On the expressive power of read-once determinants *

N. R. Aravind ${ }^{1}$, Pushkar S. Joglekar ${ }^{2}$,
${ }^{1}$ Indian Institute of Technology, Hyderabad, India aravind@iith.ac.in
${ }^{2}$ Vishwakarma Institute of Technology, Pune, India
joglekar.pushkar@gmail.com

Abstract

We introduce and study the notion of read- k projections of the determinant: a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is called a read- k projection of determinant if $f=\operatorname{det}(M)$, where entries of matrix M are either field elements or variables such that each variable appears at most k times in M. A monomial set S is said to be expressible as read- k projection of determinant if there is a read- k projection of determinant f such that the monomial set of f is equal to S. We obtain basic results relating readk determinantal projections to the well-studied notion of determinantal complexity. We show that for sufficiently large n, the $n \times n$ permanent polynomial Perm $_{n}$ and the elementary symmetric polynomials of degree d on n variables S_{n}^{d} for $2 \leq d \leq n-2$ are not expressible as read-once projection of determinant, whereas $\operatorname{mon}\left(\operatorname{Perm} m_{n}\right)$ and $\operatorname{mon}\left(S_{n}^{d}\right)$ are expressible as read-once projections of determinant. We also give examples of monomial sets which are not expressible as read-once projections of determinant.

1 Introduction

In a seminal work [13], Valiant introduced the notion of the determinantal complexity of multivariate polynomials and proved that any polynomial $f \in$ $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ can be expressed as $f=\operatorname{det}\left(M_{m \times m}\right)$, where the entries of M are affine linear forms in the variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. The smallest value of m for which $f=\operatorname{det}\left(M_{m \times m}\right)$ holds is called the determinantal complexity of f and denoted by $d c(f)$. Let Perm $_{n}$ denote the permanent polynomial:

$$
\operatorname{Perm}_{n}\left(x_{11}, \ldots, x_{n n}\right)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} x_{i, \sigma(i)}
$$

Valiant postulated that the determinantal complexity of Perm $_{n}$ is not polynomially bounded - i.e. $d c\left(\operatorname{Perm}_{n}\right)=n^{\omega(1)}$. This is one of the most important con-

[^0]jectures in complexity theory. So far the best known lower bound on $\operatorname{dc}\left(\operatorname{Perm} m_{n}\right)$ is $\frac{n^{2}}{2}$, known from [9], [1].

Another related notion considered in [13] is projections of polynomials: A polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ is said to be a projection of $g \in \mathbb{F}\left[y_{1}, \ldots, y_{m}\right], m \geq n$ if f is obtained from g by substituting each variable y_{i} by some variable in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ or by an element of field \mathbb{F}. Valiant's postulate implies that if Perm $_{n}$ is projection of the Determinant polynomial Det m_{m} then m is $n^{\omega(1)}$. We refer to the expository article by von-zur Gathen on Valiant's result [2].
We define the notion of read- k projection of determinant, which is a natural restriction of the notion of projection of determinant. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of variables and let \mathbb{F} be a field.

Definition 1. We say that a matrix $M_{m \times m}$ is a read- k matrix over $X \cup \mathbb{F}$ if the entries of M are from $X \cup \mathbb{F}$ and for every $x \in X$, there are at most k pairs of indices (i, j) such that $M_{i, j}=x$. We say that a polynomial $f \in \mathbb{F}[X]$ is read- k projection of Det $_{m}$ if there exists a read- k matrix $M_{m \times m}$ over X such that $f=\operatorname{det}(M)$.

Remark: We use the phrase a polynomial is expressible as read-once determinant in place of "a polynomial is read-1 projection of determinant" in some places. Note that only a multilinear polynomial can be expressible as a read-once determinant.

The following upper bound on determinantal complexity, proved in Section 2, is one of the motivations for studying this model.

Theorem 2. Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. If f is a read- k projection of determinant, then $d c(f) \leq n k$.

The above theorem immediately shows that read- k projections of determinant are not universal for any constant k; indeed in the case of finite fields, by simple counting arguments, we can show that most polynomials are not read- k expressible for $k=2^{o(n)}$.

Ryser's formula for the permanent expresses the permanent polynomial Perm $_{n}$ as a read- 2^{n-1} projection of determinant. In contrast, it follows from Theorem 2 that Valiant's hypothesis implies the following: $\operatorname{Perm}_{n} \neq \operatorname{det}\left(M_{m \times m}\right)$ for a read- $n^{O(1)}$ matrix M of any size. So the expressibility question is more relevant in the context of read- k determinant model rather than the size lower bound question. In this paper, we obtain the following results for the simplest case $k=1$.

Theorem 3. For $n>5$, the $n \times n$ permanent polynomial Perm ${ }_{n}$ is not expressible as a read-once determinant over the field of reals and over finite fields in which -3 is a quadratic non-residue.

We prove Theorem 3 in Section 3 as a consequence of non-expressibility of elementary symmetric polynomials as read-once determinants.

Our interest in this model also stems from the following reason. Most of the existing lower-bound techniques for various models, including monotone circuits, depth-3 circuits, non-commutative ABPs etc, are not sensitive to the coefficients of the monomials of the polynomial for which the lower-bound is proved. For example, the monotone circuit lower-bound for permanent polynomial by Jerrum and Snir [8], carries over to any polynomial with same monomial set as permanent. The same applies to Nisan's rank argument [10] or the various lower bound results based on the partial derivative techniques (see e.g. [11], [4]).

