
Nonuniform catalytic space and the direct sum for space

Vincent Girard∗1, Michal Koucký†2, and Pierre McKenzie‡3

1Univ. de Montréal, <vin100 jrare@hotmail.com>
2Charles University, Prague, <koucky@iuuk.mff.cuni.cz>

3Univ. de Montréal and Chaire Digiteo E.N.S. Cachan - Polytechnique (France),
<mckenzie@iro.umontreal.ca>

Monday 10th August, 2015

Abstract

This paper initiates the study of k-catalytic branching programs, a nonuniform
model of computation that is the counterpart to the uniform catalytic space model of
Buhrman, Cleve, Koucký, Loff and Speelman (STOC 2014). A k-catalytic branching
program computes k boolean functions simultaneously on the same n-bit input. Each
function has its own entry, accept and reject nodes in the branching program but
internal nodes can otherwise be shared. The question of interest is to determine the
conditions under which some form of a direct sum property for deterministic space can
be shown to hold, or shown to fail.

We exhibit both cases. There are functions that are correlated in such a way that
their direct sum fails: a significant amount of space can be saved by sharing internal
computation among the k functions. By contrast, direct sum is shown to hold in some
special cases, such as for the family of functions (l1 ◦ (l2 ◦ (· · · (ln−1 ◦ ln) · · ·) where each
li is a literal on variable xi, 1 ≤ i ≤ n and each ◦ stands individually for either ∧ or ∨.

∗Supported by a Nat. Sci. & Eng. Res. C. of Canada scholarship.
†The research leading to these results has received funding from the European Research Council under

the European Unions Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 616787.
Partially supported by a grant from Neuron Fund for Support of Science.
‡Supported by the Nat. Sci. & Eng. Res. C. of Canada and by the Fondation Digiteo.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 138 (2015)

1 Introduction

Buhrman et al. [1] introduced catalytic computation, a space-bounded computation aug-
mented by a large storage that can be used during the computation but has to be restored
to its original state by the end of the computation. Our present paper studies the non-
uniform version of this model, which we call k-catalytic branching programs.

This study is motivated by the aim of separating L from P and particularly understand-
ing how space behaves under the composition of functions: if functions f : {0, 1}n → {0, 1}n
and g : {0, 1}n → {0, 1} require space s(f) and s(g) respectively, how much space does
computing g(f(·)) require? The natural answer is s(g) + s(f) +O(log n) space but is this
amount optimal? This question is also closely related to the investigation of circuit depth
for the composition of two functions, whose goal is to separate NC1 from P. (See [3] for
recent results on this topic.)

Buhrman et al. show a surprising result in which they can “recycle” space occupied by
the function g to compute a particular function f in considerably less space that what is
known without the auxiliary space. The space saved is shown proportional to the logarithm
of the auxiliary space. Their goal is to compute the same function f regardless of the initial
setting of the auxiliary space (which should also be the final setting).

We study this problem in the non-uniform setting of branching programs. Our model is
a branching program with k entry points, each such point being associated with 2 dedicated
exit points to indicate acceptance or rejection. A computation entering a particular entry
point should finish in one of the associated final states corresponding to the value of a
function f that is being computed on the current input. Such a k-catalytic branching
program can trivially be obtained by taking k independent copies of a branching program
for f . This gives a k-catalytic branching program that will be of size k times the size of a
minimal branching program for f . In terms of size, can we do better than that? For which
functions can we not do better? These are the main questions we are interested in.

A related scenario (also alluded to in [4]) is one in which, rather than computing the
same function at each entry point, different functions are computed at these points. This
is indeed a very natural setting as in the case of composing f and g we are interested in
different output bits of f at different stages of the computation of g. The output bits of f
correspond to different boolean functions.

If savings are possible when computing f in k-catalytic manner then one can save in
constructing a branching program for g(f(·)). The trivial branching program for g(f(·))
is obtained by replacing each edge in a minimal branching program for g by a copy of a
minimal branching program for f . k-catalytic savings would improve on this construction.

In this paper we show several situations in which functions f1, . . . , fk can be computed
by k-catalytic branching programs that are more efficient than just the plain sum of their
complexities. We first show this unconditionally by crafting a special k-tuple of functions
f1, . . . , fk with particular correlations among them (Section 3). Then we show, conditioned
on a widely accepted assumption, that the results of Buhrman et al. [1] imply other non-

1

trivial savings. We discuss these in Section 4. In Section 5, we provide a basic analysis
of k-catalytic branching programs and prove lower bounds on their sizes for some low
complexity functions.

