
Characterizing Propositional Proofs

as Non-Commutative Formulas∗

Fu Li†

Tsinghua University

Iddo Tzameret‡

Royal Holloway,
University of London

Zhengyu Wang§

Harvard University

Abstract

Does every Boolean tautology have a short propositional-calculus proof? Here, a
propositional-calculus (i.e., Frege) proof is any proof starting from a set of axioms and de-
riving new Boolean formulas using a fixed set of sound derivation rules. Establishing any super-
polynomial size lower bound on Frege proofs (in terms of the size of the formula proved) is a
major open problem in proof complexity, and among a handful of fundamental hardness ques-
tions in complexity theory by and large. Non-commutative arithmetic formulas, on the other
hand, constitute a quite weak computational model, for which exponential-size lower bounds
were shown already back in 1991 by Nisan [STOC 1991], using a particularly transparent argu-
ment.

In this work we show that Frege lower bounds in fact follow from corresponding size lower
bounds on non-commutative formulas computing certain polynomials (and that such lower
bounds on non-commutative formulas must exist, unless NP=coNP). More precisely, we
demonstrate a natural association between tautologies T to non-commutative polynomials p,
such that:

✶ if T has a polynomial-size Frege proof then p has a polynomial-size non-commutative
arithmetic formula; and conversely, when T is a DNF, if p has a polynomial-size non-
commutative arithmetic formula over GF (2) then T has a Frege proof of quasi-polynomial
size.

The argument is a characterization of Frege proofs as non-commutative formulas: we show
that the Frege system is (quasi-) polynomially equivalent to a non-commutative Ideal Proof
System (IPS), following the recent work of Grochow and Pitassi [FOCS 2014] that introduced
a propositional proof system in which proofs are arithmetic circuits, and the work in [Tza11]
that considered adding the commutator as an axiom in algebraic propositional proof systems.
This also gives a characterization of propositional Frege proofs in terms of (non-commutative)
arithmetic formulas that is tighter than (the formula version of IPS) in Grochow and Pitassi
[FOCS 2014].

∗An extended abstract of this work entitled “Non-commutative Formulas and Frege Lower Bounds: a New Charac-
terization of Propositional Proofs” appeared in Proceedings of the 30th Annual Computational Complexity Conference

(CCC): June 17-19, 2015.
†Institute for Interdisciplinary Information Sciences. Supported in part by NSFC grant 61373002.

fuli.theory.research@gmail.com
‡Department of Computer Science. Supported in part by NSFC grant 61373002. Iddo.Tzameret@rhul.ac.uk
§Department of Computer Science. wangsincos@163.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 134 (2015)

1 Introduction

1.1 Propositional proof complexity

The field of propositional proof complexity aims to understand and analyze the computational
resources required to prove propositional statements. The problems the field poses are fundamental,
difficult, and of central importance to computer science and complexity theory as demonstrated
by the seminal work of Cook and Reckhow [CR79], who showed the immediate relevance of these
problems to the NP vs. coNP problem (and thus to the P vs. NP problem).

Among the major unsolved questions in propositional proof complexity, is whether the standard
propositional logic calculus, either in the form of the Sequent Calculus, or equivalently, in the
axiomatic form of Hilbert style proofs (i.e., Frege proofs), is polynomially bounded; that is, whether
every propositional tautology—namely, a formula that is satisfied by every assignment—has a proof
whose size is polynomially bounded in the size of the formula proved (alternatively and equivalently,
we can think of unsatisfiable formulas and their refutations). Here, we consider the size of proofs
as the number of symbols it takes to write them down, where each formula in the proof is written
as a Boolean formula (in other words we count the total number of logical gates appearing in the
proof).

It is known since Reckhow work [Rec76] that all Frege proof-systems1 (as well as the Gentzen
sequent calculus with the cut rule [Gen35]) are polynomially equivalent to each other, and hence
it does not matter precisely which rules, axioms, and logical-connectives we use in the system.
Nevertheless, for concreteness, the reader can think of the Frege proof system as the following
simple one (known as Schoenfield’s system), consisting of only three axiom schemes (where A→ B
is an abbreviation of ¬A ∨B; and A,B,C are any propositional formulas):

A→ (B → A)

(¬A→ ¬B) → ((¬A→ B) → A)

(A→ (B → C)) → ((A→ B) → (A→ C)),

and a single inference rule (known as modus ponens):

from A and A→ B, infer B .

Complexity-wise, Frege is considered a very strong proof system alas a poorly understood one.
The qualification strong here has several meanings: first, that no super-polynomial lower bound is
known for Frege proofs. Second, that there are not even good hard candidates for the Frege system
(see [BBP95, Raz15, Kra11, LT13] for further discussions on hard proof complexity candidates).
Third, that for most hard instances (e.g., the pigeonhole principle and Tseitin tautologies) that
are known to be hard for weaker systems (e.g., resolution, cutting planes, etc.), there are known
polynomial bounds on Frege proofs. Fourth, that proving super-polynomial lower bounds on Frege
proofs seems to a certain extent out of reach of current techniques (and believed by some to be
even harder than proving explicit circuit lower bounds [Raz15]). And finally, that by the com-
mon (mainly informal) correspondence between circuits and proofs—namely, the correspondence

1Formally, a Frege proof system is any propositional proof system with a fixed number of axiom schemes and
sound derivation rules that is also implicationally complete, and in which proof-lines are written as propositional
formulas (see Definition 2.4).

2

between a circuit-class C and a proof system in which every proof-line is written as a circuit2 from
C—Frege system corresponds to the circuit class of polynomial-size log(n)-depth circuits denoted
NC1 (equivalently, of polynomial-size formulas [Spi71]), considered to be a strong computational
model for which no (explicit) super-polynomial lower bounds are currently known.

Accordingly, proving lower bounds on Frege proofs is considered an extremely hard task. In
fact, the best lower bound known today is only quadratic, which uses a fairly simple syntactic
argument [Kra95]. If we put further impeding restrictions on Frege proofs, like restricting the
depth of each formula appearing in a proof to a certain fixed constant, exponential lower bounds
can be obtained [Ajt88, PBI93, PBI93]. Although these constant-depth Frege exponential-size
lower bounds go back to Ajtai’s result from 1988, they are still in some sense the state-of-the-art
in proof complexity lower bounds (beyond the important developments on weaker proof systems,
such as resolution and its comparatively weak extensions). Constant-depth Frege lower bounds use
quite involved probabilistic arguments, mainly specialized switching lemmas tailored for specific
tautologies (namely, counting tautologies, most notable of which are the Pigeonhole Principle tau-
tologies). Even random kCNF formulas near the satisfiability threshold are not known to be hard
for constant-depth Frege (let alone hard for [unrestricted depth] Frege).

All of the above goes to emphasize the importance, basic nature and difficulty in understanding
the complexity of strong propositional proof systems, while showing how little is actually known
about these systems.

1.2 Prominent directions for understanding propositional proofs

As we already mentioned, there is a guiding line in proof complexity which states a correspondence
between the complexity of circuits and the complexity of proofs. This correspondence is mainly
informal, but there are seemingly good indications showing it might be more than a superficial
analogy. One of the most compelling evidence for this correspondence is that there is a formal
correspondence (cf. [CN10] for a clean formulation of this) between the first-order logical theories
of bounded arithmetic (whose axioms state the existence of sets taken from a given complexity
class C) to propositional proof systems (in which proof-lines are circuits from C).

Another aspect of the informal correspondence between circuit complexity and proof complex-
ity is that circuit hardness sometimes can be used to obtain proof complexity hardness. The most
notable example of this are the lower bounds on constant-depth Frege proofs mentioned above:
constant-depth Frege proofs can be viewed as propositional calculus operating with AC0 circuits,
and the known lower bounds on constant depth Frege proofs (cf. [Ajt88, KPW95, PBI93]) use
techniques borrowed from AC0 circuits lower bounds. The success in moving from circuit hard-
ness towards proof-complexity hardness has spurred a flow of attempts to obtain lower bounds
on proof systems other than constant depth Frege. For example, Pudlák [Pud99] and Atserias
et al. [AGP02] studied proofs based on monotone circuits, motivated by known exponential lower
bounds on monotone circuits [Raz85]. Raz and Tzameret [RT08b, RT08a, Tza08] investigated alge-
braic proof systems operating with multilinear formulas, motivated by lower bounds on multilinear
formulas for the determinant, permanent and other explicit polynomials [Raz09, Raz06]. Atserias et
al. [AKV04], Kraj́ıček [Kra08] and Segerlind [Seg07] have considered proofs operating with ordered
binary decision diagrams (OBDDs), and the second author [Tza11] initiated the study of proofs

2To be more precise, one has to associate a circuit class C with a proof system in which a family of proofs is
written such that every proof-line in the family is a circuit family from C.

3

operating with non-commutative formulas (see Sec. 1.4 for a comparison with the current work).3

Until quite recently it was unknown whether the correspondence between proofs and circuits
is two-sided, namely, whether proof complexity hardness (of concrete known proof systems) can
imply any computational hardness. An initial example of such an implication from proof hardness
to circuit hardness was given by Raz and Tzameret [RT08b]. They showed that a separation be-
tween algebraic proof systems operating with arithmetic circuits and multilinear arithmetic circuits,
resp., for an explicit family of polynomials, implies a separation between arithmetic circuits and
multilinear arithmetic circuits.

In a recent significant development about the complexity of strong proof systems, Grochow
and Pitassi [GP14] demonstrated a much stronger correspondence. They introduced a natural
propositional proof system, called the Ideal Proof System (IPS for short), for which any super-
polynomial size lower bound on IPS implies a corresponding size lower bound on arithmetic circuits,
and formally, that the permanent does not have polynomial-size arithmetic circuits. The IPS is
defined as follows:

Definition 1.1 (Ideal Proof System (IPS) [GP14]). Let F1(x), . . . , Fm(x) be a system of polynomials
in the variables x1, . . . , xn, where the polynomials x2i −xi, for all 1 ≤ i ≤ n, are part of this system.
An IPS refutation (or certificate) that the Fi’s polynomials have no common 0-1 solutions is a
polynomial C(x, y) in the variables x1, . . . , xn and y1, . . . , ym, such that:

1. F (x1, . . . , xn, 0) = 0; and

2. F (x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

The essence of IPS is that a proof (or refutation) is a single polynomial that can be written
simply as an arithmetic circuit or formula. The advantage of this formulation is that now we can
obtain direct connections between circuit/formula hardness (i.e., “computational hardness”) and
hardness of proofs. Grochow and Pitassi showed indeed that a lower bound on IPS written as
an arithmetic circuit implies that the permanent does not have polynomial-size algebraic circuits
(Valiant’s conjectured separation VNP 6= VP [Val79]); And similarly, a lower bound on IPS writ-
ten as an arithmetic formula implies that the permanent does not have polynomial-size algebraic
formulas (VNP 6= VPe, ibid).

Under certain assumptions, Grochow and Pitassi [GP14] were able to connect their result to
standard propositional-calculus proof systems, i.e., Frege and Extended Frege. Their assumption
was the following: Frege has polynomial-size proofs of the statement expressing that the PIT for
arithmetic formulas is decidable by polynomial-size Boolean circuits (PIT for arithmetic formulas
is the problem of deciding whether an input arithmetic formula computes the [formal] zero polyno-
mial). They showed that4, under this assumption super-polynomial lower bounds on Frege proofs
imply that the permanent does not have polynomial-size arithmetic circuits. This, in turn, can be
considered as a (conditional) justification for the apparent long-standing difficulty of proving lower
bounds on strong proof systems.

3We do not discuss here the important thread of results whose aim is to establish conditional lower bounds based
on Nisan-Wigderson generators. This direction was developed in e.g. [ABSRW04, Raz15, Kra04, Kra10].

4We focus only on the relevant results about Frege proofs from [GP14] (and not the results about Extended Frege
in [GP14]; the latter proof system operates, essentially, with Boolean circuits, in the same way that Frege operates
with Boolean formulas (equivalently NC1 circuits)).

4

1.3 Overview of results and proofs

1.3.1 Sketch

In this work we give a novel characterization of the propositional calculus—a fundamental and
prominent object by itself—and by this contribute to the understanding of strong propositional
proof systems, and to the fundamental search for lower bounds on these proofs. We formulate a
very natural proof system, namely a non-commutative variant of the ideal proof system, which we
show captures unconditionally (up to a quasi-polynomial-size increase, and in some cases only a
polynomial increase5) propositional Frege proofs. A proof in the non-commutative IPS is simply a
single non-commutative polynomial written as a non-commutative formula.

Our results thus give a compelling and simple new characterization of the proof complexity
of propositional Frege proofs and brings new hope for achieving lower bounds on strong proof
systems, by reducing the task of lower bounding Frege proofs to the following seemingly much
more manageable task: proving matrix rank lower bounds on the matrices associated with certain
non-commutative polynomials (in the sense of Nisan [Nis91]; see below for details).

The new characterization also tightens the recent results of Grochow and Pitassi [GP14] in the
following sense:

(i) The non-commutative IPS is polynomial-time checkable—whereas the original IPS was check-
able in probabilistic polynomial-time; and

(ii) Frege proofs unconditionally quasi-polynomially simulate the non-commutative IPS—whereas
Frege was shown to efficiently simulate IPS only assuming that the decidability of PIT for
(commutative) arithmetic formulas by polynomial-size circuits is efficiently provable in Frege.

The tighter result shows that, at least for Frege, and in the framework of the ideal proof system,
lower bounds on Frege proofs do not necessarily entail in themselves very strong computational
lower bounds.

1.3.2 Some preliminaries: non-commutative polynomials and formulas

A non-commutative polynomial over a given field F and with the variables X := {x1, x2, . . .} is
a formal sum of monomials with coefficients from F such that the product of variables is non-
commuting. For example, x1x2 − x2x1 + x3x2x

2
3 − x2x

3
3, x1x2 − x2x1 and 0 are three distinct

polynomials in F〈X〉. The ring of non-commutative polynomials with variables X and coefficients
from F is denoted F〈X〉.

A polynomial (i.e., a commutative polynomial) over a field is defined in the same way as a
non-commutative polynomial except that the product of variables is commutative; in other words,
it is a sum of (commutative) monomials.

A non-commutative arithmetic formula (non-commutative formula for short) is a fan-in two
labeled tree, with edges directed from leaves towards the root, such that the leaves are labeled with
field elements (for a given field F) or variables x1, . . . , xn, and internal nodes (including the root) are
labeled with a plus + or product × gates. A product gate has an order on its two children (holding

5We establish a slightly stronger characterization: the non-commutative IPS polynomially simulates Frege; and
conversely, the complexity in which Frege simulates the non-commutative IPS depends on the degree of the non-
commutative IPS refutation; e.g., the simulation is polynomial when refutations are of logarithmic degrees (see note
after Theorem 1.7).

5

the order of non-commutative product). A non-commutative formula computes a non-commutative
polynomial in the natural way (see Definition 2.5).

Exponential-size lower bounds on non-commutative formulas (over any field) were established by
Nisan [Nis91]. The idea (in retrospect) is quite simple: first transform a non-commutative formula
into an algebraic branching program (ABP; Definition 4.13); and then show that the number of
nodes in the ith layer of an ABP computing a degree d homogenous non-commutative polynomial
f is bounded from below by the rank of the degree i-partial-derivative matrix of f .6 Thus, lower
bounds on non-commutative formulas follow from quite immediate rank arguments (e.g., the partial
derivative matrices associated with the permanent and determinant can easily be shown to have
high ranks).

