
Explicit resilient functions matching Ajtai-Linial

Raghu Meka
Department of Computer Science

University of California, Los Angeles

Abstract

A Boolean function on n variables is q-resilient if for any subset of at most q variables, the
function is very likely to be determined by a uniformly random assignment to the remaining
n − q variables; in other words, no coalition of at most q variables has significant influence on
the function. Resilient functions have been extensively studied with a variety of applications in
cryptography, distributed computing, and pseudorandomness. The best known resilient function
on n variables due to Ajtai and Linial [AL93] has the property that only sets of size Ω(n/(log2 n))
can have influence bounded away from zero. However, the construction of Ajtai and Linial is
by the probabilistic method and does not give an efficiently computable function.

In this work we give an explicit monotone depth three almost-balanced Boolean function on
n bits that is Ω(n/(log2 n))-resilient matching the work of Ajtai and Linial. The best previous
explicit constructions of Meka [Mek09] (which only gives a logarithmic depth function), and
Chattopadhyay and Zuckerman [CZ15] were only (n1−β)-resilient for any constant 0 < β < 1.
Our construction and analysis are motivated by (and simplifies parts of) the recent breakthrough
of [CZ15] giving explicit two-sources extractors for polylogarithmic min-entropy; a key ingredient
in their result was the construction of explicit constant-depth resilient functions.

An important ingredient in our construction is a new randomness optimal oblivious sampler
which preserves moment generating functions of sums of variables and could be useful elsewhere.

1 Introduction

In this work we study resilient functions introduced by Ben-Or and Linial [BL85] in the context
of collective-coin flipping. Consider the following game: There are n players who communicate
by broadcast and want to agree on a random coin-toss. If all the players are honest, this is
trivial: pick a player, have the player toss a coin and use the resulting value as the collective
coin-toss. Now suppose that there are a few bad players who are computationally unbounded,
can collude amongst themselves, and broadcast last in each round, i.e., they broadcast after
observing the bits broadcast by the good players in each round. The problem of collective coin-
flipping is to design protocols so that the bad players cannot bias the collective-coin too much.
An important and well-studied special-case of protocols are one-round collective coin-flipping
protocols. We will adopt the notation of boolean functions instead of protocols, as both are
equivalent for a single round.

Definition 1.1. For a Boolean function f : {0, 1}n → {0, 1}, and Q ⊆ [n], let IQ(f) be the
probability that f is not-determined by a uniformly random partial assignment to the bits not in
Q. Let Iq(f) = minQ⊆[n],|Q|≤q IQ(f). We say the function f is q-resilient if Prx∈u{0,1}n [f(x) =
1] = 1/2± 1/10 and Iεq(f) ≤ O(ε).1

1The choice of constants here is arbitrary, and one can work with any constants where Iq(f) �
min(Prx∈u{0,1}n [f(x) = 1],Prx∈u{0,1}n [f(x) = 0]).

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 144 (2015)

Intuitively, Iq(f) quantifies the amount of influence any set of q variables can exert on the
evaluation of the function f . If f is almost-balanced and Iq(f) is small, say o(1), then evaluating
f gives a one-round coin-flipping protocol that outputs a nearly unbiased bit even in the presence
of up to q bad players. While we focus here on one-round coin flipping protocols, the general
model with multiple rounds has been extensively studied as well: [BL85, KKL88, Sak89, AN93,
BN00, RZ01, Fei99, RSZ02]; more information and discussion of other models can be found in
the survey of Dodis [Dod06].

In their work introducing the problem, Ben-Or and Linial gave an explicit nα-resilient func-
tion for α = log3 2 = 0.63.... Subsequently, the seminal work of Kahn, Kalai, and Linial [KKL88]
showed that for any function f , Iq(f) = 1− o(1) for q = ω(n/ log n). Following this, Ajtai and
Linial [AL93] showed the existence of a Ω(n/(log2 n))-resilient function; this remains the best
bound known to date. However, the construction in Ajtai and Linial is probabilistic and does
not lead to an efficiently computable resilient function or one-round coin-flipping protocol. The
goal of this work is to given an explicit Boolean function matching the existential result of Ajtai
and Linial:

Theorem 1.2. For some universal constant c′ ≥ 1 the following holds. There exists an explicit
depth three monotone function f : {0, 1}n → {0, 1} which can be computed in time nc

′
such that2

• f is almost balanced: Prx∈u{0,1}n [f(x) = 1] = 1/2± 1/10.

• f has small influences: Iq(f) ≤ c′q(log2 n)/n; that is, f is Ω(n/(log2 n))-resilient.

The existential guarantee of [AL93] is slightly stronger than the above in that they show the
existence of a constant-depth function as above with bias 1/2± o(1); however, their function is
not monotone3. Our result essentially matches theirs while being explicit.

Applications of resilient functions Th present work builds on a recent breakthrough
of Chattopadhyay and Zuckerman [CZ15] who gave an explicit two-source extractor for poly-
logarithmic min-entropy sources—resolving a longstanding problem in pseudorandomness. One
of the main building blocks of their work is an explicit resilient function computable in small-
depth: they reduce4 the problem of building two-source extractors to that of constructing a
n1−δ-resilient function computable by a monotone constant-depth circuit for some constant
δ > 0 and then construct such a function. Indeed, while a prior unpublished work of [Mek09]
gave an explicit n1−o(1)-resilient function, the construction of [Mek09] does not seem useful in
the context of two-source extractors as it is does not give a constant-depth function.

The importance of depth comes from the fact that if f is q-resilient and small-depth, then
it also remains resilient in the setting where the bits of the good players only have limited
independence instead of being truly independent. Let us formalize this next.

Definition 1.3. For a Boolean function f : {0, 1}n → {0, 1}, Q ⊆ [n], and a distribution D on
{0, 1}[n]\Q, let IQ,D(f) be the probability that f is not-determined by setting the bits not in Q
according to D. Let Iq,t(f) = min{IQ,D(f) : Q ⊆ [n], |Q| ≤ q, D is t-wise independent}.

By combining Theorem 1.2 with Braverman’s result [Bra10] that polylog-wise independence
fools constant-depth functions, we get an analogous bound on Iq,t(f) for t � (log n)12. This
can be improved by applying the results of [KLW10] on read-k DNFs directly to the function we
study leading to the following corollary (our function is nicer than general depth three circuits).

