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Abstract
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1 Introduction

1.1 Background

In the circuit satisfiability problem (Circuit SAT), our task is, given a Boolean circuit C, to decide
whether there exists a 0/1 assignment to the input variables such that C evaluates 1. If input
instances are restricted to a class of Boolean circuits C, the problem is called C-SAT. A näıve
algorithm can solve Circuit SAT in time O(poly(|C|) ·2n), where we denote by |C| the size of C and
by n the number of input variables of C respectively. We say an algorithm for C-SAT is moderately
exponential time if it checks the satisfiability of every C ∈ C in time poly(|C|) · 2n−ω(logn), i.e.,
super-polynomially faster than 2n. We are interested in for which class C moderately exponential
time satisfiability algorithms exist.

In this paper, we present a moderately exponential time algorithm for SYM◦AND-SAT, where
SYM◦AND is the class of depth-2 unbounded-fan-in circuits with an arbitrary symmetric gate at
the top and AND gates at the bottom. Our algorithm can handle circuits of super-polynomial size.
Such a result has not been known even for MAJ◦AND-SAT that is a special case of SYM◦AND-
SAT, where symmetric gates are restricted to MAJORITY gates. MAJ ◦AND-SAT is equivalent
to the maximum satisfiability problem (Max SAT)1 and usually treated as so in the context. Before
stating our contribution more formally, we briefly survey Max SAT and Circuit SAT to explain our
motivation for studying SYM ◦AND-SAT.

Maximum satisfiability

In Max SAT, the task is, given a set of clauses, to find a 0/1 assignment to the input variables that
maximizes the number of satisfied clauses, where a clause is a disjunction of literals and a literal is
a Boolean variable or its negation. Max SAT is one of the most fundamental NP-hard problems.
In Max k-SAT, we pose a restriction on input instances that each clause contains at most k literals.
Max k-SAT is NP-hard even when k = 2.

Exponential time algorithms for Max SAT have been developed with respect to various parame-
ters such as the number of variables, the number of clauses, the length of an instance and an objec-
tive value, see, e.g., [27] for the collection of previous results. With respect to the number of variables
n, Williams gave an O(2ωn/3)-time algorithm for Max 2-SAT [33], where ω < 2.3728639 [19] is the
exponent of the matrix multiplication. Since then, the existence of moderately exponential time
algorithms for Max 3-SAT has been one of the major open questions in the study of exponential
time algorithms, see, e.g., [5].

Circuit Satisfiability

Studying moderately exponential time algorithms for Circuit SAT is motivated by not only the
importance in practice, e.g., logic circuit design and constraint satisfaction but also the viewpoint
of Boolean circuit complexity. As pointed out by several papers such as [34, 38], there are strong
connections between proving circuit lower bounds for C and designing moderately exponential time
algorithms for C-SAT.

Typical such connections are: (1) Some proof techniques such as deterministic/random re-
striction (shrinkage analysis/switching lemma) simultaneously prove circuit lower bounds for C
and give C-SAT algorithms, e.g., when C is AC0 circuits (bounded-depth unbounded-fan-in cir-
cuits with AND and OR gates) [2, 7, 15], or Boolean formulas [10, 11, 28, 32]. (2) As shown by

1We do not distinguish MAJ ◦AND-SAT and MAJ ◦OR-SAT because we allow inputs to gates to be negated.
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Williams [34, 37], if we obtain a moderately exponential time algorithm for C-SAT, then we also
have a separation of complexity classes, i.e., NEXP ⊈ C, where NEXP is the class of languages
decidable by non-deterministic exponential time Turing machines.

These connections raise natural questions: (Q1) If we can prove circuit lower bounds for C, then
can we also obtain a moderately exponential time algorithm for C-SAT? (Q2) For which class of
Boolean circuits C can we obtain a moderately exponential time satisfiability algorithm (so that we
have NEXP ⊈ C) ?

