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Abstract

We investigate the problem of winner determination from computational social choice
theory in the data stream model. Specifically, we consider the task of summarizing an
arbitrarily ordered stream of n votes on m candidates into a small space data structure so
as to be able to obtain the winner determined by popular voting rules. As we show, finding
the exact winner requires storing essentially all the votes. So, we focus on the problem of
finding an ε-winner, a candidate who could win by a change of at most ε fraction of the
votes. We show non-trivial upper and lower bounds on the space complexity of ε-winner
determination for several voting rules, including k-approval, k-veto, scoring rules, approval,
maximin, Bucklin, Copeland, and plurality with run off.

1 Introduction

A common and natural way to aggregate preferences of agents is through an election. In a
typical election, we have a set of m candidates and a set of n voters, and each voter reports
his ranking of the candidates in the form of a vote. A voting rule selects one candidate as the
winner once all voters provide their votes. Determining the winner of an election is one of the
most fundamental problems in social choice theory.
We consider elections held in an online setting where voters vote in arbitrary order, and we
would like to find the winner at any point in time. A very natural scenario where this occurs is an
election conducted over the Internet. For instance, websites often ask for rankings of restaurants
in a city and would like to keep track of the “best” restaurant according to some fixed voting
rule. Traditionally, social choice theory addresses settings where the number of candidates is
much smaller than the number of voters. However, we now often have situations where both
the candidate set and voter set are very large. For example, the votes may be the result of
high-frequency measurements made by sensors in a network [26], and a voting rule could be
used to aggregate the measurements (as argued in [7]). Also, in online participatory democracy
systems, such as [wid, syn], the number of candidates can be as large as the number of voters.
The näıve way to conduct an online election is to store all the vote counts in a database and
recompute the winner whenever it is needed. The space complexity of this approach becomes
infeasible if the number of candidates or the number of votes is too large. Can we do better? Is
it possible to compress the votes into a short summary that still allows for efficient recovery of
the winner?
This question can be naturally formulated in the data stream model [3, 20]. Votes are inter-
preted as items in a data stream, and the goal is to devise an algorithm with minimum space
requirement to determine the election winner. In the simplest setting of the plurality voting
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rule, where each vote is simply an approval for a single candidate and the winner is the one
who is approved by the most, our problem is closely related to the classic problem of finding
heavy hitters [9, 12] in a stream. For other popular voting rules, such as Borda, Bucklin or
Condorcet consistent voting rules, the questions become somewhat different.
Regardless of the voting rule, if the goal is to recover only the winner and the stream of votes is
arbitrary, then it becomes essentially impossible to do anything better than the above-mentioned
näıve solution (even when the algorithm is allowed to be randomized). Although we prove this
formally, the reason should be intuitively clear: the winner may be winning by a very tiny
margin thereby making every vote significant to the final outcome. We therefore consider a
natural relaxation of the winner determination problem, where the algorithm is allowed to
output any candidate who could have been the winner, according to the voting rule under
consideration, by a change of at most εn votes. We call such a candidate an ε-winner; similar
notions were introduced in [25, 36]. Note that if the winner wins by a margin of victory [36] of
more than εn, there is a unique ε-winner.
In this work, we study streaming algorithms to solve the (ε, δ)-WINNER DETERMINATION prob-
lem, i.e. the task of determining, with probability at least 1 − δ, an ε-winner of any given vote
stream according to popular voting rules. Our algorithms are necessarily randomized.

1.1 Our Contributions

We initiate the study of streaming algorithms for the (ε, δ)–WINNER DETERMINATION problem
with respect to various voting rules. The results for the (ε, δ)–WINNER DETERMINATION prob-
lem, when both ε and δ are positive, are summarized in Table 1. (When ε or δ equals 0, we
prove that the space requirements are much larger.)
We also exhibit algorithms, having space complexity nearly same as Table 1, for the more
general sliding window model, introduced by Datar et. al. in [13]. In this setting, for some
parameter N , we want to find an ε-winner with respect to the N most recent votes in the
stream, clearly a very well motivated scenario in online elections.

1.2 Related Work

1.2.1 Social Choice

To the best of our knowledge, our work is the first to systematically study the approximate
winner determination problem in the data stream model. A conceptually related work is that of
Conitzer and Sandholm [10] who study the communication complexity of common voting rules.
They consider n parties each of whom knows only their own vote but, through a communication
protocol, would like to compute the winner according to a specific voting rule. Observe that a
streaming algorithm for exact winner determination using s bits of memory space immediatelyI

implies a one-way communication protocol where each party transmits s bits. However, it turns
out that their results only imply weak lower bounds for the space complexity of streaming
algorithms. Moreover, [10] does not study determination of ε-winners. The communication
complexity of voting rules was also highlighted by Caragiannis and Procaccia in [7].
In a recent work, we [15] studied the problem of determining election winners from a random
sample of the vote distribution. Since we can randomly sample from a stream of votes using a
small amount of extra storage, the bounds from [15] are also useful in the streaming context.

IEach party can input its vote into the stream and then communicate the memory contents of the streaming
algorithm to the next party.
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Voting Rule
Space complexity

Upper bound Lower bound

Generalized plurality‡ O(min{1
ε logm,m log 1

ε} + log logn)
[Theorem 3 and 4]

Ω(1ε log 1
ε +

1√
ε

logm + log logn) if m ≥ 1
ε

†

[Theorem 18]

k-veto⋆ O(min{kε logm,m log
log(m−k+1)

ε } + log logn)
[Theorem 3]

Ω( 1
εµ log 1

ε + logm + log logn) if m ≥ 1
ε

†

for every µ ∈ [0,1) [Theorem 16]

Plurality
O(min{1

ε logm,m log 1
ε} + log logn)

[Theorem 3 and 4]

⎧⎪⎪⎨⎪⎪⎩

Ω(1ε log 1
ε + logm + log logn) if m ≥ 1

ε ,

Ω(m log 1
ε + log logn) if m ≤ 1

ε ,

[Theorem 15 and 19]
[Theorem 20]

[Observation 2]

k-approval⋆ O(min{kε logm,m log
log(k)
ε } + log logn)

[Theorem 3]

Scoring rules
O(m(log logm + log 1

ε) + log logn)
[Theorem 5]

Approval
O(m(log logm + log 1

ε) + log logn)
[Theorem 6]

Maximin, Bucklin,
Run off

O(min{m2(log logm + log 1
ε),

1
ε2
m log2m} + log logn)
[Theorem 7 and 8]

Copeland
O(min{m2(log logm + log 1

ε),
1
ε2
m log4m} + log logn)
[Theorem 7 and 8]

Table 1: Space complexity for the (ε, δ)-WINNER DETERMINATION problem for various voting rules. We
do not show dependence on δ in the table for sake of clarity. ⋆ ∶ The lower bound results for the k-
approval and k-veto voting rules apply only for k = O(mγ), for every γ ∈ [0,1). †: For the case m ≤ 1

ε
,

the lower bound is same as that of other rules. ‡ ∶ Here, each voter has the choice to either approve
or disapprove of one candidate and the candidate who has the maximum number of approvals minus
disapprovals wins.

In that work, the goal was to find the winner who was assumed to have a margin of victory [36]
of at least ε, but the same arguments also work for finding ε-winners.

1.2.2 Streaming

The field of streaming algorithms has been the subject of intense research over the past two
decades in both the algorithms and database communities. The theoretical foundations for the
area were laid by [3, 20]. A stream is a sequence of data items σ1, σ2, . . . , σn, drawn from the
universe [m], such that on each pass through the stream, the items are read once in that order.
The frequency vector associated with the stream f = (f1,⋯, fm) ∈ Zm is defined as fj being the
number of times j occurs as an item in the stream. In this definition, the stream is insertion-
only; more generally, in the turnstile model, items can both be inserted and deleted from the
stream, in which case the frequency vector maintains the cumulative count of each element in
[m]. General surveys of the area can be found in [32, 33].
Algorithms for the insertion-only case were discovered before the formulation of the data
streaming model. Consider the point-query problem: for a stream of n items from a universe of
size m and a parameter ε > 0, the goal is to output, for any item j ∈ [m], an estimate f̂j such
that ∣f̂j − fj ∣ ≤ εn. Misra and Gries [30] gaveII an elegant but simple deterministic algorithm
requiring only O(min{m,1/ε} ⋅(logm+ logn)) space in bit complexity. Since to find an ε-winner

IIThe algorithm can be viewed as a generalization of the Boyer-Moore [5, 17] algorithm for ε = 1/2. It was also
rediscovered 20 years later by [14, 22].
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for the plurality voting rule, it’s enough to solve the point query problem and output the j with
maximum f̂j , Misra-Gries automatically implies O(min{m,1/ε} ⋅(logm+ logn)) space complex-
ity for plurality. We use sampling to improve the dependence on n and prove tightness in terms
of ε and n. Our algorithms for many of the other voting rules are also based on the Misra-Gries
algorithm. We note that in place of Misra-Gries, there are several other deterministic algorithms
which could have been used, such as Lossy Counting [27] and Space Saving [28], but they would
not change the asymptotic space complexity bounds. A thorough overview of the point query,
or frequency estimation, problem can be found in [11].
For the more general turnstile model, the point query problem for such streams is that of find-
ing f̂j , for every j, such that ∣f̂j − fj ∣ ≤ ε∥f∥1. The best result for this problem is due to Cor-
mode and Muthukrishnan, the randomized count-min sketch [12], which has space complexity
O(1ε logm logn) in bits. The space bound was proved to be essentially tight by Jowhari et al. in
[21]. In our context, the stream is a sequence of votes; so, our problems are mostly, just by
definition, insertion-only. However, the count-min sketch becomes useful in our applications
(i) if voters can issue retractions of their votes, and (ii) to maintain counts of random samples
drawn from streams of unknown length.