On the other hand, for proving lower bounds on the determinantal complexity of the permanent, one must use some properties of the permanent polynomial which are not shared by the determinant polynomial. A natural question is whether there are models more restrictive than determinantal complexity (so that proving lower bounds may be easier) and which are coefficient-sensitive. Read- k determinants appear to be a good choice for such a model.

In light of the above discussion and to formally distinguish the complexity of a polynomial and that of its monomial set, we have the following definition.

Definition 4. For $f \in F[X]$, we denote by mon(f) the set of all monomials with non-zero coefficient in f. We say that a set S of monomials is expressible as read- k determinant if there exists a polynomial $f \in \mathbb{F}[X]$ such that f is a read-k projection of determinant and $S=\operatorname{mon}(f)$.

Let S_{n}^{d} denote the elementary symmetric polynomial of degree d :

$$
S_{n}^{d}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{A \subseteq\{1,2, \ldots, n\},|A|=d} \prod_{i \in A} x_{i}
$$

In Section 3, we prove the non-expressibility of elementary symmetric polynomials as read-once determinants; a contrasting result also proved in the same section is the following:

Theorem 5. For all $n \geq d \geq 1$ and $|\mathbb{F}| \geq n$, the monomial set of S_{n}^{d} is expressible as projection of read-once determinant.

The organization of the paper is as follows. In Section 2, we prove Theorem 2 and make several basic observations about read-once determinants. In Section 3 , as our main result, we show the non-expressibility of the elementary symmetric polynomials as read-once determinants and as a consequence deduce non-expressibility of the permanent (Theorem 3). We also prove that the monomial set of any elementary symmetric polynomial is expressible as a read-once determinant (Theorem 5). In Section 4, we give examples of monomial sets which are not expressible as read-once determinants.

2 Basic observations

First we note that read-once determinants are strictly more expressive than occurrence-one algebraic branching programs which in turn are strictly more expressive than read-once formulas. By occurrence-one $A B P$ we mean an algebraic branching program in which each variable is allowed to repeat at most once [7]. (We are using the term occurrence-one ABPs rather than read-once ABPs to avoid confusion, as the latter term is sometimes used in the literature to mean an ABP in which any variable can appear at most once on any source to sink path in the ABP).

In the following simple lemma, we compare read-once determinants with readonce formulas and occurrence-one ABPs.

Lemma 6. Any polynomial computed by a read-once formula can be computed by an occurrence-one $A B P$, and any polynomial computed by an occurrence-one $A B P$ can be computed by a read-once determinant. Moreover there is a polynomial which can be computed by read-once determinant but can't be computed by occurrence-one ABPs.

Proof. Let $f \in \mathbb{F}[X]$ be a polynomial computed by a read-once formula or an occurrence-one ABP. Using Valiant's construction [13], we can find a matrix M whose entries are in $X \cup \mathbb{F}$ such that $f=\operatorname{det}(M)$. We observe that if we start with a read-once formula or an occurrence-one ABP then for the matrix M obtained using Valiant's construction, every variable repeats at most once in M. This proves that f can be computed by read-once determinants. To see the other part, consider the elementary symmetric polynomial of degree two over $\left\{x_{1}, x_{2}, x_{3}\right\}: S_{3}^{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$. It is proved in ([7] Appendix-B) that S_{3}^{2} cannot be computed by an occurrence-one ABP. From the discussion in the beginning of Section 3.1 it follows that S_{3}^{2} can be computed by a read-once determinant.

Let $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let $S=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq[n]$, let X_{S} denote the set of variables $\left\{x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}\right\}$. We define $\frac{\partial f}{\partial X_{S}}$ a partial derivative of f with respect to X_{S} as $\frac{\partial f}{\partial X_{S}}=\frac{\partial^{k} f}{\partial x_{i_{1}} \partial x_{i_{2}} \ldots \partial x_{i_{k}}}$. For a vector $a=\left(a_{1}, \ldots, a_{k}\right)$ with $a_{i} \in \mathbb{F}$ let $\left.f\right|_{S=a}$ denote polynomial g over variables $X \backslash X_{S}$ which is obtained from f by substituting variable $x_{i_{j}}=a_{j}$.
We define the set ROD to be the set of all polynomials in $\mathbb{F}[X]$ that are expressible as read-once projection of determinant. The following simple proposition shows that the set ROD has nice closure properties.

Proposition 7. Let f be a polynomial over X such that $f \in R O D$ and $S \subseteq X$, $|S|=k$. Let $a \in \mathbb{F}^{k}$. Then $\left.f\right|_{S=a}, \frac{\partial f}{\partial X_{s}} \in R O D$. For any polynomial $g \in \overline{R O D}$ such that $f g$ is a multilinear polynomial, we have $f g \in R O D$.

Proof. Closure under substitution follows easily from the definition of ROD. Let $f=\operatorname{det}(M)$ for a read once matrix M. W.l.g. assume that all the variables in X_{S} appear in different rows and columns in M (otherwise $\frac{\partial f}{\partial x_{S}}=0$). (2) follows by noting that $\frac{\partial f}{\partial x_{S}}$ is a minor of M obtained by removing rows and columns corresponding to variables in X_{S}. Since $f g$ is multilinear, both f and g must be multilinear and $\operatorname{Var}(f) \cap \operatorname{Var}(g)=\phi$ where $\operatorname{Var}(f), \operatorname{Var}(g)$ denote variable sets for f and g respectively. Let $f=\operatorname{det}\left(M_{1}\right)$ and $g=\operatorname{det}\left(M_{2}\right)$ for read once matrices M_{1} and M_{2}. Let M be a matrix obtained by putting copy of M_{1} and M_{2} on diagonal, so that $\operatorname{det}(M)=\operatorname{det}\left(M_{1}\right) \operatorname{det}\left(M_{2}\right) . M$ is read once matrix since variable sets of f and g are disjoint.