1.3.3 Non-commutative ideal proof system

Recall the IPS refutation system from Definition 1.1 above. We use the idea introduced in [Tza11],
which considered adding the commutator x1x2 − x2x1 as an axiom in propositional algebraic proof
systems, to define a refutation system that polynomially simulates Frege:

Definition 1.2 (Non-commutative IPS). Let F be a field. Assume that F1(x) = F2(x) = · · · =
Fm(x) = 0 is a system of non-commutative polynomial equations from F〈x1, . . . , xn〉, and suppose
that the following set of equations (axioms) are included in the Fi(x)’s:

Boolean axioms: xi · (1− xi) , for all 1 ≤ i ≤ n ;

Commutator axioms: xi · xj − xj · xi , for all 1 ≤ i < j ≤ n .

Suppose that the Fi(x)’s have no common 0-1 solutions.7 A non-commutative IPS refutation

(or certificate) that the system of Fi(x)’s is unsatisfiable is a non-commutative polynomial F(x, y)
in the variables x1, . . . , xn and y1, . . . , ym (i.e. F ∈ F〈x, y〉), such that:

1. F(x1, . . . , xn, 0) = 0; and

2. F(x1, . . . , xn, F1(x), . . . , Fm(x)) = 1.

We always assume that the non-commutative IPS refutation is written as a non-commutative
formula. Hence the size of a non-commutative IPS refutation is the minimal size of a non-
commutative formula computing the non-commutative IPS refutation.

Note: (i) It is important to note that identities 1 and 2 in Definition 1.2 are formal identi-
ties between non-commutative polynomials. It is possible to show that without the commutator
axioms the system becomes incomplete in the sense that there will be unsatisfiable systems of non-
commutative polynomials F1(x) = F2(x) = · · · = Fm(x) = 0 (where the Fi’s include the Boolean
and commutator axioms) for which there are no non-commutative IPS refutations.

(ii) In order to prove that a system of commutative polynomial equations {Pi = 0} (where each
Pi is expressed as an arithmetic formula) has no common roots in non-commutative IPS, we write
each Pi as a non-commutative formula (in some way; note that there is no unique way to do this).

6The degree i partial derivative matrix of f is the matrix whose ro‘ws are all non-commutative monomials of
degree i and columns are all non-commutative monomials of degree d− i, such that the entry in row M and column
N is the coefficient of the d degree monomial M ·N in f .

7One can check that the Fi(x)’s have no common 0-1 solutions in F iff they do not have a common 0-1 solution in
every F-algebra.

6

The main result of this paper is that the non-commutative IPS (over either Q or Zq, for any
prime q) polynomially simulates Frege; and conversely, Frege quasi-polynomially simulates the
non-commutative IPS (over Z2). We explain the results in what follows.

Non-commutative IPS simulates Frege

For the purpose of the next theorem we use a standard translation of propositional formulas T into
non-commutative arithmetic formulas:

Definition 1.3 (tr(f)). Let tr(xi) := xi, for variables xi; tr(false) := 1; tr(true) := 0; and by
induction on the size of the propositional formula: tr(¬T) := 1− tr(T); tr(T1 ∨T2) = tr(T1) · tr(T2)
and finally tr(T1 ∧ T2) = 1− (1− tr(T1)) · (1− tr(T2)).

For a non-commutative formula f denote by f̂ the non-commutative polynomial computed by

f . Thus, T is a propositional tautology iff t̂r(T) = 0 for every 0-1 assignment to the variables of
the non-commutative polynomial.

Theorem 1.4 (First main theorem). Let F be either the rational numbers Q or Zq, for a prime
q. The non-commutative IPS refutation system, when refutations are written as non-commutative
formulas over F, polynomially simulates the Frege system. More precisely, for every propositional
tautology T, if T has a polynomial-size Frege proof then there is a non-commutative IPS certificate
(over F) of tr(¬T) that has a polynomial non-commutative formula size.

The fact that an arithmetic formula (or circuit) in the form of the IPS can simulate a proposi-
tional Frege proof was shown in [GP14]. The non-commutative IPS, on the other hand, is much more
restrictive than the original (commutative) IPS: instead of using commutative polynomials (writ-
ten as arithmetic formulas) we now use non-commutative polynomials (written as non-commutative
arithmetic formulas). And as mentioned above, in order to maintain the completeness of the non-
commutative IPS we must add the commutator axioms xixj − xjxi to the system. Thus, the
question arises: how can we still polynomially simulate Frege in this restrictive framework? The
answer to this, which also constitutes one of the main observation of the simulation, is that the
commutator axioms are already used implicitly in propositional Frege proofs: every classical propo-
sitional calculus system has some (possibly implicit) structural rules that enable one to commute
AND’s and OR’s (e.g., A∧B is not the same formula as B ∧A, from the perspective of the propo-
sitional calculus). In other words, Frege proofs operate with formulas as purely syntactic terms,
and thus commutativity of AND and OR are not free for Frege proofs.

We now sketch in more detail the proof of Theorem 1.4. To simulate Frege proofs we use
an intermediate proof system F-PC (standing for “formula polynomial calculus”) introduced by
Grigoriev and Hirsch [GH03]. The F-PC proof system (Definition 2.8) can be thought of as a simple
variant of the well-studied polynomial calculus (PC) system in which polynomials are written as
arithmetic formulas (instead of sums of monomials as in PC).

Recall that a PC-refutation, as introduced by Clegg, Edmonds and Impagliazzo [CEI96], is
simply a sequence of polynomials written as sum of monomials, where each polynomial is either
taken from the initial unsatisfiable set of polynomials or was derived using two algebraic rules:
from a pair of previously derived polynomials f and g, derive af + bg (for a, b field elements); and
from a previously derived f , derive xi · f , for any variable xi. The F-PC proof system makes the
following two changes to PC (turning it into a provably much stronger system):

7

(i) every polynomial in an F-PC-proof is written as an arithmetic formula (instead of as a sum
of monomials) and is treated as a purely syntactic object (like in Frege); and

(ii) we can derive new polynomials either by the two aforementioned PC rules, or by local rewriting
rules operating on any subformula and expressing simple operations on polynomials (such as
commutativity of addition and product, associativity, distributivity, etc.).

Grigoriev and Hirsch [GH03] showed that F-PC polynomially simulates Frege proofs, and that
for tree-like Frege proofs the polynomial simulation yields tree-like F-PC proofs. Since tree-like
Frege is polynomially equivalent to Frege—because Frege proofs can always be balanced to a depth
that is logarithmic in their size (cf. [Kra95] for a proof)—we get that tree-like F-PC polynomially
simulates (dag-like) Frege proofs.

Therefore, to conclude Theorem 1.4 it suffices to prove that the non-commutative IPS poly-
nomially simulates tree-like F-PC proofs. To do this, loosely speaking, we construct the non-
commutative formula tree according to the structure of the tree-like F-PC proof, line by line.

Now, since we write refutations as non-commutative formulas we can use the polynomial-time
deterministic Polynomial Identity Testing (PIT) algorithm for non-commutative formulas, devised
by Raz and Shpilka [RS05], to check in deterministic polynomial-time the correctness of non-
commutative IPS refutations:

Corollary 1.5. The non-commutative IPS is a sound and complete refutation system in the sense
of Cook-Reckhow [CR79]. That is, it is a sound and complete refutation system for unsatisfi-
able propositional formulas in which refutations can be checked for correctness in deterministic
polynomial-time.

This should be contrasted with the original (commutative) IPS of [GP14], for which verification
of refutations is done in probabilistic polynomial time using the standard Schwartz-Zippel [Sch80,
Zip79] PIT algorithm.

The major consequence of Theorem 1.4 is that to prove a super-polynomial Frege lower bound it
suffices to prove a super-polynomial lower bound on non-commutative formulas computing certain
polynomials. Specifically, it is enough to prove that any non-commutative IPS certificate F(x, y)
(which is simply a non-commutative polynomial) has a super-polynomial non-commutative formula
size; and yet in other words, it suffices to show that any such F must have a super-polynomial
total rank according to the associated partial-derivatives matrices in the sense of Nisan [Nis91] as
discussed before.

Frege simulates non-commutative IPS

We shall prove that Frege simulates the non-commutative IPS for CNFs (this is the case considered
in [GP14]), over GF (2), and with only a quasi-polynomial increase in size (and for some specific
cases the simulation can become polynomial).

It will be convenient to use a translation of clauses to non-commutative formulas which is
slightly different than Definition 1.3:

Definition 1.6 (tr′(f) and Qφ
i). Given a Boolean formula f we define its non-commutative formula

translation tr′(f) as follows. Let tr′(x) := 1 − x and tr′(¬x) := x, for x a variable. Let

8

tr′(false) := 0; tr′(true) := 1; and tr′(f1 ∨ . . . ∨ fr) := tr′(f1) · · · tr
′(fr) (where the sequence of

products stands for a (balanced) fan-in two tree of product gates with tr′(fi) on the leaves). Further,

for a CNF φ = κ1 ∧ . . .∧ κm, denote by Qφ
i the non-commutative formula translation tr′(κi) of the

clause κi.

Note that this way, the system of equations Qφ
1 = 0, . . . , Qφ

m = 0 is unsatisfiable iff φ is unsat-
isfiable.

Theorem 1.7 (Second main theorem). Let φ = κ1∧ . . .∧κm be a CNF and let Qφ
1 , . . . , Q

φ
m denote

the corresponding non-commutative formulas for the clauses of φ. If there is a non-commutative
IPS refutation of size s of Qφ

1 , . . . , Q
φ
m over GF (2), then there is a Frege proof of size sO(log s) of

the tautology ¬φ.

Note: The proof of Theorem 1.7 achieves in fact a slightly stronger simulation than stated. That is,
our simulation shows that if the degree of the non-commutative IPS refutation is r and its formula

depth is d, then there is a Frege proof of ¬φ with size poly
((

d+r+1
r

)
· s
)
. And in particular, Frege

polynomially simulates non-commutative IPS refutations of O(logn) degrees (for n the number of
variables in the CNF). However, for simplicity we shall always assume that the depth d of the non-
commutative IPS formula is logarithmic in its size (Lemma 4.2 shows that we can always balance
non-commutative formulas), and so explicitly we only deal with the case where d = O(log s) and
r = O(s).

The proof of Theorem 1.7 consists of several separate steps of independent interest. From the
logical point of view, the argument is a short Frege proof of a reflection principle for the non-
commutative IPS system. A reflection principle for a given proof system P is a statement that
says that if there exists a P -proof of a formula F then F is also true. The argument becomes
rather complicated because we need to prove properties of the PIT algorithm for non-commutative
formulas devised by Raz and Shpilka [RS05] within the restrictive framework of propositional Frege
proofs.

Our goal is then to prove ¬φ in Frege, given a non-commutative IPS refutation π of φ.

Step 1: balancing. We first balance the non-commutative IPS π, so that its depth is log-
arithmic in its size. We observe that the recent construction of Hrubeš and Wigderson [HW14]
for balancing non-commutative formulas with division gates (incurring with at most a polyno-
mial increase in size) results in a division-free formula, when the initial non-commutative formula
is division-free by itself. Therefore, we can assume that the non-commutative IPS certificate is
already balanced (this step is independent of the Frege system).

Step 2: Booleanization. We then consider our balanced π, which is a non-commutative
polynomial identity over GF (2), as a Boolean tautology, by replacing plus gates with XORs and
product gates with ANDs.

Step 3: reflection principle. We use a reflection principle to reduce the task of efficiently
proving ¬φ in Frege to the following task: show that any non-commutative formula identity over
GF (2), considered as a Boolean tautology, has a short Frege proof.

Step 4: homogenization. This is the only step that is responsible for the quasi-polynomial
size increase in Theorem 1.7. More precisely, this increase in size depends on the fact that for
the purpose of establishing short Frege proofs for all non-commutative polynomial identities over

9

GF (2) (considered as Boolean tautological formulas) it is important that the formulas are written
as a sum of homogenous non-commutative formulas.

Note that it is not known whether arithmetic formulas can be turned into a (sum of) ho-
mogenous formulas with only a polynomial increase in size (in contrast to the standard efficient
homogenization of arithmetic circuits by Strassen [Str73] that does allow such a conversion). Nev-
ertheless, Strassen’s standard procedure enables us to transform any polynomial-size arithmetic
formula into a sum of homogenous formulas with only a quasi-polynomial increase in size: any
formula of size poly(n) computing a polynomial f (and thus the degree of f is also polynomial) can
be transformed into a sum of homogenous formulas, each having size nO(logn) and computes the
corresponding homogenous part of f . (One can show that the same also holds for non-commutative
formulas.)

For the purpose of establishing a quasi-polynomial simulation of non-commutative IPS by Frege,
it is sufficient to use the original Strassen’s homogenization procedure (as simulated inside Frege;
cf. [HT12]). However, as the note after Theorem 1.7 indicates, we show a slightly stronger simulation
result, using an efficient Frege simulation of a recent result due to Raz [Raz13] who showed how to
transform an arithmetic formula into (a sum of) homogenous formulas in a manner which is more
efficient than Strassen [Str73]. Specifically, in Lemma 4.8 we show that:

1. The same construction in [Raz13] also holds for non-commutative formulas;

2. This construction for non-commutative formulas can be carried out efficiently inside Frege.
That is, if F is a non-commutative formula of size s and depth d computing a homogenous non-
commutative polynomial over GF (2) of degree r, then there exists a syntactic homogenous

non-commutative formula F ′ computing the same polynomial and with size O
((

r+d+1
r

)
· s
)
,

such that Frege admits a proof of F ↔ F ′ of size polynomial (in |F ′|).

Step 5: short proofs for homogenous non-commutative identities. Now that we have
reduced our task to the task of showing that every non-commutative formula identity over GF (2)
(considered as a tautology) has a short Frege proof; and we have also agreed to first turn (in-
side Frege) our non-commutative identities into homogenous formulas (incurring in up to a quasi-
polynomial increase in the formulas size)—it remains only to show how to efficiently proof in Frege
homogenous non-commutative identities. (Formally, we shall in fact deal with syntactic homoge-
nous formulas.)

To this end we essentially construct an efficient Frege proof of the correctness of the Raz and
Shpilka PIT algorithm for non-commutative formulas [RS05]. This PIT algorithm uses some basic
linear algebraic concepts that might be beyond the efficient-reasoning strength of Frege. However,
since we only need to show the existence of short Frege proofs for the PIT algorithm’s correctness,
we can supply witnesses to witness the desired linear algebraic objects needed in the proof (these
witnesses will be a sequence of linear transformations).

A bigger obstacle is that it seems impossible to reason directly inside Frege about the algorithm
of [RS05], since this algorithm first converts a non-commutative formula into an algebraic branching
program (ABP); but the evaluation of ABPs (apparently) cannot be done with Boolean formulas
(and accordingly Frege (apparently) cannot reason about the evaluation of ABPs). The reason
for this apparent inability of Frege to reason efficiently about ABP’s evaluation is that an ABP
is a slightly more “sequential” object than a formula: an evaluation of an ABP with d layers
can be done by an iterative matrix multiplication of d matrices—known to be doable with quasi-
polynomial size formulas (or polynomial-size circuits with O(log2 n) depth)—while Frege is a system

10

that operates with formulas. To overcome this obstacle we show how to perform Raz and Shpilka’s
PIT algorithm directly on non-commutative formulas, without converting the formulas first into
ABPs. This technical contribution takes quite a large part of the argument (Sec. 4.7).