1.3 Technical Overview

Upper Bounds. The streaming algorithms that achieve the upper bounds shown in Table 1
are obtained through applying frequency estimation algorithms, such as Misra-Gries or count-
min sketch, appropriately on a subsampled stream. The number of samples needed to obain
ε-winners for the various voting rules was previously analyzed in [15].

Lower Bounds. Our main technical novelty is in the proofs of the lower bounds for the (ε, δ)-
winner determination problem. Usually, in the “heavy hitters” problem in the algorithms liter-
ature, the task is roughly to determine the set of items with frequency above εn. Since there
can be 1/ε such items, a space lower bound of log (m

1/ε) = Ω(1ε log(εm)) immediately follows for
m≫ 1/ε. In contrast, we wish to determine only one ε-winner, so that just logm bits are needed
to output the result. In order to obtain stronger lower bounds that depend on ε, we need to re-
sort to other techniques. Moreover, note that our lower bounds are in the insertion-only stream
model, whereas previous lower bounds for frequency estimation problems are usually for the
more general turnstile model.
We prove these bounds through new reductions from fundamental problems in communication
complexity. To give a flavor of the reductions, let us sketch the proof for the plurality voting
rule. Consider each additive term separately in the lower bound.

• log logn: Suppose Alice has a number 1 ≤ a ≤ n and Bob a number 1 ≤ b ≤ n, and Bob wishes
to know whether a > b through a protocol where communication is one way from Alice to
Bob. It is known [29, 34] that Alice is required to send Ω(logn) bits to Bob. We can reduce
this problem to finding a 1/3-winner in a plurality election among two candidates by having
Alice push 2a approvals for candidate 1 into the stream and Bob pushing 2b approvals for
candidate 2; the Ω(log logn) lower bound follows.

• (1/ε) log(1/ε) when m ≥ 1/ε: Consider the INDEXING problem over an arbitrary alphabet:
Alice has a vector x ∈ [t]m and Bob an index i ∈ [m], and Bob wants to find xi through a one-
way protocol from Alice to Bob. Ergün et al [16], extending [29]’s proof for the case of t = 2,
show Alice needs to send Ω(m log t) bits. For t =m = 1/√ε, we reduce INDEXING to ε-winner
determination for a plurality election. Let the candidate set be [t] × [m]. Alice (given her
input x) pushes n/2 votes into the stream with

√
εn/2 votes to each (xj , j) for all j ∈ [m] and
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sends over the memory content of the streaming algorithm to Bob who (given his input i)
pushes another n/2 votes into the stream with

√
εn/2 votes to each (a, i) for all a ∈ [t]. Note

that candidate (xi, i) is the unique
√
ε/4-winner of this plurality election! Using [16]’s lower

bound Ω(1/√ε log(1/ε)) on the communication complexity of the INDEXING problem yields
our result.

• m log(1/ε)when m ≤ 1/ε: Suppose Alice has a vector a ∈ [t]m and Bob a vector b ∈ [t]m, and
Bob wants to findIII i = arg maxj(aj + bj) through a one-way protocol. We show by reducing
from the AUGMENTED INDEXING problem [16, 29] that Alice needs to send Ω(m log t) bits
to Bob. Suppose t = 1/ε. Alice imagines her vector a as being the vote count for a plurality
election amongm candidates, streams in a and runs the streaming algorithm for the problem,
and passes the memory output to Bob who also streams in his vector b. The maximum
entry in a + b corresponds to a candidate winning by margin at least ε2n, hence yielding the
Ω(m log(1/ε)) lower bound.

2 Preliminaries

2.1 Voting and Voting Rules

Let V = {v1, . . . , vn} be the set of all voters and C = {c1, . . . , cm} the set of all candidates. If not
mentioned otherwise, V, C, n and m denote set of voters, the set of candidates, the number of
voters and the number of candidates respectively. Each voter vi’s vote is a complete order ≻i
over the candidate set C. For example, for two candidates a and b, a ≻i b means that the voter vi
prefers a to b. We denote the set of all complete orders over C by L(C). Hence, L(C)n denotes
the set of all n-voters’ preference profiles (≻1, . . . ,≻n). A map r ∶ ⊎n,∣C∣∈N+L(C)n Ð→ 2C is called
a voting rule. Given a vote profile ≻∈ L(C)n, we call the candidates in r(≻) the winners. Given
an election E = (V,C), we can construct a weighted graph GE , called weighted majority graph,
from E . The set of vertices in GE is the set of candidates in E . For any two candidates x and
y, the weight on the edge (x, y) is DE(x, y) = NE(x, y) −NE(y, x), where NE(x, y) (respectively
NE(y, x)) is the number of voters who prefer x to y (respectively y to x). A candidate x is called
the Condorcet winner in an election E if DE(x, y) > 0 for every other candidate y ≠ x. A voting
rule is called Condorcet consistent if it selects the Condorcet winner as the winner of the election
whenever it exists. Some examples of common voting rules are:
• Positional scoring rules: A collection of m-dimensional vectors s⃗m = (α1, α2, . . . , αm) ∈ Rm

with α1 ≥ α2 ≥ ⋅ ⋅ ⋅ ≥ αm and α1 > αm for every m ∈ N naturally defines a voting rule – a
candidate gets score αi from a vote if it is placed at the ith position. The score of a candidate
is the sum of the scores it receives from all the votes. The winners are the candidate with
maximum score. The vector α that is 1 in the first k coordinates and 0 in other coordinates
gives the k-approval voting rule. The vector α that is 1 in the last k coordinates and 0 in
other coordinates is called k-veto voting rule. Observe that the score of a candidate in the
k-approval (respectively k-veto) voting rule is the number of approvals (and respectively
vetoes) that the candidate receives. 1-approval is called the plurality voting rule, and 1-veto
is called the veto voting rule. The score vector (m − 1,m − 2, . . . ,1,0) gives the Borda rule.

• Generalized plurality: In generalized plurality voting, each voter approves or disapprove
one candidate. The score of a candidate is the number of approvals it receives minus number
of disapprovals it receives. The candidates with highest score are the winners. We introduce
this rule and consider it to be interesting particularly in an online setting where every voter

IIIAssume the maximum is unique.
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either likes or dislikes an item; hence each vote is either an approval for a candidate or a
disapproval for a candidate.

• Approval: In approval voting, each voter approves a subset of candidates. The winners are
the candidates which are approved by the maximum number of voters.

• Maximin: The maximin score of a candidate x is miny≠xDE(x, y). The winners are the
candidates with maximum maximin score.

• Copeland: The Copeland score of a candidate x is ∣{y ≠ x ∶ DE(x, y) > 0}∣. The winners are
the candidates with maximum Copeland score.

• Bucklin: A candidate x’s Bucklin score is the minimum number ` such that more than half of
the voters rank x in their first ` positions. The winners are the candidates with lowest Bucklin
score.

• Plurality with runoff: The top two candidates according to plurality score are selected first.
The pairwise winner of these two candidates is selected as the winner of the election. This
rule is often called the runoff voting rule.

Among the above, only the maximin and Copeland rules are Condorcet consistent.