For both questions, one of the most interesting classes is MAJ ◦AND. As for Q1, we know
sub-exponential size circuits in MAJ ◦AND cannot compute the PARITY function [13]. As for
Q2, Williams has shown moderately exponential time algorithms for so-called ACC0 ◦ SYM and
ACC0 ◦THR circuits and NEXP ⊈ ACC0 ◦ SYM ∪ACC0 ◦THR. The next natural target is
TC0, the class of bounded-depth unbounded-fan-in circuits with (weighted) linear threshold gates
because TC0 contains ACC0 ◦ SYM and ACC0 ◦ THR. So far, moderately exponential time
algorithms have been shown for a special case of TC0 by Impagliazzo, Paturi and Schneider [17],
where input instances are depth-2 circuits and have a linear number of wires. An obvious open
question is to extend their result to handle polynomial size depth-2 circuits in TC0. To do so, we
must be able to handle polynomial size circuits in MAJ ◦AND.

1.2 Our contribution

Our main result is the following theorem.

Theorem 1.1. We can count the number of satisfying assignments for C ∈ SYM◦ANDk(n,m,w)
deterministically in time

poly(n,m, logw) · 2n−Ω((n/ log(mw))logn/4 log(km))

and exponential space.

Here we denote by SYM◦ANDk(n,m,w) the class of circuits in SYM◦AND with n variables
and m AND gates of fan-in at most k ≤ n. Our algorithm can handle weighted symmetric gates
and we denote by w the upper bound on the maximum weight of symmetric gates. See Section 2
and 3 for the formal definitions of weighted symmetric functions and SYM ◦ANDk(n,m,w). Our
algorithm runs in time super-polynomially faster than 2n when, e.g., m = no(logn/ log logn) and
w = 2n

0.99
. As a special case, we obtain an algorithm for the maximum satisfiability problem that

runs in time poly(nt) · 2n−n1/O(t)
for instances with n variables and O(nt) clauses.

Although the running time of our algorithm is super-polynomially faster than 2n instead of
exponentially faster than 2n (2(1−ε)n for a universal constant ε > 0), this seems unavoidable due to
the Strong Exponential Time Hypothesis (SETH) [7, 16, 18]: The hypothesis states that for all k,
there exists εk > 0 such that the satisfiability problem of k-CNF formulas cannot be solvable in time
2(1−εk)n. SETH has been used in proving conditional time lower bounds for several exponential
time and polynomial time algorithms, see, e.g., [12, 20].

1.3 Related work

Moderately exponential time algorithms for C-SAT have been shown for various circuit classes C
(sometimes with an additional condition on circuit size), e.g.,

• 3-CNF formulas (AND ◦OR3) [14, 21],

• k-CNF formulas (AND ◦ORk) [22, 26, 30],
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• CNF formulas (AND ◦OR) [6, 31],

• Symmetric Boolean Constraint Satisfaction Problems (AND ◦ SYM) [1],

• Bounded Depth Circuits with AND/OR gates (AC0) [2, 7, 15],

• AC0 circuits with modulo gates (ACC0) [37],

• ACC0 circuits with symmetric/threshold gates at the bottom (ACC0◦SYM/ACC0◦THR)
[36],

• weighted instances of Max SAT (THR ◦AND) [27],

• depth-2 threshold circuits (THR ◦THR) [17],

• De Morgan formulas [11, 28],

• formulas over the full binary basis [32] and finite bases [8]

• Boolean circuits [9, 24],

to name a few, see also [10, 23]. We remark that in [37], Williams gave an algorithm for ACC0-SAT
by combining a transformation from ACC0 circuits to SYM ◦AND circuits and a fast evaluation
algorithm for SYM ◦AND circuits.

There are excellent surveys on connections between circuit lower bounds and algorithms for
Circuit SAT and related topics [25, 29, 35].

1.4 Our techniques and paper organization

In Section 3, we give our first algorithm for SYM ◦ANDk-SAT based on dynamic programing.
The algorithm is moderately exponential time when k is not too large, i.e., k = o(log n/ log log n).

In Section 4, we present our second algorithm for SYM ◦ANDk-SAT based on greedy restric-
tion. The novelty of our algorithm and its analysis is a new way of reducing the bottom fan-in
of circuits in a greedy manner. Intuitively, given a SYM ◦ ANDk circuit with m gates, greedy
restriction produces a collection of SYM ◦ANDk′ circuits with k′ = O(log(km)/ log n) such that
at least one of the circuits in the collection is satisfiable if and only if so is the original circuit.
Note that previous techniques such as Schuler’s width reduction [6, 31] or the standard random
restriction achieve k′ = O(log(m/n)) and the bound is not sufficient for our purpose.