Our positive examples where saving is possible seem to rely either on specific correla-
tions among functions or on some internal structure of a function f (implied by the fact
that our example functions are in TC1.) We show by a simple counting argument that for
random k-tuple of functions f1, . . . , fk one cannot save when computing them catalytically.
This leads to the intriguing question for random functions: is it the case that no saving is
possible when a random function f is computed k-catalytically? So far we’ve been unable
to settle this question, which we state as a conjecture in our concluding section.

We need to distinguish our setting from the usual setting of direct sum theorems. In
the usual direct sum theorems one considers evaluating a function f on k independent
(typically different) inputs in parallel. In our setting we are trying to evaluate k copies
of the function f on the same input. This might sound ridiculous at first but it actually
makes a perfect sense when properly defined for space bounded computation and branching
programs. We elaborate on this point further after providing precise definitions in the next
chapter. In the usual setting of computing f on k independent inputs it is known that in
the case of a random function f one can obtain substantial savings in the circuit size when
compared to the trivial construction ([6, 7], see also Wegener [9, Section 10.2]). However,
those results seem unrelated to our setting.

2 Definitions and preliminaries

Branching programs. A nondeterministic branching program P is a directed acyclic
graph in which each non-final node is labeled by some input variable and each edge is labeled
by either 0 or 1. Two outdegree-zero final nodes are labeled acc and rej respectively. A
computation on input x starts at a designated non-final initial node of indegree zero and
continues along any edge labeled by the actual value of a variable that labels the current
node. The computation ends when it reaches a node that has no outgoing edge labeled
consistently with the input. The input x is accepted if there is a computation on input x
that reaches acc. The input is rejected otherwise. A branching program is deterministic
if each non-final node has exactly two outgoing edges, labeled 0 and 1 respectively. Unless
stated otherwise, in this paper we consider deterministic branching programs.

Catalytic branching programs. A k-catalytic branching program is a branching program
that has k distinct initial nodes in1, . . . , ink of indegree zero and 2k final nodes labeled
acc1, rej1, acc2, rej2, . . . , acck, rejk. For boolean functions f1, f2, . . . , fk : {0, 1}n → {0, 1},
we say that the k-catalytic branching program P computes f1||f2|| · · · ||fk if on every input
x ∈ {0, 1}n, for each j ∈ {1, . . . , k}, the computation of P starting at the initial node inj
on the input x reaches either accj or rejj , and it reaches accj iff fj(x) = 1. We will use

f ||k to denote f ||f || · · · ||f where f is repeated k-times. A k-catalytic branching program P

2

is read-once if no path from an initial node to a final node in P queries the same variable
twice.

The size of a branching program P , denoted |P |, refers to the number of nodes in P . For
boolean functions f , f1, f2, . . . , fk we let SIZE(f) to be the size of the smallest deterministic
branching program computing f , and SIZE(f1||f2|| · · · ||fk) to be the size of the smallest
k-catalytic branching program computing f1||f2|| · · · ||fk. Furthermore, NSIZE(·) will be
the size of smallest nondeterministic branching programs.

Proposition 1. For any f1, f2, . . . , fk : {0, 1}n → {0, 1}:

SIZE(f1||f2|| · · · ||fk) ≤
k∑
j=1

SIZE(fj).

In particular, SIZE(f ||k) ≤ k · SIZE(f).

It is natural to ask whether the bounds in Proposition 1 are tight. We will show that
for some functions f1, f2, . . . , fk these bounds cannot be improved, yet that for some other
functions they can. This begs the following central question:

Question 2. For which f does SIZE(f ||k)� k · SIZE(f) hold?

We will give a special name to functions f that are at the extreme opposite end of the
spectrum alluded to in Question 2:

Definition 3. (Monolith) f : {0, 1}n → {0, 1} is a monolith if SIZE(f ||k) = k · SIZE(f).

Direct sum property. A k-catalytic branching program for f ||k computes k repetitions
of f , but on the same n-bit input. By contrast, a direct sum property is concerned with
computing a function f on different inputs. A deterministic space direct sum property
for f holds if computing f on k different inputs requires a branching program with as
many nodes as a branching program performing k consecutive computations of f while
remembering intermediate results (see [4, 5] for motivation and extensive pointers to the
literature on such properties).

Write f (k) : {0, 1}kn → {0, 1}k for the function that computes f(x1)f(x2) · · · f(xk)
from x1x2 · · ·xk where each xi is an n-bit input. A naive (and best known in general)
branching program for computing f (k) consists of a full binary tree of subprograms for f .
This requires a size in the order of (2k − 1) · SIZE(f) nodes. The following proposition is
immediate as levels of the binary tree can be compressed using the 2i-catalytic branching
programs for f .