2.2 Model of Input Data

In the basic model, the input data is an insertion only stream of elements from some universe U .
We note that, in the context of voting in an online scenario, the natural model of input data is
the insertion only streaming model over the universe of all possible votes L(C). The basic model
can be generalized to the more sophisticated sliding window model where the only active items
are the last n items, for some parameter n. In this work, we focus on winner determination
algorithms for insertion only stream of votes in both basic and sliding window models. The
basic input model can also be generalized to another input model, called turnstile model, where
the input data is a sequence from U × {1,−1}; every element in the stream corresponds to
either a unit increment or a unit decrement of frequency of some element from U . We will use
the turnstile streaming model (over some different universe) only to design efficient winner
determination algorithms for the insertion only stream of votes. We note that, the algorithms
for the streaming data can make only one pass over the input data. These one pass algorithms
are also called streaming algorithms.

2.3 Communication Complexity

We will use lower bounds on communication complexity of certain functions to prove space
complexity lower bounds for our problems. Communication complexity of a function measures
the number of bits that need to be exchanged between two players to compute a function whose
input is split among those two players [37]. In a more restrictive one-way communication model,
the first player sends only one message to the second player and the second player outputs the
result. A protocol is a method that the players follow to compute certain functions of their input.
Also the protocols can be randomized; in that case, the protocol needs to output correctly with
probability at least 1− δ, for some parameter δ ∈ [0,1] (the probability is taken over the random
coin tosses of the protocol). The randomized one-way communication complexity of a function
f with error δ is denoted by R1−way

δ (f). Classically the first player is named Alice and the
second player is named Bob and we also follow the same convention here. [24] is a standard
reference for communication complexity.
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2.4 Chernoff Bound

We will use the following concentration inequality:

Theorem 1. Let X1, . . . ,X` be a sequence of ` independent random variables in [0,1] (not neces-
sarily identical). Let S = ∑iXi and let µ = E [S]. Then, for any 0 ≤ δ ≤ 1:

Pr[∣S − µ∣ ≥ δ`] < 2 exp(−2`δ2)

and
Pr[∣S − µ∣ ≥ δµ] < 2 exp(−δ2µ/3)

The first inequality is called an additive bound and the second multiplicative.

2.5 Problem Definition

The basic winner determination problem is defined as follows.

Definition 1. (WINNER DETERMINATION)
Given a voting profile ≻ over a set of candidates C and a voting rule r, determine the winners r(≻).

We show a strong space complexity lower bound for the WINNER DETERMINATION problem for
the plurality voting rule in Theorem 12. To overcome this theoretical bottleneck, we focus on
determining approximate winner of an election. Below we define the notion of ε-approximate
winner which we also call ε-winner.

Definition 2. (ε-WINNER)
Given an n-voter voting profile ≻ over a set of candidates C and a voting rule r, a candidate w is
called an ε–winner if w can be made winner by changing at most εn votes in ≻.

Notice that there always exist an ε-winner in every election since a winner is also an ε-winner.
We show that finding even an ε-winner deterministically requires large space when the number
of votes is large [see Theorem 14]. However, we design space efficient randomized algorithms
which outputs an ε-winner of an election with probability at least 1 − δ. The problem that we
study here is called (ε, δ)-WINNER DETERMINATION problem and is defined as follows.

Definition 3. ((ε, δ)-WINNER DETERMINATION)
Given a voting profile ≻ over a set of candidates C and a voting rule r, determine an ε–winner with
probability at least 1 − δ. (The probability is taken over the internal coin tosses of the algorithm.)

3 Upper Bounds

In this section, we present the algorithms for the (ε, δ)-Winner Determination problem for var-
ious voting rules. Before embarking on specific algorithms, we first prove a few supporting
results that will be used crucially in our algorithms later. We begin with the following space
efficient algorithm for picking an item uniformly at random from a universe of size n below.

Observation 1. There is an algorithm for choosing an item with probability 1
n that uses

O(log logn) bits of memory and uses fair coin as its only source of randomness.
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Proof. First let us assume, for simplicity, that n is a power of 2. We toss a fair coin log2 n
many times and choose the item, say x, only if the coin comes head all the times. Hence the
probability that the item x gets chosen is 1

n . We need O(log logn) space to toss the fair coin
log2 n times (to keep track of the number of times we have tossed the coin so far). If n is not
a power of 2 then, toss the fair coin ⌈log2 n⌉ many times and we choose the item x only if the
coin comes head in all the tosses conditioned on some event E. The event E contains exactly n
outcomes including the all heads outcome.

We remark that Observation 1 is tight in terms of space complexity. We state the claim formally
below, as it may be interesting in its own right.

Proposition 1. Any algorithm that chooses an item from a set of size n with probability p, for
0 < p ≤ 1

n , using a fair coin as its only source of randomness, must use Ω(log logn) bits of memory.

Proof. The algorithm tosses the fair coin some number of times (the number of times it tosses
the coin may also depend on the outcome of the previous tosses) and finally picks an item from
the set. Consider a run R of the algorithm where it chooses the item, say x, with smallest
number of coin tosses; say it tosses the coin t many times in this run R. This means that in any
other run of the algorithm where the item x is chosen, the algorithm must toss the coin at least
t number of times. Let the outcome of the coin tosses in R be r1,⋯, rt. Let si be the memory
content of the algorithm immediately after it tosses the coin ith time, for i ∈ [t], in the run R.
First notice that if t < log2 n, then the probability with which the item x is chosen is more than
1
n , which would be a contradiction. Hence, t ≥ log2 n. Now we claim that all the si’s must be
different. Indeed otherwise, let us assume si = sj for some i < j. Then the algorithm chooses
the item x after tossing the coin t − (j − i) (which is strictly less than t) many times when the
outcome of the coin tosses are r1,⋯, ri, rj+1,⋯, rt. This contradicts the assumption that the run
R we started with chooses the item x with smallest number of coin tosses.

An essential ingredient in our algorithms is calculating the approximate frequencies of all the
elements in a universe in an input data stream. The following result (due to [30]) provides a
space efficient algorithm for that job.

Theorem 2. Given an insertion only stream of length n over a universe of size m, there is a
deterministic one pass algorithm to find the frequencies of all the items in the stream within an
additive approximation of εn using O (min{1

ε (logm + logn) ,m logn}) bits of memory, for every
ε > 0.

Proof. The O (1
ε (logm + logn)) space algorithm is due to [30]. On the other hand, notice that

with spaceO (m logn), we can exactly count the frequency of every element, even in the turnstile
model of stream, by simply keeping an array of length m (indexed by ids of the elements from
the universe) each entry of which is capable of storing integers up to n.

We now describe streaming algorithms for the (ε, δ)–WINNER DETERMINATION problem for var-
ious voting rules. The general idea is to sample certain number of votes uniformly at random
from the stream of votes using the algorithm of Observation 1 and generate another stream of
elements over some different universe. The number of votes sampled and the universe of the
stream generated depend on the specific voting rule we are considering. After that, we approx-
imately calculate the frequencies of the elements in the generated stream using Theorem 2.
For simplicity, we assume that the number of votes in known in advance up to some constant
factor (only to be able to apply Observation 1). We will see in Section 3.1 how to get rid of this
assumption, without affecting space complexity of any of the algorithms much. We begin with
the k-approval and k-veto voting rules below.
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Theorem 3. Assume that the number of votes is known to be within [c1n, c2n] for
some constants c1 and c2 in advance. Then there is a one pass algorithm for
the (ε, δ)–WINNER DETERMINATION problem for the k-approval voting rule that uses
O (min{kε (logm + log 1

ε + log log 1
δ
) ,m (log

log(k+1)
ε + log log 1

δ)} + log logn) bits of memory and

for the k-veto voting rule that uses O(min{kε (logm + log 1
ε + log log 1

δ
) ,m( log

log(m−k+1)
ε +

log log 1
δ
)} + log logn) bits of memory.

Proof. Let us first consider the case of the k-approval voting rule. We pick the current vote in
the stream with probability p (the value of p will be decided later) independent of other votes.
Suppose we sample ` many votes; let S = {vi ∶ i ∈ [`]} be the set of votes sampled. From the set
of sampled votes S, we generate a stream T over the universe C as follows. For i ∈ [`], let the
vote vi be c1 ≻ c2 ≻ ⋯ ≻ cm. From the vote vi, we add k candidates c1,⋯, ck in the stream T . We
know that there is a ` = O( log(k+1)

ε2
log 1

δ ) (and thus a corresponding p = Ω( 1
n)) which ensures

that for every candidate x ∈ C, ∣ s(x)n − ŝ(x)
` ∣ < ε

3 with probability at least 1 − δ
2 [15], where s(⋅)

and ŝ(⋅) are the scores of the candidates in the input stream of votes and in S respectively. Now
we count ŝ(x) for every candidate x ∈ C within an additive approximation of ε`

3 and the result
follows from Theorem 2 (notice that the length of the stream T is k`).
For the k-veto voting rule, we approximately calculate the number of vetoes that every candidate
gets using the same technique as above. However, for the k-veto voting rule, the corresponding
bound for ` is O( log(m−k+1)

ε2
log 1

δ ) which implies the result.