Corollary 1.4. For some universal constants c′ ≥ 1 the following holds. There exists an explicit
depth three monotone function f : {0, 1}n → {0, 1} which can be computed in time nc

′
such that

for t ≥ c′(log n)2

2Henceforth, for a multi-set S, x ∈u S denotes a uniformly random element of S.
3While it is possible to make their construction monotone, this blows up the depth.
4The reduction is also implicit in [Li15].

2

• f is almost balanced: for any t-wise independent distribution D on {0, 1}n, Prx←D[f(x) =
1] = 1/2± 1/9.

• f has small influences: Iq,t(f) ≤ c′q(log2 n)/n.

In fact, we can also use our arguments to slightly simplify the construction and analysis
of [CZ15] to get polynomially resilient functions—(n1−δ)-resilient for any δ > 0—from Reed-
Solomon codes (see Corollary 6.4). This also leads to slightly better parameters: [CZ15] give a
two-source extractor when the sources have min-entropy at least C(log n)74. Using Corollary 1.4
in their reduction gives a two-source extractor with constant-error for sources with min-entropy
at least C(log n)10 and using Corollary 6.4 gives a two-source extractor with polynomially-small
error for sources with min-entropy at least C(log n)18. We do not delve into this here.

Oblivious samplers preserving moment generating functions An important in-
gredient in our proof of Theorem 1.2 is an explicit oblivious sampler with optimal—up to
constant factors—seed-length that approximates moment generating functions. We state this
result next which may be of independent interest.

Theorem 1.5. For all 0 < γ < 1, 1 ≤ v, w, there exists an explicit generator G : {0, 1}r → [v]w

such that for all functions f1, . . . , fw : [v]→ [0, 1] with
∑w
i=1 Ex∈u[v][fi(x)] = µ ≤ 1,

E
y∈u{0,1}r

[
2
∑w
i=1 fi(G(y)i)

]
= 1 +O(µ) + γ.

The seed-length of the generator is r = O(w + (log v) + log(1/γ) + w(log log v)/(logw)).

We state a more precise version which works for estimating E
[
ρ
∑
i fi()

]
for all ρ ≥ 1 in

Section 5 (as in a moment generating function); here we focus on the above for simplicity and
as it suffices for our applications.

All previously known generators with a guarantee as above required a seed-length of Ω(log v+
w logw); this can be obtained for instance by using an expander sampler on a graph of size v
with eigenvalue gap � 1/w [Gil98, Kah97, Hea08] or the Nisan or Impagliazzo, Nisan, and
Wigderson [Nis92, INW94] pseudorandom generators (PRGs) for small-space machines. The
improvement from O(w logw) to O(w) is crucial in our application as we have to enumerate
over all seed-lengths translating to an improvement from super-polynomial (nO(log logn)) to poly-
nomial running time.

The generator is obtained by instantiating the Nisan-Zuckerman [NZ96] PRG for small-
space machines with k-wise independent seeds being fed into the extractor rather than truly
independent ones. Concretely, let E : [vc]× [D]→ [v] be a (c(log v)/2, ε)-extractor (see Section 2
for formal definitions) with ε = 1/w. For ` = Θ(w/(logw)), let G` : [D]` → [D]w generate a `-
wise independent distribution. Then, our generator satisfying Theorem 1.5, G : [vc]×[D]` → [v]w

is defined as follows:

G(x, y) = (E(x,G`(y)1), E(x,G`(y)2), · · · , E(x,G`(y)w)) . (1.1)

While the above construction serves as the base, in our proof of Theorem 1.2, we need a
generator that satisfies certain additional constraints: output strings on different seeds should
be far from each other. We satisfy these constraints by careful modifications of the above
construction.

1.1 Overview of construction: ANDs of Tribes

We next give a high level overview of our main construction and analysis. First, some notations:

• Throughout, by a partition P of [n] we mean a division of [n] into w-sized blocks P1, . . . , Pv,
where v = n/w (we assume w divides n).

3

• Let Dp denote the product distribution on {0, 1}n where each bit is p-biased.

As in [AL93] and [CZ15] our construction will be an AND of several Tribe functions:

Definition 1.6. For a partition P = {P1, . . . , Pv} of [n] into w-sized blocks, the associated
Tribes function is defined by TP = ∨vj=1

(
∧`∈Pjx`

)
. A collection of partitions P = {P 1, . . . , Pu}

defines a function f ≡ fP : {0, 1}n → {0, 1} as follows:

fP(x) :=

u∧
i=1

v∨
j=1

 ∧
k∈P ij

xk

 =

u∧
i=1

TP i(x).

The final function satisfying Theorem 1.2 will be fP for a suitably chosen set of partitions.
To analyze such functions, we first state two abstract properties of the partitions that allow us
to analyze the bias as well as influences of such functions. Once we have these conditions, we
will design partitions that satisfy these properties.

Analyzing bias We first specify some sufficient conditions for a collection of partitions
P = {P 1, . . . , Pu} that guarantee an explicit formula for the bias of the function fP .

Definition 1.7. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks.
We say P is a (d, k, δ)-design if the following hold:

• For all α 6= β ∈ [u], and i, j ∈ [v], |Pα(i) ∩ P β(j)| ≤ w − d.

• For α ∈ [u], and i, j ∈ [v],

Pr
β∈u[u]

[
|Pαi ∩ P

β
j | ≥ k

]
≤ δ.

Intuitively, the first condition says that any two blocks arising in our partitions differ in
at least d elements (i.e., do not overlap completely); in contrast, the second condition roughly
says that most blocks in fact differ in at least w − k elements (i.e, have very little overlap).
When P satisfies the above condition, the following claim gives a formula for the bias of fP . We
state the result for general p-biased distributions as the statement and its analysis are no more
complicated.

Theorem 1.8. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks that
is a (d, k, δ)-design for some d ≤ w/2. Let 0 ≤ p ≤ 1 with v ≥ p−w and θ = (1 − pw)v. Then,
for all even integers r ≤ u,

Pr
x←Dp

[fP(x) = 1] = (1−(1−pw)v)u±O(1)
((
v2r2 exp(2vr2pw+d)

)
· δ + (vr2) · p2w−k)·(1+θ)u±2θr

(
u

r

)
.

The above is a generalization of a similar claim in [CZ15] who only consider the case of δ = 0.
We need the more refined average-case statement as we only guarantee that most blocks differ
significantly.

Analyzing influences We next specify some sufficient conditions on a collection of parti-
tions P = {P 1, . . . , Pu} which guarantee that small coalitions have small influence on fP .