We are finally able to prove the following statement, which might be of independent interest:

Theorem 1.8. If a non-commutative homogeneous formula F (x) over GF (2) of size s is identically
zero, then the corresponding Boolean formula ¬Fbool(x) (where Fbool results by replacing + with
XOR and · with AND in F (x)) can be proved with a Frege proof of size at most sO(1).

A more detailed overview of the proof (specifically, of the proof of Theorem 4.11) appears in
Section 4.4.

1.4 Comparison with previous work

Our main characterization of the Frege system is based on a non-commutative version of the IPS
system from Grochow and Pitassi [GP14]. As described above, the non-commutative IPS gives a
tighter characterization than the (commutative) IPS in [GP14], and close to capture almost tightly
the Frege system.

In the original (formula version of the) IPS, proofs are arithmetic formulas, and thus any
super-polynomial lower bound on IPS refutations implies VNP 6= VPe, or in other words, that the
permanent does not have polynomial-size arithmetic formulas (Joshua Grochow [personal commu-
nication]). This shows that proving IPS lower bounds will be considerably difficult to obtain. For
the non-commutative IPS, on the other hand, we face a seemingly much favourable situation: an
exponential-size lower bound on non-commutative IPS gives only a corresponding lower bound on
non-commutative formulas, for which exponential-size lower bounds are already known [Nis91]. In
other words, exponential-size lower bounds on Frege implies merely—at least in the context of the
Ideal Proof System—corresponding lower bounds on non-commutative formulas, a result which is
already known. In view of this, it seems that there is no strong concrete justification to believe
that Frege lower bounds are beyond current techniques.

Let us also mention the work in [Tza11] that dealt with propositional proof systems over non-
commutative formulas. In [Tza11] the choice was made to define all proof systems as polynomial
calculus-style systems in which proof-lines are written as non-commutative formulas (as well as
the more restricted class of ordered-formulas). This meant that the characterization of a proof
system in terms of a single non-commutative polynomial is lacking from that work (as well as the
consequences we obtained in the current work).

2 Preliminaries

For a positive natural number n we use the standard notation [n] for {1, . . . , n}.

Definition 2.1 (Boolean formulas). Given a set of input variables {x1, x2, . . .} a Boolean formula
on the input variables is a rooted finite tree of fan-in at most 2, with edges directed from leaves to
the root. We consider the edges coming into nodes as ordered.8 Internal nodes are labeled with the
Boolean gates OR, AND and NOT, denoted ∨,∧,¬, respectively, where the fan-in of ∨ and ∧ is two
and the fan-in of ¬ is one. The leaves are labeled either with input variables or with 0, 1 (identified

8This is not important in general, but for Frege proofs it is in fact implicit that propositional formulas are ordered.

11

with the truth values false and true, resp.). The entire formula computes the function computed by
the gate at the root. Given a formula F , the size of the formula is the number of Boolean gates in
F , denoted |F |.

Given a pair of Boolean formulas A and B over the variables x1, . . . , xn, we denote by A[B/xi]
the formula A in which every occurrence of xi in A is substituted by the formula B.

We use the symbol ≡ to denote logical equivalence and we use the symbol A ↔ B to denote
(A→ B) ∧ (B → A).

2.1 The Frege proof system

As outlined in the introduction, a Frege proof system is any standard propositional proof system
for proving propositional tautologies having finitely many axiom schemes and deduction rules, and
where proof-lines are written as Boolean formulas. The size of a Frege proof is the number of
symbols it takes to write down the proof, namely the total of all the formula sizes appearing in the
proof. Let us define Frege proofs in a more formal way.

Definition 2.2 (Frege (derivation) rule). A Frege rule is a sequence of propositional formulas

A0(x), . . . , Ak(x), for k ≤ 0, written as A1(x),...,Ak(x)
A0(x)

. In case k = 0, the Frege rule is called an
axiom scheme. A formula F0 is said to be derived by the rule from F1, . . . , Fk if F0, . . . , Fk are
all substitution instances of A1, . . . , Ak, for some assignment to the x variables (that is, there are
formulas B1, . . . , Bn such that Fi = Ai[B1/x1, . . . , Bn/xn], for all i = 0, . . . , k). The Frege rule is
said to be sound if whenever an assignment satisfies the formulas A1, . . . , Ak above the line, then
it also satisfies the formula A0 below the line.

Definition 2.3 (Frege proof). Given a set of Frege rules, a Frege proof is a sequence of Boolean
formulas such that every formula is either an axiom or was derived by one of the given Frege rules
from previous formulas. If the sequence terminates with the Boolean formula A, then the proof is
said to be a proof of A. The size of a Frege proof is the sum of all formula sizes in the proof.

A proof system is said to be sound if it admits proofs of only tautologies. A proof system is
said to be implicationally complete if for all set of formulas S, if S semantically implies F , then
there is a proof of F using (possibly) axioms from S.

Definition 2.4 (Frege proof system). Given a set P of sound Frege rules, we say that P is a Frege
proof system if P is implicationally complete.

Note that a Frege proof is always sound since the Frege rules are assumed to be sound. Frege
is also complete (that is, can prove all tautologies), by implicational completeness. We do not need
to work with a specific Frege proof system, since a basic result in proof complexity by Reckhow
[Rec76] states that every two Frege proof systems, even with different propositional connectives, are
polynomially equivalent. For concreteness the reader can think of Schoenfield’s system from the
introduction, noting it is indeed a Frege system.

The problem of demonstrating super-polynomial size lower bounds on propositional Frege proofs
asks whether there is a family (Fn)

∞
n=1 of propositional tautological formulas for which there is no

polynomial p such that the minimal Frege proof size of Fn is at most p(|Fn|), for all n ∈ Z+.

12

2.2 Preliminary algebraic models of computation and proofs

Here we define arithmetic formulas (both commutative and non-commutative) as well as the alge-
braic propositional proof system Polynomial Calculus over Formulas (F-PC) introduced by Grig-
oriev and Hirsch [GH03].

Definition 2.5 (Non-commutative formula). Let F be a field and {x1, x2, . . .} be (algebraic) vari-
ables. A non-commutative arithmetic formula (or non-commutative formula for short) is a finite
(ordered) labeled tree, with edges directed from the leaves to the root, and with fan-in at most two,
such that there is an order on the edges coming into a node: the first edge is called the left edge
and the second one the right edge. Every leaf of the tree (namely, a node of fan-in zero) is labeled
either with an input variable xi or a field element. Every other node of the tree is labeled either
with + or × (in the first case the node is a plus gate and in the second case a non-commutative
product gate). We assume that there is only one node of out-degree zero, called the root.

A non-commutative formula computes a non-commutative polynomial in F〈x1, . . . , xn〉 in the
following way. A leaf computes the input variable or field element that labels it. A plus gate
computes the sum of polynomials computed by its incoming nodes. A product gate computes the
non-commutative product of the polynomials computed by its incoming nodes according to the
order of the edges. (Subtraction is obtained using the constant −1.) The output of the formula is
the polynomial computed at the root. The depth of a formula is the maximal length of a path from
the root to the leaf. The size of a non-commutative formula F is the total number of internal nodes
(i.e., all nodes except the leaves) in its underlying tree, and is denoted similarly to the Boolean
case by |F |.

The definition of (a commutative) arithmetic formula is almost identical:

Definition 2.6 ((Commutative) arithmetic formula). An arithmetic formula is defined in a similar
way to a non-commutative formula, except that we ignore the order of multiplication (that is, a
product node does not have order on its children and there is no order on multiplication when
defining the polynomial computed by a formula).

Substitutions of non-commutative formulas into other non-commutative formulas are defined
and denoted similarly to substitutions in Boolean formulas.

Note that we consider arithmetic formulas as syntactic objects. For example, x1 + x2 and
x2 + x1 are different formulas. Furthermore, in the proof system F-PC defined below they should
be derived from each other via an explicit application of a rewrite rule.

2.2.1 Polynomial calculus over formulas F-PC

The polynomial calculus over formulas system, denoted F-PC, was introduced by Grigoriev and
Hirsch [GH03]. This system operates with (commutative) arithmetic formulas (as purely syntactic
terms). F-PC is a refutation system: an F-PC refutation establishes that a collection of polynomials
has no 0-1 roots. We can also treat F-PC as a proof system for propositional tautologies: for every
Boolean tautology T , tr(¬T) (Definition 1.3) is a polynomial that does not have a 0-1 root, and
therefore, an F-PC refutation of tr(¬T) can be considered as an F-PC proof of the tautology T .

Definition 2.7 (Rewrite rule). A rewrite rule is a pair of formulas f, g denoted f → g. Given
a formula Φ, an application of a rewrite rule f → g to Φ is the result of replacing at most one

13

occurrence of f in Φ by g (that is, substituting a subformula f inside Φ by the formula g). We
write f ↔ g to denote the pair of rewriting rules f → g and g → f .

Definition 2.8 (F-PC [GH03]). Fix a field F. Let F := {f1, . . . , fm} be a collection of formulas9

computing polynomials from F[x1, . . . , xn]. Let the set of axioms be the following formulas:

Boolean axioms xi · (1− xi) , for all 1 ≤ i ≤ n .

A sequence π = (Φ1, . . . ,Φℓ) of formulas computing polynomials from F[x1, . . . , xn] is said to be an

F-PC proof of Φℓ from F , if for every i ∈ [ℓ] we have one of the following:

1. Φi = fj , for some j ∈ [m];

2. Φi is a Boolean axiom;

3. Φi was deduced by one of the following inference rules from previous proof-lines Φj ,Φk , for
j, k < i:

Product
Φ

xr · Φ
, for r ∈ [n] .

Addition
Φ Θ

a · Φ+ b ·Θ
, for a, b ∈ F .

(Where Φ, xr ·Φ,Θ, a ·Φ, b ·Θ are formulas constructed as displayed; e.g., xr ·Φ is the formula
with product gate at the root having the formulas xr and Φ as children.)10

4. Φi was deduced from previous proof-line Φj, for j < i, by one of the following rewriting
rules expressing the polynomial-ring axioms (where f, g, h range over all arithmetic formulas
computing polynomials in F[x1, . . . , xn]):

Zero rule 0 · f ↔ 0

Unit rule 1 · f ↔ f

Scalar rule t↔ α, where t is a formula containing no variables (only field F elements) that
computes the constant α ∈ F.

Commutativity rules f + g ↔ g + f , f · g ↔ g · f

Associativity rule f + (g + h) ↔ (f + g) + h , f · (g · h) ↔ (f · g) · h

Distributivity rule f · (g + h) ↔ (f · g) + (f · h)

(The semantics of an F-PC proof-line pi is the polynomial equation pi = 0.)
An F-PC refutation of F is a proof of the formula 1 from F . The size of an F-PC proof π is

defined as the total size of all formulas in π and is denoted by |π|.

9Note here that we are talking about formulas (treated as syntactic terms). Also notice that all the formulas in
F-PC are considered as commutative formulas computing (commutative) polynomials, though, because the formulas
are merely syntactic terms we have an order on children of internal nodes, and in particular children of product gates
are ordered.

14

Definition 2.9 (Tree-like F-PC). A system F-PC is a tree-like F-PC if every derived arithmetic
formula in the proof system is used only once (and if it is needed again, it must be derived once
more).

For the purpose of comparing the relative complexity of different proof systems we have the
concept of a simulation . Specifically, we say that a propositional proof system P polynomially
simulates another propositional proof system Q if there is a polynomial-time computable function
f that maps Q-proofs to P -proofs of the same tautologies (if P and Q use different representations
for tautologies, we fix a translation (such as tr(·)) from one representation to the other). In case f
is computable in time t(n) (for n the input-size), we say that P t(n)-simulates Q. Specifically, if
t(n) = nO(logn) we say the simulation is quasi-polynomial. We say that P and Q are polynomially
equivalent in case P polynomially simulates Q and Q polynomially simulates P . (Our simulations
will always be formally t(n)-simulations, though we might not always state explicitly that the map
f , from Q-proofs to P -proofs is efficiently computable, and only show the existence of a P -proof
whose size is proportional to the corresponding Q-proof.)

Tree-like F-PC polynomially simulates Frege. Grigoriev and Hirsch showed the following:

Theorem 2.10 ([GH03]). Tree-like F-PC polynomially simulates Frege. More precisely, for every
propositional tautology T, if T has a polynomial-size Frege proof then there is a polynomial-size
tree-like F-PC proof of tr(¬T) (over Zq, for q a prime, or Q).

Let us shortly explain how Grigoriev and Hirsch [GH03] obtained a simulation of Frege by
tree-like F-PC (in contrast to simply (dag-like) F-PC), as this is not an entirely trivial result
(and which, in turn, is important to understand our simulation). Indeed, this simulation depends
crucially on a somewhat surprising result of Kraj́ıček who showed that tree-like Frege and (dag-like)
Frege are polynomially equivalent [Kra95]:

Theorem ([Kra95]). Tree-like Frege proofs polynomially simulate Frege proofs.

Grigoriev and Hirsch show that (Theorem 3 in [GH03]) F-PC polynomially simulates Frege.
Then, by inspection of this simulation, one can observe that tree-like Frege proofs are simulated
by tree-like F-PC proofs (which is sufficient to conclude the simulation due to the theorem above),
namely:

Lemma ([GH03]). Tree-like F-PC polynomially simulates tree-like Frege.

3 Non-commutative ideal proof system polynomially simulates

Frege

Here we show that the non-commutative IPS polynomially simulates Frege.

Theorem 3.1 (restatement of Theorem 1.4). The non-commutative IPS refutation system (when
refutations are written as non-commutative formulas) polynomially simulates the Frege system.

10In [GH03] the product rule of F-PC is defined so that one can derive Θ · Φ from Φ, where Θ is any formula,
and not just a variable. However, it is easy to show that the definition of F-PC in [GH03] and our Definition 2.8
polynomially-simulate each other.

15

More precisely, for every propositional tautology T , if T has a polynomial-size Frege proof then
there is a non-commutative IPS refutation of tr(¬T) (over Zp for a prime p, or Q) of polynomial
size.

Recall that Raz and Shpilka [RS05] gave a deterministic polynomial-time PIT algorithm for
non-commutative formulas (over any field):

Theorem 3.2 (PIT for non-commutative formulas [RS05]). There is a deterministic polynomial-
time algorithm that decides whether a given noncommutative formula over a field F computes the
zero polynomial 0.11

Now, since we write refutations as non-commutative formulas we can use the theorem above
to check in deterministic polynomial-time the correctness of non-commutative IPS refutations,
obtaining:

Corollary 3.3 (restatement of Corollary 1.5). The non-commutative IPS is a sound and complete
Cook-Reckhow refutation system. That is, it is a sound and complete refutation system for unsat-
isfiable propositional formulas in which refutations can be checked for correctness in deterministic
polynomial-time.