Proposition 4. For any f : {0, 1}n → {0, 1} and integer k > 1 it holds:

SIZE(f (k)) ≤
k−1∑
i=0

SIZE(f ||2
i
).

3

This implies that savings in k-catalytic computation for f ||k translate into the failure
of the deterministic space direct sum property. For example we can state the following
consequence of the previous proposition which provides savings in computing f (k) when
k < SIZE(f).

Proposition 5. If for every k > 1, SIZE(f ||2
k
) = O(2k(1 + SIZE(f)

k)) then for every k > 1,

SIZE(f (k)) = O(2k(1 + log k
k · SIZE(f))).

Proof. A standard branching program can compute f (k−log k) on the first (k − log k) n-

bit arguments of f (k). This program uses O(2
k

k SIZE(f)) nodes and has 2k/k exit points.

Then the computation is completed by running the catalytic computation of f ||2
k−i

, for
i = log k, . . . , 1, on the last log k n-bit arguments of f (k). By hypothesis, this last step can
be done using O(2k+log k ·2k ·SIZE(f)/k) nodes, for a total size of O(2k(1+ log k

k ·SIZE(f))).
2

At the end of Section 4 we give examples of functions where the deterministic space
direct sum property fails.

3 General functions f1, . . . , fk

In this section we consider the case of computing catalytically k different functions f1, . . . , fk.
We start by noting there are functions for which the catalytic branching program cannot
achieve any savings.

Proposition 6. Let n, k > 0 be integers. Let f1, f2, . . . , fk : {0, 1}n → {0, 1} be functions
chosen uniformly at random. Then with high probability

SIZE(f1|| · · · ||fk) ≥
1

3
· k · 2n

n+ log k
.

In particular, for k ≤ 2n, SIZE(f1|| · · · ||fk) ≥ 1
6 · k ·

2n

n , with high probability.

The proof is just a standard counting argument, we give it only for completeness.

Proof. There are at most S2SnS ≤ S3S non-isomorphic k-catalytic branching programs of
size S ≥ n. For S = 1

3 · k ·
2n

n+log k , the upper bound becomes

(
1

3
· k · 2n

n+ log k

)k· 2n

n+log k

� 2k·2
n
.

But there are 2k·2
n

possible choices for the k-tuple of functions fi so the claim follows. 2

4

It is well known [10] that for any function f : {0, 1}n → {0, 1}, SIZE(f) ≤ O(2n/n).
Hence by Proposition 1, for any k-tuple of functions f1, . . . , fk, SIZE(f1|| · · · ||fk) ≤ O(k ·
2n/n). Thus for random functions f1, . . . , fk, Proposition 1 gives an essentially optimal
bound. We will show now that one can construct functions where Proposition 1 provides
rather weak bound on the size of k-catalytic branching programs.

Let k = 2` and 1 ≤ m < n, ` be integers. Consider an arbitrary function g : {0, 1}n−m →
{0, 1}. For each α ∈ {0, 1}`−m and β ∈ {0, 1}m define a function fαβ{0, 1}n → {0, 1} by

fαβ(vw) =

{
g(w), if v = β

0, otherwise,

where v ∈ {0, 1}m and w ∈ {0, 1}n−m.

Lemma 7. For the functions f defined above,

SIZE(f00···0|| · · · ||f11···1) ≤ O(km+
k

2m
· SIZE(g)).

Proof. Let the input variables to the branching program be labeled v,w, where v represents
the first m variables and w the latter n − m. For each α ∈ {0, 1}`−m let Pα be an
independent copy of a minimal branching program for g which takes as its input variables
w. The catalytic branching program will compute in three phases: mixing phase, g-phase
and de-mixing phase. For α ∈ {0, 1}`−m and β ∈ {0, 1}m, the computation starting at inαβ
first tests whether v = β, that is the mixing phase. If v 6= β then the branching program
goes into the state rejαβ otherwise it enters the initial state of Pα. The computation
continues through Pα, which constitutes the g-phase. From each of the final states of Pα,
we enter the de-mixing phase in which we read the values of variables v and we go into
states accαv or rejαv depending on whether the final state of Pα is accepting or rejecting.
All the accepting states of Pα share the same de-mixing states, and all the rejecting states
of Pα share the same de-mixing states.

We claim that the resulting branching program is catalytic and that it computes
f00···0|| · · · ||f11···1. Indeed, on an actual input vw, the branching program starting from
inαβ enters Pα if v = β or goes directly to rejαβ. Hence, it reaches Pα iff v = β. From Pα
it leaves either through accα or rejα and it continues to accαv = accαβ or rejαβ. Hence
it behaves catalytically. It is also clear that it computes exactly fαβ(vw).

