 5.3 (lower bounds for Q-Parity). Let Cn be a family of polynomial-size circuits
computing Parity(x1, . . . , xn). For each odd prime p the QBFs Q-Cn require proofs of exponential
size in AC0[p]-Frege+∀red.

Proof. The exponential lower bound for the proof size in AC0[p]-Frege+ ∀red follows from Theo-
rem 5.2 and the fact that for each odd prime p any family of bounded-depth circuits with MODp

gates computing Parity must be of exponential size (Razborov, 1987; Smolensky, 1987).

We highlight that non-trivial lower bounds for AC0[p]-Frege are one of the major open
problems in propositional proof complexity. We complement the lower bound in Corollary 5.3
with an upper bound for arbitrary NC1 encodings of Parity in Frege+∀red.

Corollary 5.4 (upper bounds for Q-Parity). Let Cn be a family of NC1 circuits computing
Parity(x1, . . . , xn). Then the QBFs Q-Cn have polynomial-size proofs in Frege+ ∀red.

Proof. By a result of Muller and Preparata (1975), Parity can be computed by circuits in NC1.
Hence if we consider a family Cn of NC1 circuits computing Parity then the polynomial upper
bound in Frege+ ∀red follows immediately from Theorem 5.2.

In fact, this upper bound can be improved to AC0[2 ]-Frege+ ∀red, albeit not for arbitrary
NC1-encodings of Parity, as it is not clear how these could be handled in bounded depth.
For this purpose, we consider explicit QBFs for Parity, which can be built from its inductive
definition Parity(x1, . . . , xn) = Parity(x1, . . . , xn−1)⊕ xn. This leads to the QBFs

Φn = ∃x1 · · · ∃xn∀u∃t2 · · · ∃tn . (t2 ↔ (x1 ⊕ x2)) ∧
n∧
i=3

(ti ↔ (ti−1 ⊕ xi)) ∧ (u↔ ¬tn),

where a↔ (b⊕ c) ≡ (¬a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ c) ∧ (a ∨ b ∨ ¬c). This formulation
of Q-Parity was considered by Beyersdorff et al. (2015a), where the formulas Φn are shown to
be hard for Q-Res and QU-Res. Here we obtain:

Corollary 5.5. The Parity-formulas Φn require exponential-size AC0[p]-Frege+∀red for each
odd prime p, but have polynomial-size AC0[2 ]-Frege+∀red refutations.

Proof. The lower bound follows as in Corollary 5.3. For the upper bound we cannot use
Theorem 5.2, but need to give a more direct proof. Without loss of generality we can assume
that our AC0[2 ]-Frege+ ∀red system uses the connectives {∧,∨,¬,↔,⊕}.

Then it is easy to see, by induction on i, that Frege proves ti ↔ ⊕(x1, x2, . . . , xi) with a proof
of size linear in i. Hence, similarly to what was done in Theorem 5.2, we get

u↔ ¬⊕ (x1, x2, . . . , xn). (8)

Then u is the rightmost variable in (9); hence by the ∀red rule we have

1↔ ¬⊕ (x1, x2, . . . , xn) and 0↔ ¬⊕ (x1, x2, . . . , xn),

which gives an immediate contradiction.
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In fact, we can further strengthen Corollary 5.5 and use Smolensky’s circuit lower bounds for
an even more ambitious separation of all AC0[p]-Frege+ ∀red systems. For this we consider the
function

MODp(x1, . . . , xn) =

{
1 if

∑n
i=1 xi ≡ 0 (mod p)

0 otherwise.

For r ≤ p− 1 let

MODp,r(x1, . . . , xn) =

{
1 if

∑n
i=1 xi ≡ r (mod p)

0 otherwise.