By similar techniques, we have the following algorithm for the generalized plurality rule.

Theorem 4. Assume that the number of votes is known to be within [c1n, c2n] for any constants c1
and c2 in advance. Then there is a one pass algorithm for the (ε, δ)–WINNER DETERMINATION prob-
lem for the generalized plurality voting rule that uses O (1

ε
(logm + log 1

ε + log log 1
δ
) + log logn)

bits of memory.

Proof. We sample ` = O( 1
ε2

log 1
δ ) many votes uniformly at random from the input stream of

votes using the technique used in the proof of Theorem 3. For every candidate, we count both
the number of approvals and disapprovals that it gets within an additive approximation of ε`

10
which is enough to get an ε-winner. Now the space complexity follows form Theorem 2.

We generalize Theorem 3 to the class of scoring rules next. We need the following result in the
subsequent proof which is due to [15].

Lemma 1. Let α = (α1,⋯, αm) be an arbitrary score vector and w the winner of an α–election E .
Let x be any candidate which is not a ε–winner. Then, s(w) − s(x) ≥ α1εn.

With Lemma 1 at hand, we now present the algorithm for the scoring rules.

Theorem 5. Assume that the number of votes is known to be within [c1n, c2n] for any con-
stants c1 and c2 in advance. Let α = (α1,⋯, αm) be a score vector such that αi ≥ 0 for ev-
ery i ∈ [m]. Then there is a one pass algorithm for the (ε, δ)–WINNER DETERMINATION prob-
lem for the α-scoring rule that uses O (∑

m
i=1 αi
α1

(log logm + log 1
ε + log log 1

δ
) + log logn), which is

O (m (log logm + log 1
ε + log log 1

δ
) + log logn), bits of memory.

Proof. Let α = (α1,⋯, αm) be an arbitrary score vector with αi ≥ 0 for every i ∈ [m]. We define
α′i = αi

∑mi=j αj
(which is in [0,1]), for every i ∈ [m]. Since scoring rules remain same even if we

multiply every αi with any positive constant λ, the score vectors α and α′ correspond to same

9



voting rule. We pick the current vote in the stream with probability p (the value of p will be
decided later) independent of other votes. Suppose we sample ` many votes; let S = {vi ∶ i ∈ [`]}
be the set of votes sampled. For i ∈ [`], let the vote vi be c1 ≻ c2 ≻ ⋯ ≻ cm. We pick the candidate
ci from the vote vi with probability α′i and define it to be ai. We compute the frequencies of the
candidates in the stream S̄ = {ai ∶ i ∈ [`]} within an additive factor of ε′n, where ε′ = ε

3 . For
every candidate x ∈ C, let s(x) be the α′–score of the candidate x in the input stream of votes
and ŝ(x) be n

` times the α′–score of the candidate x in the sampled votes S. We know that there
exists an ` = O( 1

ε2
log m

δ ) (and thus a corresponding p = Ω( 1
n)) which ensures that, for every

candidate x ∈ C, ∣s(x) − ŝ(x)∣ < α′1ε′n with probability at least 1 − δ
2 [15]. Let s̄(x) be n

` times
the frequency of the candidate x ∈ C in the stream S̄. We now prove the following claim from
which the result follows immediately.

Claim 1.
Pr[∀x ∈ C, ∣s̄(x) − ŝ(x)∣ ≤ α′1ε′n] ≥ 1 − δ

2

Proof. For every candidate x ∈ C and every i ∈ [`], we define a random variable Xi(x) to be 1
if ai = x and 0 otherwise. Then, s̄(x) = n

` ∑i∈[`]Xi(x). We have, E [s̄(x)] = ŝ(x). Now using
Chernoff bound from Theorem 1, we have the following:

Pr[∣s̄(x) − ŝ(x)∣ > α′1ε′n] = Pr[∣n
`
∑
i∈[`]

Xi(x) − ŝ(x)∣ > α′1ε′n]

= Pr[∣ ∑
i∈[`]

Xi(x)
α′1

− `ŝ(x)
α′1n

∣ > ε′`]

≤ 2 exp{−ε
2α′1n`

3ŝ(x) }

≤ 2 exp{−ε
2`

3
}

The fourth inequality follows from the fact that ŝ(x) ≤ α′1n for every candidate x ∈ C. Now we
use the union bound to get the following.

Pr[∀x ∈ C, ∣s̄(x) − ŝ(x)∣ ≤ α′1ε′n] ≥ 1 −∑
x∈C

2 exp{−ε
2`

3
} ≥ 1 − δ

2

The second inequality follows from an appropriate choice of ` = O( 1
ε2

log m
δ ).

We estimate the frequency of every candidate in S̄ within an additive approximation ratio of
α′1ε` and output the candidate w with maximum estimated frequency as the winner of the
election. The candidate w is an ε– winner (follows from Lemma 1) with probability at least 1−δ
(follows from Claim 1). The space complexity of this algorithm follows from Theorem 2 (since
1
α′1

= ∑
m
i=1 αi
α1

≤ mα1

α1
=m) and Observation 1.

We present next the streaming algorithm for the approval voting rule. It is again obtained by
running a frequency estimation algorithm on samples from a stream.

Theorem 6. Assume that the number of votes is known to be within [c1n, c2n] in advance, for some
constants c1 and c2. Then there is a one pass algorithm for the (ε, δ)–WINNER DETERMINATION

problem for the approval voting rule that uses O (m (log logm + log 1
ε + log log 1

δ
) + log logn) bits

of memory.

10



Proof. We sample ` many votes using the algorithm described in Observation 1 and technique
described in the proof of Theorem 5. The total number of approvals in those sampled votes
is at most m` and we estimate the number of approvals that every candidate receives within
an additive approximation of ε`

2 . The result now follows from the upper bound on ` [15] and
Theorem 2.

Now we move on to maximin, Copeland, Bucklin, and plurality with run off voting rules. We
provide two algorithms for these voting rules, which trade off between the number of candidates
m and the approximation factor ε. The algorithm in Theorem 7 below, which has better space
complexity when 1

ε is small compared to m, simply stores all the sampled votes.

Theorem 7. Assume that the number of votes is known to be within [c1n, c2n] in advance,
for some constants c1 and c2. Then there is a one pass algorithm for the (ε, δ)–WINNER

DETERMINATION problem for the maximin, Bucklin, and plurality with run off voting rules

that use O (m log2m log 1
δ

ε2
+ log logn) bits of memory and for the Copeland voting rule that uses

O (m log4m log 1
δ

ε2
+ log logn) bits of memory.

Proof. We sample ` many votes from the input stream of votes uniformly at random and simply
store all of them. Notice that we can store a vote using space O(m logm). The result now
follows from the upper bound on ` [15] and Observation 1.

Next we consider the case when 1
ε is large compared to m.

Theorem 8. Assume that the number of votes is known to be within [c1n, c2n] in advance, for
some constants c1 and c2. Then there is a one pass algorithm for the (ε, δ)–WINNER DETERMINA-
TION problem for the maximin, Copeland, Bucklin, and plurality with runoff voting rules that uses
O (m2 (log logm + log 1

ε + log log 1
δ
) + log logn) bits of memory.

Proof. For each voting rule mentioned in the statement, we sample `many votes S = {vi ∶ i ∈ [`]}
uniformly at random from the input stream of votes using the algorithm used in Observation 1
and the technique used in the proof of Theorem 5. From S, we generate another stream S̄ of
elements belonging to a different universe U (which depends on the voting rule under consid-
eration). Finally, we calculate the frequencies of the elements of S̄, using Theorem 2, within
an additive approximation of ε`

2 for maximin, Bucklin, and plurality with runoff voting rules
and ε`

2 logm for the Copeland voting rule. The difference of approximation factor is due to [15].

We know that ` = O ( log m
δ

ε2
) for maximin, Bucklin, and plurality with run off voting rules and

` = O ( log3 m
δ

ε2
) for the Copeland voting rule [15]. This bounds on ` prove the result once we

describe S̄ and U . Below, we describe the stream S̄ and the universe U for individual voting
rules. Let the vote vi be c1 ≻ c2 ≻ ⋯ ≻ cm.

• maximin, Copeland: U = C × C. From the vote vi, we put (cj , ck) in S̄ for every j < k.

• Bucklin: U = C × [m]. From the vote vi, we put (cj , k) in S̄ for every j ≤ k.