Our bottom fan-in reduction is inspired by the similar techniques used in the context of Formula-
SAT [10, 28, 32] and Max SAT [27] to reduce the size of instances. We show the efficiency of our
bottom fan-in reduction and combine it with our first algorithm for SYM ◦ANDk-SAT.

2 Preliminaries

We use random access machines as our computation model.
Let V be the set {x1, . . . , xn} of Boolean variables. A literal is either a variable or its negation.

A term is a conjunction of literals. We use the value 1 to indicate Boolean ‘true’, and 0 ‘false’. A
Boolean circuit C : {0, 1}n → {0, 1} is satisfiable if there exists a satisfying assignment for C, i.e.,
an assignment a ∈ {0, 1}n such that C(a) = 1 holds.

A restriction is a mapping ρ : V → {0, 1, ∗}. The meaning of ρ is that if ρ(xi) ∈ {0, 1}, then
we assign ρ(xi) to xi, and if ρ(xi) = ∗, then we leave xi as it is. Thus, when we apply a restriction
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ρ to a Boolean function f , we obtain the Boolean function f |ρ defined over the variables ρ−1(∗).
We also apply a restriction ρ to a Boolean circuit C and obtain a Boolean circuit C|ρ. When we
apply a restriction ρ to a Boolean circuit C, we simplify a Boolean circuit C using the standard
transformation 0 ∧ f ≡ 0, 1 ∧ f ≡ f repeatedly. Here, for two Boolean functions (or circuits) f, g
in the same variables, we write f ≡ g if f(a) = g(a) holds for all a ∈ {0, 1}n.

We denote by Z the set of integers. A Boolean function f : {0, 1}n → {0, 1} is weighted sym-
metric if there exist a function g : Z→ {0, 1} and integers w0, w1, . . . , wn such that f(x1, . . . , xn) =
g(w0 +

∑n
i=1wixi) holds. In the rest of this paper, we assume that g(z) can be evaluated in time

polynomial in log2 |z|, where |z| denotes the absolute value of z.

3 A Dynamic Programming Algorithm for SYM ◦ANDk

We denote by g◦ANDk(n,m,w) the set of n-variable Boolean circuits of the form g(w0+
∑s

i=1witi),
where g : Z → {0, 1}, s ≤ m, w0, w1, . . . , ws ∈ Z,max0≤i≤s |wi| ≤ w, and t1, . . . , ts are terms that
contain at most k-literals such that ti ̸= tj holds for i ̸= j. We define

SYM ◦ANDk(n,m,w) :=
∪

g:Z→{0,1}

g ◦ANDk(n,m,w).

We specify an element C in SYM ◦ANDk(n,m,w) as C = {g, w0, (t1, w1), . . . , (ts, ws)} and call s
and max0≤i≤s |wi| the size and the maximum weight of C respectively.

For a restriction ρ, we simplify C|ρ = {g, w0, (t1|ρ, w1), . . . , (ts|ρ, ws)} repeatedly if there exists
a pair (i, j), 1 ≤ i < j ≤ s such that ti|ρ ≡ tj |ρ holds. That is, we delete (tj |ρ, wj) and replace
(ti|ρ, wi) by (ti|ρ, wi + wj).

Our first satisfiability algorithm for SYM ◦ANDk(n,m,w) is described in Fig. 1. The basic
idea is as follows:
(Step 1) We construct a table T that contains pairs of the form (C,#sat(C)) for every circuit C
in g ◦ANDk(n

′,m′, w′), where #sat(C) denotes the number of satisfying assignments for C and
n′,m′, w′ are appropriately chosen parameters. Furthermore, pairs are sorted in the lexicographical
order with respect to the first coordinate C so that we can use binary search. To do so, we check
the number of satisfying assignments for every circuit in g ◦ANDk(n

′,m′, w′) one by one in the
lexicographical order using brute force search.
(Step 2) Let C be an input instance in g ◦ANDk(n,m,w). For each restriction ρ that assigns ∗
to the first n′ variables of C, we check the number of satisfying assignments for C|ρ using binary
search in T and output the sum of them.