To prove Theorem 3.1, we will show in Section 3.1 that the non-commutative IPS polynomially-
simulates tree-like F-PC (Definition 2.8), which sufficed to complete the proof, due to Theorem
2.10.

3.1 Non-commutative IPS polynomially simulates tree-like F -PC

For convenience, let Ci,j denote the commutator axiom xi · xj − xj · xi, for i, j ∈ [n], i 6= j, and let
C denote the vector of all the Ci,j axioms. When we write P ·Q−Q · P where P,Q are formulas
(e.g., xi and xj , resp.), we mean ((P ·Q) + (−1 · (Q · P))).

Theorem 3.4. Non-commutative IPS polynomially simulates tree-like F-PC (Definition 2.8).
Specifically, if π is a tree-like F-PC proof of a tautology T then there is a non-commutative IPS
refutation of tr(¬T) of size polynomial in |π|.

Proof. Let F1, . . . , Fm be arithmetic formulas over the variables x1, . . . , xn. We denote by F the
vector (F1, . . . , Fm). Since an arithmetic formula is a syntactic term in which the children of gates
are ordered we can treat a (commutative) arithmetic formula as a non-commutative arithmetic
formula by taking the order on the children of products gates to be the order of non-commutative
multiplication.

Suppose F-PC has a poly(n)-size tree-like refutation π := (L1, . . . , Lk) of the Fi’s (i.e., a proof
of the polynomial 1 from F1, . . . , Fm), where each Lj is an arithmetic formula. We construct a
corresponding non-commutative IPS refutation of the Fi’s from this F-PC tree-like refutation. The
following lemma suffices for this purpose:

Lemma 3.5. For every i ∈ [k], there exists a non-commutative formula φi such that

1. φi(x, 0) = 0;

11We assume here that the elements of F have an efficient representation and the field operations are efficiently
computable (e.g., the field of rationals).

16

2. φi(x,F,C) = Li ;

3. |φi| ≤
(∑

ℓ∈Ai
|Lℓ|

)4
, where Ai ⊂ [k] are the indices of the F-PC proof-lines involved in

deriving Li.

For example, if Li is derived by Lα and Lα is derived by Lβ for some β < α < i ∈ [k], then we
say that α, β are both involved in deriving Li. In other words, the lines involved in deriving
a proof-line Li are all the proof-lines in the sub-tree of Li when we consider the underlying
graph of the (tree-like) proof as a tree.

Note that if the lemma holds, then φk is a non-commutative IPS proof because it has the

property that φk(x, 0) = 0 and φk(x,F,C) = Lk = 1. And its size is bounded by
(∑

ℓ∈Ak
|Lℓ|

)4
≤

(∑
ℓ∈[k] |Lℓ|

)4
≤ O(|π|4).

Proof. We construct φi by induction on the length k of the refutation π. That is, for i from 1 to
k, we construct the non-commutative formula φi(x, y) according to Li, as follows:

Base case: Li is an axiom Fj for some j ∈ [m].
Let φi := yj . Obviously, φi(x, 0) = 0, φi(x,F,C) = Fj = Li and |φi| = 1 ≤ |Li|

4.

Induction step:
Case 1: Li is derived from the addition rule Li = aLj + bLj′ , for j, j

′ < i. Put φi := aφj + bφj′

where a, b ∈ F. Thus, φi(x, 0) = aφj(x, 0) + bφj′(x, 0) = 0, φi(x,F,C) = aLj + bLj′ = Li and

|φi| = |φj |+ |φj′ |+3 ≤
(∑

ℓ∈Aj
|Lℓ|

)4
+
(∑

ℓ∈Aj′
|Lℓ|

)4
+3 ≤

(∑
ℓ∈Ai

|Lℓ|
)4

(where the right most

inequality holds since π is a tree-like refutation and hence Aj ∩Aj′ = ∅).

Case 2: Li is derived from the product rule Li = xr ·Lj , for r ∈ [n] and j < i. Put φi := (xr ·φj).

Then φi(x, 0) = xr ·φj(x, 0) = 0, φi(x,F,C) = xr ·Lj = Li and |φi| = |φj |+2 ≤
(∑

ℓ∈Aj
|Lℓ|

)4
+2 ≤

(∑
ℓ∈Ai

|Lℓ|
)4
.

Case 3: Li is derived from Lj , for j < i, by a rewriting rule which is not the commutative rule of
multiplication (f ·g ↔ g ·f). Let φi := φj . The non-commutative φi trivially satisfies the properties
claimed since all the rewriting rules (excluding the commutative rule of multiplication) express the
non-commutative polynomial-ring axioms, and thus cannot change the polynomial computed by a
non-commutative formula. And |φi| = |φj | ≤

(∑
ℓ∈Ai

|Lℓ|
)4
.

Case 4: Li is derived from Lj , for j < i, by a single application of the commutative rule of
multiplication. Then by Lemma 3.6 below, we can construct a non-commutative formula φLi,Lj

such that φi := (φj + φLi,Lj
) satisfies the desired properties (stated in Lemma 3.5).

Lemma 3.6. Let Li, Lj be non-commutative formulas, such that Li can be derived from Lj via
the commutative rule of multiplication f · g ↔ g · f . Then there is a non-commutative formula
φLi,Lj

(x, y) in variables {xℓ, yα,β , ℓ ∈ [n], α < β ∈ [n]}, such that:

1. φLi,Lj
(x, 0) = 0;

17

2. φLi,Lj
(x,C) = Li − Lj;

3.
∣∣φLi,Lj

∣∣ ≤ |Li|
2 |Lj |

2.

Proof. We define the non-commutative formula φLi,Lj
inductively as follows:

• If Li = (P · Q), and Lj = (Q · P), then φLi,Lj
is defined to be the formula constructed in

Lemma 3.7 below.

• If Li = (P ·Q), Lj = (P ′ ·Q′).

Case 1: If P = P ′, then let φLi,Lj
:= (P · φQ,Q′).

Case 2: If Q = Q′, then let φLi,Lj
:= (φP,P ′ ·Q).

• If Li = (P +Q), Lj = (P ′ +Q′).

Case 1: If P = P ′, then let φLi,Lj
= φQ,Q′ .

Case 2: If Q = Q′, then let φLi,Lj
= φP,P ′ .

By induction, the construction satisfies the desired properties.

Lemma 3.7. For any pair P,Q of two non-commutative formulas there exists a non-commutative
formula F in variables {xℓ, yi,j , ℓ ∈ [n], i < j ∈ [n]} such that:

1. F (x, 0) = 0;

2. F (x,C) = P ·Q−Q · P ;

3. |F | = |P |2 |Q|2.

Proof. Let s(P,Q) denote the smallest size of F satisfying the above properties. We will show that
s(P,Q) ≤ |P |2 · |Q|2 by induction on max(|P | , |Q|).

Base case: |P | = |Q| = 1.
In this case both P and Q are constants or variables, thus s(P,Q) = 1 ≤ |P |2 |Q|2.

In the following induction step, we consider the case where |P | ≥ |Q| (which is symmetric for
the case |P | < |Q|).

Induction step: Assume that |P | ≥ |Q| .
Case 1: The root of P is addition.

Let P = (P1 + P2). We have (after rearranging):

P ·Q−Q · P = ((P1 ·Q−Q · P1) + (P2 ·Q−Q · P2))

By induction hypothesis, we have s(P,Q) ≤ s(P1, Q) + 1 + s(P2, Q) ≤ |P1|
2 |Q|2 + 1 + |P2|

2 |Q|2 ≤
(|P1|+ |P2|+ 1)2 |Q|2 = |P |2 · |Q|2.
Case 2: The root of P is a product gate.

Let P = (P1 · P2). By rearranging:

P ·Q−Q · P = ((P1 · (P2 ·Q−Q · P2)) + ((P1 ·Q−Q · P1) · P2))

By induction hypothesis, we have s(P,Q) = |P1|+ 1 + s(P2, Q) + 1 + s(P1, Q) + 1 + |P2| ≤ |P1|+
1 + |P2|

2 |Q|2 + 1 + |P1|
2 |Q|2 + 1 + |P2| ≤ (|P1|+ |P2|+ 1)2 |Q|2 = |P |2 · |Q|2.

18

4 Frege quasi-polynomially simulates non-commutative IPS

In this long section we prove Theorem 4.1 stating that the Frege system quasi-polynomially sim-
ulates the non-commutative IPS (over GF (2)). Together with Theorem 3.1, this gives a new
characterization (up to a quasi-polynomial increase in size) of propositional Frege proofs as non-
commutative arithmetic formulas.

We use the notation in Section 1.3.3 as follows: for a clause κi in a CNF φ = κ1 ∧ . . . ∧ κm,
we denote by Qφ

i the non-commutative formula translation tr′(κi) of the clause κi (Definition 1.6).
Thus, ¬x translates to x, x translates to 1−x and f1 · · · fr translates to

∏
i tr

′(fi) (considered as a
tree of product gates with tr′(fi) as leaves), and where the formulas are over GF (2) (meaning that
1− x is in fact 1 + x). Recall that this way, for every 0-1 assignment (when we identify true with

1 and false with 0), Qφ
i = 0 iff κi is true.

Theorem 4.1 (Second main theorem; Restatement of Theorem 1.7). For a 3CNF φ = κ1∧ . . .∧κm
where Qφ

1 , . . . , Q
φ
m are the corresponding polynomial equations for the clauses, if there is a non-

commutative IPS refutation of size s of Qφ
1 , . . . , Q

φ
m over GF (2), then there is a Frege proof of size

sO(log s) of ¬φ.

As mentioned in the introduction, it will be evident that our proof in fact establishes a slightly
tighter simulation of the non-commutative IPS by Frege. Specifically, if the degree of the non-
commutative IPS refutation is r and its formula depth is d, then there is a Frege proof of ¬φ with

size poly
((

d+r+1
r

)
· s
)
. This will follow from our efficient simulation within Frege of Raz’ [Raz13]

homogenization construction (Lemma 4.8). Nevertheless, for simplicity we shall always assume that
the depth d of the non-commutative IPS refutation formula is logarithmic in the size s and that
the degree r of the refutation is at most s + 1, and thus will not take care to explicitly establish
the dependence of the simulation on the parameters d and r.

The rest of the paper is dedicated to proving Theorem 4.1.

4.1 Balancing non-commutative formulas

First we show that a non-commutative formula of size s can be balanced to an equivalent formula
of depth O(log s), and thus we can assume that the non-commutative IPS certificate is already
given as a balanced formula (this is needed for what follows). Both the statement of the balancing
construction and its proof are similar to Proposition 4.1 in Hrubeš and Wigderson [HW14] (which
in turn is similar to the case of commutative formulas with division gates in Brent [Bre74]). (Note
that a formula of a logarithmic depth (in the number of variables) must have a polynomial-size (in
the number of variables).)

Lemma 4.2. Assume that a non-commutative polynomial p can be computed by a formula of size
s. Then p can be computed by a formula of depth O(log s) (and hence of polynomial-size when s is
polynomial in the number of variables).

Proof. The proof is almost identical to Hrubeš and Wigderson’s proof of Proposition 4.1 in [HW14],
which deals with rational functions and allows formulas with division gates. Thus, we only outline
the argument in [HW14] and argue that if the given formula does not have division gates, then the
new formula obtained by the balancing construction will not contain any division gate as well.

19

Notation. Let F be a non-commutative formula and let g be a gate in F . We denote by Fg the
subformula of F with the root being g and by F [z/g] the formula obtained by replacing Fg in F by

the variable z. We denote by F̂ , F̂g the non-commutative polynomials in F〈X〉 computed by F and
Fg, respectively.

We simultaneously prove the following two statements by induction on s, concluding the lemma:

Inductive statement: If F is a non-commutative formula of size s, then for sufficiently large s
and suitable constants c1, c2 > 0, the following hold:

(i) F̂ has a non-commutative formula of depth at most c1 log s+ 1 ;

(ii) if z is a variable occurring at most once in F , then:

F̂ = A · z ·B + C,

where A,B,C are non-commutative polynomials that do not contain z, and each can be com-
puted by a non-commutative formula of depth at most c2 log s.

Base case: s = 1. In this case there is one gate g connecting two variables or constants. Thus, (i)
in the inductive statement can be obtained immediately as it is already computed by a formula of
depth 1 = log s + 1. As for (ii), note that in the base case, F is a formula with only one gate g.
Assuming that z is a variable occurring only once in F , it is easy to construct non-commutative
formulas A,B,C so that F̂ = A · z ·B + C for which the conditions in (ii) hold as follows:

Case 1: if g is a plus gate connecting the variable z with a variable or constant x 6= z, then we
can write F as 1 · z · 1 + x.
Case 2: if g is a product gate connecting z with x (for z 6= x, and in this order), then we can write
F as 1 · z · x+ 0.
Case 3: if g is a product gate connecting x with z (for z 6= x, and in this order), then we can write
F as x · z · 1 + 0.

Induction step: (i) is established (slightly informally) as follows. Find a gate g in F such that both
Fg and F [z/g] are small (of size at most 2s/3, and where z is a new variable that does not occur in
F). Then, by applying induction hypothesis on F [z/g], there exist formulas A,B,C of small depth

such that F̂ [z/g] = A · z ·B + C. Thus, F̂ := A · F̂g ·B + C.
To prove (ii), find an appropriate gate g on the path between z and the output of F (an

appropriate g is a gate g such that F [z1/g] and Fg are both small (of size at most 2s/3), where z1
is a new variable not occurring in F). Use the inductive assumptions to write:

F̂ [z1/g] = A1 · z1 ·B1 + C1 and F̂g = A2 · z ·B2 + C2

and compose these expressions to get

F̂ = A1 · (A2 · z ·B2 + C2) ·B1 + C1 = A′ · z ·B′ + C ′,

where A′ = A1 ·A2, B
′ = B2 ·B1, C

′ = A1 · C2 ·B1 + C1.
It is clear that the respective depth of A′, B′ and C ′ are all at most c2 log(2s/3) + 2 ≤ c2 log s

when s is sufficiently large.

20

To finish the proof of (ii), it suffices to show that A′, B′, C ′ do not contain the variable z. It is
enough to prove that A1, B1, C1, A2, B2, C2 do not contain z. Notice that Fg contains z and z is

a variable occurring at most once in F . Therefore F̂ [z1/g] does not contain the variable z, which
means that both A1, B1, C1 do not contain z. Moreover, by induction hypothesis, we know that
A2, B2, C2 do not contain z. Therefore, we conclude that A′, B′, C ′ do not contain z.

As a consequence of Lemma 4.2, in what follows, without loss of generality we will assume that
F is given already in a balanced form, namely has depth O(log s) and size s.

4.2 The reflection principle

Here we show that the existence of a non-commutative IPS refutation of the CNF φ with size
s and depth O(log s) implies the existence of a Frege proof of ¬φ with size sO(log s) (we use the
same notation as in the beginning of Section 4). This is done by proving a reflection principle for
the non-commutative IPS inside Frege. As mentioned in the introduction, informally, a reflection
principle for a given proof system P is a statement asserting that if a formula is provable in P
then the formula is also true. Thus, suppose we have a short Frege proof of the following reflection
principle for P :

“([π] is a P -proof of [T]) −→ T”,

where [T] and [π] are some reasonable encodings of the tautology T and its P -proof π, respectively.
Then, it is possible to obtain a Frege proof of T , assuming we already have a P -proof π of T : we
simply plug-in the encodings [π] and [T] in the reflection principle, which makes the premise of the
implication true.