Now we observe that, if polynomial f is expressible as read- k projection of determinant then determinantal complexity of f is upper bounded by $n k$. We use the notation $M \sim N$ to mean that $\operatorname{det}(M)=\operatorname{det}(N)$.
Proof of Theorem 2 Let $f=\operatorname{det}(M)$ for a read- k matrix M. Without loss of generality, we can assume that for some $m \leq k n$, the principal m by m submatrix of M contains all the variables. Let Q denote this submatrix and let R denote the submatrix formed by the remaining columns of the first m rows. Suppose that the number of remaining rows of M is equal to p. Let T denote the submatrix formed by these rows. We note that M has full rank, and hence the row-rank and column-rank of T are both equal to p.

Consider a set of p linearly independent columns in T and let T_{1} be the submatrix formed by these columns; let T_{2} denote the remaining m columns of T. Further, let Q_{1} and R_{1} denote the columns of Q and R respectively, corresponding to the columns of T_{1} and similarly, let Q_{2} and R_{2} denote the columns of Q and R, corresponding to the columns of T_{2}. In other words, the columns of M can be permuted to obtain $M^{\prime} \sim M$:

$$
M^{\prime}=\left(\begin{array}{cc}
Q_{1} \mid R_{1} & Q_{2} \mid R_{2} \\
T_{1} & T_{2}
\end{array}\right) .
$$

Let g denote the unique linear transformation such that $\left[T_{2}+g\left(T_{1}\right)\right]=[0]$.
Applying g to the last m columns of M^{\prime}, we obtain a matrix $N \sim M^{\prime}$ such that

$$
N=\left(\begin{array}{cc}
Q_{1} \mid R_{1} & Q_{2} \mid R_{2}+g\left(Q_{1} \mid R_{1}\right) \\
T_{1} & 0
\end{array}\right)
$$

Let $\operatorname{det}\left(T_{1}\right)=c \in \mathbb{F}$; clearly $c \neq 0$. Let N^{\prime} be a matrix obtained by multiplying some row of $\left[Q_{2} \mid R_{2}\right]+g\left(\left[Q_{1} \mid R_{1}\right]\right)$ by c. The entries of N^{\prime} are affine linear forms, $\operatorname{det}\left(N^{\prime}\right)=f$ and the dimension of N^{\prime} is $m \leq k n$. This proves Theorem 2.

In the next lemma we show that if $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that $f=\operatorname{det}\left(M_{m \times m}\right)$ for a read-once matrix M, then we can without loss of generality assume that $m \leq 3 n$.

Lemma 8. Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ be expressible as read-once determinant. Then there is a read-once matrix M of size at most $3 n$ such that $f=\operatorname{det}(M)$.

Proof. The proof is on similar lines as that of Theorem 2. We begin with the observation that we may replace T_{1} in the matrix M with any k by k matrix whose determinant is equal to c and set $T_{2}=-f\left(T_{1}\right)$. For simplicity, we choose T_{1} to be the diagonal matrix whose first entry is c and all other entries are equal to 1 .

Consider the matrix R_{1} - its rank is at most $m \leq n$; let S_{1} denote the submatrix of R_{1} formed by a maximal independent set of columns. The key observation is that we can find a linear transformation g such $f\left(\left[Q_{1}, R_{1}\right]\right)=g\left(\left[Q_{1}, S_{1}\right]\right)$. Let T_{3} denote the columns of T_{1} corresponding to the columns of $\left[Q_{1} \mid S_{1}\right]$.

Consider the read-once matrix

$$
N_{1}=\left(\begin{array}{cc}
Q_{1} \mid S_{1} & Q_{2} \mid R_{2} \\
T_{3} & -g\left(T_{3}\right)
\end{array}\right) .
$$

From the previous observations, it is clear that $N \sim N_{1}$; the number of columns of Q is m and the number of columns of S_{1} and R_{2} are at most m each; thus the dimension of N_{1} is at most $3 m \leq 3 n$.

3 Elementary symmetric polynomials and permanent

In this section we will prove our main result: the elementary symmetric polynomials S_{n}^{d} for $2 \leq n \leq n-2$ and the permanent Perm $_{n}$ are not expressible as readonce determinants for sufficiently large n. We will first prove that $S_{4}^{2} \notin R O D$ and use it to prove non-expressibility of Perm_{n} and S_{n}^{d}.

We begin with following simple observation based on the closure properties of ROD.

Lemma 9. 1. If $S_{m}^{k} \notin R O D$ then $S_{n}^{d} \notin R O D$ for $d \geq k$ and $n \geq m+d-k$.
2. If Perm $_{m} \notin R O D$ then Perm $_{n} \notin R O D$ for $n \geq m$.