If we want to use MODp for a separation of AC0[p]-Frege+ ∀red and AC0[q ]-Frege+∀red for
different primes p, q, then MODp has to be encoded as a QBF in the language common to both
proof systems, which means that we cannot use MODp or MODq gates. As for Parity, an
arbitrary NC1 encoding as in Corollary 5.3 will also not work (this would just give upper bounds
in Frege+ ∀red), so we need to devise again explicit QBF encodings for MODp. Such QBFs can
be built using the fact that MODp, that is MODp,0, can be defined for r 6= 0 by

MODp,r(x1, . . . , xi) = (MODp,r(x1, . . . , xi−1) ∧ ¬xi) ∨ (MODp,r−1(x1, . . . , xi−1) ∧ xi),

and for r = 0 by

MODp,0(x1, . . . , xi) = (MODp,0(x1, . . . , xi−1) ∧ ¬xi) ∨ (MODp,p−1(x1, . . . , xi−1) ∧ xi).

Using variables sri for MODp,r(x1, . . . , xi) this leads to the QBFs

Θp
n =∃x1 · · · ∃xn∀u∃s01∃s11∃s02∃s12∃s22 · · · ∃s0n · · · ∃sp−1n . (u↔ ¬s0n) ∧ (s11 ↔ x1) ∧ (s01 ↔ ¬x1)∧∧

1<i≤n
0<r≤p−1

(
sri ↔ (sri−1 ∧ ¬xi) ∨ (sr−1i−1 ∧ xi)

)
∧
∧

1<i≤n

(
s0i ↔ (s0i−1 ∧ ¬xi) ∨ (sp−1i−1 ∧ xi)

)
.

Corollary 5.6. For each pair p, q of distinct primes the MODp-formulas Θp
n require proofs of

exponential size in AC0[q ]-Frege+∀red, but have polynomial-size proofs in AC0[p]-Frege+ ∀red.

Proof. The exponential lower bound for AC0[q ]-Frege+ ∀red follows from Theorem 5.2 together
with the result from (Razborov, 1987; Smolensky, 1987) that for distinct primes p, q any family
of bounded-depth circuits with MODq gates computing MODp must be of exponential size.

Regarding the upper bound, without loss of generality we can assume that our AC0[p]-Frege
system uses the connectives {∧,∨,¬,↔,MODp}. Then it is easy to see, by induction on i, that
AC0[p]-Frege proves

sri ↔ MODp(x1, . . . , xi, 1, 1, . . . , 1︸ ︷︷ ︸
p−r

),

with a proof of size linear in i. Hence, similarly to what was done in Theorem 5.2 and Corollary 5.5,
we get

u↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

). (9)

Then u is the rightmost variable in (9); hence by the ∀red rule we have

1↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

) and 0↔ ¬MODp(x1, . . . , xn, 1, 1, . . . , 1︸ ︷︷ ︸
p

),

which gives an immediate contradiction.
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Another notorious function in circuit complexity is Majority. Again we can transform
circuit lower bounds to proof size lower bounds for arbitrary encodings of Majority.

Corollary 5.7 (lower bounds for Q-Majority). Let Cn be a family of polynomial-size circuits
computing Majority(x1, . . . , xn). Then for every prime p, the QBFs Q-Cn require proofs of
exponential size in AC0[p]-Frege+ ∀red.

Proof. The lower bound follows again applying Theorem 5.2 and the fact that Majority
requires exponential-size bounded-depth circuits with MODp gates (Razborov, 1987; Smolensky,
1987).

For general encodings, we can again show Frege+∀red upper bounds.

Corollary 5.8 (upper bounds for Q-Majority). Let Cn be a family of NC1 circuits computing
Majority(x1, . . . , xn). Then the QBFs Q-Cn have polynomial-size proofs in Frege+ ∀red.

Proof. By a result of Muller and Preparata (1975), majority is computable in NC1 and hence
Q-Cn are well defined. The upper bound then follows from Theorem 5.2.