Definition 1.9. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks.
We say P is (q, τ, ρ)-load balancing if for all Q ⊆ [n] with |Q| ≤ q, and j ∈ [v],

E
α∈u[u]

[
1(Q ∩ Pαj 6= ∅)ρ|Q∩P

α
j |
]
≤ τ · (q/v).

We say P is (q, τ)-load balancing if the above condition holds for ρ = 2.

4

To gain some intuition for the definition (and the use of the name load balancing) consider
what happens for a random partition Pα of [n] and a fixed subset Q with |Q| � v. In this case,
we would expect Q to split in a balanced way across the different parts; in particular, for any
j ∈ [v], Pαj ∩ Q would be empty most of the time and |Pαj ∩ Q| = O(1) with high-probability
in case it is not empty. Indeed, an easy calculation shows that the above condition holds with
τ = O(1) for q ≤ v when Pα is a truly random partition.

Theorem 1.10. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks
that is (q, τ, 1/p)-load balancing. Then,

Iq,Dp(fP) ≤ (u(1− pw)v−q) · (τpw) · q.

A similar claim is used in the analysis of [AL93, CZ15]. However, [CZ15] work with the
stronger condition that for anyQ ⊆ [n] with |Q| � q, |Q∩Pαj | � w for most α (as opposed to just

having a bound on the expectation of 2|Q∩P
α
j |). The above generalization, while straightforward,

is important as one cannot hope to satisfy their stronger requirement for Q very large (n1−o(1))
as needed for the proof of Theorem 1.2.

Constructing nice partitions We next outline how to construct a collection of partitions
which is a good design as well as load-balancing building on the ideas of [CZ15]. Fix v, w. For
a string α ∈ [v]w, define an associated partition Pα of [n] ≡ [vw] into w-sized blocks as follows:

• Write {1, . . . vw} from left to right in w blocks of length v each. Now, permute the k’th
block by shifting the integers in that block by adding αk modulo v.

• The i’th part now comprises of the elements in the i’th position in each of the w blocks.

Formally, for i ∈ [v] Pαi = {(k − 1)v + ((i − αk) mod v) : k ∈ [w]}. As in [CZ15], our final
function will be fP for P := PU = {Pα : α ⊆ U} for a suitably chosen set of strings U ⊆ [v]w;
in their work, U is chosen by using appropriate extractors.

For intuition, fix a constant 0 < δ < 1 and first consider the case where U is the set of Reed-
Solomon codewords corresponding to degree ` ≥ 1/δ polynomials over [v] 5. Then, a simple
calculation shows that PU is a (w− `, `+ 1, 0)-design; that is, no two blocks in the partitions of
P overlap in more than ` positions. Further, using the fact that a random element of U is `-wise
independent it can be shown from standard arguments that P is (q,Oδ(1))-load balancing for
q � n1−δ. Setting the parameters appropriately and applying Theorems 1.8 and 1.10 shows
that fP is almost-balanced and (n1−β)-resilient—recovering the result of [CZ15].

For the main theorem, Theorem 1.2, we use Theorem 1.5 to get a suitable set of partitions.
For instance, taking U to be the range of the generator from Theorem 1.5, it follows without too
much work (essentially from the definitions) that the corresponding PU is (q,O(1))-resilient even
for q = Ω(n/ log n) as is needed. However, this may not satisfy the design properties needed
to apply Theorem 1.8. We get around this at a high-level by encoding parts of the output of
the oblivious sampler in Theorem 1.5 using a Reed-Solomon code. We leave the details to the
actual proof.

2 Preliminaries

We first recall some standard notions from pseudorandomness that we need.

Definition 2.1. A distribution D over {0, 1}n is k-wise independent if for every I ⊆ [n], |I| ≤ k,
and X ← D, the marginal of X on I is a product distribution.

Definition 2.2. For a distribution X, H∞(X) = minx∈Support(X) log(1/Pr[X = x]).

5Assuming for simplicity that v is a prime.

5

Definition 2.3 ([NZ96]). A function E : [N]×[D]→ [M] is a (k, ε)-strong extractor if for every
distribution X over [N] with H∞(X) ≥ k, and Y ∈u [D], (Y,E(X,Y)) is ε-close in statistical
distance to the uniform distribution over [D]× [M].

We need the following sampling properties of strong extractors, c.f., [Zuc97].

Lemma 2.4. Let E : [N] × [D] → [M] be a (k, ε)-strong extractor. Then, for all functions
g1, . . . , gD : [M] → {0, 1}, with µ = (1/D)

∑
i Ex∈u[M][gi(x)], there are at most 2k elements

x ∈ [N] such that ∣∣∣∣∣∣ 1

D

∑
z∈[D]

gz(E(x, z))− µ

∣∣∣∣∣∣ ≥ ε.
We also need the following explicit extractor construction due to Zuckerman [Zuc97]:

Theorem 2.5. There exists a constant C ≥ 1 such that for all ε > 0, and 1 ≤M ≤ N1/3, there
is an explicit ((logN)/2, ε)-strong extractor E : [N] × [D] → [M] with D = ((logN)/ε)C . We
also assume without loss of generality that E(X,Y) is uniformly random over [M] when X,Y
are uniformly random over [N] and [D] respectively.

Finally, we also need the following explicit generator of `-wise independent distributions
which follows for instance from using the Reed-Solomon code.

Definition 2.6. For two sequences x, x′ over an alphabet [B]d, let dH(x, x′) = mina∈[B] |{i ∈
[d] : xi − x′i 6= a mod B}|.

Lemma 2.7. For all prime v and 1 ≤ ` ≤ m ≤ v, there exists an explicit function G` : [v]` →
[v]m such that for any y 6= y′ ∈ [v]`, dH(y, y′) ≥ m − ` and G`(y) is `-wise independent when
y ∈u [v]`.

Proof. Follows by using the Reed-Solomon code over [v] of degree ` and length m.

We need the following theorem of [KLW10] on fooling read-k DNFs using limited indepen-
dence. A DNF f : {0, 1}n → {0, 1} is said to be a read-k formula if each variable appears in
at most k terms of the DNF. The width of a DNF is the maximum length of any clause in the
DNF.

