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Abstract

Chemical reaction networks (CRNs) model the behavior of molecules
in a well-mixed system. The emerging field of molecular programming
uses CRNs not only as a descriptive tool, but as a programming lan-
guage for chemical computation. Recently, Chen, Doty and Soloveichik
introduced a new model of chemical kinetics, rate-independent continu-
ous CRNs (CCRNs), to study the chemical computation of continuous
functions. A fundamental question of a CRN is whether a state of
the system is reachable through a sequence of reactions in the net-
work. This is known as the reachability problem. In this paper, we
investigate CCRN-REACH, the reachability problem for this model of
chemical reaction networks. We show that, for continuous CRNs, con-
structing a path to a state of the network is computable in polynomial
time. We also prove that a related problem, Sub-CCRN-REACH, is
NP-complete.

1 Introduction

Abstract chemical reaction networks (CRNs) model chemical interactions
in a well mixed system. Informally, CRNs consist of a finite set of species
of chemicals (usually written abstractly as capital letters; i.e., A, B, etc.)
and a finite set of reactions between these species. A simple example is the

CRN consisting of species A, B and C, with one reaction 2A + B
k−→ 2C

(taking A to be the hydrogen molecule H2, B to be the oxygen molecule
O2, and C to be the water molecule H2O, this CRN models the formation
of water molecules with kinetic rate constant k). CRNs have historically
been used as a descriptive tool, allowing researchers to formally analyze
the behavior of natural chemical systems. However, the field of molecular
programming has recently brought CRNs to prominence as a programming
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language for chemical computation. Molecular programming, as the name
suggests, is devoted to engineering complex computational systems from
molecules. Recent work in this area has come to view abstract CRNs as
a programming language to engineer “chemical software” [9, 18]. Exciting
new developments have shown methods of converting arbitrary chemical
reaction networks into computation using DNA strands [2, 4, 19]. Thus the
programmable power of chemical reaction networks is no longer simply of
theoretical interest. To achieve the goal of engineering large scale, robust
chemical computation, tools to analyze CRNs will be vital.

There are many ways to define the behavior of abstract CRNs, the two
most prominent being mass action kinetics and stochastic chemical reaction
networks. Mass action kinetics was the first model to be studied extensively.
It is a continuous, deterministic model of chemical reaction networks. Mass
action kinetics is used to study systems with sufficiently large numbers of
molecules so that the amount of a given molecule can be represented as
a real-valued concentration. The dynamics of reactions under mass action
kinetics are governed by deterministic differential equations. However, the
deterministic mass action model is not well suited if the number of molecules
of the system is low. Stochastic CRNs are widely used to analyze those sys-
tems with a relatively low number of molecules [16, 7]. The stochastic CRN
model is discrete and non-deterministic. Unlike mass action, the amount
of each species is represented as a non-negative integer, and the reactions
of a system are modeled as Markov jump processes [8]. The stochastic
model is closely related to many well-studied models of computation such
as Vector Addition Machines [10], Petri Nets [6] and Population Protocols
[1]. Recently, Chen, Doty and Soloveichik introduced a new model of chem-
ical kinetics, rate-independent continuous CRNs (CCRNs) [3]. The CCRN
model is continuous, dealing with real-valued concentrations of species, but,
unlike the stochastic or mass action models, it is rate-free (reactions do not
have any associated kinetic rate constant). Chen, Doty and Soloveichik used
CCRNs to study which real valued functions f : Rk → R were computable
by a chemical reaction network. By being a rate-free model, it allows for the
study of the computational power of large chemical systems relying on stoi-
chiometry alone (i.e., without depending on specific rates of the reactions).
This is important, as rate constants are hard to experimentally determine
and vary under external factors such as temperature.

A fundamental question one can ask of a stochastic chemical reaction
network is whether a particular state is reachable from a starting config-
uration; this is called the reachability problem. The reachability problem
for stochastic CRNs is equivalent to an important problem in theoretical
computer science, the Vector Addition System Reachability problem (VAS
reachability) [5]. The VAS reachability problem was proven to be at least
EXPSPACE-hard by Lipton in 1976 [14], before it was even proven decid-
able. In 1981, building on the work of Sacerdote and Tenney [17], Mayr
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proved the reachability problem was decidable [15]. Subsequently, Kosaraju
[11] and Lambert [12] gave two additional proofs of the decidability of VAS
Reachability. However, all proofs that the reachability problem is decidable
were very difficult, until Lérôux [13] gave a greatly simplified proof. Unfor-
tunately, we still do not know if this problem is decidable in any primitive
recursive time bound.