For each αβ, the mixing phase requires m auxiliary states to read the variable of
v one by one and check that their correspond to β. For each α, the de-mixing phase
requires a branching program (decision tree) that reads all the m variables of v one by one
and branches according to their values. Thus it requires 2m − 1 auxiliary states for each
accepting or rejecting state of Pα. In total the branching program will be of size at most
2`m+ 2`−m · SIZE(g) + 2`−m · 2 · (2m − 1) ≤ O(km+ k

2m · SIZE(g)) 2

5

If SIZE(g) ≥ Ω(m2m), the bound in the previous lemma becomes O(k
2m ·SIZE(g)). This

will be the case when we chose m = n
2 − log n and g will be a function of branching program

complexity Ω(2n/2). A random function g will have such a high complexity. In that case
we get O(k

2m ·SIZE(g)) for the k-catalytic branching program computing f00···0|| · · · ||f11···1
instead of θ(k · SIZE(g)). Hence we achieve substantially better bound than provided by
Proposition 1. For example when k = O(2m) we have O(SIZE(g)) so the increase in the size
of the catalytic program will be only constant factor. One could argue that the savings
above were to be expected because the function f used is often zero. However, we can
generalize the above example to functions h of arbitrary complexity. This contrasts with
Proposition 6.

Let k = 2` and 1 ≤ m < n, ` be integers. Consider an arbitrary function g : {0, 1}n →
{0, 1}. For each α ∈ {0, 1}`−m and β ∈ {0, 1}m define a function hαβ{0, 1}n → {0, 1} by

hαβ(vw) = g((β ⊕ v) · w).

where v ∈ {0, 1}m, w ∈ {0, 1}n−m, and ⊕ is the bit-wise xor.

Lemma 8. For the functions h defined above,

SIZE(h00···0|| · · · ||h11···1) ≤ O(km+
k

2m
·
∑

v∈{0,1}m
SIZE(g(v·)).

Proof. The proof closely mimics the previous one. Again, the computation proceeds in
three phases: mixing phase, g-phase and de-mixing phase. For each α and β, the catalytic
branching program contains an independent copy Pαβ of a minimal branching program
computing the function g(β·) on m variables w. In the mixing phase, starting from the
initial state inαβ, the branching program queries v and enters the initial state of Pα·(β⊕v).
In the g-phase the computation passes through one of the Pαβ’s. In the de-mixing phase,
the computation goes from an accepting state of Pαβ into the accepting state accα·(β⊕v).
Similarly for rejecting states.

Similarly to the previous proof one can easily verify that the program catalytically
computes h00···0|| · · · ||h11···1.

The mixing phase starting at each inαβ is implemented by a decision tree which reads
all m variables of v, and reaches the appropriate Pα·(β⊕v) accordingly. The de-mixing
phase is similarly implemented by another copy of the decision tree. Thus the total
size of the program is bounded by 3 · 2` · 2m size for the mixing and de-mixing, plus
O(2`−m

∑
v∈{0,1}m SIZE(g(v·)) for the g-phase. The size of the mixing and de-mixing can

be further reduced to 3 · 2`m by removing redundancy. (The query process proceeds bit by
bit, and we flip the next bit in the label of the current auxiliary state based on the value
of the next bit of v.) This gives the total size of the branching program as required. 2

6

If g is taken to be a random function then its complexity will be Ω(2n/n) with high
probability. This will also be the complexity of all the functions h. By setting m = n

2−log n,

the upper bounds in the previous lemma will become O(k
2m · 2

m · 2n−m

n−m) = O(k
2m ·

2n

n) =

O(k
2m · SIZE(g)). Again, we obtain non-trivial savings.

4 Uniform catalytic computation

Buhrman et al. [1] study the uniform version of our problem. Their setup is as follows:
they consider the space-bounded computation on the usual Turing machines where the
input is on a read-only input tape and the computation can use space s on its work tape.
In addition to that the machine has an auxiliary read/write tape of size ` that can also be
used during the computation provided that at the end of the computation the content of
this auxiliary tape is restored to content it had at the beginning of the computation.

Buhrman et al. focus on s = O(log n) and ` = 2s, and call the class of functions
computable in this setting catalytic log-space (CL). The same function f must be computed
regardless of the starting content of the auxiliary tape, so the tape plays the role of a
catalyst in a chemical reaction which facilitates the reaction but is recovered at the end.
Buhrman et al. show that catalytic log-space contains various functions that are not known
to be in log-space, i.e., computable without the auxiliary tape. An example of such a
function is the problem of multiplying n integer matrices or any function in (uniform)
TC1 (which includes nondeterministic log-space NL and problems log-space reducible to
context-free languages LOGCFL, see [8]).