Theorem 2.8. There exists a constant C such that the following holds for all 0 < ε < 1 and
t ≥ Cwk log(1/ε): For any width w read-k DNF f : {0, 1}n → {0, 1} and t-wise independent
distribution D on {0, 1}n, ∣∣∣∣ Pr

x←D
[f(x) = 1]− Pr

x∈u{0,1}n
[f(x) = 1]

∣∣∣∣ ≤ ε.
We need Janson’s inequality from probability theory, c.f., [AS11]

Theorem 2.9. Let S1, . . . , Sm ⊆ [n] be a collection of sets and let fi : {0, 1}n → {0, 1} defined
by fi(x) = ∧j∈Sixj be the corresponding collection of monotone terms. Then, for all 0 < p < 1
and x← Dp,

m∏
i=1

Pr[fi(x) = 0] ≤ Pr [∧mi=1(fi(x) = 0)] ≤ exp

(
∆

1− γ

)
·
m∏
i=1

Pr[fi(x) = 0],

where γ = maxmi=1 Pr[fi(x) = 1] and

∆ =
∑

i 6=j:Si∩Sj 6=∅

Pr[fi(x) ∧ fj(x)].

6

Definition 2.10. For any collection of variables x1, . . . , xm and 1 ≤ a ≤ m, Sa(x1, . . . , xm) =∑
I⊆[m],|I|=a

∏
i∈I xi denotes the a’th symmetric polynomial.

We will use the following standard fact about symmetric polynomials.

Fact 2.11. For all 1 ≤ a ≤ m and 0 ≤ q1, . . . , qm with
∑
i qi ≤ µ, Sa(q1, . . . , qm) ≤

(
m
a

)
·(µ/m)a.

We need the following elementary approximations:

Fact 2.12. For all x ≥ 2, e−1(1− 1/x) ≤ (1− 1/x)x ≤ e−1.

Fact 2.13. Let 1 ≤ w ≤ v ≤ u, B ≥ 1 with 0 ≤ v − 2w(ln(u/ ln 2)) ≤ B, and θ = (1 − 2−w)v.
Then, (1 + θ)u = O(1) and (1− θ)u = 1/2±O(B lnu)2−w.

Proof. Note that under the assumptions we must have v = Ω(2ww). Then, by the above claim,

(1− 2−w)B+2w ln(u/(ln 2)) ≤ θ ≤ (1− 2−w)2w ln(u/(ln 2)) ≤ (ln 2)/u.

Therefore, (1 + θ)u = O(1) and

(1− θ)u ≥ (1− (ln 2)/u)u ≥ 1/2(1− (ln 2)/u)ln 2 ≥ 1/2(1−O(1)/u).

Further,

θ ≥ ((ln 2)/u) · (1− 2−w)B+ln((ln 2)u) ≥ ((ln 2)/u) · (1−O(B + lnu)2−w).

Thus,

(1− θ)u ≤ exp(−uθ) ≤ (1/2)(1−O(B lnu)2−w) ≤ 1/2±O(B lnu)2−w.

3 Analyzing bias

Here we prove Theorem 1.8. We start with the following elementary lemma that follows from
the inclusion-exclusion formula:

Lemma 3.1. Let Z1, . . . , Zu be indicator random variables with Pr[Zi = 0] = θ. Suppose that
for some even integer r ≤ u/2 and γ ≥ 1, for every t ≤ r,(

u

t

)
θt ≤ E

Z
[St(1− Z1, 1− Z2, . . . , 1− Zu)] ≤ γ

(
u

t

)
θt.

Then,

|E[Z1Z2 · · ·Zu]− (1− θ)u| ≤ 2(γ − 1) · (1 + θ)u + 4

(
u

r

)
θr.

Proof. Without loss of generality, suppose that γ ≤ 2; else, the claim holds trivially. Let
Yi = 1− Zi. By the inclusion-exclusion principle, we have∣∣∣∣∣E

[∏
i

Zi

]
−
r−1∑
t=0

(−1)t E[St(Y1, . . . , Yu)]

∣∣∣∣∣ ≤ E[Sr(Y1, . . . , Yu)].

Now, by our hypothesis, for any t ≤ r,

θt
(
u

t

)
≤ E[St(Y1, . . . , Yu)] ≤ γθt

(
u

t

)
.

7

Therefore,∣∣∣∣∣E [Z1 · · ·Zu]−
r−1∑
t=0

(−1)t
(
u

t

)
θt

∣∣∣∣∣ ≤ (γ − 1)

r−1∑
t=0

θt
(
u

t

)
+ γθr

(
u

r

)
≤ (γ − 1)(1 + θ)u + γθr

(
u

r

)
.

As the above equation is true with γ = 1 for the case when the Zi’s are independent of each
other, we get that ∣∣∣∣∣∣E [Z1 · · ·Zu]−

∏
i∈[u]

E[Zi]

∣∣∣∣∣∣ ≤ 2(γ − 1)(1 + θ)u + 2γ

(
u

r

)
θr.

The claim now follows.

Proof of Theorem 1.8. Let x← Dp and Zα = TPα(x) for α ∈ [u]. For j ∈ [v], let Zαj = ∧`∈Pαj x`
so that Zα = ∨vj=1Zαj . Then, Pr[Zα = 0] = θ for θ = (1− pw)v.

Fix r ≤ u/2. We next estimate E[
∏
α∈T (1− Zα)] for T ⊆ [u] with |T | ≤ r. For T ⊆ [u], let

∆(T) =
∑

α 6=β∈[T]

∑
j,`∈[v]:Pαj ∩P

β
` 6=∅

Pr[Zαj ∧ Zβ`].

Note that Pr[Zαj = 1] = pw ≤ 1/2. As in [CZ], we now apply Janson’s inequality—
Theorem 2.9—to the event that ∧α∈T (Zα = 0); this gives us:

(1− pw)v|T | ≤ Pr
[
∧α∈T,j∈[v](Zαj = 0)

]
≤ exp (2∆(T)) (1− pw)v|T |.

Thus,

θ|T | ≤ E
Z

[∏
α∈T

(1− Zα)

]
≤ exp (2∆(T)) θ|T |. (3.1)

Fix t ≤ r. We next estimate ET [exp(∆(T))] for T ∈u
(

[u]
t

)
. Note that ∆(T) =

∑
α6=β∈[T] ∆({α, β}).

We prove the following bounds on ∆(T).