In this paper, we investigate two variants of the reachability problem
in the context of CCRNs. In section 3, we analyze the complexity of the
direct analog of the reachability problem for CCRNs, the continuous chemi-
cal reaction network reachability problem (CCRN-REACH). Informally, the
CCRN-REACH problem is: given a CCRN C and states c and d, output
a path taking c to d, if one exists. To effectively compute CCRN-REACH,
we will require the states to be over the rationals instead of over arbitrary
reals. We show that, contrary to the difficulty of the VAS reachability prob-
lem, CCRN-REACH can be computed in polynomial time. In the process,
we give new definitions and lemmas which we believe will be useful in fur-
ther investigations of the continuous chemical reaction network model. In
section 4, we define a problem closely related to the reachability problem,
called the Sub-CCRN-REACH problem. Sub-CCRN-REACH asks if a path
exists between two states using at most k of the reactions in the network.
In contrast to the computational “ease” of CCRN-REACH, we show that
Sub-CCRN-REACH is NP-complete.

2 Preliminaries

Throughout the remainder of this paper ‖ · ‖ will be the max norm. Be-
fore proving the main theorem, we will review preliminary definitions and
notations for continuous CRNs.

2.1 Rate Independent Continuous CRNs

A continuous chemical reaction network (CCRN) is a pair C = (Λ, R), where
Λ is a finite set of species, and R is a finite set of reactions over Λ. We typ-
ically denote species by capital letters, so that Λ = {A,B, . . .}. A reaction
over the set of species Λ is an element ρ = (r,p) ∈ NΛ × NΛ, where r and
p specify the stoichiometry of the reactants and products, respectively. We
require the net change ∆ρ = p − r of a reaction ρ = (r,p) to be nonzero.
We will usually write a reaction using the “reactants, right arrow, prod-
ucts” notation; for example, ρ = A + B → C (in this example r = (1, 1, 0)
and p = (0, 0, 1)). A reaction ρ = (r,p) is catalytic if, for some species s,
r(s) = p(s) 6= 0 (for example, A + B → A + C). In this case, we call the
species s a catalyst. Each CCRN C = (Λ, R) has an associated reaction
stoichiometry matrix M specifying the net change of each species for every
reaction. Formally, M is a |Λ| × |R| matrix over Z such that M(i, j) is
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the net change of the ith species for the jth reaction. Note that M does
not fully specify a CCRN C, since it does not identify catalytic reactions.
A state of a CCRN C = (Λ, R) is a vector c ∈ RΛ

≥0 specifying the (non-
negative) concentration of each species. The support of a state c is the set
supp(c) = {s ∈ Λ | c(s) > 0} of all species with non-zero concentrations at c.
The support of a reaction ρ = (r,p) is the set supp(ρ) = {s ∈ Λ | r(s) > 0}
of all reactants of ρ. A reaction ρ = (r,p) ∈ R is applicable at a state c if
supp(r) ⊆ supp(c) (i.e., if the concentration of each reactant is non-zero at
c). A flux vector of a CCRN C = (Λ, R) is a vector u ∈ RR≥0. The support
of a flux vector u is the set supp(u) = {ρ ∈ R |u(ρ) > 0}. A flux vector u
is applicable at a state c if the following conditions hold:

1. Every ρ ∈ supp(u) is applicable at c.

2. c(s) +
∑
ρ∈R

u(ρ)∆ρ(s) ≥ 0 for every s ∈ Λ.

If a flux vector u is applicable at state c, we can apply u to c, resulting in
the state

c ∗ u = c +
∑
ρ∈R

u(ρ)∆ρ.

Equivalently, c ∗ u = c + Mu. A flux vector sequence, U = (u1, ...,uk) is
a tuple of flux vectors. We apply a flux vector sequence U = (u1, ...,uk)
iteratively to a state c,

c ∗U = (c ∗ (u1, . . . ,uk−1)) ∗ uk.