Proof. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and $A=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq[n]$. It is easy to see that $\frac{\partial S_{n}^{d}}{\partial X_{A}}$ is the elementary symmetric polynomial of degree $d-k$ over the set of variables $X \backslash X_{A}$. Let $S_{n}^{d} \in R O D$ for some $d \geq k$ and $n \geq m+d-k$. By Proposition 7 we know that read-once determinants are closed under partial derivatives. So we get $S_{n-(d-k)}^{d-(d-k)}=S_{n-d+k}^{k} \in R O D$. Let $n-d+k=m+l$ for $l \geq 0$. Now we substitute any l variables to zero in S_{n-d+k}^{k} to obtain the polynomial S_{m}^{k}. We have $S_{m}^{k} \in R O D$ as from Proposition 7 RODs are closed under substitution.

The proof for the second part is similar and follows easily by noting that the partial derivative of Perm_{n} with respect to any variable $x_{i, j}, 1 \leq i, j \leq n$ is the $(n-1) \times(n-1)$ Permanent polynomial on $(n-1)^{2}$ variables.

From the above lemma, it is clear that, if the polynomials Perm_{n} or S_{n}^{d} are expressible as read-once determinants for some n then these polynomials will be expressible as read-once determinants for some constant value of $n=O(1)$.

3.1 Elementary symmetric polynomials

For $d=1$ or n, the elementary symmetric polynomial S_{n}^{d} can be computed by a $O(n)$ size read-once formula so by lemma 6 we can express S_{n}^{d} as a read-once determinant. We observe that $S_{n}^{n-1} \in R O D$ over any field as $S_{n}^{n-1}=\operatorname{det}\left(\begin{array}{cc}D & A \\ C & 0\end{array}\right)$
Where D is $n \times n$ diagonal matrix with $(i, i)^{t h}$ entry x_{i} for $i=1$ to $n . C$ and A are $1 \times n$ and $n \times 1$ matrices such that all entries of C are 1 and all entries of A are -1 . So $S_{n}^{d} \in R O D$ for $d=1, n-1, n$. In this section, we show that $S_{n}^{d} \notin R O D$ for every other choice of d in the case of field of reals or finite fields in which -3 is quadratic non-residue.

First we consider the case of field of real numbers. Let $S_{4}^{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c^{\prime}$. $\operatorname{det}(M)$ for a read-once matrix M and a non-zero $c^{\prime} \in \mathbb{R}$. Rearranging rows and columns of M or taking out a scalar common from either row or column of M will change the value of $\operatorname{det}(M)$ only by a scalar, so pertaining to the expressibility question, we can do these operations freely (we will get different scalar than c as a multiplier but that is not a problem). For any $i, j \in\{1,2,3,4\}, i \neq j$, $x_{i} x_{j} \in \operatorname{mon}\left(S_{4}^{2}\right)$. So clearly $\frac{\partial S_{4}^{2}}{\partial x_{i} \partial x_{j}} \neq 0$ which implies that the determinant of the minor obtained by removing the rows and the columns corresponding to the variables x_{i}, x_{j} is non-zero. So for any $i, j \in\{1,2,3,4\}, i \neq j, x_{i}$ and x_{j} appear in different rows and columns in M. By suitably permuting rows and columns of M we can assume that $S_{4}^{2}=c \cdot \operatorname{det}(N)$ for a non zero real c and read-once matrix N such that $(i, i)^{t h}$ entry of N is variable x_{i} for $i=1$ to 4 .
So $N=\left(\begin{array}{cccc}x_{1} & - & - & -\beta_{1} \\ -x_{2} & - & -\beta_{2} \\ - & -x_{3} & -\beta_{3} \\ - & - & -x_{4} & \beta_{4} \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4}\end{array}\right) \quad$ Here L is a $m-4 \times m-4$ matrix, and α_{i}, β_{i} are column and row vectors of size $m-4$ for $i=1$ to 4 and - represents arbitrary scalar entry. Let $p=m-4$. Index the columns and the rows of the matrix using numbers $1,2, \ldots, m$. Let S denote a set of column and row indices corresponding to submatrix L. For any set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\} \subset\{1,2,3,4\}$, let $N_{a_{1}, a_{2}, \ldots, a_{k}}$ denote a minor of N obtained by removing rows and columns corresponding to indices $\{1,2,3,4\} \backslash\left\{a_{1}, \ldots, a_{k}\right\}$ from N.

Definition 10. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and M be a matrix with entries from $X \cup \mathbb{F}$. For $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathbb{F}^{n}$ let M_{a} be the matrix obtained from M by
substituting $x_{i}=a_{i}$ for $i=1$ to n. Let maxrank $(M)(\operatorname{respect} . \operatorname{minrank}(M))$ denote the maximum(respect. minimum) rank of matrix M_{a} for $a \in \mathbb{F}^{n}$.

Now we make some observations regarding ranks of various minors of N.

Lemma 11. For $i, j \in\{1,2,3,4\}, i \neq j$ we have

1. $\operatorname{maxrank}\left(N_{i, j}\right)=\operatorname{minrank}\left(N_{i, j}\right)=p+2$
2. $\operatorname{maxrank}\left(N_{i}\right)=\operatorname{minrank}\left(N_{i}\right)=p$
3. $\operatorname{rank}(L) \in\{p-1, p-2\}$

Proof. Let $\{k, l\}=\{1,2,3,4\} \backslash\{i, j\}$. Monomial $x_{k} x_{l} \in \operatorname{mon}\left(S_{4}^{2}\right)$, so the matrix obtained from $N_{i, j}$ by any scalar substitution for x_{i} and x_{j} has full rank. So we have $\operatorname{minrank}\left(N_{i, j}\right)=p+2$. Since $N_{i, j}$ is a $(p+2) \times(p+2)$ matrix with $\operatorname{minrank} p+2$, clearly maxrank$\left(N_{i, j}\right)=\operatorname{minrank}\left(N_{i, j}\right)=p+2$. To prove the second part, note that the matrix N_{i} can be obtained by removing a row and a column from the matrix $N_{i, j}$. So clearly $\operatorname{minrank}\left(N_{i}\right) \geq \operatorname{minrank}\left(N_{i, j}\right)-2=p$. As S_{4}^{2} doesn't contain any degree 3 monomial we have $\operatorname{maxrank}\left(N_{i}\right) \leq p$. Hence $\operatorname{minrank}\left(N_{i}\right)=\operatorname{maxrank}\left(N_{i}\right)=p$.