• plurality with runoff: U = C × C. From the vote vi, we put (cj , ck) in S̄ for every j < k and
(c1, c1). In the plurality with runoff voting rule, we need to estimate the plurality score of
every candidate which we do by estimating the frequencies of the elements of the (x,x) in
S̄. We also need to estimate DE(x, y) for every candidate x, y ∈ C which we do by estimating
the frequencies of the elements of the form (x, y).

11



3.1 Unknown stream length

Now we consider the case when the number of voters is not known beforehand. The idea is to
use reservoir sampling ([35]) along with approximate counting ([18, 31]) to pick an element
from the stream almost uniformly at random. The following result shows that we can do so in a
space efficient manner.

Theorem 9. (Theorem 7 of [19]) Given an insertion only stream of length n (n is not known to
the algorithm beforehand) over a universe of size m, there is a randomized one pass algorithm that
outputs, with probability at least 1 − δ, the element at a random position X ∈ [n] such that, for
every i ∈ [n], ∣Pr{X = i}− 1

n ∣ ≤
ε
n using O(log 1

δ + log 1
ε + log logn+ logm) bits of memory, for every

ε ∈ (0,1] and δ > 0.

Recall that Theorem 2 only works for insertion only streams. However, as the stream progresses,
the element chosen by Theorem 9 changes; so, we cannot invoke Misra-Gries to do frequency
estimation on a set of samples given by Theorem 9. For streams with both insertions and
deletions, we have the following result which is due to count-min sketch [12].

Theorem 10. Given a turnstile stream of length n over a universe of size m, there is a randomized
one pass algorithm to find the frequencies of the items in the stream within an additive approxima-
tion of εn with probability at least 1 − δ using O ( logm

ε log(1δ ) (logm + logn)) bits of memory, for
every ε > 0 and δ > 0.

From Theorem 9 and 10 and from the proofs of Theorem 2, 4 to 6 and 8, we get the following.

Corollary 1. Assume that the number of votes n is not known beforehand. Then there is a one
pass algorithm for the (ε, δ)–WINNER DETERMINATION problem for k-approval, k-veto, generalized
plurality, approval, maximin, Copeland, Bucklin, and plurality with run off voting rules that uses
logm log 1

δ times more space than the corresponding algorithms when n is known beforehand upto
a constant factor.

Proof. We use reservoir sampling with approximate counting from Theorem 9. The resulting
stream that we generate have both positive and negative updates (since in reservoir sampling,
we sometimes replace an item we previously sampled). Now we approximately estimate the
frequency of every item in the generated stream using Theorem 10.

Again from Theorem 7 and 9, we get the following result which provides a better space upper
bound than Corollary 1 when the number of candidates m is large.

Corollary 2. Assume that the number of votes n is not known beforehand. Then there is a one
pass algorithm for the (ε, δ)–WINNER DETERMINATION problem for the maximin, Bucklin, and

plurality with run off voting rules that use O (m log2m log 1
δ

ε2
+ log logn) bits of memory and for the

Copeland voting rule that uses O (m log4m log 1
δ

ε2
+ log logn) bits of memory.

3.2 Sliding Window Model

Suppose we want to compute an ε-winner of the last n many votes in an infinite stream of
votes for various voting rules. The following result shows that there is an algorithm, with space
complexity same as Theorem 9, to sample a vote from the last n votes in a stream.

12



Theorem 11. ([6]) Given an insertion only stream over a universe of size m, there is a randomized
one pass algorithm that outputs, with probability at least 1 − δ, the element at a random position
X from last n positions such that, for every i ∈ [n], ∣Pr{X = i} − 1

n ∣ ≤
ε
n using O(log 1

δ + log 1
ε +

log logn + logm) bits of memory, for every ε ∈ (0,1] and δ > 0.

Theorem 11 immediately provides results same as Corollary 1 and 2, where n is the window
size.

4 Lower Bounds

In this section, we prove space complexity lower bounds for the (ε, δ)–WINNER DETERMINA-
TION problem for various voting rules. We reduce certain communication problems to the
(ε, δ)–WINNER DETERMINATION problem for proving space complexity lower bounds. Let us
first introduce those communication problems with necessary results.

4.1 Communication Complexity

Definition 4. (AUGMENTED-INDEXINGm,t)
Let t and m be positive integers. Alice is given a string x = (x1,⋯, xt) ∈ [m]t. Bob is given an
integer i ∈ [t] and (x1,⋯, xi−1). Bob has to output xi.

The following communication complexity lower bound result is due to [16] by a simple exten-
sion of the arguments of Bar-Yossef et al [4].

Lemma 2. R1−way
δ (AUGMENTED-INDEXINGm,t) = Ω((1 − δ)t logm) for any δ < 1 − 3

2m .

Also, we recall the multi-party version of the set-disjointness problem.

Definition 5. (DISJ
promise
m,t )

We have t sets X1,⋯,Xt each a subset of [m]. We have t players and player i is holding the set
Xi. We are also given the promise that either Xi ∩Xj = ∅ for every i ≠ j or there exist an element
y ∈ [m] such that y ∈Xi for every i ∈ [t] and (Xi∖{y})∩(Xj ∖{y}) = ∅ for every i ≠ j. The output
DISJ

promise
m,t (X1,⋯,Xt) is 1 if Xi ∩Xj = ∅ for every i ≠ j and 0 else.

Lemma 3 (Proved in [4, 8].). R1−way
δ (DISJ

promise
m,t ) = Ω(mt ), for any δ ∈ [0,1) and t.

The following communication problem is very useful for us.

Definition 6. (MAX-SUMm,t)
Alice is given a string x = (x1, x2,⋯, xt) ∈ [m]t of length t over universe [m]. Bob is given another
string y = (y1, y2,⋯, yt) ∈ [m]t of length t over the same universe [m]. The strings x and y is such
that the index i that maximizes xi + yi is unique. Bob has to output the index i ∈ [t] which satisfies
xi + yi = maxj∈[t]{xj + yj}.

We establish the following one way communication complexity lower bound for the MAX-SUMm,t

problem by reducing it from the AUGMENTED-INDEXING2,t logm problem.

Lemma 4. R1−way
δ (MAX-SUMm,t) = Ω(t logm), for every δ < 1

4 .
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Proof. We reduce the AUGMENTED-INDEXING2,t logm problem to MAX-SUM8m,t+1 problem thereby
proving the result. Let the inputs to Alice and Bob in the AUGMENTED-INDEXING2,t logm in-
stance be (a1, a2,⋯, at logm) ∈ {0,1}t logm and (a1,⋯, ai−1) respectively. The idea is to con-
struct a corresponding instance of the MAX-SUM8m,t+1 problem that outputs t + 1 if and
only if ai = 0. We achieve this as follows. Alice starts execution of the MAX-SUM8m,t+1
protocol using the vector x = (x1, x2,⋯, xt+1) ∈ [8m]t+1 which is defined as follows: the
binary representation of xj is (0,0, a(j−1) logm+1, a(j−1) logm+2, a(j−1) logm+3,⋯, aj logm,0)2, for
every j ∈ [t], and xt+1 is 0. Bob participates in the MAX-SUM8m,t+1 protocol with the
vector y = (y1, y2,⋯, yt+1) ∈ [8m]t+1 which is defined as follows. Let us define λ =
⌈ i
logm⌉. We define yj = 0, for every j ∉ {λ, t + 1}. The binary representation of yλ is

(1,0, a(λ−1) logm+1, a(λ−1) logm+2,⋯, ai−1,1,0,0,⋯,0,0,1)2. Let us define an integer T whose bi-
nary representation is (0,0, a(λ−1) logm+1, a(λ−1) logm+2,⋯, ai−1,0,1,1,⋯,1)2. We define yt+1 to be
T + yλ. First notice that the output of the MAX-SUM8m,t+1 instance is either λ or t + 1, by the
construction of y. Now observe that if ai = 1 then, xλ > T and thus the output of the MAX-
SUM8m,t+1 instance should be λ. On the other hand, if ai = 0 then, xλ < T and thus the output
of the MAX-SUM8m,t+1 instance should be t + 1.

Finally, we also consider the GREATER-THAN problem.

Definition 7. (GREATER-THANn)
Alice is given an integer x ∈ [n] and Bob is given an integer y ∈ [n], y ≠ x. Bob has to output 1 if
x > y and 0 otherwise.

The following result is due to [29, 34]. We provide a simple proof of it that seems to be missingIV

in the literature.

Lemma 5. R1−way
δ (GREATER-THANn) = Ω(logn), for every δ < 1

4 .