Worst-case bound on ∆(T): Fix α 6= β ∈ [u]. Fix an index j ∈ [v], and let `1, . . . , `b ∈ [v]

be the indices such that Pαj ∩ P
β
`i
6= ∅, and let wi = |Pαj ∩ P

β
`i
|. As P is a (d, k, δ)-design,

1 ≤ w1, . . . , wb ≤ w − d. Now,

∑
`∈[v]:Pαj ∩P

β
` 6=∅

Pr[Zαj ∧ Zβ`] =

b∑
i=1

p
|Pαj ∪P

β
`i
|

=

b∑
i=1

p2w−wi .

As wi ∈ [w − d], d ≤ w/2, and
∑
i wi = w, the above expression is maximized by setting one of

the wi’s to be w − d and the other to be d. Therefore,∑
`∈[v]:Pαj ∩P

β
` 6=∅

Pr[Zαj ∧ Zβ` = 1] ≤ pw+d + p2w−d ≤ 2pw+d.

Thus, by summing the above over all indices j ∈ [v], we get ∆({α, β}) ≤ 2vpw+d. Summing
over all α 6= β ∈ [T], we get

∆(T) ≤ 2|T |2vpw+d. (3.2)

8

Average-case bound on ∆(T): Fix t ≤ r. We next show a high-probability bound on

∆(T) for T ∈u
(

[u]
t

)
. Let w(T) = maxα 6=β∈[T],i,j,∈[v] |Pαi ∩P

β
j |. Then, for α 6= β ∈ T , and j ∈ [v],∑

`∈[v]:Pαj ∩P
β
` 6=∅

Pr[Zαj ∧ Zβ` = 1] =
∑

`∈[v]:Pαj ∩P
β
` 6=∅

p
|Pαj ∪P

β
`i
| ≤ w · p2w−w(T).

Therefore, ∆(T) ≤ (vw)|T |2p2w−w(T). Further, as P is a (d, k, δ)-design, by a union bound,

Pr
T∈u([u]

t)
[w(T) ≥ k] ≤ v2 · t2 · δ. (3.3)

Bounding the expectation of ∆(T): Combining Equations 3.2, 3.3, for t ≤ r and

T ∈u
(

[u]
t

)
, we get

E
T

[exp(2∆(T))] ≤ (v2r2δ) exp
(
4r2vpw+d

)
+ exp

(
2nr2p2w−k) := γ.

Combining the above with Equation 3.1 we get(
u

t

)
θt ≤ E

Z
[St(1− Z1, . . . , 1− Zu)] ≤ γ

(
u

t

)
θt.

Hence, by Lemma 3.1

|E[Z1 . . . Zu]− (1− θ)u| ≤ 2(γ − 1)(1 + θ)u + 4

(
u

r

)
θr.

The claim now follows by noting that we can assume without loss of generality that 2nr2p2w−k �
1 (else, the bound is trivial) so that exp

(
2nr2p2w−k) ≤ 1 + 4nr2p2w−k.

We next a state a version of Theorem 1.8 for distributions with limited independence.

Corollary 3.2. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks
that is a (d, k, δ)-design for some d ≤ w/2. Let v ≥ 2w and θ = (1 − 2−w)v. Let r ≤ u/2 be
an even integer and let D be a t-wise independent distribution on {0, 1}n for t ≥ Crw log(1/ε).
Then,

Pr
x←D

[fP(x) = 1] = (1−(1−2−w)v)u±O(1)
(
(v2xr2δ) · exp(2vr22−w−d) + vr22k−2w

)
·(1+θ)u±

2θr
(
u

r

)
±O(r)

(
u

r

)
ε.

Proof. The proof of the above claim is similar to the above argument with one change. Using the
notation from the above proof, for any T ⊆ [u], the event that ∧α∈T,j∈[v](Zαj = 0) corresponds
to the (un)satisfiability of a read-|T | width-w DNF. Therefore, by Theorem 2.8, we get an
analogue of Equation 3.1 for the present case as well: for any T ⊆ [u] with |T | ≤ r,

θ|T | − ε ≤ E
Z

[∏
α∈T

(1− Zα)

]
≤ exp (2∆(T)) θ|T | + ε. (3.4)

The claim now follows by using the above inequality in place of Equation 3.1 in the rest of
the proof of Theorem 1.8.

9

4 Analyzing influence

Proof of Theorem 1.10. Let Q ⊆ [n] with |Q| = q. Note that for every α ∈ [u], a partial
assignment x to the variables not in Q leaves TPα undetermined if and only if

1. For every part Pαj that does not intersect Q, xi = 0 for some i ∈ Pαj .

2. For some j ∈ [v] with Pαj ∩Q 6= ∅, xi = 1 for every i ∈ (Pαj \Q).

The above two events are independent of each other. The probability of (1) is at most (1−pw)v−q

as there are at least v− q parts of Pα that do not intersect Q. The probability of (2) is at most∑
j∈[v]:Pαj ∩Q 6=∅

pw−|P
α
j ∩Q|

Therefore, for α ∈u [u],

IQ,Dp(fP) ≤
∑
β∈[u]

IQ,Dp(TPβ) ≤ u · E
[
IQ,Dp(TPα)

]

≤ u · E

(1− pw)v−q ·

 ∑
j∈[v]:Pαj ∩Q6=∅

pw−|P
α
j ∩Q|

≤ u(1− pw)v−qpw ·

∑
j∈[v]

E
[
1(Pαj ∩Q 6= ∅)(1/p)|P

α
j ∩Q|

]
≤ u(1− pw)v−q · τ · (pwq).

We next a state a version of Theorem 1.8 for distributions with limited independence.

Corollary 4.1. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks
that is (q, τ)-load balancing. Then, for all t ≥ Cw log(1/ε) for some sufficiently big constant C,

Iq,t(fP) ≤ (u(1− 2−w)v−q) · (τpwq) + (uv)ε.

Proof. Let D be a t-wise independent distribution on {0, 1}n. As in the above proof, observe
that Q leaves TPα undetermined if and only if

1. For every part Pαj that does not intersect Q, xi = 0 for every i ∈ Pαj .

2. For some j ∈ [v] with Pαj ∩Q 6= ∅, xi = 1 for every i ∈ (Pαj \Q).

Let J ⊆ [v] be all indices such that Pαj ∩ Q 6= ∅ and let I ⊆ [n] be all variables i that belongs
to parts Pαj not intersecting Q. Then, the above is equivalent to ∨j∈V fj , where

fj(x) =

 ∧
i∈Pαj \Q

xi

 ∧
j /∈J

 ∨
i∈Pαj

(¬xj)

 .