The matrix N_{i} can be obtained from L by adding a row and a column so $\operatorname{rank}(L) \geq \operatorname{minrank}\left(N_{i}\right)-2=p-2$. Since monomial $x_{1} x_{2} x_{3} x_{4} \notin \operatorname{mon}\left(S_{4}^{2}\right), L$ can not be full-rank matrix so $\operatorname{rank}(L) \leq p-1$. Thus proving the lemma.

Suppose $\operatorname{rank}(L)=p-1$. By $\operatorname{cspan}(L), r \operatorname{span}(L)$ we denote the space spanned by the columns and the rows of L respectively. Next we argue that for any $i \in\{1,2,3,4\}, \alpha_{i} \in \operatorname{cspan}(L)$ iff $\beta_{i} \notin \operatorname{rspan}(L)$. To show that we need to rule out following two possibilities

1. $\alpha_{i} \notin \operatorname{cspan}(L)$ and $\beta_{i} \notin \operatorname{rspan}(L)$. In this case clearly $\operatorname{minrank}\left(N_{i}\right)=$ $\operatorname{rank}(L)+2=p+1$, a contradiction since $\operatorname{minrank}\left(N_{i}\right)=p$ by lemma 11.
2. $\alpha_{i} \in \operatorname{cspan}(L)$ and $\beta_{i} \in r \operatorname{span}(L)$. As $\beta_{i} \in r \operatorname{span}(L)$ we can use a suitable scalar value for x_{i} so that vector $\left[x_{i} \beta_{i}\right]$ is in the row span of the matrix $\left[\alpha_{i} L\right]$. $\operatorname{Moreover} \operatorname{rank}\left(\left[\alpha_{i} L\right]\right)=p-1$ as $\alpha_{i} \in \operatorname{cspan}(L)$. So we have $\operatorname{minrank}\left(N_{i}\right)=$ $\operatorname{rank}\left(\left[\alpha_{i} L\right]\right)=\operatorname{rank}(L)=p-1$. But we know that $\operatorname{minrank}\left(N_{i}\right)$ is p.

So we have $\alpha_{i} \in \operatorname{cspan}(L)$ iff $\beta_{i} \notin r \operatorname{span}(L)$. From this it follows immediately that either there exist at least two α_{i} 's $\in \operatorname{cspan}(L)$ or there exists atleast two β_{i} 's $\in \operatorname{rspan}(L)$. So w.l.o.g. assume that for $i \neq j, \alpha_{i}, \alpha_{j} \in \operatorname{cspan}(L)$, So $\operatorname{rank}\left[\alpha_{i} \alpha_{j} L\right]=\operatorname{rank}(L)=p-1$. Matrix $N_{i, j}$ can be obtained from $\left[\alpha_{i} \alpha_{j} L\right]$ by adding two new rows, so maxrank $\left(N_{i, j}\right) \leq \operatorname{rank}\left(\left[\alpha_{i} \alpha_{j} L\right]\right)+2=p+1$, a contradiction. This proves that $\operatorname{rank}(L)$ can not be $p-1$.

Now we consider the other case. Let $\operatorname{rank}(L)=p-2$. By applying row and column operation on N we can reduce block L to a diagonal matrix D with all non zero entries 1. Further applying row and column transformations we can
drive entries in the vectors α_{i} 's and β_{i} 's corresponding to nonzero part of D to zero. Note that now we can remove all non-zero rows and columns of matrix D still keeping the determinant same. As a result we have $S_{4}^{2}=c_{1} \cdot \operatorname{det}\left(N^{\prime}\right)$ where N^{\prime} has following structure

$$
\left(\begin{array}{ccccc|cc}
x_{1}+a_{1} & & & & & & \\
& & & & \beta_{1,1} & \beta_{1,2} \\
& x_{2}+a_{2} & & & \beta_{2,1} & \beta_{2,2} \\
& & x_{3}+a_{3} & & \beta_{3,1} & \beta_{3,2} \\
& & & x_{4}+a_{4} & \beta_{4,1} & \beta_{4,2} \\
\hline \alpha_{1,1} & \alpha_{2,1} & \alpha_{3,1} & \alpha_{4,1} & 0 & 0 \\
\alpha_{1,2} & \alpha_{2,2} & \alpha_{3,2} & \alpha_{4,2} & 0 & 0
\end{array}\right)
$$