As for the MODp functions, we can improve on this upper bound by considering explicit QBF
encodings of Majority, thereby even obtaining a separation of AC0[p]-Frege+∀red systems from
TC0-Frege+ ∀red.4 Explicit QBFs for Majority can be defined using the following property of
the k-threshold function

Tk(x1, . . . , xi) ≡ Tk(x1, . . . , xi−1) ∨ (Tk−1(x1, . . . , xi−1) ∧ xi). (10)

Using variables tik for Tk(x1, . . . , xi) this gives rise to the QBFs

Ψn = ∃x1 · · · ∃xn∀u∃t11 · · · ∃tnn/2 . (u↔ ¬tnn/2)∧
∧
i≤n

ti0∧(t11 ↔ x1)∧
∧

k≤n/2
i≤n

(
tik ↔ ti−1k ∨ (ti−1k−1 ∧ xi)

)
.

Corollary 5.9. For each prime p the Majority-formulas Ψn require proofs of exponential-size
in AC0[p]-Frege+ ∀red, but have polynomial-size proofs in TC0-Frege+ ∀red.

Proof. The exponential lower bound from (Razborov, 1987; Smolensky, 1987) will give us the
exponential lower bound w.r.t. the size of Ψn in AC0[p]-Frege+ ∀red, since the size of Ψn is O(n2).

Regarding the polynomial-size proof of Ψn in TC0-Frege+ ∀red we can proceed similarly as
for Parity in Frege. The crucial feature here is that Tk are, by definition of TC0, in the language
of TC0-Frege. Hence (10) can be used to prove tjk ↔ Tk(x1, . . . , xj) and we can easily refute Ψn

in TC0-Frege+ ∀red.

We note that a separation of AC0[p]-Frege from TC0-Frege constitutes a major open problem
in propositional proof complexity as we are currently lacking lower bounds for AC0[p]-Frege.

4Clearly, such a separation already follows from Corollary 5.6 together with the simulation of AC0[p]-Frege+∀red
by TC0-Frege+∀red. Here we will prove the stronger result that all these systems are separated by one natural
principle, namely Majority.
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5.2 Lower bounds for depth-d Frege systems

We now aim at a fine-grained analysis of AC0-Frege by studying its subsystems AC0
d-Frege. Our

next result is a version of Theorem 5.2, however, we need to be a bit more careful for circuits of
fixed depth d.

Theorem 5.10. Let (Cn)n∈N be a non-uniform family of circuits where Cn is a circuit with n
inputs. Then the following implications hold:

(i) if the QBFs Q-Cn have AC0
d-Frege+∀red refutations of size bounded by a function q(n),

then for each n, Cn is equivalent to a depth-(d+ 2) circuit C ′n of size O(q(n));

(ii) if (Cn)n∈N is a family of polynomial-size depth-d circuits, then the QBFs Q-Cn have
polynomial-size refutations in AC0

d-Frege+ ∀red.

Proof. The proof of (i) follows the proof of the analogous statement of Theorem 5.2. The Strategy
Extraction Theorem in this case tell us that from refutations of Q-Cn in AC0

d-Frege+∀red of
size S we can extract a winning strategy for the universal player that can be computed by
AC0

d-decision lists of size O(S). By Proposition 4.2, this means that the winning strategy can be
also computed by AC0

d+2 circuits and the size upper bound follows.
The proof of point (ii) follows the proof of the analogous statement of Theorem 5.2. That

proof will give us that Q-Cn has polynomial-size refutations in AC0
d+2-Frege+ ∀red. Here we

want to prove that Q-Cn has actually polynomial-size proofs in AC0
d-Frege+ ∀red. Without loss

of generality suppose that the last gate tm of Cn is an
∧

, that is

Q-Cn = ∃x1 · · · ∃xn∀u∃t1 · · · ∃tm . (u↔ ¬tm) ∧ (tm ↔
∧
j≤`

tij ) ∧ ϕn,

where each tij is an
∨

gate and ϕn is the encoding of the rest of the circuit Cn. We clearly have
that

u↔ ¬tm tm ↔
∧
j≤` tij

u↔
∨
j≤` ¬tij

From which we obtain both

u ∨
∧
j≤`

tij , (11)