Our catalytic branching programs capture the non-uniform version of this model. The
k entry points of the catalytic branching program correspond to the 2` possible initial
contents of the auxiliary tape, and the requirement to leave in the corresponding final
state corresponds to the requirement to restore the contents of the auxiliary tape. If one
takes the usual configuration graph of the Turing machine with the auxiliary (catalytic)
tape, one obtains the k-catalytic branching program provided the Turing machine meets
the requirement on preserving the content of the tape. The size of the branching program
will be bounded by the number of possible configurations of the Turing machine which is
O(2` · 2s · ` · s · n), where 2` counts the different contents of the catalytic tape, 2s counts
the contents of the work tape, and `, s,n count the possible head positions. For catalytic
log-space this size becomes 2` ·nO(1) = k ·nO(1) for k = 2n

O(1)
. We get the following claim.

Proposition 9. Let f be a function computed catalytically in space s(n) using catalytic

tape of size `(n) ≤ 2s(n). Then SIZE(f ||2
`(n)

) ≤ n · 2`(n)+O(s(n)).

The reverse direction also holds as formulated in the following statement.

Proposition 10. Let {fn}n>0 be a sequence of boolean functions and {kn}n>0 be a sequence

of integers. There is a sequence of advice strings {dn}n>0 such that |dn| ≤ O(SIZE(f
||kn
n) ·

7

log SIZE(f
||kn
n)) and a Turing machine M with an auxiliary (catalytic) tape such that for

any input x ∈ {0, 1}n and any string w ∈ {0, 1}dlog kne, the machine M on input x#dn
written on its input tape and w written on its catalytic tape computes f(x) while using at

most O(log SIZE(f
||kn
n)

kn
+ log n) work space and finishing the computation with w written on

its catalytic tape.

Proof. We provide only a sketch of the proof. The advice dn contains a suitable description
of the kn-catalytic branching program, and the machine M interprets this program on its
input x. We may assume that each node of the branching program is labeled by a string

of log SIZE(f
||kn
n) bits, where we store the first log kn bits on the catalytic tape of M

and the remaining bits on the work tape. We may assume WLOG that the kn initial
nodes of the branching program are the ones which have only zeros in the “work tape”
part, the corresponding final nodes agree with them on the “catalytic tape” part and are
distinguished by a particular setting of the “work tape” part. Simulation then proceeds by
using the catalytic tape together with a part of the work tape as a counter to advance the
input head to a particular position in dn where one can read off the next configuration of
the simulated branching program. By the properties of the catalytic branching program
when the computation finishes, the catalytic tape contains again the same string as at the
beginning which is the part of the label of the final node. 2

The technique of Buhrman et al. [1] gives the following theorems.

Theorem 11 (Buhrman, Cleve, Koucký, Loff, Speelman). It holds:

1. Let IMMn,a×a : {0, 1}n·a2 → {0, 1} be the function giving the (1, 1) entry of the product

of n a × a matrices over GF [2]. Let a ≤ n and k ≥ 23a
2
. Then SIZE(IMM

||k
n,a×a) ≤

k · nO(1).

2. For any d, b ≥ 1 there is a constant c > 0 such that if f : {0, 1}n → {0, 1} is a function
computable by TC1 circuits of depth d log n consisting of at most nb MAJ-gates and
NOT-gates then for k ≥ 2n

c
we have SIZE(f ||k) ≤ k · nc.

In Part 1 of the previous theorem, there is nothing special about the ring GF [2], and
one can obtain a similar claim for multiplying matrices over say the ring of integers Z2n

and testing whether the (1, 1) entry is zero to make the function Boolean. For such matrix
multiplication one will require k ≥ 212a

2 logn to obtain the similar bound k · nO(1) on the
size of the k-catalytic branching program.

We do not know how to compute the product of n a × a matrices in space less than
O(log a · log n). In particular, we do not know whether such matrix multiplication can
be done by branching programs of size smaller than nO(log a), so for a ∈ ω(1) whether it
can be done by polynomial size branching programs. If nondeterministic log-space is not
contained in non-uniform deterministic log-space (NL 6⊆ L/poly) then IMMn,n×n requires
super-polynomial branching programs. One can state:

8

Proposition 12. If NL 6⊆ L/poly then IMMn,n×n 6∈ SIZE(nO(1)).