Note that the coefficient of the monomial $x_{i} x_{j}$ in N^{\prime} is the determinant of the minor obtained by removing rows and columns corresponding to x_{i} and x_{j} from N^{\prime}. It is equal to $\left(\alpha_{k, 1} \alpha_{l, 2}-\alpha_{k, 2} \alpha_{l, 1}\right) \cdot\left(\beta_{k, 1} \beta_{l, 2}-\beta_{k, 2} \beta_{l, 1}\right)$ where $\{k, l\}=$ $\{1,2,3,4\} \backslash\{i, j\}$. It is easy to see that in fact without loss of generality we can assume that $\alpha_{1,1}=\beta_{1,1}=\alpha_{2,2}=\beta_{2,2}=1$ and $\alpha_{1,2}=\beta_{1,2}=\alpha_{2,1}=$ $\beta_{2,1}=0$ (again by doing column and row transformations). So finally we have $S_{4}^{2}=c \cdot \operatorname{det}(N)$ where c is a non zero scalar, N is a matrix as shown below, and a_{1}, \ldots, a_{4} are real numbers.

$$
S_{4}^{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=c \cdot \operatorname{det}\left(\begin{array}{ccccc|ccc}
x_{1}+a_{1} & & & & & 1 & 0 \\
& x_{2}+a_{2} & & & 1 \\
& & & x_{3}+a_{3} & & p^{\prime} & r^{\prime} \\
& & & & x_{4}+a_{4} & q^{\prime} & s^{\prime} \\
\hline 1 & 0 & p & q & 0 & 0 \\
0 & 1 & r & s & 0 & 0
\end{array}\right)
$$

Comparing coefficients of monomials $x_{i} x_{j}$ for $i \neq j$ in S_{4}^{2} and the determinant of corresponding minors of matrix N, we get following system of equations $c=$ $1, p \cdot p^{\prime}=q \cdot q^{\prime}=r \cdot r^{\prime}=s \cdot s^{\prime}=1$ and $(p s-r q)\left(p^{\prime} s^{\prime}-r^{\prime} q^{\prime}\right)=1$. Substituting $p^{\prime}=1 / p, q^{\prime}=1 / q$ etc in the equation above, we have $(p s-r q)(1 / p s-1 / r q)=1$ which imply $(p s-r q)^{2}=-(p s)(r q)$ i.e. $(p s)^{2}+(r q)^{2}=(p s)(r q)$ which is clearly false for non-zero real numbers $p, q, r, s\left(\right.$ as $\left.(p s)^{2}+(r q)^{2} \geq 2(p s)(r q)\right)$.(Note that we need p, q, r, s to be non zero since we have $p p^{\prime}=q q^{\prime}=r r^{\prime}=s s^{\prime}=1$.) This proves that $S_{4}^{2} \notin R O D$ over \mathbb{R}.

In the case of finite fields \mathbb{F} in which -3 is a quadratic non-residue the argument is as follows. We have the equation $(p s-r q)^{2}=-(p s)(r q)$ as above. Let $x=p s$ and $y=r q$, so we have $y^{2}-x y+x^{2}=0$. Considering this as a quadratic equation in variable y, the equation has a solution in the concerned field iff the discriminant $\Delta=-3 x^{2}$ is a perfect square, that happens only when -3 is a
quadratic residue. So if -3 is a quadratic non residue, the above equation doesn't have a solution, leading to a contradiction. So we have the following theorem.

Theorem 12. The polynomial S_{4}^{2} is not expressible as a read-once determinant over the field of reals and over finite fields in which -3 is a quadratic non-residue.

We note that we can express S_{4}^{2} as a read-once determinant over \mathbb{C} or e.g. over \mathbb{F}_{3} by solving the quadratic equation in the proof of Theorem 12.

$$
S_{4}^{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\operatorname{det}\left(\begin{array}{cccccc}
x_{1} & 0 & 0 & 0 & 1 & 0 \\
0 & x_{2} & 0 & 0 & 0 & 1 \\
0 & 0 & x_{3} & 0 & 1 & r^{-1} \\
0 & 0 & 0 & x_{4} & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & r & 1 & 0 & 0
\end{array}\right)
$$

In the case $\mathbb{F}=\mathbb{C}$ choose $r=\frac{1+\sqrt{3} i}{2}$ and in case of \mathbb{F}_{3} choose $r=2(\bmod 3)$.
Remark 13. We speculate that it should be possible to prove $S_{6}^{2} \notin R O D$ over any field using similar technique as in the proof of Theorem 12 and that would immediately give us (slightly weaker) non-expressibility results for the general elementary symmetric polynomials and the permanent polynomial as compared to the Theorems 14, 3. But we haven't worked out the details in the current work.

Theorem 12 together with Lemma 9 proves the desired non-expressibility result for elementary symmetric polynomials.

Theorem 14. The polynomial $S_{n}^{d} \in \mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is not expressible as a read-once determinant for $n \geq 4$ and $2 \leq d \leq n-2$ when the field \mathbb{F} is either the field of real numbers or a finite field in which -3 is a quadratic non-residue.

In contrast, we show that the monomial set of S_{n}^{d} is expressible as a read-once determinant.

Proof of Theorem 5 Let $k=n-d$ and $t=k+1$.
Let D be a $n \times n$ diagonal matrix with $(i, i)^{t h}$ entry x_{i} for $i=1$ to n. and $M=$ $\left(\begin{array}{ll}D & A \\ C & B\end{array}\right)$, where A, B, C are constant block matrices of dimensions $n \times t, t \times t$ and $t \times n$, respectively. We shall choose A, B, C such that $\operatorname{mon}(\operatorname{det}(M))=\operatorname{mon}\left(S_{n}^{d}\right)$. Let $B=J_{t \times t}$ be the matrix with all 1 entries. Let C be such that $\operatorname{rank}(C)=k$, $\operatorname{rank}(C B)=t$ and such that any k vectors in $\operatorname{Col}(C)$ are linearly independent, where $\operatorname{Col}(C)$ denotes set of column vectors of C. For example, we can let the $i^{t h}$
column vector of C be $\left(1, a_{i}, a_{i}^{2}, \ldots, a_{i}^{k-1}, 0\right)^{T}$ for distinct values of a_{i}. Finally, let $A=C^{T}$.