¬u ∨
∨
j≤`
¬tij . (12)

Now we can proceed, similarly as in Theorem 5.2. By induction (on the depth of Cn) AC0
d-Frege

is able to substitute tij with Dij where Dij is an AC0
d−1-formula over the x1, . . . , xn variables

starting with an
∨

. More precisely by induction we can prove that AC0
d-Frege proves both

tij ∨ ¬Dij , (13)

¬tij ∨Dij . (14)

Hence from (12) and (13) follows that

¬u ∨
∨
j≤`
¬Dij ,
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which is an AC0
d-formula only over the variables u, x1, . . . , xn. Hence by the ∀red rule we get∨

j≤`
¬Dij . (15)

Similarly from (11) we get first that ∧
j≤`

(u ∨ tij )

and then using (14) we get ∧
j≤`

(u ∨Dij ),

which, again, is an AC0
d-formula over the variables u, x1, . . . , xn. By the ∀red rule we get∧

j≤`
Dij . (16)

From (15) and (16) follows immediately a contradiction.

From Theorem 5.2 we immediately obtain a wealth of lower bounds for Res+ ∀red.

Corollary 5.11. Let f(x1, . . . , xn) be a Boolean function requiring exponential-size depth-3
circuits and let (Cn)n∈N be polynomial-size circuits (of unbounded depth) computing f . Then the
QBFs Q-Cn require exponential-size refutations in AC0

1-Frege+ ∀red and hence, in particular, in
Res+ ∀red.

We now approach the separation of constant-depth Frege+ ∀red systems. For this we employ
the Sipser functions separating the hierarchy of constant-depth circuits. We quote the definition
of the Sipserd function from Boppana and Sipser (1990):

Sipserd =
∧

i1≤m1

∨
i2≤m2

∧
i3≤m3

· · ·
⊙
id≤md

xi1i2i3...id ,

where
⊙

=
∨

or
∧

depending on the parity of d. The variables x1, . . . , xn appear as xi1i2i3...id
for ij ≤ mj , where m1 =

√
m/ logm, m2 = m3 = · · · = md−1 = m, md =

√
dm logm/2 and

m = (n
√

2/d)1/(d−1).

Corollary 5.12. Fix an integer d ≥ 2. Let (Cnd )n∈N be a family of polynomial-size depth-(d+ 3)
circuits computing the function Sipserd+3(x1, . . . , xn). Then the QBFs Q-Cnd need exponential-
size proofs in AC0

d-Frege+ ∀red, but have polynomial-size proofs in AC0
d+3-Frege+ ∀red.

Proof. The lower bound follows from Theorem 5.10 and from the result that for every d, Sipserd+3

needs exponential-size depth-(d+ 2) circuits (H̊astad, 1986). Regarding the upper bound, by
construction Cnd has depth d+ 3 and polynomial-size. Hence, by Theorem 5.10, the family Q-Cnd
has polynomial-size proofs in AC0

d+3-Frege+ ∀red.

Note that the gap of size 1 in the circuit separation of (H̊astad, 1986) increases to a gap of
size 3 in our proof system separation, due to the transformation in Proposition 4.2. We highlight
that in contrast to Corollary 5.12 where our separating formulas are CNFs, a separation of the
depth-d Frege hierarchy with formulas of depth independent of d is a major open problem in
propositional proof complexity.
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5.3 Conditional lower bounds for Frege and extended Frege

We end this section with conditional lower bounds for Frege+∀red and EF+ ∀red. Turning these
conditional lower bounds into unconditional ones — at least with our technique — will depend
on major breakthroughs in circuit complexity.

Theorem 5.13. Let C be either non-uniform NC1 or P/poly. If PSPACE 6⊂ C then C-Frege+ ∀red
is not polynomially bounded.