Algorithm1(C = {g, w0, (t1, w1), . . . , (ts, ws)}: instance, n,m, k, w: integer)
01: if C /∈ SYM ◦ANDk(n,m,w), return ⊥.
02: T ← ∅. /∗ table for dynamic programming ∗/
03: for each C ∈ g ◦ANDk(n

′,m′, (s+ 1) · w), /∗ lexicographical order ∗/
04: T ← T ∪ {(C,#sat(C))}. /∗ brute force search ∗/
05: N ← 0.
06: for each ρ : V → {0, 1, ∗} such that ρ−1(∗) = {x1, . . . , xn′},
07: N ← N +#sat(C|ρ). /∗ binary search in T ∗/
08: return N .

Figure 1: A Dynamic Programming Algorithm for SYM ◦ANDk
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We will show the following theorem.

Theorem 3.1. We can count the number of satisfying assignments for C ∈ SYM◦ANDk(n,m,w)
deterministically in time

poly(n,m, logw) · 2n−Ω((n/ log(mw))1/k)).

and exponential space using Algorithm1 for appropriately chosen n′,m′.

Proof. We denote by |g ◦ANDk(n,m,w)| the cardinality of g ◦ANDk(n,m,w). To evaluate the
running time of (Step 1), we upper bound the size of the table T using the following lemma.

Fact 3.2. For all m, we have

|g ◦ANDk(n,m,w)| ≤ (2w + 1)
∑k

i=0 2
i(ni) ≤ 2(k+1)(2n)k log(2w+1).

Proof. Note that
∑k

i=0 2
i
(
n
i

)
is the number of different terms that consist of at most k-literals

(including a constant function 1). Each term has a weight in {−w,−w + 1, . . . , w − 1, w}. Thus,
we have the first inequality. The second inequality follows from an elementary calculation.

Thus, we can bound the running time of Lines 03-04 from above by

2(k+1)(2n′)k log(2(m+1)w+1) × poly(m′, log(mw)) · 2n′
,

where we set m′ =
∑k

i=0 2
i
(
n
i

)
≤ (k + 1)(2n)k.

Next we evaluate the running time of (Step 2). Note that the following guarantees that every
C|ρ in Line 06 belongs to g ◦ANDk(n

′,m′, (m+ 1) · w).

Fact 3.3. Let C = {g, w0, (t1, w1), . . . , (tm, wm)}. If C ∈ g ◦ ANDk(n,m,w) holds, then for all
restriction ρ with |ρ−1(∗)| = n′, we have C|ρ ∈ g ◦ANDk(n

′,m′, (m+ 1) · w).

Proof. By the definition of SYM ◦ANDk(n,m,w), we have
∑s

i=0 |wi| ≤ (m + 1)w. This implies
the maximum weight of C|ρ is at most (m+ 1)w.

For each C|ρ, binary search in Line 07 takes time at most

log2 |g ◦ANDk(n
′,m′, (m+ 1) · w)| × poly(m′, log(mw)) = poly(m′, log(mw)).

Thus, we can bound the running time of Lines 06-07 above by

poly(m,m′, log(mw)) · 2n−n′
.

If we set n′ =
(

n
(k+1)2k+1 log(2(m+1)w+1)

)1/k
= Θ((n/ log(mw))1/k), the total running time of

Algorithm1 is bounded from above by poly(n,m, logw) · 2n−Ω((n/ log(mw))1/k). This completes the
proof.
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4 A Greedy Restriction Algorithm for SYM ◦ANDk

For a term t, we denote by |t| the width of t, i.e., the number of literals in t and by var(t) the
set of variables that appear in t (possibly negated). Let C ∈ SYM ◦ANDk(n,m,w) be a circuit
{g, w0, (t1, w1), . . . , (ts, ws)}. We define varℓ(C) := ∪i:|ti|≥ℓvar(ti), freqℓ(C, x) := |{ti ∈ C | x ∈
var(ti), |ti| ≥ ℓ}|, and Lℓ(C) :=

∑
i:|ti|≥ℓ |ti|.

Our second satisfiability algorithm for SYM◦ANDk(n,m,w) is described in Fig. 2. The basic
idea is as follows:
(Step 1) Choose a positive integer ℓ according to input. We seek for a variable, say x, that
occurs most frequently in terms of width at least ℓ. We recursively run the algorithm for C|x=0

and Cx=1. Here C|x=a denotes the circuit obtained from C by applying a restriction ρ such that
ρ(x) = a ∈ {0, 1} and ρ(x′) = ∗ for x′ ̸= x.
(Step 2) If there is no term of width at least ℓ, we call Algorithm1.