A flux vector sequence U = (u1, ...,uk) is applicable at state c if ui is
applicable at (c ∗ (u1, . . . ,ui−1)) for every 1 < i ≤ k. If c and d are any
states, we say that d is reachable from c, denoted c →∗ d, if there exists a
flux vector sequence U applicable at c such that c ∗U = d. We say that d
is reachable from c in k steps, denoted c→k d, if there exists a flux vector
sequence U = (u1, . . . , uk) applicable at c such that c ∗U = d. A reaction
ρ ∈ R is eventually applicable from c if there exists a state d reachable from
c so that ρ is applicable at d. A reaction is permanently inapplicable from
c if it is not eventually applicable from c.

The following theorem, proven in [3], will be used in the proof of our
first main theorem.

Theorem 0. If c →∗ d, then c →m+1 d where m = |R| is the number of
reactions.

3 The Reachability Problem for Continuous CRNs

Having defined the relevant concepts for continuous chemical reaction net-
works, we are now able to formally define our problem CCRN-REACH.
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The Continuous CRN Reachability Problem. Given a continuous
CRN C = (Λ, R) and two states c, d ∈ QΛ, output a flux vector sequence
U such that U is applicable at c and c ∗U = d, if one exists; output “not
reachable” otherwise.

Note that this problem becomes a trivial solution of a system of lin-
ear equations if we drop the requirement that the the flux vector sequence
must be applicable at c. We will prove that CCRN-REACH is computable
in polynomial time. Intuitively, the dramatic difference in the computa-
tional difficulty between the VAS reachability problem (known to be at least
EXPSPACE-hard) and CCRN-REACH is the additional flexibility given by
the rational valued flux vectors. To compute CCRN-REACH, we show how
to build a flux vector sequence lead from the starting state to a state of
maximal support. This is only possible in the CCRN model of chemical
reaction networks, which allows arbitrarily small additions via flux vectors.
Once we are in such a maximal state we are able to get to the end state
with the application of a single flux vector. To formalize this intuition, we
will introduce several definitions and lemmas.

Fix a continuous CRN C = (Λ, R).

Definition. Let c be a state, and ε > 0. We say that a vector u is an
ε-max support flux vector of c if u satisfies the following:

1. u is a flux vector that is applicable at c.

2. for every flux vector v applicable at c, supp(c ∗ v) ⊆ supp(c ∗ u).

3. ‖u‖ ≤ ε.

That is, a vector is an ε-max support flux vector of a state c if it is
applicable at c and maximally increases the support of c while giving at
most ε flux to each reaction. We will show that ε-max support flux vectors
exist for every state and ε > 0.

Let ε > 0. We now construct a specific ε-max support flux vector of c,
which we will henceforth call the ε-max support flux vector of c. Define Appc
to be the set of all applicable reactions at c. Let εc = min{c(s) | s ∈ supp(c)}
(the lowest nonzero concentration of any species at state c), Γc = max{1,
|∆ρ(s)| : ρ ∈ Appc}, and δc,ε = 1

Γc|R|min{
εc
2 , ε}.

Definition. The ε-max support flux vector of c is the vector uc,ε de-
fined by

uc,ε(ρ) =

{
δc,ε, if ρ ∈ Appc
0, otherwise

for every ρ ∈ R.
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The following lemma shows that uc,ε is a well defined ε-max support flux
vector of c.

Lemma 1. Let c be a state, and ε > 0. Then uc,ε is an ε-max support flux
vector of c.

When the context is clear, we will refer to uc,ε as the max support flux
vector. The following observation can be easily seen from the definition of
the max support flux vector.

Observation 1. The ε-max support flux vector of c, uc,ε, is computable in
polynomial time in terms of (C, c, ε).

Since uc,ε is a flux vector applicable at c, we are able to discuss the max
support flux vector of the state (c ∗ uc,ε). For convenience, we will use the
following notation:

1. u1
c,ε := uc,ε.

2. ukc,ε := the ε-max support flux vector of the state (c ∗ (u1
c,ε, ...,u

k−1
c,ε )).