Proof. Let f be a Boolean function in PSPACE but not in C. Since QBF is PSPACE-complete
there exists a QBF Q~w .ϕ(~w, x1, . . . , xn) with a CNF ϕ such that

f(x1, . . . , xn) ≡ Q~w .ϕ(~w, x1, . . . , xn).

We define
Q-fn = ∃x1 · · · ∃xn∀u . (u↔ Q~w .ϕ(~w, x1, . . . , xn)),

which can be rewritten into formulas Θn in prenex form. Notice that the only winning strategy
for the universal player on both Q-fn and Θn is to compute u = f(x1, . . . , xn). Therefore, the
Strategy Extraction Theorem together with f 6∈ C immediately implies super-polynomial lower
bounds for Θn in C-Frege+ ∀red.

We remark that we do have a separation between uniform NC1 and PSPACE, because NC1 ⊆ L
and L 6= PSPACE by the space hierarchy theorem. Therefore, choosing f ∈ PSPACE \ NC1 and
considering the prenex formulas Θn arising from Q-fn we can infer the weaker result that
Frege+ ∀red has no uniform short proofs of Θn.

6 From propositional to QBF proof systems — the global view

In this section we lift proof systems from propositional logic to QBF proof systems in a uniform
way. In addition to the ∀red systems considered so far, we define two more general paradigms to
transform a propositional system P into a QBF system: via expansions and via instantiations.
We consider all three paradigms in the same, slightly simplified setting, where we only substitute
by constants, to allow for a comparison of the different approaches. We remark that although
our constructions are quite general, some natural conditions on P are needed to lift them to
sound and complete QBF systems. These conditions hold for the systems P commonly studied
in proof complexity.

6.1 Expansion QBF proof systems

Given a QBF Q~y ∀u∃x1 · · · ∃xk .ϕ, we have the following semantical equivalences

Q~y ∀u∃x1 · · · ∃xk .ϕ ≡Q~y (∃x1 · · · ∃xk .ϕ[u/0, x1, . . . , xk] ∧ ∃x1 · · · ∃xk .ϕ[u/1, x1, . . . , xk])

≡Q~y ∃xu/01 · · · ∃xu/0k ∃x
u/1
1 · · · ∃xu/1k .

ϕ[u/0, x1/x
u/0
1 , . . . , xk/x

u/0
k ] ∧ ϕ[u/1, x1/x

u/1
1 , . . . , xk/x

u/1
k ],

where x
u/b
i are new fresh variables. The latter QBF is the expansion on u of the original QBF. By

repeated expansion on the innermost universal variable we define the full universal expansion of a
QBF Q .ϕ: it is a QBF Q′ .ϕ′ where Q′ consists exclusively of existential quantifiers. Moreover,
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each existential variable xi in Q .ϕ becomes an x
[τ ]i
i in Q′ .ϕ′, for each mapping τ from the

universal variables into {0, 1} and where [τ ]i is the restriction of τ to the variables left of xi.
It is immediate to observe that Q .ϕ and its full universal expansion Q′ .ϕ′ are semantically
equivalent, but Q′ .ϕ′ may have exponentially many more variables than Q .ϕ.

Proposition 6.1. Given a QBF Q .ϕ and a clause C it is possible to determine in polynomial
time (w.r.t. the size of Q .ϕ) whether C belongs to the full universal expansion of Q .ϕ.

Definition 6.2 (P + ∀exp0,1). Let P be a refutational propositional proof system and Q .ϕ a
false QBF. Let Q′ .ϕ′ be the full universal expansion of Q .ϕ and let ϕ̃ ⊆ ϕ′. If π is a P -proof
of ϕ̃ then we define (π,Q .ϕ) to be a proof of the QBF Q .ϕ in the system P + ∀exp0,1.

We indicate by the index 0,1 in ∀exp0,1 that the universal variables are only replaced by
constants. Similarly as for the reduction systems in Section 3 we can also define a more general
version P +∀exp where we substitute universal variables by more complex Boolean functions.

Theorem 6.3. If P is a refutational propositional proof system then P + ∀exp0,1 is a refutational
QBF proof system.