Under this assumption or the weaker assumption LOGCFL 6⊆ L/poly we obtain super-
polynomial savings for the k-catalytic branching program:

Corollary 13. If LOGCFL 6⊆ L/poly then SIZE(IMM
||k
n,n×n) ≤ k

nω(1) · SIZE(IMMn,n×n) for

k ≥ 23n
2
.

Under the same assumption as above one can show using the technique of Proposition 5

that SIZE(IMM
(`)
n,n×n) ≤ 2`

nω(1) · SIZE(IMMn,n×n) for ` ≥ n3. The deterministic space direct
sum property of IMMn,n×n will not hold in this case.

5 When a catalytic space direct sum property holds

Recall that a monolith is a function f for which k-catalytic computation of f ||k provides no
advantage whatsoever over k separate computations of f . This section is mostly devoted
to proving the following:

Theorem 14. Any f(x1, · · · ,xn) expressible as p1 ∆1 (· · · pm−1 ∆m−1 pm) · · ·), where
m ≤ n, for all i ∈ {1, · · · ,m}, pi ∈ {xi,¬xi} and for all j ∈ {1, · · · ,m− 1}, ∆j ∈ {∨,∧},
is a monolith.

It follows in particular that the AND and the OR functions are monoliths. We will also
observe that read-once branching programs cannot benefit from catalytic computation.

Note that we already know monoliths: any f that depends on at most one bit is a
monolith. This is because then SIZE(f) = 3 and by definition for any g, SIZE(g||k) ≥ 3k.

We will use the following definitions in this section. A path in a k-catalytic branching
program P refers to a graph-theoretic path. A node v in P is co-accessible if a path
connects v to a final node. If every node in P is co-accessible, then P itself is declared
co-accessible. For 1 ≤ i ≤ k, an i-path will refer to a path starting at ini. For a fixed i,
the ith slice of P is the subprogram formed by all the nodes and edges in P that can be
reached from ini. A path (resp. a set of paths) in P is consistent if some setting of the
input variables x1, . . . ,xn allows traversing the path (resp. allows traversing every path in
the set). A path π and a path σ are said to be twins if π and σ are consistent and every
variable that is queried along both paths gets the same answer along each.

Proposition 15. If every initial-to-final path in a k-catalytic branching program P com-
puting f ||k is consistent, then |P | ≥ k · SIZE(f).

Proof. We can assume that P is co-accessible. This is because every ini node in a k-
catalytic branching program is co-accessible by definition, and any node v that is not
co-accessible can be removed from P , reducing the size of P with no effect on the function
computed.

9

Suppose to the contrary that some non-final node v is shared by the ith and the jth
slices of P , i 6= j. Then an i-path πi and a j-path πj meet at v. Since v is co-accessible,
some path π connects v to an output node in P . The initial-to-final paths πiπ and πjπ
are consistent by hypothesis, i.e., there is an input x ∈ {0, 1}n traversing πiπ and an input
y ∈ {0, 1}n traversing πjπ. Regardless of f(x) or f(y), this is a contradiction since πiπ
and πjπ have the same endpoint. We conclude that every non-final node in P belongs to
a unique slice. Since each slice requires SIZE(f) nodes in order to compute f , the total
number of nodes in P is at least k · SIZE(f). 2

Corollary 16. If a read-once k-catalytic branching program P computes f ||k, then |P | ≥
k · SIZE(f).

Proof. In a read-once branching program, no initial-to-final path is inconsistent. So Propo-
sition 15 applies. 2

The proof of Proposition 15 actually exploits the following:

Lemma 17. If 1 ≤ i < j ≤ k and an i-path πi and a j-path πj meet at v in a k-catalytic
branching program P , then every consistent path from v to a final node in P extends either
πi or πj inconsistently.

Remark 18. Paths π and σ are twins iff the set {π,σ} is consistent.

Lemma 19. Consider an i-path πi and a j-path πj, i 6= j, in a co-accessible k-catalytic
branching program computing some f ||k. If πi and πj are twins then πi and πj are disjoint.

Proof. Suppose to the contrary that the twin paths πi and πj meet at some node v. Since
{πi,πj} is a consistent set of paths, there exists an input x that can traverse both πi and
πj . Starting from ini or from inj , such an x reaches v and follows a unique path from v
on to some unique final node in P . This is a contradiction. 2

Proposition 20. Let f : {0, 1}n −→ {0, 1} and g : {0, 1}n−1 −→ {0, 1} be functions where
f(x1,x2, · · · ,xn) = x1∧g(x2, · · · ,xn). Then f is a monolith if and only if g is a monolith.