It is important to note that the vectors uic,ε are distinct; in fact, the hope is
that the set of applicable reactions grows with successive applications max
support flux vectors.

Definition. Let ε > 0, m = |R|+ 1 and γ = ε
m . The ε-max support flux

vector sequence of c, denoted Uc,ε, is defined to be the sequence

Uc,ε = (u1
c,γ , . . . ,u

m
c,γ).

From Observation 1 it is clear that Uc,ε is computable in polynomial
time in terms of (C, c, ε).

Observation 2. For any state c and any ε > 0, the ε-max support flux vec-
tor sequence of c is a flux vector sequence that is applicable at c. Moreover,

‖
m∑
i=1

uic,γ‖ ≤ ε.

Proof. This follows immediately from Lemma 1 and the choice of γ.

The choice of restricting the length of the flux vector Uc,ε to |R| + 1 is
not arbitrary. We will show that this is all that is required to get to the
largest possible support of a state.

Definition. Let c be a state and ε > 0. We say that a state m is an ε-
max support state of c if, for every state d that is reachable from c,
supp(d) ⊆ supp(m).

Similar to our previous definitions, we now define the ε-max support
state of c to be
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mc,ε := (c ∗Uc,ε).

Lemma 2. If c is a state and ε > 0, then mc,ε is an ε-max support state of
c.

Since ε was arbitrary in Lemma 2, we see that for every ε, ε′ > 0,
supp(mc,ε) = supp(mc,ε′). Recall that a reaction ρ is eventually applica-
ble from a state c if ρ is applicable at some state d that is reachable from
c. By Lemma 2, a reaction ρ is eventually applicable from a state c if and
only if ρ is applicable at mc,ε for any ε > 0. This allows us to compute
all the permanently inapplicable reactions from c, which will be vital in the
algorithm computing CCRN-REACH.

Observation 3. The set of all permanently inapplicable reactions from c is
computable in polynomial time.

Proof. By Observation 1 we compute the 1-max support state of c, mc,1,
and eliminate all reactions not applicable at mc,1.

We are now ready to prove our first main theorem.

Main Theorem 1. CCRN-REACH is computable in polynomial time.

Proof. Consider the following algorithm deciding CCRN-REACH.

Algorithm 1 CCRN-REACH on input C = (Λ, R), c, d

1: Eliminate from R all permanently inapplicable reactions from c
2: for each reaction ρ ∈ R do
3: Compute a vector Fρ ∈ QR

≥0 such that c + MFρ = d and Fρ(ρ) > 0,
if one exists

4: if no such vector exists, eliminate ρ from R, GOTO 1.
5: end for
6: if R = ∅, output “not reachable”
7: otherwise define vector S ∈ QR

≥0 as follows

8: for each ρ ∈ R, set S(ρ) = 1
|R|

|R|∑
i=1

Fi(ρ)

9: Compute ε =
min{S(ρ)}ρ∈R

2
10: Compute the max support flux vector sequence Uc,ε

11: Compute v = S −Uc,ε

12: Output (Uc,ε,v) (padded with 0s for eliminated reactions)

From our previous observations, it is clear that the algorithm runs in
polynomial time in terms of the input. We now prove that d is reachable
from c if and only if the above algorithm outputs a flux vector sequence U
applicable at c such that c ∗U = d.
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Assume that, on input C = (Λ, R), c and d, the algorithm outputs a
sequence of vectors U. Let R be the set of reactions left after exiting the loop
(necessarily non-empty), and m = |R|. By the choice of ε and Observation
2, for each ρ ∈ R,

m+1∑
i=1

uic,γ(ρ) < S(ρ),

where Uc,ε = (u1
c,γ , . . . ,u

m+1
c,γ ) (recall that γ = ε

m+1). Therefore, the vector
v = S − Uc,ε is a flux vector (in fact v is strictly positive). Hence the
output U = (Uc,ε,v) is a flux vector sequence. By Observation 2, Uc,ε is
applicable at c. Upon exiting the loop we are guaranteed that any reactions
remaining in R must be eventually applicable from c using only the other
remaining reactions. Let ρ ∈ supp(v). Then ρ ∈ R, and so ρ must be
eventually applicable from c using only reactions remaining in R. By Lemma
2, (c ∗ Uc,ε) = mc,ε is a max support state, therefore ρ is applicable at
(c∗Uc,ε). Since ρ was arbitrary, v is applicable at (c∗Uc,ε), and so (Uc,ε,v)
is a flux vector sequence that is applicable at c. Finally, we have

c ∗ (Uc,ε,v) = c + M(Uc,ε + v)