Proof. A QBFQ .ϕ is false if and only if its full universal expansionQ′ .ϕ′ is false. Moreover, since
Q′ consists purely of existential quantifiers, then Q′ .ϕ′ is false if and only if ϕ′ is unsatisfiable.
From this, and the fact that P is well-defined and its range is UNSAT, it follows that P + ∀exp0,1
is well-defined and that the range of P + ∀exp0,1 is FQBF.

By Proposition 6.1 and since P is polynomial-time computable, it follows that P + ∀exp0,1 is
polynomial-time computable.

Choosing Res as the propositional base system, Res+∀exp0,1 coincides with the system
∀Exp+Res defined by Janota and Marques-Silva (2015).

There is a direct correspondence between the simulation order of propositional proof systems
and expansion QBF systems.

Proposition 6.4. Let P and Q be propositional proof systems. Then P p-simulates Q if and
only if P + ∀exp0,1 p-simulates Q+∀exp0,1.

Proof. If P p-simulates Q then clearly P +∀exp0,1 p-simulates Q+ ∀exp0,1. The other direction
follows since P and Q are just particular cases of P + ∀exp0,1 and Q+∀exp when they act on
existentially quantified QBFs.

6.2 Reduction QBF proof systems revisited

To compare the expansion systems to the reduction systems investigated earlier, we consider
a restricted version C-Frege+ ∀red0,1 of C-Frege+∀red, where universal variables can only be
replaced by constants. Formally, C-Frege+ ∀red0,1 uses the inference rules of C-Frege and the
following restricted version of the ∀red rule:

Lj
(∀red0,1)

Lj [u/b]

where b ∈ {0, 1} and u is the innermost variable in Lj w.r.t. the quantifier prefix of the QBF
being refuted.
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Theorem 6.5. For a circuit class C, C-Frege+∀red0,1 is a refutational QBF proof system.

Proof. The soundness follows from the fact that C-Frege+∀red p-simulates C-Frege+∀red0,1 and
the completeness by the fact that C-Frege+ ∀red0,1 can transform arbitrary Boolean formulas
into CNF and then p-simulate Q-Res.

6.3 Instantiation QBF proof systems

We now define a QBF proof system that naturally generalises both P + ∀exp0,1 and P + ∀red0,1.
We call this system P + ∀inst0,1. A version of an instantiation system for Res, called IR-calc,
was considered by Beyersdorff et al. (2014). As for the reduction systems we just define
C-Frege+ ∀inst0,1, but it will be clear that this definition can be adapted to other proof systems.

Given a QBF Q .ϕ, an existentially quantified variable x in Q .ϕ, and an assignment τ to
all variables u with qlv(u) < qlv(x), we defined the annotated variable xτ to have the same
quantification level as x, qlv(xτ ) = qlv(x). An annotation on u is expressed by a circuit in the
(possibly annotated) variables z where qlv(z) < qlv(u).

Definition 6.6 (C-Frege+ ∀inst0,1). Let C be a circuit class. A refutation of a false QBF Q .ϕ
in the system C-Frege+ ∀inst0,1 is sequence of lines L1, . . . , Lt, where each line is a circuit from
C, L1 = ϕ, Lt = ⊥ and each Li is inferred from previous lines Lj using the inference rules of
C-Frege or using the following rule

Lj
(∀inst0,1),

Lj [u/b, x
τ/xτ∪{u/b}, . . .]

where b ∈ {0, 1} and and the replacement of xτ with xτ∪{u/b}occurs for every xτ such that
qlv(xτ ) > qlv(u) and u /∈ dom(τ).

In the next theorem we show that C-Frege+ ∀inst0,1 is a well-defined QBF proof system.
Before doing that we observe that the ∀inst0,1 rule generalises both the ∀exp0,1 rule and the
∀red0,1 rule. Hence C-Frege+ ∀inst0,1 p-simulates both C-Frege+ ∀exp0,1 and C-Frege+∀red0,1.