Algorithm2(C = {g, w0, (t1, w1), . . . , (ts, ws)}: instance, n, n′, ℓ: integer)
01: if n > n′,
02: x = argmaxx∈var(C) freqℓ(C, x).
03: N0 ← Algorithm2(C|x=0, n− 1, n′, ℓ).
04: N1 ← Algorithm2(C|x=1, n− 1, n′, ℓ).
05: return N0 +N1.
06: else
07: N ← 0.
08: for each ρ : var(C)→ {0, 1, ∗} such that ρ−1({0, 1}) = varℓ(C),
09: w′ ← the maximum weight of C|ρ.
10: N ← N+ Algorithm1(C|ρ, n− |varℓ(C)|,m′, ℓ− 1, w′).
11: return N .

Figure 2: A Greedy Restriction Algorithm for SYM ◦ANDk

We will show the following theorem.

Theorem 4.1 (Restatement of Theorem 1.1). We can count the number of satisfying assignments
for C ∈ SYM ◦ANDk(n,m,w) deterministically in time

poly(n,m, logw) · 2n−Ω((n/ log(mw))logn/4 log(km))

and exponential space using Algorithm2 for appropriately chosen n′, ℓ,m′.

Proof. Let us define a sequence of random variables {Ci} inductively as C0 := C and Ci+1 := Ci|x=a,
where x = argmaxx∈var(Ci) freqℓ(Ci, x) and a is a uniform random bit.

We can think of the computation of Algorithm2 as a rooted binary tree. That is, the root
node is labeled with C0, the left and right children of the root are labeled with C0|x=0 and C0|x=1,
and so on. Then, if we pick a node of depth n − n′ uniformly at random, the distribution of its
label is identical to that of the random variable Cn−n′ .

We would like to bound the running time of Algorithm2(Cn−n′ , n′, n′, ℓ). It is obviously
bounded from above by poly(n,m, logw) · 2n′

. Furthermore, if Lℓ(Cn−n′) < n′

2 holds, the running

time can be bounded by 2n
′/2× (the running time of Algorithm1(C ′, n′/2,m′, ℓ− 1, w′)) for C ′ ∈

SYM ◦ANDℓ−1(n
′/2,m′, w′) with m′ = ℓ · (n′)ℓ−1 and w′ = (m+ 1)max0≤i≤s |wi|. We need the

following lemma that is proven in the next section.
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Lemma 4.2 (Greedy bottom fan-in reduction). Let C ∈ SYM ◦ANDk(n,m,w). For all n′ ≥ 4,
we have

Pr

[
Lℓ(Cn−n′) ≥ 2ℓ · Lℓ(C) ·

(
n′

n

) ℓ+2
2

]
< 2−n′

.

Since Lℓ(C) ≤ km, if we set n′ = 1
16

(
n
km

)2/ℓ · n in the above lemma, we have

2ℓ · Lℓ(C) ·
(
n′

n

) ℓ+2
2

≤ n′

2
,

that is, we have Lℓ(Cn−n′) < n′/2 with probability at least 1 − 2−n′
. If we set ℓ = 4 log(km)

logn , then
the total running time of Algorithm2 is bounded from above by the sum of

poly(n,m, logw) · 2n−n′ · 2−n′ · 2n′

and
poly(n,m, logw) · 2n−n′ · (1− 2−n′

) · 2n′/2 · 2n′/2−Ω((n′/(log(m′w′))1/ℓ)

according to whether Lℓ(Cn−n′) ≥ n′/2 holds or not. An elementary calculation completes the
proof.

5 Proof of Lemma 4.2

The proof given here is essentially due to Chen, Kabanets, Kolokolova, Shaltiel and Zuckerman,
see the proof of Lemma 4.3 in [10], except that we introduce Lℓ(·) and modify some parameters to
measure the effect of bottom fan-in reduction rather than the shrinkage of De Morgan formulas.

Lemma 5.1 (Restatement of Lemma 4.2). Let C ∈ SYM ◦ANDk(n,m,w). For all n′ ≥ 4, we
have

Pr

[
Lℓ(Cn−n′) ≥ 2ℓ · Lℓ(C) ·

(
n′

n

) ℓ+2
2

]
< 2−n′

.