Note that the above is a read-once CNF. Therefore, by Theorem 2.8,

Pr
x←D

[fj(x) = 1] ≤ Pr
x∈u{0,1}n

[fj(x) = 1] + ε ≤ (1− 2−w)v−q · 2−w+|Pαj ∩Q| + ε.

The claim now follows by repeating the calculations of Theorem 1.10 with the above equation
leading to an additional error of (uv)ε.

10

5 Oblivious sampler preserving the moment generating
function

Here we prove Theorem 1.5 which will be the main building block in proving Theorem 1.2.
With a view towards future use, we modify the construction presented in the introduction
(Equation ??) even though the simpler construction described there suffices for proving the
theorem. Let ε = poly(1/w) to be chosen later, and c a sufficiently big constant, let E :
[vc]×[D]→ [v/D] be a ((c log v)/2, ε)-strong extractor as in Theorem 2.5 with D = ((c log v)w)C

for some universal constant C. Without loss of generality, suppose that D is prime. For a
parameter ` ≥ 1 to be chosen later, let G` : [D]` → [D]w generate a `-wise independent
distribution as in Lemma 2.7.

Define G : [vc]× [D]` → [v]w as follows:

G(x, y)i = G`(y)i ◦ E(x,G`(y)i), (5.1)

where we associate [D]× [v/D] with [v] in a straightforward manner.
The main lemma of this section is the following:

Lemma 5.1. Let G : [vc] × [D]` be as in Equation 5.1 and let f1, . . . , fw : [v] → [0, 1] be
functions with

∑
i E[fi] = µ. Then, for all ρ ≥ 1, and α = G(x, y) for (x, y) ∈u [vc]× [D]`, and

θ = µ/(w − 1) + ε,

E
α

[
ρ
∑
i fi(αi)

]
≤ 1 + 3(ρ− 1)µ · (1 + (ρ− 1)θ)w−1 + 3ρwµ

(
w − 1

`

)
θ` + (2ρ)ww · v−c/2.

Proof. Let Yi = fi(αi) and µi = E[fi] = E[Yi]. Let Z = ρY1+...Yw and δ = wv−c/2. We can
assume without loss of generality that δ ≤ 1/2; otherwise, the claim is trivial. The proof of
the lemma involves two modular steps: (1) We use properties of the extractor to argue that
the Yi’s behave like almost `-wise independent random variables. (2) We then argue that the
moment generating function, in our setting of parameters, is fooled by Yi’s that are almost `-wise
independent in the above sense.

The following claim will control the correlations of the Yi’s:

Claim 5.2. For every i ∈ [w] and I ⊆ [w] \ {i}, with |I| < `,

E

Yi∏
j∈I

Yj

 ≤ (1 + 2δ) · µi ·
∏
j∈I

(µj + ε) + δ. (5.2)

Proof. For j ∈ [w], call x ∈ [vc] j-bad if
∣∣Ez∈u[D][fj(z ◦ E(x, z))]− µj

∣∣ ≥ ε. We next bound the
number of bad strings x for any index j ∈ [w]. Fix j ∈ [w]. For z ∈ [D], define gz : [v/D]→ [0, 1]
by gz(x

′) = fj(z ◦ x′). Then,
∑
z∈[D] Ex′∈u[v/D][gz(x

′)] = DEj [fj] = Dµj ; thus, x is j-bad if
and only if ∣∣∣∣∣∣(1/D)

∑
z∈[D]

gz(E(x, z))− µj

∣∣∣∣∣∣ ≥ ε.
By Lemma 2.4, for every j ∈ [w], there are at most vc/2 bad strings. Let E be the event
that x ∈u [vc] is not j-bad for every j ∈ w. Then, Pr[¬E] ≤ wv−c/2 = δ. As G(y) is `-wise
independent, conditioned on E , (Yj : j ∈ I) are independent random variables and for every
j ∈ I,

E[Yj] = E
y∈uD

[fj(y ◦ E(x, y)] = µj ± ε,

11

as x is not j-bad. Therefore,

E

Yi∏
j∈I

Yj

 ≤ Pr[¬E] + E
x

E
y

Yi∏
j∈I

Yj

 |E
 = Pr[¬E] + E

x

E
y

[Yi|E] ·
∏
j∈I

E
y

[Yj |E]

≤ δ +

∏
j∈I

(µj + ε) · E[Yi|E]

≤ δ +
∏
j∈I

(µj + ε) · µi(1 + 2δ),

where the last inequality follows because E[Yi] = µi so that E[Yi|E] ≤ µi/Pr[E] ≤ µi(1 + 2δ).
The claim now follows.

We next use the above claim to bound E[Z]. Observe that

Z = ρY1+...+Yw ≤
w∏
i=1

(1 + (ρ− 1)Yi) = 1 +

w∑
a=1

(ρ− 1)aSa(Y1, . . . , Yw).

We will approximate E[Z] by truncating the above expansion to only involve the first ` symmetric
polynomials: we have

Z ≤ 1 +

w∑
a=1

(ρ− 1)aSa(Y1, . . . , Yw) ≤ 1 +

`−1∑
a=1

(ρ− 1)aSa(Y1, . . . , Yw) + ρwS`(Y1, . . . , Yw) ≤

1 +

w∑
i=1

·
`−1∑
a=0

(ρ− 1)a+1 · Yi · Sa((Yj : j 6= i)) + ρw
w∑
i=1

YiS`−1((Yj : j 6= i)). (5.3)

We bound each of the terms in the above equation expression next. For i ∈ [w] and a ≤ `− 1,
by Claim 5.2

E [Yi · Sa((Yj : j 6= i))] ≤ (1 + 2δ)µi
∑

I⊆[w]\{i},|I|=a

∏
j∈I

(µj + ε) +

(
w − 1

a

)
δ ≤

(1 + 2δ)µi

(
w − 1

a

)
θa +

(
w − 1

a

)
δ, (5.4)

where the last inequality follows from Fact 2.11.
Plugging the above inequality into Equation 5.3, we get

E[Z] ≤ 1 +

w∑
i=1

3(ρ− 1)µi

`−2∑
a=0

(
w − 1

a

)
(ρ− 1)aθa + ρw

(
w∑
i=1

(3µi)

(
w − 1

`

)
θ` +

(
w − 1

`

)
δ

)

≤ 1 + 3(ρ− 1)µ(1 + (ρ− 1)θ)w−1 + 3µρw
(
w − 1

`

)
θ` + (2ρ)wδ.