= c + MS

= c + M
1

|R|

|R|∑
i=1

Fi(ρ)

= c +
1

|R|

|R|∑
i=1

MFi(ρ)

= c +
1

|R|

|R|∑
i=1

d− c

= d,

where M is the stoichiometry matrix of C = (Λ, R). Therefore if the algo-
rithm outputs a vector sequence, then d is reachable from c.

For the other direction, assume that d is reachable from c. Then, by
definition, there is a nonempty subset R′ ⊆ R such that, for all ρ ∈ R′,

1. ρ is eventually applicable from c using only reactions from R′, and

2. there exists a vector Fρ such that MFρ = d− c and Fρ(ρ) > 0.

Therefore the algorithm will exit the loop with R nonempty, and output a
flux vector sequence (Uc,ε,v). As we just shown, (Uc,ε,v) applicable at c
such that c ∗ (Uc,ε,v) = d.
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4 The Subset Reachability Problem

Define the decision problem Sub-CCRN-REACH as follows,

The Continuous CRN Subset Reachability Problem. Given a con-
tinuous CRN C = (Λ, R), states c, d and integer k, accept if and only if
there exists a path from c to d using only k reactions from R.

In contrast to the computational ease of CCRN-REACH, we give evi-
dence that the related problem Sub-CCRN-REACH is quite difficult.

Main Theorem 2. Sub-CCRN-REACH is NP-complete.

Proof. From the proof that CCRN-REACH is computable in polynomial
time, it is easy to see that Sub-CCRN-REACH is in NP. Simply guess a
subset of k reactions and decide CCRN-REACH on the subset. We will
reduce 3SAT to Sub-CCRN-REACH to show hardness.

Let φ be a boolean formula on n variables x1, . . . , xn with m clauses
C1, . . . , Cm. Construct an equivalent CCRN Cφ = (Λφ, Rφ) and states cφ,
dφ as follows.

For each xi, define three species Si, si and s̄i, and the following four
reactions, where ∅ is a null species (the reactants are being consumed without
generating any products).

1. Si → si 2. Si → s̄i 3. si → ∅ 4. s̄i → ∅,

For each clause Cj define one species Tj , and the following (catalytic)
reactions

1. si → si + Tj , for every xi in Cj 2. s̄i → s̄i + Tj , for every x̄i in Cj

Define the start state cφ to have a concentration of 1 for each species Si
and a concentration of 0 for all other species. Define the end state dφ to
have a concentration of 1 for each species Tj , and a concentration of 0 for
all other species.

We now show that φ ∈ 3SAT if and only if cφ →∗ dφ using exactly
2n + m reactions. Assume φ ∈ 3SAT, let x be any satisfying assignment.
Define the flux vector u1 by,

u1(ρ) =


1 if ρ = Si → si and x(xi) = 1

1 if ρ = Si → s̄i and x(xi) = 0

0 otherwise.

The flux vector u1 transfers all of the concentration of Si into either si or s̄i,
depending on the satisfying assignment x. The number of reactions given
positive flux in u1 is n. For each clause Cj , choose one variable xij or its
negation that evaluates to true under x. Define the flux vector u2 by,
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u2(ρ) =


1 if ρ = sij → sij + Tj and xij is the chosen variable from Cj

1 if ρ = s̄ij → s̄ij + Tj and x̄ij is the chosen variable from Cj

0 otherwise.

Therefore u2 only gives positive flux to m reactions, one for each clause in
φ. Finally, define the flux vector u3 by,

u3(ρ) =


1 if ρ = si → ∅ and x(xi) = 1

1 if ρ = s̄i → ∅ and x(xi) = 0

0 otherwise.

The flux vector u3 eliminates the concentrations of each species si or s̄i (only
one of which has concentration 1). Clearly u3 gives positive flux to only n
reactions. Hence U = (u1,u2,u3) gives positive flux to only 2n+m distinct
reactions, and cφ ∗U = dφ.