Let F be a non-commutative formula over GF (2) and let Q
φ
(x) denote the vector (Qφ

1 , . . . , Q
φ
m)

(see Theorem 4.1). Since F is a non-commutative IPS refutation of φ we know that

F
(
x, 0
)
= 0, F

(
x,Q

φ
(x)
)
= 1 . (1)

We can treat F as a Boolean formula in the standard way:

Definition 4.3 (Fbool). Let F (x) be a non-commutative formula over GF (2) in the (algebraic)
variables x. We denote by Fbool(p) the Boolean formula in the (propositional) variables p obtained
by turning every plus gate and multiplication gate into ⊕ (i.e., XOR) and ∧ (i.e., AND) gates,
respectively, and, for the sake of clarity, turning the input algebraic variables x into the propositional
variables p. We sometimes write F and Fbool without explicitly mentioning the x and p variables.

Note that for any 0-1 assignment, F and Fbool take on the same value (when we identify true

with 1 and false with 0). When we consider F = F (x, y) (with both the x and y variables), Fbool

denotes the corresponding Boolean version of F where the variables x are replaced by p and the
algebraic variables y become the propositional variables y. Therefore, by (1),

¬Fbool

(
p, 0
)

and Fbool

(
p,Q

φ

bool(p)
)

(2)

are both tautologies (though we still need to show that their Frege proofs are short). To conclude
Theorem 4.1, we first prove ¬φ with a polynomial-size Frege proof, assuming we already proved

21

(2) (this is done in Lemma 4.4 below, which is not very hard to establish). Second, we show that
there exists an sO(log s) Frege proof of (2) (which is done in Theorem 4.7 in the next section, and
requires much more work).

Lemma 4.4. There is a polynomial-size Frege proof of ¬φ(p), assuming ¬Fbool

(
p, 0
)

and

Fbool

(
p,Q

φ

bool(p)
)
(polynomial in the size of φ(p) and Fbool

(
p,Q

φ

bool(p)
)
).

Proof. By simple logical reasoning inside Frege. Informally, we show that assuming that φ(p) holds,

for every i ∈ [m], Qφ
ibool

(p) ≡ 0, and so ¬Fbool

(
p, 0
)
and Fbool

(
p,Q

φ

bool(p)
)
cannot both hold (for ≡

denoting (semantic) logical equivalence).

In order to go from φ(p) to Qφ
ibool

(p) ≡ 0 we need to deal with encoding of clauses inside
Frege. Thus, let the propositional formula Truth([φ], p) express the statement that the assignment
p satisfies the formula φ, as defined below. In the following we denote by p actual propositional
variables occurring in a propositional formula (and not the encoding of variables; see below).

Encoding of 3CNFs and their truth predicate. We shall follow Section 4.3 in [GP14]. A
positive natural number i is encoded with ⌈log2 n⌉ bits (such that the numbers 1, . . . , 2t are put
into bijective correspondence with {0, 1}t). We denote this encoding of i by [i]. A clause κ with
three literals is encoded as the bit string q1s1q2s2q3s3, where each s1, s2, s3 is the sign bit of the
corresponding literal in κ (1 for positive and 0 for negative), and each q1, q2, q3 is a length-⌈log2 n⌉
bit string encoding the corresponding index of the variable (assuming the number of variables is

n). For a bit string q with the ith bit yi we write q = [t] as an abbreviation of
∧⌈log2 n⌉

i=1 (yi ↔ [t]i).
Finally, we define (where m is the number of clauses in the 3CNF)

Truth([κ], p) :=
∨

j∈[3]

∨

i∈[n]

(
[qj] = i ∧ (pi ↔ sj)

)
, and

Truth([φ], p) :=
∧

j∈[m]

Truth([κj], p) .

Note: It is important to note that, given a fixed CNF φ, the propositional formulas Truth([κ], p)
and Truth([φ], p) are formulas in the propositional variables p only.

Let us now continue the proof of Lemma 4.4. It is easy to show (see [GP14] Lemma 4.9 for
a proof) that after simplifying constants (e.g., (A ∧ 1) ↔ A) the formula Truth([κ], p) becomes
syntactically identical to κ(p) and thus there is a polynomial-size Frege proof of

φ(p) → Truth([φ], p). (3)

We shall now proceed within Frege. First, consider the propositional formulas

Truth([κi], p) → ¬Qφ
ibool

(p), for all i ∈ [m] . (4)

By definition (recall that Qφ
i = 0 iff κi is true for any 0-1 assignment, when 1 is identified with

true) all the formulas in (4) are tautologies. Note that all the premises and all the consequences
in (4) are of constant size, and thus (4) can be proved with a Frege proof of constant-size for each

22

i ∈ [m] (by completeness). Further, using the fact that Truth([φ], p) =
∧

i∈[m] Truth([κi], p), we can
easily prove in Frege with a polynomial-size proof that for each i ∈ [m],

Truth([φ], p) → ¬Qφ
ibool

(p). (5)

Assume by a way of contradiction that φ(p) holds. By modus ponens using (3) and (5), we have
∧

i∈[m]

¬Qφ
ibool

(p). (6)

We now argue (inside Frege) that, assuming also ¬Fbool

(
p, 0
)
, (6) implies ¬Fbool

(
p,Q

φ

bool(p)
)
. By

(6), for every i ∈ [m], Qφ
ibool

(p) is logically equivalent to 0 (which is identified with false), and hence

¬Fbool

(
p,Q

φ

bool(p)
)
≡ ¬Fbool

(
p, 0
)
. Thus, assuming ¬Fbool

(
p, 0
)
we have also ¬Fbool

(
p,Q

φ

bool(p)
)
.

But this contradicts the assumption that Fbool

(
p,Q

φ

bool(p)
)
, and hence we reach a contradiction

with the assumption that φ(p) holds.

It remains to show a quasi-polynomial-size proof of (2). We abbreviate ¬Fbool

(
p, 0
)
and

¬
(
1⊕ Fbool

(
p,Q

φ

bool(p)
))

by

F ′
bool(p), F ′′

bool(p), respectively. (7)

Note that the substitutions of the constants 0 or the constant depth formulas Qφ
bool in F cannot

increase the depth of F too much (i.e., can add at most a constant to the size of F). In other
words, the depths of the formulas in (7) are still O(log s).

Proof of Theorem 4.1 (Second main theorem). Using Theorem 4.7 that we prove below, we get that
(7) can be proved in quasi-polynomial-size (in s the size of the IPS refutation of the given CNF φ).
And together with Lemma 4.4 above, this shows that ¬φ can be proved in quasi-polynomial-size
in s, concluding the proof.

4.3 Non-commutative formula identities have quasi-polynomial-size proofs

Recall that a (commutative or non-commutative) multivariate polynomial f is homogeneous if every
monomial in f has the same total degree. For each 0 ≤ j ≤ d, denote by f (j) the homogenous
part of degree j of f , that is, the sum of all monomials (together with their coefficient from the
field) in f of total degree j. We say that a formula is homogeneous if each of its gates computes a
homogeneous polynomial (see Definition 2.5 for the definition of a polynomial computed by a gate
in a formula). We shall use the following technical definitions:

Definition 4.5 (Syntactic-degree). Define the syntactic degree of a non-commutative formula F ,
deg(F), as follows: (i) If F is a field element or a variable, then deg(F) = 0 and deg(F) = 1,
respectively; (ii) deg(F + G) = max(deg(F), deg(G)), and deg(F × G) = deg(F) + deg(G), where
+,× denote the plus and product gates respectively.

Definition 4.6 (Syntactic homogenous non-commutative formula). We say that a non-
commutative formula is syntactic homogenous if for every plus gate F +G with two children F and
G, deg(F) = deg(G).

23

To complete the proof of Theorem 4.1 it remains to prove the following theorem:

Theorem 4.7. If a non-commutative formula F (x) of size s and depth O(log s) computes the
identically zero polynomial over GF (2), then the corresponding Boolean formula ¬Fbool(p) admits
a Frege proof of size sO(log s).

The rest of the paper is dedicated to proving this theorem.

4.4 Remaining proof overview

For the convenience of the reader we highlight here in an informal manner the main steps in the
proof of Theorem 4.7 stating that the Boolean versions of balanced non-commutative formulas
F computing the zero polynomial over GF (2) have Frege refutations (i.e., proofs of negation) of
quasi-polynomial size.

1. We prove inside Frege that Fbool can be partitioned into its Booleanized syntactic homogenous
components Fbool(i), each of quasi-polynomial size in |Fbool|, using Raz’ [Raz13] construction.

So it remains to show that each ¬F
(i)
bool has a polynomial-size (in the size of F

(i)
bool, which is

quasi-polynomial in the size of F) Frege proof.

2. If F
(i)
bool does not contain variables it is easy to refute F

(i)
bool. Note that F

(i)
bool does not contain

variables iff F (i) does not contain variables. So we can assume that F (i) is non-constant. In
this case we show that Frege can easily prove that F (i) is equivalent to some F

′(i)
bool, where

F ′(i) is a constant-free (namely, it does not contain constants) arithmetic non-commutative
syntactic homogenous formula computing the zero polynomial.

3. Having a constant-free arithmetic non-commutative syntactic homogenous formula computing
the zero polynomial F ′(i) we use similar ideas as Raz and Shpilka [RS05] to construct a
polynomial-size Frege refutation of (the Boolean version of) F ′(i), as follows:

(a) Since F ′(i) is constant-free and syntactic homogenous, using the standard transformation
[RS05, Nis91] of a non-commutative formula to an algebraic branching program (ABP;
Definition 4.13) results in a layered (i.e., standard) ABP A (this is different from [RS05]
who had to deal with non-layered ABPs first). Assuming the syntactic degree of F is d,
the final layer of A, consisting of the sink, is also d.

(b) Using the ABP A, we identify a collection of witnesses that witness the fact that A com-
putes the zero polynomial. Informally, these witnesses are a collection of 0-1 matrices.
Each 0-1 matrix denoted Λi has a small number of rows (proportional to the size of the
ABP). Each (possibly zero) row v of these matrices corresponds to a linear combination
v ·Ad−i (where · is the inner product) of the polynomials computed by the ABPs whose
sources are in the ith layer of A and whose sinks are all the (single) original sink of A
(and thus each of these ABPs computes a degree d − i homogenous polynomial). The
requirement is that for all such rows, v ·Ad−i = 0, and so overall ΛiAd−i = 0. Note that
each non-commutative polynomial in Ad−i is homogenous of degree d− i.

Following a similar argument to [RS05], we show that one can find matrices Λi such
that, in addition to the above requirement, the following holds:

ΛiAd−i = Ti+1Λi+1Ad−i−1,

24

where T1, . . . ,Td are matrices with homogenous linear forms in every entry, and such
that the product of the matrix Ti+1Λi+1 with Ad−i−1 is construed in a syntactic way;
that is, Ti+1Λi+1 is interpreted as an adjacency matrices of a layer in an ABP where
the (l, k) entry of the matrix is the linear form that labels the edge going from the lth
node in layer i to the kth node in layer (i+ 1)—and so Ti+1Λi+1Ad−i−1 is a new ABP
with d− i layers.

(c) Note that it is unclear how to (usefully) represent an ABP directly in a Frege system,
because apparently ABP is a stronger model than formulas (and each Frege proof-line
is written as a formula). Thus, we cannot directly work with ABPs within Frege proofs,
and consequently we cannot use the witnesses from part (3b). We solve this problem
by replacing every ABP in the witnesses by a corresponding non-commutative formula:
every ABP in the witnesses from (3b) is a part of the ABP that was constructed from F ′(i)

in (3a). We notice that every such part of ABP corresponds to a certain substitution
instance of F ′(i). Thus, we replace every such part of ABP in the witnesses with its
corresponding substitution instance of F ′(i). Having these witnesses enables us to carry
out a step by step proof of the fact that F ′(i) computes the zero polynomial (formally, a
Frege refutation of the Boolean version of F ′(i)).

Proof of Theorem 4.7. The formula F is of size s which means that the maximal degree of a poly-
nomial computed by F is at most s + 1. Raz [Raz13] showed that we can always split F into
syntactic homogenous formulas F (i), i = 0, . . . , s+1, each of size sO(log s). In Lemma 4.8, proved in
the next section, we show that this homogenization construction can already be proved efficiently
in Frege. In other words, we show that there exists an sO(log s)-size Frege proof of

s+1⊕

i=0

F
(i)
bool ↔ Fbool. (8)

By Theorem 4.11 proved in the sequel, for any syntactic homogenous non-commutative formula
H that computes the identically zero polynomial over GF (2), ¬Hbool admits a polynomial-size (in
the size of H) Frege proof (recall that ¬Hbool is a tautology whenever H is a non-commutative
formula computing the zero polynomial over GF (2)). Thus, by Theorem 4.11, for every F (i),

i = 0, . . . , s+1, there exists an sO(log s)-size Frege proof of ¬F
(i)
bool. That is, there exists an sO(log s)-

size Frege proof of ¬
(⊕s+1

i=0 F
(i)
bool

)
. Note that Theorem 4.11 gives proofs that have size polynomial

in the size of ¬F
(i)
bool, and this latter size is sO(log s). Together with tautology (8), we can derive

¬Fbool in Frege.

4.5 Proving the homogenization of non-commutative formulas in Frege

To complete the proof of Theorem 4.7 it remains to prove Lemmas 4.8 and 4.11. Lemma 4.8 states
that Raz’ construction from [Raz13] for homogenizing arithmetic formulas is efficiently provable in
Frege (and is also applicable to non-commutative formulas):

Lemma 4.8. If F is a non-commutative formula of size s and depth O(log s) and F (0), . . . , F (s+1)

are the syntactic homogenous formulas computing F ’s homogenous parts of degrees 0, . . . , s + 1,
respectively, constructed according to [Raz13] (sketched below), then there exists an sO(log s)-size

25

Frege proof of: (
s+1⊕

i=0

F (i)

)
↔ Fbool. (9)

Proof. We first introduce basic notations and observations for describing Raz’ (commutative) for-
mula homogenization construction from [Raz13]. This construction is a somewhat more involved
variant of the standard homogenization construction for circuits laid out by Strassen [Str73]. We
then construct the desired short Frege proofs, which in turn also shows how to construct the ho-
mogenous formulas themselves.

Raz’ formula homogenization construction. Given a balanced (commutative) arithmetic
formula F we wish to construct s (commutative) formulas computing the homogenous parts
F (i), i = 0, . . . , s. Define the product-depth of a gate u, denoted upd, as the maximal number
of product gates along a directed path from u to the output gate (including u). Since the formula
F is balanced, the depth is at most O(log s), namely the largest value of upd for any node u in F
is O(log s).

Let us consider the directed path from u to the root (including the node u). Informally we want
to describe a possible progression of the degree of a monomial computed along the path from u to
the root. Observe that any possible degree progression must occur on product gates. That is, for
a gate u with product-depth upd, there are upd “choices” for the degree of a monomial to increase
(i.e., “to progress”).