Proof. We reduce the AUGMENTED-INDEXING2,⌈logn⌉+1 problem to the GREATER-THANn problem
thereby proving the result. Alice runs the GREATER-THANn protocol with its input number whose
representation in binary is a = (x1x2⋯x⌈logn⌉1)2. Bob participates in the GREATER-THANn pro-
tocol with its input number whose representation in binary is b = (x1x2⋯xi−11 0⋯0±

(⌈logn⌉−i+1) 0′s

)2.

Now xi = 1 if and only if a > b.

4.2 Reductions

4.2.1 The cases ε = 0 and δ = 0

We begin with the problem where we have to find the winner (i.e., 0-winner) for a plurality
election. Notice that, we can find the winner by exactly computing the plurality score of every
candidate. This requiresO(m logn) bits of memory. We prove below that, when n is much larger
than m, this space complexity is almost optimal even if we are allowed to use randomization,
by reducing it from the MAX-SUMn,m problem. This strengthens a similar result proved in Karp
et al. [22] only for deterministic algorithms.

Theorem 12. Any one pass (0, δ)–WINNER DETERMINATION algorithm for the plurality and gen-
eralized plurality election must use Ω(m log(n/m)) bits of memory, for any δ ∈ [0, 14).

IVA similar proof appears in [23] but theirs gives a weaker lower bound.
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Proof. We prove the result for (0, δ)–WINNER DETERMINATION problem for the plurality elec-
tion. This gives the result for the generalized plurality election since every plurality election is
also a generalized plurality election. Consider the MAX-SUMn,m problem where Alice is given
a string x = (x1,⋯, xm) ∈ [n]m and Bob is given another string y = (y1,⋯, ym) ∈ [n]m. The
candidate set of our election is [m]. The votes would be such that the only winner will be
the candidate i such that i ∈ arg maxj∈[m]{xj + yj}. Moreover, the winner would be known to
Bob, thereby proving the result. Thus Bob can output xi correctly whenever our (0, δ)–WINNER

DETERMINATION algorithm outputs correctly. Alice generates xj many plurality votes for the
candidate j, for every j ∈ [m]. Alice now sends the memory content to Bob. Bob resumes the
run of the algorithm by generating yj many plurality votes for the candidate j, for every j ∈ [m].
The plurality score of candidate j is (xj + yj) and thus the plurality winner will be a candidate
i such that i ∈ arg maxj∈[m]{xj + yj}. Notice that the total number of votes is at most 2mn. The
result now follows from Lemma 4.

For the case when m and n are comparable, the following result is stronger. We prove this by
exhibiting a reduction from the DISJ

promise
m,3 problem.

Theorem 13. Any one pass (0, δ)–WINNER DETERMINATION algorithm for the plurality and gen-
eralized plurality election must use Ω(min{m,n}) bits of memory, for any δ ∈ [0,1).

Proof. Suppose we have a one pass (0, δ)–WINNER DETERMINATION algorithm for the plurality
election that uses s bits of memory. We will demonstrate a one-way three party protocol to
compute DISJ

promise
m,3 function using 2s bits of communication thus proving the result. We have

the candidate set [m + 1]. The protocol is as follows.
Player 1 starts running the one pass (0, δ)–WINNER DETERMINATION algorithm on the input
X1 ∪ {m + 1}. Once player 1 is done reading all its input, it sends its memory content to player
2. This needs at most s bits of communication. Player 2 resumes the run of the algorithm with
input X2 ∪ {m + 1} and sends its memory content to player 3. Again this needs at most s bits
of communication. Player 3 resumes the run of the algorithm on input X3 and output 1 if and
only if the winner is m + 1 and 0 else. Notice that, if the Xi ∩ Xj = ∅ for every i ≠ j then,
the only winner of the votes (X1,m + 1,X2,m + 1,X3) is the candidate m + 1 with a plurality
score of two. On the other hand, if there exist an element y ∈ [m] such that y ∈ Xi for every
i ∈ [t] and (Xi ∖ {y}) ∩ (Xj ∖ {y}) = ∅ for every i ≠ j then, the only winner of the votes
(X1,m + 1,X2,m + 1,X3) is the candidate y with a plurality score of three.
The number of candidates in the election above is m + 1 and the number of votes n is ∣X1∣ +
∣X2∣+ ∣X3∣+ 2(m+ 1) = Θ(m). This gives a space complexity lower bound of Ω(min{m,n}).

Theorem 12 and 13 give space complexity lower bounds for the case ε = 0. Next, we consider
the other extreme case: deterministically find an ε-winner, corresponding to δ = 0.

Theorem 14. Assume ε < 1
5 . Then any one pass (ε,0)–WINNER DETERMINATION algorithm for

the plurality election must use Ω(logn) bits of memory, even if the number of voters is known up
to a factor of 2 and the number of candidates is only 2. The same applies for generalized plurality,
scoring rules, maximin, Copeland, Bucklin, and plurality with run off voting rules.

Proof. For the sake of contradiction, we assume that the number of possible memory contents
of the algorithm is o(n), since otherwise the algorithm uses Ω(logn) space and we have nothing
to prove. Our candidate set is {0,1}. We will generate two vote streams, say R1 and R2, in such
a way that the final state of the algorithm would be same; however ε–winner would be different
for the two streams thus providing the contradiction we are looking for.
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Let s0 be the starting state of the algorithm. Consider the stream of votes for 1 and let the
algorithm repeats its state for the first time after reading i many 1 votes. Let the state of the
algorithm after reading ith 1 vote be same as the state the algorithm was after it read jth 1
vote. Let us call µ = i − j. Clearly µ = o(n). Then there exist δ1, δ2 = o(n) such that the state
the algorithm will be after reading n

4 − δ1 many votes for 1 is same as the state it will be after
reading 3n

4 + δ2 many votes for 1. Let R1 be the stream of n
4 − δ1 many votes for 1 followed

by n
2 many votes for 0. Let R2 be the stream of 3n

4 + δ2 many votes for 1 followed by n
2 many

votes for 0. By construction the output of the algorithm is same for both the streams R1 and R2.
However, candidate 1 is only ε-winner in R1 and candidate 0 is only ε-winner in R2.
For elections with two candidates, scoring rules, maximin, Copeland, Bucklin, and plurality
with run off voting rules are same as the plurality voting rule.

4.2.2 Lower Bounds for Approximate and Randomized algorithms

Now we move on and show space complexity lower bounds for general (ε, δ)–WINNER DETER-
MINATION problem for various voting rules. The observation below immediately follows from
the fact that the algorithm has to output a candidate as an ε-winner.

Observation 2. Every (ε, δ)–WINNER DETERMINATION algorithm, for all the voting rules consid-
ered in this paper, needs Ω(logm) bits of memory.

We show next a space complexity lower bound of Ω(1ε log 1
ε) bits for the (ε, δ)–WINNER DETER-

MINATION problem for various voting rules.

Theorem 15. Suppose the number of candidates m is at least 1
ε . Any one pass (ε, δ)–WINNER DE-

TERMINATION algorithm for approval, k-approval, for k = O(mλ) for every λ ∈ [0,1), generalized
plurality, Borda, maximin, Copeland, and plurality with run off elections must use Ω((1−δ)1ε log 1

ε)
bits of memory, even when the number of votes are exactly known beforehand, for every 1 − δ > 3ε

2 .

Proof. We will show that, when m ≥ 1
ε , we need Ω( 1√

ε
log 1

ε) bits of memory for solv-

ing the (
√
ε
8 , δ)–WINNER DETERMINATION problem, thereby proving the result. Consider the

AUGMENTED-INDEXING1/√ε,1/√ε problem where Alice is given a string x = (x1, x2,⋯, x1/√ε) ∈
[1/√ε]1/

√
ε and Bob is given an integer i ∈ [1/√ε] and (x1,⋯, xi−1). The candidate set of the

election, that we generate, is [1/√ε] × [1/√ε]. The overview of the technique is as follows: Alice
generates a stream of votes and runs the algorithm, then sends the memory content to Bob, and
Bob resumes the run of the algorithm with another stream of votes (both the streams of votes
depend on the voting rule under consideration) in such a way that the only

√
ε
8 –winner will be

the candidate (xi, i). Thus Bob can output xi correctly if and only if the (√ε/8, δ)–WINNER DE-
TERMINATION algorithm outputs correctly. Now the result follows from Lemma 2. The elections
for specific voting rules are as follows. Let n be the number of votes.