We need the notion of super-martingales and a variant of Azuma’s inequality for them.

Definition 5.2. A sequence of random variables X0, X1, . . . , Xn is a super-martingale with respect
to a sequence of random variables Y0, Y1, . . . , Yn if it satisfies E[Xi|Y0, Y1, . . . , Yi−1] ≤ Xi−1 for
1 ≤ i ≤ n.

Lemma 5.3 (Lemma 4.2 in [10]). Let {Xi}ni=0 be a super-martingale with respect to {Yi}ni=0.
Define Zi := Xi −Xi−1 for 1 ≤ i ≤ n. If, for 1 ≤ i ≤ n, the random variable Zi (conditioned on
Y0, Y1, . . . , Yi−1) takes two values with equal probability, and there exists a constant ci ≥ 0 such that
Zi ≤ ci holds, then, for all positive real λ, we have

Pr[Xn −X0 ≥ λ] ≤ exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

We begin with a lemma that estimates the effect of greedy restriction.
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Lemma 5.4. Let C ∈ SYM◦ANDk(n,m,w) and x = argmaxx∈var(C) freqℓ(C, x). Then, we have

max{Lℓ(C|x=0), Lℓ(C|x=1)} ≤ Lℓ(C) ·
(
1− 1

n

)
and

E
a∈{0,1}

[Lℓ (C|x=a)] ≤ Lℓ(C) ·
(
1− 1

n

) ℓ+2
2

.

Proof. Pick any ti such that |ti| ≥ ℓ and x ∈ var(ti). If |ti| = ℓ, we have |ti|x=a| < ℓ for all a ∈ {0, 1}.
If |ti| > ℓ, we have ti|x=a ≡ 0 and |ti|x=¬a| = |ti| − 1 for some a ∈ {0, 1}. Since freqℓ(C, x) ≥

Lℓ(C)
n ,

we have max{Lℓ(C|x=0), Lℓ(C|x=1)} ≤ Lℓ(C) ·
(
1− 1

n

)
and

E
a∈{0,1}

[Lℓ (C|x=a)] ≤ Lℓ(C)− Lℓ(C)

n
min

{
ℓ,

(
1

2
· (ℓ+ 1) +

1

2
· 1
)}

= Lℓ(C)

(
1− ℓ+ 2

2n

)
≤ Lℓ(C) ·

(
1− 1

n

) ℓ+2
2

.

Recall that we define a sequence of random variables {Ci} inductively as C0 := C and Ci+1 :=
Ci|x=a, where x = argmaxx∈var(Ci) freqℓ(Ci, x) and a is a uniform random bit. We denote by Yi the
random bit assigned to the selected variables in step i for 1 ≤ i ≤ n and define Y0 := 0. We define
sequences of random variables {Li}ni=0, {li}ni=0, {Zi}ni=1 as follows: Li := Lℓ(Ci), li := lnLi and

Zi := li − li−1 −
ℓ+ 2

2
ln

(
1− 1

n− i+ 1

)
.

Note that, given Y0, Y1, . . . , Yi−1, the random variable Zi takes two values with equal probability.

Lemma 5.5. Define X0 := 0 and Xi :=
∑i

j=1 Zj. Then, the sequence of random variables {Xi}ni=0

is a super-martingale with respect to {Yi}ni=0 and for each Zi, we have Zi ≤ ci := − ℓ
2 ln(1−

1
n−i+1).

Proof. By the first inequality of Lemma 5.4, we have li ≤ li−1 + ln
(
1− 1

n−i+1

)
. This implies

Zi = li − li−1 − ℓ+2
2 ln

(
1− 1

n−i+1

)
≤ − ℓ

2 ln
(
1− 1

n−i+1

)
= ci. By Jensen’s inequality, we have

E[li|Y0, Y1, . . . , Yi−1] ≤ lnE[Li|Y0, Y1, . . . , Yi−1]. By the second inequality of Lemma 5.4, the

right hand side is at most ln

(
Li−1 ·

(
1− 1

n−i+1

) ℓ+2
2

)
= li−1 +

ℓ+2
2 ln

(
1− 1

n−i+1

)
. This implies

E[Zi|Y0, Y1, . . . , Yi−1] ≤ 0, that is, E[Xi|Y0, Y1, . . . , Yi−1] ≤ E[Xi−1|Y0, Y1, . . . , Yi−1] = Xi−1. Thus,
{Xi}ni=1 is a super-martingale.