Proof. First we can observe that if g rejects every input, then so does f . We then have
SIZE(f) = SIZE(f ||k) = SIZE(g) = SIZE(g||k) = 0. So both functions are monoliths, which
proves the proposition for this particular case.

Now we can assume that g accepts at least one input. For this case we will demonstrate
a property: for every k ∈ N (including k = 1), we have SIZE(f ||k) = k + SIZE(g||k).

≤ : We just have to give a branching program of size k + SIZE(g||k) that calculates f ||k.
To do so, we take a branching program of size SIZE(g||k) that calculates g||k. We
then add a node denoted x1 before every initial node. The outgoing edge denoted

10

1 sends us to the associated initial node, while the one denoted 0 sends us to the
”reject” final node of the associated initial node.

We then have a branching program that rejects the input if x1 = 0 and returns the
value of g(x2, · · · ,xn) if x1 = 1 which is exactly the function f .

≥ : This inequality is a bit more tricky. We take a branching program of size SIZE(f ||k)
that calculates f ||k. Since this program is minimal, we can assume it is co-accessible.
Now since g accepts at least one input, so does f . If we fix that input, we get k paths
that each start at a different initial node and ends at the corresponding accepting
final node. By Lemma 19, these paths must be disjoint. We can observe that each
path must have at least one node denoted x1, or else the path would still accept the
input if we changed the value of x1 to 0. So there are at least k nodes denoted x1 in
the program.

Now let’s do exactly as we did in the proof of the other inequality: we add a node
denoted x1 for each initial node to obtain a branching program of size k+ SIZE(f ||k)
calculating (x1 ∧ f(x1, · · · ,xn))||k (which is equivalent to f(x1, · · · ,xn)||k). Doing
this assures us that every path in the program starts in one of these k nodes. Now
for every other node denoted x1, every path passing through this node must have
already answered 1 to the value of x1 at the first node, so we can just remove that
node and reroute every edge pointing to it to where the edge x1 = 1 was pointing.
By doing so, we know we removed at least k nodes, so the new branching program
(calculating f ||k) is of size at most SIZE(f ||k).

Finally, we observe that the subprogram without the k (initial) nodes denoted x1
contains exactly SIZE(f ||k)− k nodes, none of which are denoted x1. This branching
program must output (g(x2, · · · ,xn))||k and thus be at least of size SIZE(g||k).

Now that we have proven our equality, we can finish the proof of our proposition:

f is a monolith ⇔ ∀k ∈ N, SIZE(f ||k) = k SIZE(f)

⇔ ∀k ∈ N, k + SIZE(g||k) = k(1 + SIZE(g))

⇔ ∀k ∈ N, SIZE(g||k) = k SIZE(g)

⇔ g is a monolith

2

Corollary 21. Let f : {0, 1}n −→ {0, 1} and g : {0, 1}n−1 −→ {0, 1} be functions where
f(x1,x2, · · · ,xn) = x1∨g(x2, · · · ,xn). Then f is a monolith if and only if g is a monolith.

Proof. We know that replacing a variable of the function by its negation or adding a
negation in front of said function doesn’t change the size of its minimal branching program.

11

(In the first case, you switch the outgoing edges of the associated nodes and in the second
case, you switch the final nodes.)

So f(x1,x2, · · · ,xn) is a monolith if and only if ¬f(¬x1,x2, · · · ,xn) = ¬((¬x1) ∨
g(x2, · · · ,xn)) = x1∧¬g(x2, · · · ,xn) is a monolith which, by our proposition, is a monolith
if and only if ¬g(x2, · · · ,xn) is a monolith. But like we said, ¬g(x2, · · · ,xn) is a monolith
if and only if g(x2, · · · ,xn) is a monolith which completes the proof. 2

Corollary 22. Let f : {0, 1}n −→ {0, 1} and g : {0, 1}n−1 −→ {0, 1} be functions where
f(x1,x2, · · · ,xn) = p ∆ g(x2, · · · ,xn) (where p ∈ {x1,¬x1} and ∆ ∈ {∨,∧}). Then f is a
monolith if and only if g is a monolith.

Proof. This results directly from what we have proven so far and the fact that replacing
a variable of the function by its negation doesn’t change the size of its minimal branching
program. 2

Corollary 23. Let f : {0, 1}n −→ {0, 1} and g : {0, 1}n−1 −→ {0, 1} be functions
where f(x1, · · · ,xn) = p1 ∆1 (p2 ∆2 (· · · pm ∆m g(xm+1, · · · ,xn) · · ·)) (where for all
i ∈ {1, · · · ,m}, we have pi ∈ {xi,¬xi} and ∆i ∈ {∨,∧}). Then f is a monolith if and only
if g is a monolith.