Formally, for every integer r, denote by Nr the family of monotone non-increasing functions D
from {0, 1, . . . , r} to {0, 1, . . . , s+ 1}. It is helpful to think of D as a function from product nodes
along the directed path to the corresponding degree of a monomial as it is computed along the
path, where the path starts from the root (identified with 0) and terminates with the product gate
closest to u (including possibly u itself; identified with r). Thus, for instance, the root 0 is mapped
to the total degree of the monomial. Therefore, the set Nupd

describes all possible progressions of
the degree of monomials along the path from u to the root. Note that a product gate may not
increase the degree of a monomial computed along a path, because we may consider the monomial
as multiplied by a constant. Hence, the functions in Nr are not necessarily strictly decreasing.

The size of Nr is
(
r+s+2
r+1

)
=
(
r+s+2
s+1

)
(the number of combinations with repetitions of r + 1

elements from s+2 elements, which determine functions in Nr). Therefore, for every node u in F ,
the size of the set Nupd

is at most

(
s+O(log s) + 2

s

)
= sO(log s). (10)

We construct the desired syntactic homogenous formulas F (0), F (1), . . . , F (s+1) by constructing
a formula F ⋆ according to F . Split every gate u in F into |Nupd

| gates in F ⋆, labeled (u,Du), for
every Du ∈ Nupd

. We will add edges connecting nodes in F ⋆ the same way as [Raz13]. It might be
helpful for the reader to consult [Raz13] to get the intuition of the construction itself, however our
presentation is self-contained, as we will show how the construction is efficiently provable already
inside the Frege system (this will also show that F ⋆ and F compute the same polynomial, when
considered as Boolean functions).

Denote by F ⋆
u,Du the subformula rooted at (u,Du) in F ⋆. There might be some isolated nodes

(u,Du), namely nodes that no edge connects to them, and we consider the subformulas on these

26

nodes as 0. Similarly, denote by Fu the subformula rooted at u in F . In [Raz13] it was demonstrated
(see below) how to construct F ⋆ so that for every node (u,Du) in F ⋆, F ⋆

u,Du is a homogenous formula
computing the degree-Du(upd) homogenous part of Fu. More precisely, for every node u in F , denote
by su the size of the formula Fu. The maximal degree of the polynomial computed by Fu is su +1.
For i = 0, . . . , su + 1, let Du

i denote the set of all functions Du in Nupd
such that Du(upd) = i. For

any two D,D′ ∈ Du
i , the formulas F ⋆

u,D and F ⋆
u,D′ are identical (and compute the homogenous part

of degree i of Fu). Thus we can consider F ⋆
u,Du

i
as a single formula.

Efficient proofs of the homogenization construction. Next, we use a similar inductive
argument as in [Raz13], from leaves to the top gate of F , showing that for every gate u in F there
exists an sO(log s)-size Frege proof of

(
su+1⊕

i=0

F ⋆
u,Du

i bool

)
↔ Fu bool . (11)

Observe that the formulas F ⋆
r,Dr

0
, . . . , F ⋆

r,Dr
s+1

, for r being the root of F , are just those desired

formulas F (0), F (1), . . . , F (s+1). Thus, eventually, when we prove (11) for the root node r, we prove
the existence of an sO(log s)-size Frege proof of the Boolean formulas in (9).

Note that the size of the Frege proof we construct is quasi-polynomial in s. This is because of
the following: for every node u in F and every Du ∈ Nupd

we construct a proof of (11). Recall

that for every u in F , |Nupd
| = sO(log s), by (10). Thus, the total number of such nodes u and

functions Du is s ·sO(log s) = sO(log s) , and so this is the total number of proofs of (11) we construct.
Each such proof of (11) requires only poly(s) size assuming we already have proved (by induction
hypothesis) the required previous instantiations of (11). Therefore, we end up with a proof of total
size poly(s) · sO(log s) = sO(log s).

Base case: If u is a leaf, for each Du ∈ Nupd
, the node (u,Du) is defined to be a leaf of F ⋆.

Furthermore, if u is labeled by a field element, (u,Du) is labeled by the same field element in case
Du(upd) = 0 and by 0 in case Du(upd) 6= 0. If u is labeled by an input variable, (u,Du) is labeled
by the same input variable in case Du(upd) = 1 and by 0 in case Du(upd) 6= 1. Thus, for each

Du ∈ Nupd
, either F ⋆

(u,Du) computes F
(Du(upd))
u or 0. Namely, we can easily prove in Frege

(
su+1⊕

i=0

F ⋆
u,Du

i bool

)
↔ Fu bool.

Induction step:
Case 1: Assume that u is a sum gate with children v, w. For every Du ∈ Nupd

, let Dv ∈ Nvpd

be the function that agrees with Du on {0, 1, . . . , upd} and satisfies Dv(vpd) = Du(upd), and in
the same way, let Dw ∈ Nwpd

be the function that agrees with Du on {0, 1, . . . , upd} and satisfies
Dw(wpd) = Du(upd). The node (u,Du) is defined as

F ⋆
u,Du := F ⋆

v,Dv + F ⋆
w,Dw .

Assume Du(upd) = j. Then it means

F̂ ⋆
u,Du

j
:= F̂ ⋆

v,Dv
j
+ F̂ ⋆

w,Dw
j

27

(recall that given a non-commutative formula F , F̂ denotes the non-commutative polynomial it
computes). Therefore, the following is a tautology:

F ⋆
u,Du

j bool ↔
(
F ⋆
v,Dv

j bool ⊕ F ⋆
w,Dw

j bool

)
, for all j = 0, . . . , s+ 1.

By induction hypothesis on the nodes v, w, we have

Fv bool ↔
sv+1⊕

i=0

F ⋆
v,Dv

i bool, Fw bool ↔
sw+1⊕

i=0

F ⋆
w,Dw

i bool,

and so we can prove
su+1⊕

i=0

(
F ⋆
v,Dv

i bool ⊕ F ⋆
w,Dw

i bool

)
↔ Fv bool ⊕ Fw bool,

which gives us (since u is a plus gate)

su+1⊕

i=0

F ⋆
u,Du

i bool ↔ Fu bool .

Case 2: If u is a product gate with children v, w, using the same notation as above, for j =
0, . . . , su+1, we define F ⋆

u,Du
j
:=
∑j

i=0 F
⋆
v,Dv

i
·F ⋆

w,Dw
j−i
. If j > us, let F

⋆
u,Du

j
:= 0. Similarly, using the

induction hypothesis on the nodes v, w and observing the fact that su = sv + sw +1, we can prove:

Fu bool ↔
su+1⊕

i=0

F ⋆
u,Du

i bool

as follows:

Fu bool ↔ (Fv bool ∧ Fw bool)

↔




sv+1⊕

j=0

F ⋆
v,Dv

j bool


 ∧

(
sw+1⊕

i=0

F ⋆
w,Dw

i bool

)

↔
sv+sw+2⊕

j=0

j⊕

i=0

(
F ⋆
v,Dv

i bool ∧ F
⋆
w,Dw

j−i bool

)

↔
su+1⊕

j=0

(
j⊕

i=0

(
F ⋆
v,Dv

i bool ∧ F
⋆
w,Dw

j−i bool

))

↔
su+1⊕

i=0

F ⋆
u,Du

i bool .

28

4.6 Homogenous non-commutative formula identities have polynomial-size

Frege proofs

To conclude Theorem 4.7 it remains to prove Theorem 4.11. Here we will prove Theorem 4.11,
based on further lemmas we prove in the next section.

First, we need to set some notation. We denote by

F ⊢∗ F ′

the fact that F ′ can be derived with a polynomial in |F ′| size Frege proof, given F as a (possibly
empty) assumption in the proof.

In practice we will almost always use this notation when F ′ can be derived form F by simple
syntactic manipulations of formulas using mostly structural rules such as the associativity and
distributivity rules, as well as simple logical identities (e.g., false ⊕ G ≡ G, where ⊕ stands for
XOR). This notation will make our arguments a bit more convenient to read. For most part, we
will also leave it to the reader to verify that indeed F ′ can be obtained from F with a short Frege
proof, since it will be evident from the way F and F ′ are defined.

Accordingly, for two vectors of formulas F ,G, we denote by F ⊢∗ G the fact that each entry in
G can be derived from the corresponding entry in F with a short Frege proof.

The following definition is essential to Section 4.7.2 where we talk about algebraic branching
programs (ABPs). This definition will enable us to identify within a homogenous non-commutative
formula a certain part of the formula (after substitution) that corresponds to a sub-algebraic branch-
ing program.

Definition 4.9 (Induced part of a formula). Let F ′ be a subformula of F and g1, . . . , gk be gates
in F ′ and c1, . . . , ck be constants in F. Then F ′[c1/g1, . . . , ck/gk] is called an induced part of F .

We sometimes call an induced part of a formula simply a part of a formula.

Getting rid of constants

For technical reasons (concerning the conversion of a non-commutative syntactic homogenous
formulas into a layered ABP in what follows) it will be convenient to consider only arithmetic
(resp. Boolean) formulas with no 0-1 (resp. true, false) constants. We say that a Boolean or arith-
metic formula is non-constant if it contains at least one variable.

Lemma 4.10 (Constant-free formulas). Let F be a non-constant and non-commutative formula
over GF (2) that computes the (non-commutative) zero-polynomial. Then, there exists a constant-
free non-commutative formula F ′ of size poly(|F |) that computes the (non-commutative) zero poly-
nomial, such that Fbool ⊢

∗ F ′
bool.

Note that since F does not contain 0-1 constants, F ′ does not contain true, false constants.

Proof. First, notice that substitution of equivalent terms can be simulated efficiently in Frege, in
the following sense: if Φ is a formula and ψ is a subformula occurring in Φ, then ψ ↔ ψ′ ⊢∗ Φ′,
where Φ′ is Φ in which the (single) occurrence ψ is substituted by ψ′.

Therefore, we can iteratively take the constants out of Fbool within Frege using local substitution
of logically equivalent terms, as follows: if F contains a subformula 0 +G, for some formula G, we
change it to G; if F contains a subformula 1+G we change it to ¬G; if F contains a subformula 0×G,

29

we change it to 0; if F contains a subformula 1×G we change it to G. Doing these replacements
iteratively we arrive at either the 0 formula or a formula without constants (since every step reduces
the size of the formula). The 0 formula is arrived only when there are no variables in F , and so
this cannot happen by our assumption.

Main technical theorem

Theorem 4.11 (restatement of Theorem 1.8). There exists a constant c such that for any non-
commutative syntactic homogeneous formula F (x) over GF (2) of size s that is identically zero, the
corresponding Boolean tautology ¬Fbool(p) has a Frege proof of size at most sc (for sufficiently large
s).

Proof. First, by Lemma 4.10 we can assume without loss of generality that F (x) is constant-free
(or else, we can either derive an equivalent constant-free formula or simply the constant false, both
with polynomial-size Frege proofs). Thus, assume from now that F is constant-free and let d be
the syntactic-degree of F .

Note that the syntactic-degree d of F is at most s+1. Theorem 4.12, proved in the next section,
states the existence of a collection of witnesses that witness that the homogenous non-commutative
constant-free formula F computes the non-commutative zero polynomial. As demonstrated below,
these witnesses will enable us to inductively and efficiently prove in Frege that F is the zero
polynomial (over GF (2)).

First, we give the formal description of the witnesses and their properties and then explain
informally why they witness the identity and why they exist for every identity.

Notation. For a matrix T with entries Tij , each a non-commutative formula, and a vector
F = (v1, , . . . , vm) of non-commutative formulas, we write TF to denote the (transposed) vector of
non-commutative formulas whose jth entry is Tj1×F1+. . .+Tjn×Fm written as a balanced (depth
≤ logm + 1) binary tree of plus gates at the top and the formulas Tjk × Fk’s at the leaves. For
a 0-1 matrix Λ, we write ΛF to denote the vector of non-commutative formulas similar as defined
above for TF , except that now the matrix T has the a 0-1 formula in each entry. We denote by
TΛF the vector of non-commutative formulas (TΛ)F , where the (i, j) entry of the matrix TΛ is∑

k TikΛkj written as a balanced tree of plus gates with corresponding leaves as before (and where
TikΛjk is written as Tik if Λkj = 1 and does not occur in the sum if Λkj = 0). When we write
⊢∗ A↔ B in the witnesses below, for A and B non-commutative arithmetic formulas over GF (2),
we intend to treat A ↔ B as a Boolean tautology (Definition 4.3). For two vectors of formulas
v = (v1, . . . , vm),u = (u1, . . . , um), we write ⊢∗ v ↔ u to denote ⊢∗ vi ↔ ui, for all i ∈ [m].

30

Identity Witnesses

1. For every i = 0, . . . , d − 1, Λi is a 0-1 matrix of dimension mi × mi, where
mi = poly(|F |), for all i. We set Λ0 = 1.

2. For every i = 1, . . . , d − 1, Ti is an mi−1 ×mi matrix whose entries are ho-
mogenous linear forms in the x variables with 0-1 coefficients.

3. For every i = 1, . . . , d, F i is a vector of induced parts of F , each computing
a homogenous non-commutative polynomial of degree exactly i. The length

of the vectors F i is md−i. Accordingly, we denote by F̂ i the vector of non-
commutative polynomials in F i.

These witnesses are such that the following hold:

Λd−iF̂ i = 0, i = 1, . . . , d is a true equality;12 (12)

⊢∗ F ↔ Λ0F d (meaning that ⊢∗ F ↔ Fd, since Λ0 = 1);13 (13)

⊢∗ Λd−iF i ↔ Td−i+1Λd−i+1F i−1 , i = 2, . . . , d . (14)

Using the witnesses. The identity witnesses provide a way to prove inductively that the non-
commutative syntactic homogenous and constant free formula F is identically zero (when considered
as a Boolean formula over GF (2)). Informally, we start with Λd−1F 1 = 0 (considered as a Boolean
equality) which is a true identity by (12). Since this identity is written as a sum of linear forms it
has a polynomial-size proof. From this we also get Td−1Λd−1F 1 = 0, and since by (14), Λd−2F 2 =
Td−1Λd−1F 1, we derive Λd−2F 2 = 0. Continuing in this fashion we finally derive Λ0F d = 0, which
by (13) concludes the proof.

It is worth noting that we cannot directly represent the formula F as the iterated matrix product
Td−1 · · ·T2Λ1F 1 in the proof, since writing explicitly this iterated matrix product will incur an
exponential-size blow-up.

In what follows we make the above argument formal. We demonstrate a proof of ¬Fbool based
on the tautological Boolean formula obtained from equation (12) and the short Frege proofs of the
tautological Boolean formulas in (13) and (14). Denote by Fbool(p)i the vector of all corresponding
Boolean formulas of the formulas in F i, and let Fbool(p)i,t be the tth coordinate of this vector.

By (12), the following Boolean formulas are all tautologies:

∧

w∈[md−i]


¬


 ⊕

t:Λd−i(w,t)=1

Fbool(p)i,t




 , i = 1, . . . , d. (15)

By (14), for every i = 2, . . . , d, and every u ∈ [md−i], we have short Frege proofs of the following

12This is a semantic equality. I.e., in itself it does not entail a small proof of the equality.
13Note that F d is identical to Fd, because the only induced part of F of degree d is F itself, due to syntactic

homogeneity.

31

logical equivalence (between two Boolean formulas; the left hand side being the uth row in Λd−iF i):


 ⊕

t:Λd−i(u,t)=1

Fbool(p)i,t


↔

⊕

w∈[md−i+1]


Td−i+1(u,w)bool(p) ∧


 ⊕

t:Λd−i+1(w,t)=1

Fbool(p)i−1,t




 . (16)

Claim. There are polynomial-size Frege proofs of (15).