Theorem 6.7. C-Frege+ ∀inst0,1 is a refutational QBF proof system.

Proof. The completeness of C-Frege+∀inst0,1 follows from the fact that it p-simulates the complete
QBF proof system C-Frege+ ∀red0,1.

Regarding the soundness of C-Frege+ ∀inst0,1, by contradiction, suppose that (L1, . . . , L`) is
a refutation of a true QBF Q .ϕ in the system C-Frege+∀inst0,1.

Since Q .ϕ is true, then by the two-player game semantics, for each existentially quantified
variable x there exists a Skolem function fx depending only on the universal variables u with
qlv(x) > qlv(u) such that the collection of all fx is a winning strategy for the existential player.

Let ψi be the result of substituting in ϕ ∧ L1 ∧ · · · ∧ Li each occurrence of x[u1/c1,...,uk/ck] by
its Skolem function fx with argument u1/c1, . . . , uk/ck, that is fx(u1/c1, . . . , uk/ck):

ψi =

{
ϕ[xτ/fx(τ), . . .] if i = 0,

ϕ ∧ L1 ∧ · · · ∧ Li[xτ/fx(τ), . . .] otherwise.

Let ∀~u be the quantifier prefix of Q .ϕ when pruned of all the existential variables. By
induction on i, we prove that ∀~u .ψi is true for every i = 1, . . . , `. For i = ` this gives a
contradiction, since L` = ⊥ is appearing in ψ` and hence it is false.
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The base case of the induction holds since the Skolem functions fx must satisfy ϕ when
substituted for x under every assignment to ~u. This gives exactly that ∀~u .ψ0 is true.

Suppose now that, by induction hypothesis, that ∀~u .ψi is true. We show that ∀~u .ψi+1 is
true. By definition ψi+1 = ψi ∧ Li+1[x

τ/fx(τ), . . .] and Li+1 was either introduced by a C-Frege
rule or by the ∀inst0,1 rule.

If Li+1 was introduced by a C-Frege rule then ψi |= Li+1[xτ/fx(τ), . . .]. Moreover, by inductive
hypothesis, Q .ψi is true; therefore Q .ψi+1 is true as well.

Let Li+1 now be introduced by the ∀inst0,1 rule, say Li+1 = Lj [v/b, x
τ/xτ∪{v/b}, . . .] with

j ≤ i. For shortness let L′j = Lj [x
τ/fx(τ), . . .] and suppose that ∀~u .ψi = ∀~u1∀v∀~u2 .ψi. Then

we have the following transformations:

∀~u1∀v∀~u2 .ψi ≡ ∀~u1∀v∀~u2 .ψi ∧ L′j (17)

≡ ∀~u1∀~u2∀v .ψi ∧ L′j (18)

≡ ∀~u1∀~u2 .ψi[v/0] ∧ L′j [v/0] ∧ ψi[v/1] ∧ L′j [v/1] (19)

≡ ∀~u1∀~u2 . (L′j [v/0] ∧ L′j [v/1] ∧ ∀v .ψi) (20)

≡ ∀~u1∀~u2∀v .L′j [v/0] ∧ L′j [v/1] ∧ ψi (21)

|= ∀~u1∀v∀~u2 .ψi ∧ L′j [v/b]. (22)

Notice that the replacement v/b in L′j also replaces v as an argument in the Skolem functions,
hence

L′j [v/b] = L′j [v/b][x
τ/xτ∪{v/b}, . . .] = Lj [v/b][x

τ∪{v/b}/fx(τ ∪ {v/b}), . . .].

From the previous chain of equalities follows that formula (22) is semantically equivalent to
∀~u .ψi+1. Hence ∀~u .ψi+1 is true.

Similarly to the relation between the ∀red0,1 and the ∀red rules we can define a more general
version ∀inst of the ∀inst0,1 rule. In the system C-Frege+ ∀inst variables can be annotated as u/g
where g is a function.