Assume cφ ∗U = dφ. Since Si has concentration 0 at d at least one of
the reactions Si → si, Si → s̄i must be used, that is, at least n reactions.
Similarly, since si and s̄i have concentration 0 at dφ, at lest n must be used
in any flux vector sequence. Since Tj has concentration 1 at dφ at least
one reaction of the form si → si + Tj or s̄i → s̄i + Tj must be used for
each Tj , so at least m reactions. Hence U must give positive flux to at least
2n+m reactions. In order to reach d using the minimal number of reactions,
2n + m, U must only give flux to one of Si → si or Si → s̄i. Let x be the
assignment of the variables (x1, . . . , xn) given by

x(xi) =

{
1 if U(Si → si) = 1

0 otherwise.

Since cφ ∗ U = dφ, U gives positive flux to si → si + Tj or s̄i → s̄i + Tj
for each species Tj and some i. Therefore each clause Cj must be satisfiable
under assignment x. Hence, if cφ →∗ dφ using exactly 2n + m reactions,
then φ ∈ 3SAT.
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5 Appendix

Proof of Lemma 1. First we show uc,ε is a flux vector that is applicable
at c. It is clear that uc,ε is a flux vector. It suffices to show that every
reaction ρ ∈ supp(uc,ε) is applicable at c and that (c ∗ uc,ε) ∈ RΛ

≥0. From
the definition of uc,ε, uc,ε(ρ) > 0 if and only if ρ ∈ Appc. Therefore if
ρ ∈ supp(uc,ε), then ρ is applicable at c. To complete the proof of item (1)
we show c∗uc,ε remains non-negative. Let s ∈ Λ be any species, and assume
that the concentration of s at c is greater than 0, i.e., s ∈ supp(c). By the
definition of uc,ε,

|
∑

ρ∈Appc
uc,ε(ρ)∆ρ(s)| ≤ δc,ε|R|Γc ≤ εc

2

and therefore,

(c ∗ uc,ε)(s) = c(s) +
∑
ρ∈R

uc,ε(ρ)∆ρ(s)

≥ c(s)− |
∑

ρ∈Appc

uc,ε(ρ)∆ρ(s)|

≥ εc −
εc
2

> 0.

Hence for every species s ∈ supp(c), (c ∗ uc,ε)(s) > 0. Now assume s /∈
supp(c); the concentration of s at c is 0. As we have seen, the only reactions
ρ such that uc,ε(ρ) > 0 are those reactions which are applicable at c. By our
assumption c(s) = 0, any applicable reaction ρ at c must have ∆ρ(s) ≥ 0.
It is therefore clear that

(c ∗ uc,ε)(s) ≥ 0.

12



We now prove that, for every flux vector v applicable at c, supp(c ∗
v) ⊆ supp(c ∗ u). Let s ∈ supp(c ∗ v). We first assume that s ∈ supp(c).
We showed previously that if s ∈ supp(c), then (c ∗ uc,ε)(s) > 0. Hence
s ∈ supp(c ∗ uc,ε). Now assume that s /∈ supp(c). As the concentration
of s at c is 0, any applicable reaction ρ at c must have ∆ρ(s) > 0. Since
s ∈ supp(c ∗ v), there must be at least one reaction ρs applicable at c such
that ∆ρs(s) > 0. Since ρs is applicable at c, uc,ε(ρs) = δc,ε. Thus

(c ∗ uc,ε)(s) = c(s) +
∑
ρ∈R

uc,ε(ρ)∆ρ(s)

= |
∑

ρ∈Appc

uc,ε(ρ)∆ρ(s)|

≥ uc,ε(ρs)∆ρs(s)

≥ δc,ε
> 0.

Finally, it is immediate that ‖uc,ε‖ ≤ ε.

Proof of Lemma 2. Let d be a state reachable from c. By Theorem 0,
there exists a flux vector sequence of length m = |R|+ 1 taking c to d, i.e.
c →m d. By induction and use of Lemma 1, we see that for every state d
such that c→m d, supp(d) ⊆ supp(mc,ε).
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