• k-approval for k = O(mλ) for every λ ∈ [0,1), approval, and generalized plurality: It is
enough to prove the result for the k-approval voting rule for k = O(mλ) for every λ ∈ [0,1),
since every k-approval election is also an approval election. For k = 1, we get the result
for the plurality voting rule and thus for the generalized plurality voting rule, since every
plurality election is also a generalized plurality election.

– Case 1: k ≤ √
m: Alice generates a stream of n

2 votes in such a way that the k-approval
score of every candidate in {(xj , j) ∶ j ∈ [1/√ε]} is at least ⌊k√εn/2⌋ and the k-approval
score of any other candidate is 0. Alice now sends the memory content of the algorithm
to Bob. Bob resumes the run of the algorithm by generating another stream of n/2 votes
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in such a way that the k-approval score of every candidate in {(j, i) ∶ j ∈ [1/√ε]} is at least
⌊k√εn/2⌋ and the k-approval score of any other candidate is 0. The score of the candidate
(xi, i) is at least ⌊k√εn⌋ where as the score of every other candidate is at most ⌈k√εn/2⌉.
Hence the only

√
ε/8–winner is (xi, i).

– Case 2: k > √
m and k = O(mλ) for any λ ∈ [0.5,1): Alice generates a stream of n

2 votes
in such a way that the k-approval score of every candidate in {(xj , j) ∶ j ∈ [ 1√

ε
]} is at least

n
2 and the k-approval score of any other candidate is at most ⌈(k − 1√

ε
)n/ ( 2√

ε
( 1√

ε
− 1))⌉,

which is at most n
2 −

√
ε
2 n for sufficiently small constant ε (depending on λ). Alice now

sends the memory content of the algorithm to Bob. Bob resumes the run of the algorithm
by generating another stream of n

2 votes in such a way that the k-approval score of every
candidate in {(j, i) ∶ j ∈ [ 1√

ε
]} is at least n2 and the k-approval score of any other candidate

is ⌈(k − 1√
ε
) n

2√
ε
( 1√

ε
−1)⌉. In this case also the only

√
ε
8 –winner is (xi, i).

• Borda, Bucklin: Alice generates a stream of n
2 votes where the candidates in {(x`, `), ` ∈

[1/√ε]} are uniformly distributed in top 1/√ε positions of the votes and the rest of the candi-
dates are uniformly distributed in bottom 1/ε − 1/√ε positions of the votes. Alice now sends
the memory content to Bob and Bob resumes the run of the algorithm by generating another
stream of n/2 votes where the candidates in {(`, i), ` ∈ [1/√ε]} are uniformly distributed in
top 1/√ε positions of the votes and the rest of the candidates are uniformly distributed in bot-
tom 1/ε − 1/√ε positions of the votes. The Borda score of the candidate (xi, i) is (1/ε − 1/2√ε)n
whereas the Borda score of every other candidate is at most (1/2ε − 1/4√ε)n. Hence, the only√
ε/8–winner for the Borda voting rule is (xi, i), since each vote change can reduce or increase

the Borda score of any candidate by at most 1/ε.
The candidate (xi, i) is ranked within top 2/3√ε positions in 2n/3 many votes, whereas any
other candidate is ranked within top 2/3√ε positions in at most n/3 many votes. Hence the
only

√
ε/8–winner for the Bucklin voting rule is (xi, i).

• Any Condorcet consistent voting rule, Plurality with runoff: Let us define X = {(x`, `) ∶
` ∈ [1/√ε]}, Y = [1/√ε] × [1/√ε] ∖X. Suppose

Ð→
X and

Ð→
Y are arbitrary but fixed ordering of

the candidates in X and Y respectively. For every ` ∈ [1/√ε], Alice generates
√
εn/4 votes

of the form (x`, `) ≻
ÐÐÐÐÐÐÐÐ→
X ∖ {(x`, `)} ≻ Ð→Y and another

√
εn/4 votes of the form

←ÐÐÐÐÐÐ
X ∖ (x`, `) ≻

(x`, `) ≻ Ð→Y , where
←Ð
X is the reverse order of

Ð→
X . Alice now sends the memory content to

Bob. Let us define A = {(`, i) ∶ ` ∈ [1/√ε]} and B = [1/√ε] × [1/√ε] ∖A. Suppose
Ð→
A and

Ð→
B are

arbitrary but fixed ordering of A and B respectively. Bob resumes the run of the algorithm
by generating another

√
εn/4 votes of the form (`, i) ≻

ÐÐÐÐÐ→
A ∖ (`, i) ≻ Ð→B and another

√
εn/4 votes

of the form
←ÐÐÐÐÐ
A ∖ (`, i) ≻ (`, i) ≻Ð→B for every ` ∈ [1/√ε], where

←Ð
A is the reverse order of

Ð→
A . The

candidate (xi, i) defeats every other candidate in pairwise election by a margin of at least n4 .
Also the plurality score of the candidate (xi, i) is more than the plurality score of every other
candidate by at least

√
εn. Hence the only

√
ε/8–winner is (xi, i).

We can prove a space lower bound of Ω(mε log 1
ε) for one pass (ε, δ)–WINNER DETERMINA-

TION algorithms for Borda, Bucklin, Copeland, and maximin voting rules by reducing it from
AUGMENTED-INDEXING1/ε,m in the proof of Theorem 15. We summarize this observation below.

Corollary 3. Suppose the number of candidates m is at least 1
ε . Any one pass (ε, δ)–WINNER

DETERMINATION algorithm for Borda, maximin, Copeland, and plurality with run off elections
must use Ω((1 − δ)m log 1

ε) bits of memory, even when the number of votes are exactly known
beforehand, for every 1 − δ > 3ε

2 .
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For the k-veto voting rule, we prove below, again by reducing from AUGMENTED-INDEXING, a
slightly weaker space complexity lower bound compared to the bounds of Theorem 15.

Theorem 16. Suppose the number of candidates m is at least 1
ε . Any one pass (ε, δ)–WINNER

DETERMINATION algorithm for the k-veto voting rule for k = O(mλ), for every λ ∈ [0,1), must use
Ω( 1

εµ log 1
ε), for every constant µ < 1, bits of memory, even when the number of votes are exactly

known beforehand, for every 1 − δ > 3ε
2 .

Proof. We prove the result for ( ε5 , δ)–WINNER DETERMINATION problem. Consider the

AUGMENTED-INDEXING 1

ε1−µ ,
1
εµ

problem where the first player Alice is given a string x ∈ [ 1
ε1−µ ]

1
εµ ,

while the second player Bob is given an integer i ∈ [ 1
εµ ] and xj for every j < i. The candidate

set of our election is [ 1
ε1−µ ] × [ 1

εµ ]. The votes would be such that the only ε
5–winner will be

the candidate (xi, i), thereby proving the result. Thus Bob can output xi correctly whenever
our (ε, δ)–WINNER DETERMINATION algorithm outputs correctly. Alice generates a stream of n

2
votes (assume n to be sufficiently large) in such a way that for every a, b ∈ {(xj , j) ∶ j ∈ 1

εµ }
and x, y ∈ [ 1

ε1−µ ] × [ 1
εµ ] ∖ {(xj , j) ∶ j ∈ 1

εµ }, we have s(a) − s(x) ≥ εn
2 , s(b) − 1 ≤ s(a) ≤ s(b) + 1,

and s(y) − 1 ≤ s(x) ≤ s(y) + 1, where s(⋅) is the number of vetoes that a candidate receives
(which is always negative or zero). This is possible since k = O(mλ) for λ ∈ [0,1). Alice now
sends the memory content of the algorithm. Bob resumes the run of the algorithm by gen-
erating another stream of n

2 votes in such a way that for every a′, b′ ∈ {(z, i) ∶ z ∈ 1
ε1−µ } and

x′, y′ ∈ [ 1
ε1−µ ] × [ 1

εµ ] ∖ {(z, i) ∶ z ∈ 1
ε1−µ }, we have s(a′) − s(x′) ≥ εn

2 , s(b′) − 1 ≤ s(a′) ≤ s(b′) + 1,
and s(y′) − 1 ≤ s(x′) ≤ s(y′) + 1. Now the score of (xi, i) is more than the score of every other
candidate by at least εn

2 . Hence, the candidate (xi, i) is the unique ε
5–winner.

For the k-approval voting rule, we provide a stronger space complexity lower bound of
Ω(kε log 1

ε), when the number of candidates m is at least k
ε2

, by reducing from AUGMENTED-
INDEXING 1

ε
, k
ε
.

Theorem 17. Assume that the number of candidates m is at least k
ε2

. Then any one pass (ε, δ)–
WINNER DETERMINATION algorithm for the k-approval voting rule must use Ω(kε log 1

ε) bits of
memory.