It is clear that $\operatorname{det}(M)$ is symmetric in the x_{i} 's; thus it suffices to prove that $x_{1} x_{2} \ldots x_{i}$ is a monomial of $\operatorname{det}(M)$ if and only if $i=d$. For $1 \leq i \leq n$, consider the submatrix M_{i} of M obtained by removing the first i rows and first i columns. We observe that $\operatorname{det}\left(M_{i}\right)=x_{i+1} \operatorname{det}\left(M_{i+1}\right)$. Let r denote the minimum value of i such that $\operatorname{det}\left(M_{i}\right) \neq 0$. Then it can be seen that $x_{1} x_{2} \ldots x_{i}$ is a monomial of $\operatorname{det}(M)$ if and only if $i=r$.

We now prove that $\operatorname{det}\left(M_{i}\right)=0$ if and only if $i>d$. Let N_{i} denote the matrix formed by the last t rows of M_{i}. Then $\operatorname{det}\left(M_{i}\right)=0$ if and only if $\operatorname{rank}\left(N_{i}\right)<t$. But $\operatorname{rank}\left(N_{i}\right)=\operatorname{rank}\left(\operatorname{Col}\left(N_{i}\right)\right)$ and by construction, $\operatorname{rank}\left(\operatorname{Col}\left(N_{i}\right)\right)<k$ if and only if $n-i<k$, i.e. if $i>n-k=d$. This completes the proof of Theorem 5.

3.2 Non-expressibility of Permanent as ROD

Now we prove the non-expressibility result for Perm_{n} (Theorem 3).
Proof of Theorem 3: We observe below that the elementary symmetric polynomial S_{4}^{2} is a projection of the read-once 6×6 Permanent over reals.
$4 S_{4}^{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\operatorname{Perm}\left(\begin{array}{cccccc}x_{1} & 0 & 0 & 0 & 1 & 1 \\ 0 & x_{2} & 0 & 0 & 1 & 1 \\ 0 & 0 & x_{3} & 0 & 1 & 1 \\ 0 & 0 & 0 & x_{4} & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0\end{array}\right)$ So clearly if Perm $_{6}$ is a read-once
projection of determinant then S_{4}^{2} also is a read-once projection of determinant. But by Theorem 12 we know that $S_{4}^{2} \notin R O D$. So we get $\operatorname{Perm}_{6} \notin R O D$. From lemma 9 it follows that $\operatorname{Perm}_{n} \notin R O D$ for any $n>5$.

4 Non-expressible monomial sets

We have seen that the elementary symmetric polynomials and the Permanent polynomial can not be expressed as read-once determinants but their monomial sets are expressible as ROD. In this section we will give examples of monomial sets which can not be expressed as read-once determinant. Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. We say that f is k-full if f contains every monomial of degree k and we say that f is k-empty if f contains no monomial of degree k.

Theorem 15. Let $f \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in R O D$ be such that f is n-full, ($n-1$)-empty and $(n-2)$-empty. Then f can not be k-full for any k such that $\left\lfloor\frac{n-1}{2}\right\rfloor \leq k<n$.

Proof. Let $f=\operatorname{det}\left(M_{m \times m}\right)$ for a read-once matrix M. As $x_{1} x_{2} \ldots x_{n} \in \operatorname{mon}(f)$, without loss of generality assume that the $(i, i)^{t h}$ entry of M is x_{i} for $i=1$ to n. Since minor corresponding to $x_{1} x_{2} \ldots x_{n}$ is invertible we can use elementary row and column operations on M to get a matrix $N_{n \times n}$ such that $f=\operatorname{det} N$ and the $(i, i)^{t h}$ entry of N is $a_{i} x_{i}+b_{i}$ for $a_{i}, b_{i} \in \mathbb{F}$ and $a_{i} \neq 0$. All the other entries of N are scalars. The assumption that f is $(n-1)$-empty implies that $b_{i}=0$ for $i=1$ to n. Since f is $(n-2)$-empty, we also have $N(i, j) N(j, i)=0$ for all $i \neq j, 1 \leq i, j \leq n$. So at least $\binom{n}{2}$ entries of N are zero. So there is a row of N which contains at least $\left\lceil\frac{n-1}{2}\right\rceil$ zeros. Let i be the index of that row. For $l \geq\left\lceil\frac{n-1}{2}\right\rceil$, let $a_{1}, a_{2}, \ldots, a_{l}$ be the column indices such that $N\left(i, a_{i}\right)=0$. Note that $i \notin\left\{a_{1}, \ldots, a_{l}\right\}$. We want to prove that f is not k-full for $\left\lfloor\frac{n-1}{2}\right\rfloor \leq k<n$. Let S be a subset of $\left\{a_{1}, \ldots, a_{l}\right\}$ of size $n-k-1$. Note that we can pick such a set since $l \geq\left\lceil\frac{n-1}{2}\right\rceil$. Let $T=S \cup\{i\}$. Let $m=\prod_{j \notin T} x_{j}$. Let N^{\prime} be the minor obtained by removing all the rows and columns in $\{1,2, \ldots, n\} \backslash T$ from N. Clearly $m \notin \operatorname{mon}(f)$ iff the constant term in the determinant of N^{\prime} is zero. Note that N^{\prime} contains a row with one entry x_{i} and the remaining entries in the row are zero. So clearly the constant term in the determinant of N^{\prime} is zero. This shows that degree k monomial $m \notin \operatorname{mon}(f)$. This proves the Theorem.