This will conclude the proof of Theorem 4.11, since for i = d, we get a polynomial-size Frege
proof of

∧

w∈[md]


¬


 ⊕

t:Λd(w,t)=1

Fbool(p)d,t




 ,

which is just ¬Fbool(p) by (13) (md = 1 and Λd = 1).

Proof of claim: First fix i = 1. Since F 1 is a vector of linear forms, (15) is a Boolean tautology
which can be proved with a polynomial-size Frege proof. This means that when we fix i = 2, the
right hand side of (16) becomes false for every u ∈ [md−2], and so the left hand side of (16)

⊕

t:Λd−2(u,t)=1

Fbool(p)2,t

is also false for every u ∈ [md−2]. We continue in this manner until we arrive to (15) for i = d.
2 claim

We have thus concluded the proof of Theorem 4.11.

4.7 Identity witnessing theorem

It remains to prove the following:

Theorem 4.12 (Identity witnessing theorem). Let F (x) be a non-commutative syntactic homoge-
nous constant-free formula of degree d over GF (2) computing the non-commutative zero polynomial.
Then, the identity witnesses as defined in Section 4.6 exist.

The proof of this theorem uses the notion of an algebraic branching program mentioned before
as well as the Raz and Shpilka PIT algorithm [RS05]. Our proofs are self-contained, and we
demonstrate formally the existence of the witnesses from scratch.

4.7.1 Algebraic branching programs

We introduce the following definition:

Definition 4.13 (ABP). An algebraic branching program (ABP for short) is a directed acyclic
graph with one source and one sink. The vertices of the graph are partitioned into layers numbered
from 0 to d (the degree of the ABP), and edges may go only from layer i to layer i + 1. The

32

source is the only vertex at layer 0, and the sink is the only vertex at layer d. Each edge is labeled
with a homogeneous linear polynomial in the variables xi (i.e., a function of the form

∑
i cixi, with

coefficients ci ∈ F, where F is the underlying field). The size of an ABP is the number of its vertices.
A path, directed from source to sink, in the ABP is said to compute the non-commutative product
of linear forms on its edges (in the order they appear on the path). A node in the ABP computes
the sum of all incoming paths arriving from the source. The ABP computes the non-commutative
polynomial computed at its sink.

Note that by definition an ABP computes a homogenous non-commutative polynomial.
Raz and Shpilka [RS05] established a deterministic polynomial-time algorithm for the polyno-

mial identity testing of (non-commutative) ABPs. Therefore, by transforming a non-commutative
formula to an ABP, one obtains a deterministic polynomial-time algorithm for the polynomial
identity testing of non-commutative formulas.

Theorem 4.14 (Theorem 4, [RS05]). Let A be an ABP of size s with d + 1 layers, then we can
verify whether A computes the non-commutative zero polynomial in time O(s5 + s · n4).

Using the algorithm demonstrated in Theorem 4.14, we give in Lemma 4.15 below witnesses that
certify that a given non-commutative formula computes the zero polynomial. These witnesses will
not be our final witnesses because they will incorporate ABPs, whereas in Section 4.6 we required
the witnesses to consist of non-commutative formulas and not ABPs. In the next section we show,
based on Lemma 4.15, how to obtain the desired formula-based witnesses.

Notation. For what follows in this section, let A be an ABP with l+1 layers and where the source
node vsource is on the 0th layer and the sink node vsink is on the lth layer. For every j = 0, . . . , l,
we denote the nodes on the jth layer by vj1, , . . . , vjmj

, where mj stands for the total number of
nodes in the jth layer. For a given i = 0, . . . , l, consider the ABP with ml−i sources in layer l − i
and whose sink is vsink. We can denote this multi-source ABP as a vector of ABPs:

Ai =
(
A(vl−i,1, vsink), . . . , A(vl−i,ml−i

, vsink)
)
.

Each entry in this vector computes a non-commutative homogenous degree i polynomial. It is
important to note that Ai is only a convenient notation, namely, when we apply in what follows a
matrix product to the vector Ai, we will treat different coordinates in the vector Ai as having joint
nodes. For instance, the sink node vsink is treated as a single node shared by all the coordinates
(and so in the vector Ai it occurs only once). We will thus build a single ABP out of a matrix
product with the vector Ai, as described in what follows.

For a 0-1 matrix Λ of dimension m×m and a multi-source ABP A with m sources v1, . . . , vm
and 0 to l layers, we write ΛA to denote the l + 1 layered ABP with m sources that results from
A when we join together several sources into a single source, maintaining the outgoing edges of
the joined sources. Specifically, the ith source of the new ABP computes the non-commutative
polynomial

∑m
k Λikvk, and this is done by defining the outgoing edges of the ith source to be all

the outgoing edges of vk, for all vk such that Λik = 1.
For a matrix T with dimension m×m′ and entries Tij that are homogenous linear forms, and

a multi-source ABP A = (v1, , . . . , v
′
m) we write TA to denote the ABP whose 0 layer consists of

m sources, and the ith node in the 0th layer, for i = 1, . . . ,m, is connected to the jth node in 1st
layer, for j = 1, . . . ,m′, with an edge labeled by the linear form Tij . In case Λ is a 0-1 matrix,

33

then TΛA stands for the result of the following process: first multiply the matrices T and Λ in the
standard way, obtaining a matrix T′ of new homogenous linear forms, and then multiply T′ by the

vector A, as explained above. We also denote by Â the corresponding vector of non-commutative
polynomials computed by the coordinates in A.

With these notations in hand, we now construct the following ABP-variant of the identity
witnesses:

Lemma 4.15 (existence of ABP-based identity witnesses). If the ABP A(vsource, vsink) computes
the identically zero non-commutative polynomial, then the following hold:

1. There exist l matrices Λi with 0-1 entries, for i = 0, . . . , l − 1, each of dimension mi ×mi,
where mi = poly(|A|), such that Λ0 = 1 and

Λl−iAi = 0, for all i = 0, . . . , l − 1

(where the equality here is only semantic, i.e., the left hand side computes a vector of zero
non-commutative polynomials).

2. There exist l− 1 matrices Ti, for i = 1, . . . , l− 1, of dimension mi−1 ×mi and whose entries
are homogenous linear forms in the x variables with 0-1 coefficients, such that

Λl−iAi = Tl−i+1Λl−i+1Ai−1, for i = 2, . . . , d, and (17)

Λ0Al = A(vsource, vsink) , (18)

and where the ABPs in these two equalities are constructed in the way described above (these
two equalities above are syntactic, i.e., in each of the equations the two sides are syntactically
identical as ABPs).

Proof. Recall that mi is the number of nodes in the ith layer. Since we assumed Λ0 = 1, and since
Al = A(vsource, vsink), we conclude equation (18) in the lemma.

We now construct by induction on j the matrix Λj , for j = 0, . . . , l− 2, such that part 1 in the
lemma holds:

ΛjAl−j = 0, (19)

as well as (17), that is,
ΛjAl−j = Tj+1Λj+1Al−j−1 . (20)

Base case: Λ0 = 1 by assumption.

Induction step: Assume that for 0 ≤ h < l − 1, Λ0, . . . ,Λh−1 and T0, . . . ,Th were already con-
structed, and that the equality (19) holds for every j = 0, . . . , h, and equality (20) holds for every
j = 0, . . . , h− 1. We will now construct Λh+1 such that (19) holds for j = h+ 1:

Λh+1Al−h ,

and Th+1 such that (20) holds with j = h:

ΛhAl−h = Th+1Λh+1Al−h−1 .

34

Let Mh,h+1 be the adjacency matrix of dimension mh ×mh+1 of the two consecutive layers h and
h+ 1 in A, where for each entry (p, q), for p ∈ [mh], q ∈ [mh+1],

Mh,h+1(p, q) = A(vh,p, vh+1,q) =
n∑

k=1

ckxk, where ck ∈ {0, 1} .

The matrix Mh,h+1 can be written as
∑n

k=1 xkM
k
h,h+1 (the superscript k is used here as an index

only, and not as a matrix power), for some 0-1 matrices Mk
h,h+1. By the definition of an ABP

Al−h =Mh,h+1Al−h−1

=

n∑

k=1

xkM
k
h,h+1Al−h−1 .

Moreover, if ΛhAl−h = 0, then

Λh

n∑

k=1

xkM
k
h,h+1Al−h−1 = 0,

and therefore, by the non-commutativity of product we have

ΛhM
k
h,h+1Al−h−1 = 0, for k = 1, . . . , n . (21)

Now, consider the basis of the span of all row vectors in all the matrices ΛhM
k
h,h+1, for k =

1, . . . , n. The number of vectors in this basis is at most the number of columns in (each of the)
Mk

h,h+1 matrices, that is, at most mh+1 (which equals the number of nodes in the h + 1 layer).
Define the matrix Λh+1 to be the mh+1 ×mh+1 matrix whose rows are the vectors in this basis (if
the basis consists of less than mh+1 vectors we can simply put zero rows to reach mh+1 rows). By
(21) we know that every row vector in ΛhM

k
h,h+1 is orthogonal to Al−h−1 (i.e., their inner product

is zero). Thus, any vector in the basis of the rows of ΛhM
k
h,h+1, for k = 1, . . . , n, is also orthogonal

to Al−h−1, and so
Λh+1Al−h−1 = 0 .

By the properties of a basis of a linear space, there must exist matrices Tk
h+1, such that

ΛhM
k
h,h+1 = Tk

h+1Λh+1, for all k = 1, . . . , n .

Then, define Th+1 :=
∑n

k=1T
k
h+1xk. Thus,

ΛhAl−h = Th+1Λh+1Al−h−1 .

4.7.2 Implicitly working with ABPs in Frege system

Here we use Lemma 4.15 to conclude the existence of (formula-based) identity witnesses (as required
in Theorem 4.12) and by that conclude the proof of Theorem 4.7.

Recall the notion of an induced part of a formula (Definition 4.9): for a subformula F ′ of F
and gates g1, . . . , gk in F ′ and 0-1 constants c1, . . . , ck, F

′[c1/g1, , . . . , , ck/gk] is called an induced

35

part of F . Notice that it is unclear how to (usefully) represent an ABP directly in a Frege system,
because apparently ABP is a stronger model than formulas (and each Frege proof-line is written
as a formula). Thus, we cannot directly use the same formulation as [RS05]. This is the reason
that we work with induced parts of formulas: let A be the ABP that corresponds to the non-
commutative formula F , then for every node v in A there will be a corresponding induced part of
F that computes the same polynomial computed by the sub-ABP rooted in v and whose sink is
the sink of A. For this purpose we introduce the following notation and definition.

For two vertices v′, v′′ in the ABP A, we denote by A(v′, v′′) the polynomial computed by the
ABP with the source v′ and the sink v′′ and all the paths leading from v′ to v′′. Informally, a
v-part of a formula F is simply a substitution instance of F that computes the same polynomial
as A(v, vsink). Formally we have:

Definition 4.16 (v-part of formula F). Let F be a homogenous formula and A be the corresponding
ABP of F constructed according to the methods described in [RS05] (see also below), in which the
source is vsource and the sink is vsink. For any node v in A, if there exists an induced part of the
formula F computing the same polynomial as A(v, vsink), then we call this part a v-part of the
formula F . (Note that for a node v there might be more than one v-part.)

Let F be a non-commutative homogenous formula and let A be the corresponding ABP of F .
In (the proof of) Lemma 4.17 below we construct a mapping between the nodes v in A to v-parts
of F , denoted F •

v such that F •
v computes the non-commutative homogenous polynomial computed

by A(v, vsink). This will enable us to refer (implicitly) to A(v, vsink) by an induced part F •
v of F ,

for any node v in A (though a v-part is not unique, our mapping will obviously associate a unique
v-part to every node v in A).

Furthermore, for every node v in the ABP A the following holds (where, for the sake of simplicity,
the arithmetic formulas computing the linear forms computed by A(v, u) are denoted also by
A(v, u)):

F •
v ⊢∗

∑

u: u has an incoming
edge from v

A(v, u)× F •
u . (22)

where, the big sum denotes a balanced binary tree of plus gates and the A(v, u)×F •
u ’s at the leaves.

It will be convenient to assume that the sink vsink of an ABP is mapped to the empty formula
and that if G is the empty formula, then H×G ⊢∗ H, where H stands for some nonempty formula.

Lemma 4.17. For a non-commutative syntactic homogenous formula F without constants, let A
be the ABP transformed from F by the methods in [RS05] (equivalently, in [Nis91]; we repeat this
construction in the proof below), in which the source is vsource and the sink is vsink. For every
node v in A the non-commutative polynomial computed by A(v, vsink) can be computed by some
non-commutative formula, denoted F •

v , which is a v-part of F . Furthermore, for every node v in
the ABP, (22) holds.

Proof. We construct an ABP A, such that each node v in A is mapped to an induced part of F .

Constructing the ABP A. Given the non-commutative syntactic homogenous formula F over
GF (2) that does not contain constants, we construct the corresponding ABP A by induction on
the size of F . By syntactic homogeneity we get a standard (layered) ABP (this differs from [RS05]

36

who did not start from a homogenous formula and so the resulted ABP was (initially) non-layered).
Throughout the construction of A we maintain a mapping

g : nodes(A) → nodes(F)

from nodes in A to their “corresponding” nodes in F (this will help us define the mapping F •
v).

The reader can also consult the illustrated example in the sequel.

Base case: If F is a variable xi, then A is a single edge (vsource, vsink) labeled with xi and g(vsource) :=
F (i.e., the single node in F) and g(vsink) := ∅ (i.e., “the empty node”).

Induction step:
Case 1: F = G+H. Then A is defined with the root vsource being the joint of the two roots of the
two ABPs constructed already for G,H (while keeping their outgoing edges). We then also join
the two sinks of the ABPs for G,H (while keeping their incoming edges) into a single sink denoted
vsink.

The function g is defined as the union of the two original functions g’s for the ABPs for G and
H, where the new nodes vsource and vsink are mapped by g to the root of F and the empty formula
∅, respectively (note that the domains of both these g’s are disjoint—except for the two sources
and two sinks).

Case 2: F = G × H. Assume that AG, AH are the two ABPs already constructed for G,H,
respectively. Then A is defined as AG with the sink of AG replaced by AH . The function g is
defined as the union of the two g functions for AG, AH (where the root of AH is mapped by g to
the root of the formula H).

Construction of F •
v . Let F be a syntactic homogenous non-commutative formula without con-

stants, A its corresponding ABP, and g : nodes(A) → nodes(F) the function, all whose construction
is described above. We construct the mapping F •

v for nodes v in A as follows. Throughout the
construction we maintain the following conditions:

(i) for every node v in A, the formula F •
v computes the same non-commutative polynomial as

A (g(v), vsink);

(ii) for every node v in A, equation (22) above holds.