Proof. We prove the result for ( ε5 , δ)–WINNER DETERMINATION problem. Consider the

AUGMENTED-INDEXING 1
ε
, k
ε

problem where Alice is given (x1,⋯, x k
ε
) ∈ [1ε ]

k
ε and Bob is given

(x1,⋯, xi−1). We will create a k-approval election in such a way that the ε
5 -winner will reveal xi

to Bob. The candidate set of our election is [1ε ]× [kε ]. For every j ∈ [k], Alice generates εn
2 many

votes approving candidates in {(xk(j−1)+1, k(j − 1) + 1), (xk(j−1)+2, k(j − 1) + 2),⋯, (xkj , kj)}.
Alice now sends the memory content to Bob. Let X = {(j, i) ∶ j ∈ [1ε ]}. If k ≤ 1

ε then, Bob
generates n

2 votes in such a way that every candidate in X gets at least kεn
2 many approvals and

the candidates in [1ε ] × [kε ] ∖ X does not get any approval from the votes that Bob generates.
Now, the k-approval score of the candidate (xi, i) is at least (k + 1) εn2 , whereas every other
candidate gets at most kεn

2 many approvals. Hence, (xi, i) is the unique ε
5 -winner. If k > 1

ε
then, Bob generates n

2 votes in such a way that every candidate in X gets n
2 many approvals

and every candidate in [1ε ] × [kε ] ∖ X gets at most (k − 1
ε)

n
2

1
k/ε2−1/ε ≤

n
2 ε

2 many approvals from
the votes that Bob generates. Here again the k-approval score of the candidate (xi, i) is at least
(1 + ε)n2 , where as the k-approval score of every other candidate is at most εn

2 . Hence, (xi, i) is
the unique ε

5 -winner.
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For the generalized plurality voting rule, we provide a Ω( 1√
ε

logm) space complexity lower
bound, again by reducing from AUGMENTED-INDEXINGm, 1√

ε
. This bound is better than the lower

bound of Theorem 15 when m is exponentially larger compared to 1
ε .

Theorem 18. Suppose the number of candidates m is at least 1√
ε
. Any one pass (ε, δ)–WINNER

DETERMINATION algorithm for the generalized plurality rule must use Ω( 1√
ε

logm) bits of memory,

for every 1 − δ > 3ε
2 .

Proof. We prove the result for ( ε5 , δ)–WINNER DETERMINATION problem. Consider the

AUGMENTED-INDEXINGm, 1√
ε

problem where Alice is given a string x = (x1,⋯, x 1√
ε
) ∈ [m]

1√
ε and

Bob is given an integer i ∈ [ 1√
ε
] and (x1,⋯, xi−1). The candidate set of our election is [m]×[ 1√

ε
].

The votes would be such that the only ε
5–winner will be the candidate (xi, i), thereby proving

the result. Thus Bob can output xi correctly whenever our ( ε5 , δ)–WINNER DETERMINATION al-
gorithm outputs correctly. Alice generates ( 1√

ε
− j)εn many approvals for candidate (xj , j), for

every j < 1√
ε
. Alice now sends the memory content of the algorithm. Bob resumes the run of

the algorithm by generating ( 1√
ε
− j)εn many approvals for candidate (xj , j), for every j < i.

Notice that, the only ε
5 -winner is the candidate (xi, i). Now the space complexity lower bound

follows from Lemma 2.

The space complexity lower bound in Theorem 15 for the plurality voting rule matches with
the upper bound of Theorem 3, when 1

ε ≤ m ≤ 1
εO(1) . For the case when m ≤ 1

ε , we now show
a matching space complexity lower bound for the plurality voting rule. We prove this result by
exhibiting a reduction from the MAX-SUM 1

ε
,m problem.

Theorem 19. Assume that the number of candidates m is at most 1
ε . Then any one pass (ε, δ)–

WINNER DETERMINATION algorithm for the plurality, generalized plurality, approval, k-approval
for k = O(mλ), for any λ ∈ [0,1), maximin, Copeland, Bucklin, plurality with run off voting rules
must use Ω(m log 1

ε) bits of memory.

Proof. First, let us prove the result for the plurality voting rule. Suppose we have a one pass
(ε, δ)–WINNER DETERMINATION algorithm for the plurality election which uses s(n, ε) bits of
memory. Consider the communication problem MAX-SUM 1

ε
,m. Let the inputs to Alice and Bob

in the MAX-SUM 1
ε
,m instance be x = (x1, x2,⋯, xm) ∈ [1ε ]

m and y = (y1, y2,⋯, ym) ∈ [1ε ]
m respec-

tively. The candidate set of the election is [m]. Alice generates xi many plurality vote for the
candidate i, for every i ∈ [m]. Alice now sends the memory content of the algorithm to Bob. Bob
resumes the run of the algorithm by generating yi many plurality votes for the candidate i, for
every i ∈ [m]. Suppose i = arg maxj∈[m]{xj +yj} (recall from Definition 6 that there exist unique
element i that maximizes xi + yi) and ` ≠ arg maxj∈[m]{xj + yj}. Then we have the following:

(xi + yi) − (x` + y`)
∑j∈[m](xj + yj)

≥ ε

2m
≥ ε

2

2

The first inequality follows from the fact that (xi + yi) − (x` + y`) ≥ 1 and ∑j∈[m] xj + yj ≤ 2m
ε .

The second inequality follows from the assumption that m ≤ 1
ε . Hence, whenever the ( ε25 , δ)–

WINNER DETERMINATION algorithm outputs an ε2

5 -winner, Bob also outputs correctly in the
MAX-SUM 1

ε
,m problem instance.
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For the other voting rules, the idea is the same as above: we will generate votes in such a way
that ensures that the candidate i wins if i = arg maxj∈[m]{xj + yj} by a margin of at least one.
Below, we only specify the votes to be generated for other voting rules.

• Generalized plurality, approval: Follows immediately from the fact that every plurality
election is a valid generalized plurality and approval election too.

• k-approval for k = O(mλ), for any λ ∈ [0,1): Alice (respectively Bob) generates xi (respec-
tively yi) many votes such that candidate i gets xi many approvals and the rest (k − 1)xi
many approvals are equally distributed among other m − 1 candidates.

• Borda, maximin, Copeland, Bucklin, plurality with run off: Alice (respectively Bob) gen-
erates xi (respectively yi) many votes of the form i ≻ Ð→C−i and another xi (respectively yi)
many votes of the form i ≻ ←ÐC−i, where

Ð→C−i is an arbitrary but fixed order of the candidates in
C ∖ {i} and

←ÐC−i is the reverse order of
Ð→C−i.

Now we show space complexity lower bounds that depend on the number of votes n. The result
below is obtained by reducing from the GREATER-THANn problem. The lower bound is tight in
the number of votes n.

Theorem 20. Any one pass (ε, δ)–WINNER DETERMINATION algorithm for the plurality voting
rule must use Ω(log logn) memory bits, even if the number of candidates is only 2, for every δ < 1

4 .
The same applies for generalized plurality, scoring rules, maximin, Copeland, Bucklin, and plurality
with run off voting rules.

Proof. Suppose we have a one pass (ε, δ)–WINNER DETERMINATION algorithm for the plurality
election which uses s(n) bits of space. Using this algorithm, we will show a communication pro-
tocol for the GREATER-THANn problem whose communication coplexity is s(2n) thereby proving
the statement. The candidate set is {0,1}. Alice generates a stream of 2x many plurality votes
for the candidate 1. Alice now sends the memory content of the algorithm. Bob resumes the
run of the algorithm by generating a stream of 2y many plurality votes for the candidate 0. If
x > y then the candidate 1 is the only ε-winner; whereas if x < y then the candidate 0 is the only
ε-winner.
For elections with two candidates, generalized plurality, scoring rules, maximin, Copeland,
Bucklin, and plurality with run off voting rules are same as the plurality voting rule.

5 Conclusions and Future Work

In this work, we studied the space complexity for determining approximate winners in the set-
ting where votes are inserted continually into a data stream. We showed that allowing random-
ization and approximation indeed allows for much more space-efficient algorithms. Moreover,
our bounds are tight in certain parameter ranges.
The most immediate open question is to close the gaps between the upper and lower bounds.
In particular, even for plurality, the dependence on m and ε is not tight when m is large. Also,
for the other voting rules, are there more sophisticated algorithms which improve our upper
bounds? In a different vein, it may be interesting to implement these streaming algorithms for
use in practice (say, for participatory democracy experiments or for online social networks) and
investigate how they perform. Finally, instead of having the algorithm be passive, could we
improve performance by having the algorithm actively query the voters as they appear in the
stream?
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