Let $f=x_{1}+x_{2}+x_{3}+x_{4}+x_{1} x_{2} x_{3} x_{4} . f$ is 4 -full, 3-empty, 2-empty and 1full. Applying above theorem for $n=4$, we deduce that the set $\operatorname{mon}(f)=$ $\left\{x_{1} x_{2} x_{3} x_{4}, x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is not expressible as a read-once determinant.

5 Discussion and Open Problems

Under Valiant's hypothesis we know that Perm_{n} cannot be expressed as a read$n^{O(1)}$ determinant. Proving non-expressibility of Perm_{n} as a read- k determinant for $k>1$ unconditionally, is an interesting problem. In fact even the simplest case $k=2$ might be challenging. The corresponding PIT question of checking whether the determinant of a read- 2 matrix is identically zero or not, is also open [3].
For the elementary symmetric polynomial of degree d on n variables, Shpilka and Wigderson gave an $O\left(n d^{3} \log d\right)$ arithmetic formula [12]. Using universality of determinant, we get an $O\left(n d^{3} \log d\right)$ upper bound on $d c\left(S_{n}^{d}\right)$, in fact for non constant d this is the best known upper bound on $d c\left(S_{n}^{d}\right)$ as noted in [6]. Answering the following question in either direction is interesting: Is S_{n}^{d} expressible as read- k determinant for $k>1$? If the answer is NO, it is a nontrivial nonexpressibility result and if the answer is YES, for say $k=O\left(n^{2}\right)$, it gives an $O\left(n^{3}\right)$ upper bound on $d c\left(S_{n}^{d}\right)$, which is asymptotically better than $O\left(n d^{3} \log d\right)$ for $d=\frac{n}{2}$.

Another possible generalization of read-once determinants is the following. Let $X=\left\{x_{i, j} \mid 1 \leq i, j \leq n\right\}$ and consider the matrix $M_{m \times m}$ whose entries are affine linear forms over X such that the coefficient matrix induced by each variable has rank one. That is if we express M as $B_{0}+\sum_{1 \leq i, j \leq n} x_{i, j} B_{i, j}$ then $\operatorname{rank}\left(B_{i, j}\right)=1$ for $1 \leq i, j \leq n$. B_{0} can have arbitrary rank. The question we ask is: can we express Perm_{n} as the determinant of such a matrix M ? This model is clearly a generalization of read-once determinants and has been considered by Ivanyos, Karpinski and Saxena [5], where they give a deterministic polynomial time algorithm to test whether the determinant of such a matrix is identically zero. It would be interesting to address the question of expressibility of permanent in this model.

References

1. Jin-Yi Cai, Xi Chen, Dong Li, A quadratic lower bound for the permanent and determinant problem over any characteristic $\neq 2$ In 40 th annual ACM symposium on Theory of computing, pages 491-498, 2008.
2. J. von zur Gathen Feasible Arithmetic Computations: Valiant's Hypothesis In Journal of Symbolic Computation(1987)4, 137-172.
3. James F. Geelen An algebraic Matching Algorithm.In Combinatorica 20(1)(2000), 61-70.
4. Dima Grigoriev, Alexander A. Razborov, Exponential Lower Bounds for Depth 3 Arithmetic Circuits in Algebras of Functions over Finite Fields. In Applicable Algebra in Engineering, Communication and Computing 10(6): 465-487, 2000
5. Gábor Ivanyos, Marek Karpinski, Nitin Saxena, Deterministic Polynomial Time Algorithms for Matrix Completion Problems. SIAM J. Comput. 39(8): 37363751,2010
6. Maurice J. Jansen, Lower Bounds for the Determinantal Complexity of Explicit Low Degree Polynomials Computer Science Symposium in Russia 2009, 167-178
7. Maurice J. Jansen, Youming Qiao, and Jayalal Sarma Deterministic identity testing of read-once algebraic branching programs, Electronic Colloquium on Computational Complexity (ECCC), 17:84, 2010
8. M. Jerrum, M. Snir,Some Exact Complexity Results for Straight-Line Computations over Semirings J. ACM, 29(3): 874-897, 1982.
9. T. Mignon, N Ressayre, A quadratic bound for the determinant and permanent problem, In International Mathematics Research Notices, pages 4241-4253,2004.
10. N. Nisan, Lower bounds for noncommutative computation In Proc. of 23rd ACM Sym. on Theory of Computing, 410-418, 1991.
11. N. Nisan, A. Wigderson Lower Bounds on Arithmetic Circuits Via Partial Derivatives. In Computational Complexity 6(3): 217-234,1997
12. A. Shpilka, A. Wigderson. Depth-3 arithmetic formulae over fiel ds of characteristic zero.Journal of Computational Complexity, 10(1):1-27, 2001
13. L. Valiant, Completeness classes in algebra. in Technical Report CSR-40-79, Dept. of Computer Science, University of Edinburgh,, April-1979.

[^0]: * A preliminary version of this work has appeared in 20th International Symposium on Fundamentals of Computation Theory, Proceedings. Lecture Notes in Computer Science, Volume 9210, Springer 2015, pages 95-105