The claim now follows.

Proof of Theorem 1.5. The theorem follows by setting ε = 1/w, ρ = 2, ` = 6w/(logw), in the
above lemma. As µ ≤ 1, we have θ = µ/(w − 1) + ε ≤ 2/(w − 1), and

E
[
2
∑
i fi(αi)

]
≤ 1+O(µ) (1 + 2/(w − 1))

w−1
+2wO(µ)

(
w − 1

`

)
(2/(w − 1))

`
+4wwv−c/2 = 1+O(µ)+γ,

for c chosen so that v−c/2 < γ/4ww. In particular, it suffices to set c = C max (1, (w + log(1/γ))/(log v))
for a sufficiently large universal constant C. The seed-length of the generator is r = c log v +
`(logD) = O(w + log v + log(1/γ) + w(log log v)/(logw)), proving the theorem.

12

6 Explicit resilient functions

Here we present our main construction proving Theorem 1.2. Fix v, w. For a string α ∈ [v]w,
define an associated partition Pα of [n] ≡ [vw] into w-sized blocks as follows:

• Write {1, . . . vw} from left to right in w blocks of length v each. Now, permute the k’th
block by shifting the integers in that block by adding αk modulo v.

• The i’th part now comprises of the elements in the i’th position in each of the w blocks.

Formally, for i ∈ [v] Pαi = {(k − 1)v + ((i − αk) mod v) : k ∈ [w]}. As in [CZ15], our final
function will be fP for P = {Pα : α ⊆ U} for a suitably chosen set of strings U ⊆ [v]w.

6.1 Polynomially resilient functions from Reed-Solomon code

For intuition, we first use our arguments to present a simpler variant of the construction of
[CZ15] (e.g., the function below is depth 3 as opposed to the depth 4 construction of [CZ15]) to
get a (n1−δ)-resilient function from Reed-Solomon codes as alluded to in the introduction; the
main difference being that we use a k-wise independent generator as in Lemma 2.7 instead of
an extractor as is done in [CZ15].

Let 1 ≤ w ≤ v, where v is prime. For some parameter ` ≥ 1 to be chosen later, let
G` : [v]` → [v]w be as in Lemma 2.7 and let RS = {G`(x) : x ∈ [v]`}. Let f ≡ fRS = fP ,
where P = {Pα : α ∈ RS}. We show that for any constant 0 < β < 1, and ` ≥ 1/2β, fRS is
Ω(n1−β)-resilient and has bias 1/2± o(1).

Lemma 6.1. For 1 ≤ ` ≤ w, fRS as defined above is a (w − `, `+ 1, 0)-design.

Proof. First note that for any α, β ∈ [v]w and i, j ∈ [v],, |Pαi ∩P
β
j | = |{k ∈ [w] : βk−αk = (j−i)

mod v}| ≤ w − dH(α, β). From the properties of RS as in Lemma 2.7, we get that for α 6= β ∈
RS, |Pαi ∩ P

β
j | ≤ w − dH(α, β) ≤ `. The claim now follows from the definition of design.

Lemma 6.2. For 1 ≤ ` ≤ w/2, RS is (q, τ)-load balancing for τ = 2`+1 + 2w(q/v)`−1.

Proof. Let Q ⊆ [n] with |Q| = q ≤ v. For 1 ≤ i ≤ w, let Qi = Q∩{(i−1)v+ j : j ∈ [v]}. Fix an
index k ∈ [v] and for i ∈ [w] define fi : [v]→ {0, 1} by fi(x) = 1 if ((i−1)v+k−x) mod v ∈ Qi
and 0 otherwise. Then, X := |Pαk ∩Q| =

∑w
i=1 fi(αi). Let α ∈u RS and let Xi = fi(αi). Then,

X =
∑
iXi, where X1, . . . , Xw are `-wise independent. Let µi = E[Xi] and µ = E[X] = q/v.

Then, by a standard caluclation, for all t > `,

Pr[X ≥ t] ·
(
t

`

)
≤ E[S`(X1, . . . , Xw)] =

(
w

`

) ∑
I⊆[w],|I|=`

∏
i∈I

µi ≤
(
w

`

)(µ
w

)`
,

where the last inequality follows from Fact 2.11. Therefore, Pr[X ≥ t] ≤ (eµ/t)`. Let E be the
event that 1 ≤ X ≤ `. Then, for ` ≥ 3,

E
[
1(Q ∩ Pαk 6= ∅)2|Q∩P

α
k |
]

= E
[
1(X > 0)2X

]
=

Pr[E]E
[
1(X > 0)2X |E

]
+ Pr[X > `]E

[
1(X > 0)2X |X > `

]
≤

2` Pr[X > 0] + 2w Pr[X > `] ≤ 2`(q/v) + 2wµ`.

The claim now follows from the definition of load balancing.

We next use the above claims along with Theorems 1.8 and 1.10 for a suitable setting of
parameters.

13

Lemma 6.3. For all 0 < δ < 1, there exists a constant cδ ≥ 1 and a suitable choice of
v = Θδ(2

ww) such that the following holds. For ` ≥ 1/δ, the function fRS as defined above is
cδ2

w(1−δ)-resilient and Prx←D1/2
[fRS(x) = 1] = 1/2± 2−Ω(w).

Proof. Let ` = max(3, d1/δe). For v to be chosen in a little bit, let u = v` and f ≡ fRS . We
would like our choice of v to minimize |v−2w ln((ln 2)/u)| so that we can get an almost-balanced
function using Fact 2.13. To this end, let φ : R+ → R be defined by

φ(x) = x− 2w ln((ln 2)v`)

and let x∗ ≥ 1 be such that φ(x∗) = 0. There exists such an x∗ by the continuity of φ. It is also
easy to check that for w sufficiently large, φ′(y) ≥ 0 for all y ≥ x∗. We set v to be the smallest
prime larger than x.6 Note that v ≤ x∗+B where B = 2c1w for some universal constant c1 < 1
(see [Wik] for instance), so that 0 = φ(x∗) ≤ φ(v) ≤ φ(x∗) + B. Let θ = (1− 2−w)v. Then, by
Fact 2.13, (1 + θ)u = O(1) and

(1− θ)u = 1/2±O(1)2−Ω(w).

Now, by Lemma 6.1 and Theorem 1.8 applied with r = w and p = 1/2,

Pr
x←D1/2

[fRS(x) = 1] = (1−θ)u±O(`)2ww32−2w+`+1±2−w = (1−θ)u±O(`2`)w32−w = 1/2±2−Ω(w).