Let F be a non-commutative syntactic homogenous formula F , and t a node in F . Denote by r
the root of F (in particular, if F is a variable then the root is the variable). We define the function
D(F, t) by induction on the structure of F as follows:

D(F, r) := F,

and for t 6= r we define (for A,B two non-commutative syntactic homogenous formulas without
constants):

D(A+B, t) :=

{
D(A, t) + 0 , if t ∈ nodes(A);

0 +D(B, t) , if t ∈ nodes(B),

37

and

D(A×B, t) :=

{
D(A, t)×B , if t ∈ nodes(A);

1×D(B, t) , if t ∈ nodes(B)

(note the asymmetry in defining D(A × B), which corresponds to the way a non-commutative
formula is translates into an ABP, with A computed “above” B).

Finally, for every node v in the ABP A, we define

F •
v := D(F, g(v)).

Example. Figure 1 illustrates a non-commutative syntactic homogenous and constant-free for-
mula F , and its corresponding ABP A, together with the map g : nodes(A) → nodes(F). Figure
2 shows the formula F •

v (where v is the node in A from Figure 1). Note that indeed, by defini-
tion, D(F, g(v)) = D(F, t) = D(Fs, t) × Fq = (D(Fp, t) + 0) × Fq = ((1 × D(Ft, t)) + 0) × Fq =
((1× x2) + 0)× Fq.

Figure 1

Figure 2

38

Claim. Conditions (i) and (ii) above hold.

Proof of claim: Condition (i) holds by inspection of the definition of D, the construction of the
ABP A from F and the function g giving the “origin” in F of each node in A.

Condition (ii), i.e., equation (22) for all v in A holds by condition (i) and the definition of
D. Note that condition (i) already shows that F •

v ↔
∑

u: u has an incoming
edge from v

A(v, u) × F •
u is indeed a

tautology (considered over GF (2)). The fact that the right hand side of this tautology can be
derived with a short (polynomial-size) Frege proof from the left hand side can be demonstrated by
using basic structural derivation rules of Frege (e.g., associativity and distributivity) and simple
logical equivalences (e.g., 1⊕G↔ ¬G). We omit the details. 2 claim

This concludes the proof of Lemma 4.17.

We are now ready to conclude the proof of the identity witnessing theorem (Theorem 4.12):

Proof of Theorem 4.12. Recall the ABP-based identity witnesses we showed existed in Lemma 4.15.
Our goal is to show that there are (formula-based) identity witnesses (as defined in the proof of
Theorem 4.11).

Using the correspondence given in Lemma 4.17, we can replace each ABP A(v, vsink) occurring
in some Ai (for some node v in A and some i = 0, . . . , l) by a corresponding v-part F •

v . Denote with
F i the result of this replacement. Thus, F i contains v-parts F

•
v of F , each computing a homogenous

polynomial of degree i. With this replacement we get (we assume that l = d):

1. There exist d matrices Λi, for i = 0, . . . , d− 1, with 0-1 entries and dimension mi×mi, where
mi = poly(|A|), such that Λ0 = 1, F d = F and

Λd−iF i = 0, for all i = 0, . . . , d− 1.

2. There exist d− 1 matrices Ti, for i = 1, . . . , d− 1, of dimension mi−1 ×mi and whose entries
are homogenous linear forms in the x variables with 0-1 coefficients, such that

Λd−iF i = Td−i+1Λd−i+1F i−1, for i = 2, . . . , d, and (23)

Λ0F d = A(vsource, vsink) . (24)

Recall that ΛF , for Λ a matrix and F a vector of formulas, is a vector of formulas, where each
formula is written as a balanced (partial) sum of the formulas in F (see the Identity Witnesses’
definition in the proof of Theorem 4.11).

Our goal now is to show

⊢∗ Λd−iF i ↔ Td−i+1Λd−i+1F i−1 , i = 2, . . . , d , (25)

and
⊢∗ F ↔ Λ0F d (meaning that ⊢∗ F ↔ Fd, since Λ0 = 1). (26)

Note that (26) holds trivially since Fd and F are identical. For (25), by Lemma 4.17, we know that

F •
v ⊢∗

∑

u: u has an incoming
edge from v

A(v, u)× F •
u . (27)

39

Consider Λd−iF i. Each of its entries is a (partial) sum of the formulas in F i written as a balanced
sum. By (27) we can write each entry in F i as a (balanced) sum in which each summand is some
linear form A(v, u) times an entry in F i−1. We can thus write Λd−iF i as T

′F i−1 for some matrix
T′ with linear forms in each of its entries. Since the identity stated in (25) is a true identity, we
thus get

T′F i−1 ↔ Td−i+1Λd−i+1F i−1 .

But such an identity is provable in Frege with a polynomial-size proof, because we only need to prove
an identity between 〈t′j , F i−1〉 and 〈tj , F i−1〉, for each of the jth rows t′j and tj of the matrices T′

and Td−i+1Λd−i+1, respectively (note that each entry of these rows is written as a linear form).

4.8 Conclusions

The propositional-calculus has a ubiquitous presence in logic and computer science at large. Within
complexity theory and propositional proof complexity in particular it has a prominent role, and con-
sidered a strong proof system whose structure and complexity is poorly understood. In that respect,
we believe our characterization of Frege proofs and the propositional-calculus as non-commutative
polynomials whose non-commutative formula size corresponds (up to a quasi-polynomial increase)
to the size of Frege proofs, should be considered a valuable contribution.

In the framework of algebraic propositional proof systems (and especially the IPS framework
and its precursors by Pitassi [Pit97, Pit98]) our characterization is almost precise, as we showed
an almost tight two-sided simulation of Frege and non-commutative IPS. Although we left it open
whether the simulation of non-commutative IPS by Frege can be improved from quasi-polynomial
down to polynomial size, there is nothing to suggest at the moment this cannot be achieved.

Non-commutative formulas constitute a weak model of computation that is quite well under-
stood. Since, as mentioned above, the Frege system is considered a strong proof system, and in
fact it is not entirely out of question that Frege—or at least its extension, Extended Frege—is
polynomially bounded (i.e., admits polynomial-size proofs for every tautology), on the face of it,
our results are surprising.

Overall, we believe that this correspondence between non-commutative formulas and proofs,
give renewed hope for progress on the fundamental lower bounds in proof complexity. in so far
that it reduces the problem of proving lower bounds on Frege proofs to the problem of establishing
non-commutative formula lower bounds (which are already known for many polynomials). Since
non-commutative lower bounds are already known and since proving the sort of matrix rank lower
bounds that are required to establish non-commutative formula lower bounds for the permanent
and determinant are fairly simple ([Nis91]), the current work provides a quite compelling evidence
that Frege lower bounds might indeed not be very far away.

One possible route for Frege lower bounds is to reduce directly Frege lower bounds to the problem
of lower bounding the non-commutative formula size of polynomials that are already known to be
hard for the class of non-commutative formulas. We believe that this route is certainly a plausible
one. A somewhat less direct approach is to show that some tautologies require non-commutative
IPS refutations whose associated partial-derivative matrices (in the sense of Nisan [Nis91]) have
high rank—here, the task would be to lower bound non-commutative polynomials that are given
only “semi-explicitly” (that is, they are given in terms of the properties of the non-commutative
IPS (Definition 1.2)); in other words, one has to establish lower bounds on a family of polynomials
(for each fixed number of variables n).

40

Furthermore, ideas and lower bounds techniques connecting non-commutative computation,
algebras with polynomial-identities (PI-algebras) and proof complexity as studied in [Hru11, LT13]
might provide further tools for obtaining non-commutative IPS lower bounds.

Apart from the fundamental lower bound questions, the new characterization of Frege proofs
sheds new light on the correspondence between circuits and proofs within proof complex

ity: in the framework of the ideal proof system, a Frege proof can be seen from the com-
putational perspective as a non-commutative formula. This gives a different, and in some sense
simpler, correspondence between proofs and computations than the traditional one (in which Frege
corresponds to NC1 (cf. [CN10])).

We have also tighten the important results of Grochow and Pitassi [GP14]. Namely, by showing
that already the non-commutative version of the IPS is sufficient to simulate Frege, as well as by
showing unconditional efficient simulation of the non-commutative IPS by Frege.

Finally, while proving that Frege quasi-polynomially simulates the non-commutative IPS, we
demonstrated new simulations of algebraic complexity constructions within proof complexity; these
include the homogenization for formulas due to Raz [Raz13] and the PIT algorithm for non-
commutative formulas due to Raz and Shpilka [RS05]. These proof complexity simulations add
to the known previous such simulations shown in Hrubeš and the second author [HT12], and are
of independent interest in the area of Bounded Arithmetic and feasible mathematics.

Acknowledgments

We are thankful to Joshua Grochow for very helpful comments.

References

[ABSRW04] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-
son. Pseudorandom generators in propositional proof complexity. SIAM J. Comput.,
34(1):67–88, 2004. (A preliminary version appeared in Proceedings of the 41st Annual
Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000)).

[AGP02] Albert Atserias, Nicola Galesi, and Pavel Pudlák. Monotone simulations of non-
monotone proofs. J. Comput. System Sci., 65(4):626–638, 2002. Special issue on
complexity, 2001 (Chicago, IL).

[Ajt88] Miklós Ajtai. The complexity of the pigeonhole principle. In Proceedings of the IEEE
29th Annual Symposium on Foundations of Computer Science, pages 346–355, 1988.

[AKV04] Albert Atserias, Phokion G. Kolaitis, and Moshe Y. Vardi. Constraint propagation as
a proof system. In CP, pages 77–91, 2004.

[BBP95] Maria Luisa Bonet, Samuel R. Buss, and Toniann Pitassi. Are there hard examples
for Frege systems? In Feasible mathematics, II (Ithaca, NY, 1992), volume 13 of
Progr. Comput. Sci. Appl. Logic, pages 30–56. Birkhäuser Boston, Boston, MA, 1995.

[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, 1974.

41

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing (Philadelphia, PA, 1996), pages 174–183,
New York, 1996. ACM.

[CN10] Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. ASL
Perspectives in Logic. Cambridge University Press, 2010.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional
proof systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische schließen. Mathematische
Zeitschrift, 39:68–131, 1935.

[GH03] Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. The-
oret. Comput. Sci., 303(1):83–102, 2003. Logic and complexity in computer science
(Créteil, 2001).

[GP14] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and
polynomial identity testing. In 55th Annual IEEE Symposium on Foundations of
Computer Science, FOCS, 2014. Also available as arXiv:1404.3820 [cs.CC].

[Hru11] Pavel Hrubeš. How much commutativity is needed to prove polynomial identities?
Electronic Colloquium on Computational Complexity, ECCC, (Report no.: TR11-
088), June 2011.

[HT12] Pavel Hrubeš and Iddo Tzameret. Short proofs for the determinant identities. In Pro-
ceedings of the 44th Annual ACM Symposium on the Theory of Computing (STOC),
New York, 2012. ACM.

[HW14] Pavel Hrubeš and Avi Wigderson. Non-commutative arithmetic circuits with divi-
sion. In Innovations in Theoretical Computer Science, ITCS’14, Princeton, NJ, USA,
January 12-14, 2014, pages 49–66, 2014.

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the
size of bounded depth Frege proofs of the pigeonhole principle. Random Structures
Algorithms, 7(1):15–39, 1995.

[Kra95] Jan Kraj́ıček. Bounded arithmetic, propositional logic, and complexity theory, vol-
ume 60 of Encyclopedia of Mathematics and its Applications. Cambridge University
Press, Cambridge, 1995.

[Kra04] Jan Kraj́ıček. Dual weak pigeonhole principle, pseudo-surjective functions, and prov-
ability of circuit lower bounds. The Journal of Symbolic Logic, 69(1):265–286, 2004.

[Kra08] Jan Kraj́ıček. An exponential lower bound for a constraint propagation proof system
based on ordered binary decision diagrams. J. Symbolic Logic, 73(1):227–237, 2008.

[Kra10] Jan Kraj́ıček. Forcing with random variables and proof complexity, volume 382 of
London Mathematical Society Lecture Notes Series. Cambridge Press, 2010.

42

[Kra11] Jan Kraj́ıček. Forcing with random variables and proof complexity. London Mathe-
matical Society Lecture Note Series, No.382. Cambridge University Press, 2011.

[LT13] Fu Li and Iddo Tzameret. Generating matrix identities and proof complexity. Elec-
tronic Colloquium on Computational Complexity, TR13-185, 2013. arXiv:1312.6242
[cs.CC] http://arxiv.org/abs/1312.6242.

[Nis91] N. Nisan. Lower bounds for non-commutative computation. Proceedings of the 23th
Annual ACM Symposium on the Theory of Computing, pages 410–418, 1991.

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for
the pigeonhole principle. Comput. Complexity, 3(2):97–140, 1993.

[Pit97] Toniann Pitassi. Algebraic propositional proof systems. In Descriptive complexity
and finite models (Princeton, NJ, 1996), volume 31 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pages 215–244. Amer. Math. Soc., Providence, RI, 1997.

[Pit98] Toniann Pitassi. Unsolvable systems of equations and proof complexity. In Proceedings
of the International Congress of Mathematicians, Vol. III (Berlin, 1998), number Vol.
III, pages 451–460, 1998.

[Pud99] Pavel Pudlák. On the complexity of the propositional calculus. In Sets and proofs
(Leeds, 1997), volume 258 of London Math. Soc. Lecture Note Ser., pages 197–218.
Cambridge Univ. Press, Cambridge, 1999.

[Raz85] A. A. Razborov. Lower bounds on the monotone complexity of some Boolean func-
tions. Dokl. Akad. Nauk SSSR (in Russian), 281(4):798–801, 1985. [English translation
in Sov. Math. Dokl., vol . 31 (1985), pp. 354-357.].

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing,
Vol. 2, article 6, 2006.

[Raz09] Ran Raz. Multi-linear formulas for permanent and determinant are of super-
polynomial size. J. ACM, 56(2), 2009.

[Raz13] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):40,
2013.

[Raz15] Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolution and
polynomial calculus resolution. Annals of Mathematics, 181:415–472, 2015.

[Rec76] Robert Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis,
University of Toronto, 1976. Technical Report No . 87.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non commu-
tative models. Computational Complexity, 14(1):1–19, 2005.

[RT08a] Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs.
Ann. Pure Appl. Logic, 155(3):194–224, 2008.

43

http://arxiv.org/abs/1312.6242

[RT08b] Ran Raz and Iddo Tzameret. The strength of multilinear proofs. Computational
Complexity, 17(3):407–457, 2008.

[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial iden-
tities. Journal of the ACM, 27(4):701–717, 1980.

[Seg07] Nathan Segerlind. Nearly-exponential size lower bounds for symbolic quantifier elim-
ination algorithms and OBDD-based proofs of unsatisfiability. Electronic Colloquium
on Computational Complexity, January 2007. ECCC, TR07-009.

[Spi71] Philip M. Spira. On time-hardware complexity tradeoffs for boolean functions. In
Fourth International Symposium on Systems Sciences, pages 525–527, 1971.

[Str73] Volker Strassen. Vermeidung von divisionen. J. Reine Angew. Math., 264:182–202,
1973. (in German).

[Tza08] Iddo Tzameret. Studies in Algebraic and Propositional Proof Complexity. PhD thesis,
Tel Aviv University, 2008.

[Tza11] Iddo Tzameret. Algebraic proofs over noncommutative formulas. Information and
Computation, 209(10):1269–1292, 2011.

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual
ACM Symposium on the Theory of Computing, pages 249–261. ACM, 1979.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, pages 216–226.
Springer-Verlag, 1979.

44

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