6.4 Towards understanding the simulation order of QBF systems

To compare the different families of QBF systems defined above we consider the following family
of QBFs from Janota and Marques-Silva (2015):

Fn = ∃e1∀u1∃c11∃c21 · · ·∃ei∀ui∃c1i ∃c2i · · · ∃en∀un∃c1nc2n .
n∨
i=1

(¬c1i ∨ ¬c2i )∧

n∧
i=1

(ei → c1i ) ∧ (ui → c1i ) ∧ (¬ei → c2i ) ∧ (¬ui → c2i ).

(23)

Janota and Marques-Silva (2015) use these formulas to show that ∀Exp+Res does not simulate
Q-Res. Their argument easily generalises to the stronger systems we consider here:

Proposition 6.8.

(i) Let P be a propositional proof system. Then the QBFs Fn require exponential-size proofs
in P +∀exp0,1.

(ii) The QBFs Fn have polynomial-size proofs in Res+∀red0,1.
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Proof. Regarding the first claim, Janota and Marques-Silva (2015) showed that for semantic
reasons every clause is needed in the full universal expansion of Fn to make the expanded formula
false. Since there are exponentially many such clauses and all must be lines in a P + ∀exp0,1
refutation, every P + ∀exp0,1 refutation is of exponential size.

For the second claim, Janota and Marques-Silva (2015) showed that Fn has proofs in Q-Res
of polynomial size, hence short proofs also exist in Res+∀red0,1, since the latter is p-equivalent
to the stronger QBF proof system QU-Res.

This immediately implies that none of the expansion systems is able to simulate even the
weakest of the reduction systems that we consider here.

Corollary 6.9. Let P be a propositional proof system. Then P + ∀exp0,1 does not simulate
Res+ ∀red0,1.

For the full separation between expansion and reduction systems we consider again the QBFs
Q-Cn from Section 5. In an argument similar to (Beyersdorff et al., 2015a, Lemma 15) we obtain:

Proposition 6.10. Let Cn be a polynomial-size circuit computing Parity(x1, . . . , xn). Then
the QBFs Q-Cn have polynomial-size refutations in Res+ ∀exp0,1.

Proof. Let Cn be a circuit family computing Parity. The formulas Q-Cn in Definition 5.1 have
exactly one universal variable u, which we expand in both polarities 0 and 1. This does not

affect the xi variables, but creates different copies t
u/0
i and t

u/1
i of the existential variables right

of u. Using the clauses from Gi expressing the circuit gates, we can inductively derive clauses

representing t
u/0
i = t

u/1
i . This lets us derive a contradiction using the clauses t

u/0
m and ¬tu/1m .

Clearly, this argument generalises to QBFs originating from further functions considered
in Section 5. The previous proposition together with Corollary 5.3 immediately implies the
following.

Corollary 6.11. For every prime p, AC0[p]-Frege+ ∀red does not simulate Res+∀exp0,1.

As observed earlier, instantiation systems by definition simulate both expansion and reduction
systems. However, they are strictly stronger by the incomparability of expansion and reduction
systems shown above. Figure 1 shows a slice of the simulation order of the QBF proof systems
studied here.

P + ∀inst0,1

P + ∀exp0,1 P +∀red0,1

A B A p-simulates B

A B A and B are incomparable

Figure 1: A slice of the simulation order of QBF proof systems

7 Conclusion and open problems

We already outlined the main directions of this paper’s potential for impact in Section 1.3.
The most immediate specific open problem arising from this work is to show lower bounds for
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Frege+ ∀red. While such a lower bound via our technique would need a major breakthrough in
circuit complexity (cf. Theorem 5.13), we ask the (possibly very challenging) question whether a
lower bound can be shown via a different method.

While we consider the reduction systems P + ∀red the most natural ones — as they have
a very clear semantic meaning via Herbrand functions — it also remains open to show lower
bounds for the stronger instantiation systems defined in Section 6.3.
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