Now we are ready to prove Lemma 5.1.

Proof of Lemma 5.1. Let λ be arbitrary positive real and ci’s be as defined in Lemma 5.5. By
Lemma 5.3 and Lemma 5.5, we obtain

Pr

 i∑
j=1

Zj ≥ λ

 ≤ exp

(
− λ2

2
∑i

j=1 c
2
j

)
.
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It is easy to show that
∑i

j=1 Zj = li − l0 − ℓ+2
2 ln n−i

n by the definition of Zj . Thus, we have

Pr

 i∑
j=1

Zj ≥ λ

 = Pr

[
li − l0 −

ℓ+ 2

2
ln

(
n− i

n

)
≥ λ

]

= Pr

[
Li ≥ eλL0

(
n− i

n

) ℓ+2
2

]
.

For 1 ≤ j ≤ n−n′, we have cj = − ℓ
2 ln

(
1− 1

n−j+1

)
≤ ℓ

2 ·
√
2 ln 2

n−j+1 , using the inequality − ln(1−x) ≤
√
2 ln 2 · x for 0 < x ≤ 1/4. Thus, for 1 ≤ i ≤ n− n′,

∑i
j=1 c

2
j is at most

ℓ2 ln 2

2

i∑
j=1

(
1

n− j + 1

)2

≤ ℓ2 ln 2

2

i∑
j=1

(
1

n− j
− 1

n− j + 1

)
=

ℓ2 ln 2

2

(
1

n− i
− 1

n

)

≤ ℓ2 ln 2

2
· 1

n− i
.

Setting i = n− n′, we obtain

Pr

[
Ln−n′ ≥ eλL0

(
n′

n

) ℓ+2
2

]
≤ exp

(
− λ2

2
∑n−n′

j=1 c2j

)
≤ e−

1
ℓ2 ln 2

λ2n′
.

Choosing λ = ℓ ln 2 completes the proof.

6 Concluding Remarks

In this paper, we present a moderately exponential time algorithm for SYM ◦ AND-SAT. We
can extend our algorithm to handle bounded-depth unbounded-fan-in circuits with AND, OR and
symmetric gates by combining the depth reduction algorithm due to Impagliazzo, Matthews and
Paturi [15] and some transformation techniques due to Beigel, Reingold and Spielman [4] and
Beigel [3]. The resulting algorithm runs in time super-polynomially faster than 2n when the number
of gates m and the number of symmetric gates t satisfy mt = n · exp[o(log n/ log log n)] and t =
exp{o[log n/ log(mt/n)]}.

There are several interesting future directions. First, can we improve the upper bounds on the
size of input instances for which moderately exponential time algorithms exist? We use a simple
algorithm based on dynamic programming as the base algorithm and it might be improved by some
sophisticated techniques in the design of exponential time algorithms. As for the bottom-fan-in
reduction, it seems difficult to do better by only using greedy restriction.

Second, is it possible to give a moderately exponential time algorithm for THR ◦AND-SAT,
where instances have polynomially many gates? Our algorithm can handle the case when the top
gate is a linear threshold gate with weights of magnitude 2n

0.99
. However, we need weights of

magnitude 2poly(n) to represent general linear threshold gates with polynomial number of inputs.
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[30] U. Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615–623, 2002.

11



[31] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal form.
J. Algorithms, 54(1):40–44, 2005.

[32] K. Seto and S. Tamaki. A satisfiability algorithm and average-case hardness for formulas over
the full binary basis. Computational Complexity, 22(2):245–274, 2013.

[33] R. Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor.
Comput. Sci., 348(2-3):357–365, 2005.

[34] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013.

[35] R. Williams. Algorithms for circuits and circuits for algorithms. In Proceedings of the 29th
Annual IEEE Conference on Computational Complexity (CCC), pages 248–261, 2014.

[36] R. Williams. New algorithms and lower bounds for circuits with linear threshold gates. In
Proceedings of the 46th Symposium on Theory of Computing (STOC), pages 194–202, 2014.

[37] R. Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014.

[38] F. Zane. Circuits, CNFs, and satisfiability. PhD thesis, UC San Diego, 1998.

12

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