Proof. This is simply proven by applying induction to our last corollary. 2

Proof of Theorem 14. First if n = m, we only need to prove that the function g(x) = x is a
monolith. But this function depends on a single variable and we already observed that such
functions are monoliths. Then we can write f(x1, · · · ,xn) = p1 ∆1 (· · · pm−1 ∆m−1 g(pm)) · · ·)
which is a monolith if and only if g(pm) is a monolith which is true if and only if g(xm) is
a monolith.

Now if m < n we define g : {0, 1}n−m −→ {0, 1} as the function which rejects every
input. Like we said earlier, this function has the property that SIZE(g||k) = 0 for all k ∈ N
so it is a monolith.

Now we only have to observe that we can rewrite f as:

f(x1, · · · ,xn) = p1 ∆1 (· · · pm−1 ∆m−1 (pm ∨ g(xm+1, · · · ,xn)) · · ·)

which by our last corollary must be a monolith since g is a monolith. 2

Corollary 24. (to Theorem 14) Any f : {0, 1}n → {0, 1} such that |f−1(1)| = 1 or
|f−1(0)| = 1, such as x1 ∧ · · · ∧ xn and x1 ∨ · · · ∨ xn, is a monolith.

12

6 Conclusion

In this paper we have exhibited functions for which a form of direct sum property for k-
catalytic space computation fails, i.e, for which significant savings over the obvious upper
bound are possible when computing k different functions on the same input. We have
also exhibited examples where such a property holds, such as when computing k random
functions, or when computing the function x1 ∨ (¬x2 ∨ (x3 ∧ (x4 · · · (xn−1 ∧ xn) · · ·))) k
times.

We have observed that failure of the direct sum property for k-catalytic space with all
functions equal to the same f implies failure of the direct sum property for deterministic
space (involving the computation of f on k different inputs).

Of the many open questions that remain, we single out two. The first is whether the
following, which we frame as a conjecture, holds:

Conjecture 25. For a random f , SIZE(f ||k) ≥ Ω(k · SIZE(f)) with high probability.

Here one should contrast our conjecture with the work of Uhlig [6, 7] who shows that
the direct sum property is provably false in the model of Boolean circuits. Can a similar
argument be made for the branching program size measure?

The second question is whether a characterization of low complexity monoliths can be
developed. We cannot expect a full characterization of monoliths because declaring f a
monolith requires knowledge of the exact optimal size of a branching program for f . We
have shown here that all Boolean functions with singleton support are monoliths. Are all
Boolean functions f(x1, . . . ,xn) with |f−1(1)| = 2 monoliths? In particular, is the “all-
bits-equal” function, for which we can prove an exact size bound of d3n/2e, a monolith?

Acknowledgements

The question on the size of what we call catalytic branching programs was first asked by
Steve Cook and Yuval Filmus in the context of their project of proving strong lower bounds
for functions not known to be in L, namely the Tree Evaluation Function (see e.g. [2]). We
thank Valentine Kabanets for pointers to [9, 4].

References

[1] Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman.
Computing with a full memory: catalytic space. In Symposium on Theory of Com-
puting, STOC 2014, pages 857–866, 2014.

[2] Stephen A. Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul San-
thanam. Pebbles and branching programs for tree evaluation. TOCT, 3(2):4, 2012.

13

[3] Dmitry Gavinsky, Or Meir, Omri Weinstein, and Avi Wigderson. Toward better
formula lower bounds: an information complexity approach to the krw composition
conjecture. In STOC, pages 213–222, 2014.

[4] Ronen Shaltiel. Towards proving strong direct product theorems. Computational
Complexity, 12(1-2):1–22, 2003.

[5] Alexander A. Sherstov. Strong direct product theorems for quantum communication
and query complexity. SIAM J. Comput., 41(5):1122–1165, 2012.

[6] Dietmar Uhlig. On the synthesis of self-correcting schemes for functional elements
with a small number of reliable elements. Math. Notes. Acad. Sci. USSR, 16:558–562,
1974.

[7] Dietmar Uhlig. Networks computing boolean functions for multiple input values.
In Poceedings of the London Mathematical Society Symposium on Boolean Function
Complexity, pages 165–173, New York, NY, USA, 1992. Cambridge University Press.

[8] H. Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in
Theoretical Computer Science. Springer Verlag, 1999.

[9] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner series in computer
science. B. G. Teubner & John Wiley, Stuttgart, 1987.

[10] I. Wegener. Branching Programs and Binary Decision Diagrams. SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia, 2000.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