Next, by Lemma 6.2 and Theorem 1.10, for any q ≤ 2w(1−δ), as ` ≥ d1/δe,

Iq(fRS) ≤ u(1− 2−w)v−q · (2−wq) ·
(
2` + 2w(q/v)`−1

)
≤ O(2−wq) · (2` + 2w2−`δw) = Oδ(2

−wq).

It follows that fRS is
(
cδ2

w(1−δ))-resilient for some constant cδ.

Corollary 6.4. For all 0 < δ < 1, there exists a constant cδ ≥ 1 such that the following
holds. There exists an explicit depth three monotone function f : {0, 1}n → {0, 1} which can be
computed in time ncδ such that for t ≥ cδ(log n)4

• f is almost balanced: for any t-wise independent distribution D on {0, 1}n, Prx←D[f(x) =
1] = 1/2± n−Ω(1).

• f has small influences: Iq,t(f) ≤ cδq/n1−δ.

Proof. We instantiate the previous lemma to get f ≡ fRS for δ′ = δ/2. Then, n = O(2ww2)
so that 2w(1−δ′) = Ω(n1−δ). To analyze the bias under t-wise independent distributions, we
apply Corollary 3.2 with r = w = O(log n), ε = u−2r = n−O(logn) instead of Theorem 1.8 in the
above argument. Similarly, to analyze the influence under t-wise independent distributions we
use Corollary 4.1 with ε′ = 1/(n3) instead of Theorem 1.10. Then, the amount of independence
needed is O(wr log(1/ε)) = O(log4 n).

6.2 Proof of Theorem 1.2

We now prove Theorem 1.2. As mentioned in the introduction, the approach is similar to the
above where we use the output of the generator from Theorem 1.5 instead of the Reed-Solomon
code. We ensure the requisite design properties to apply Theorem 1.8, at a high-level, by padding
the output of the generator with a Reed-Solomon encoding of length 2c for a sufficiently big
constant c.

Let c be a parameter to be chosen later and suppose that v,D are prime numbers below.
Let E : [vc]× [D]→ [v/D] be a strong extractor with error ε = poly(1/w) and D = poly(w) to

6We can find such a prime in time 2O(w) which is fine for us.

14

be chosen later. Let ` = Θ(w/(logw)) be a parameter to be chosen later. Let Gc : [v]c → [v]2c,
G` : [D]` → [D]w−2c generate a c-wise independent distribution over [v] and a `-wise independent
distribution over [D] respectively as guaranteed by Lemma 2.7.

Now, define U : [vc]× [D]` → [v]w as follows:

U(x, y)i =

{
Gc(x)i if 1 ≤ i ≤ 2c

G`(y)i−2c ◦ E(x,G`(y)i−2c) if 2c < i ≤ w
. (6.1)

(Here, we associate an element of [D]× [v/D] with an element of v in a straightforward bijective
manner.)

Abusing notation, we let U = {U(x, y) : x ∈ [vc], y ∈ [D]`} ⊆ [v]w as well. Our final function
will be f ≡ fP for P = {Pα : α ∈ U}. The following claims help us apply Theorem 1.8 and
Theorem 1.10 to analyze fP .

Lemma 6.5. For all c < w − 2c− `, P is a (c, 2c+ `, 1/D`)-design.

Proof. Note that for any α, β ∈ [v]w, and any i, j ∈ [v], |Pαi ∩P
β
j | = |{k ∈ [w] : βk−αk = (j− i)

mod v}| ≤ w − dH(α, β).
Let α = G(x, y) 6= β = G(x′, y′) ∈ U . Now, if y 6= y′, then dH(α, β) ≥ dH(G`(y), G`(y

′)) ≥
w− 2c− `; similarly, if x 6= x′, then dH(α, β) ≥ dH(Gc(x), Gc(x

′)) ≥ c. Therefore, in either case
dH(α, β) ≥ min(c, w − 2c− `) = c.

Similarly, for any fixed α = G(x, y) ∈ U , and β = G(x′, y′) ∈u U , unless y = y′, dH(α, β) ≥
w − 2c− `. On the other hand, Pr[y′ = y] ≤ 1/D`.

The above claims imply that P is a (c, w − 2c− `, 1/D`)-design as needed.

We next use Lemma 5.1 to analyze the load-balancing properties of P.

Lemma 6.6. Let U be as in Equation 6.1 for E being a ((c log v)/2, ε)-extractor for ε < 1/w
and ` ≥ 6w/(logw). Then, P = {Pα : α ∈ U} is (q, τ)-load balancing for q ≤ v and τ =
O(22c + w2wv−c/2+1).

Proof. Let Q ⊆ [n] with |Q| = q ≤ v. For 1 ≤ i ≤ w, let Qi = Q ∩ {(i − 1)v + j : j ∈ [v]}.
Fix an index k ∈ [v] and for i ∈ [w] define fi : [v] → {0, 1} by fi(x) = 1 if ((i − 1)v + k − x)
mod v ∈ Qi and 0 otherwise. Then, |Pαk ∩ Q| =

∑w
i=1 fi(αi). Further,

∑
i Ex∈u[v][fi(x)] =∑

i |Qi|/v = q/v := µ ≤ 1.
In the following, let α ∈u U . For 1 ≤ i ≤ 2c, let Xi = fi(αi) and for 1 ≤ j ≤ w − 2c let

Yj = fj+2c(αj+2c). Let µi = E[fi], X =
∑2c
i=1Xi, Y =

∑w−2c
j=1 Yj , and Z = X + Y . We next

bound E[2Z] by applying Lemma 5.1 to Y combined with the trivial observation that X is at
most 2c:

E
[
1(Q ∩ Pαk 6= ∅)2|Q∩P

α
k |
]

= E
[
1(Z ≥ 1)2Z

]
= E

[
2Z
]
− Pr[Z = 0]

= E
[
2Z
]
− 1 + Pr[Z ≥ 1] ≤ E

[
2Z
]
− 1 + E[Z]

= E[2X − 1] + E[2X(2Y − 1)] + E[X] + E[Y]

≤ E[2X − 1] + 22c · E[2Y − 1] + µ

≤ E[22c(X1 + . . . X2c)] + 22c · E[2Y − 1] + µ.

By Lemma 5.1 applied to Y with ρ = 2, ` = 6w/(logw), and ε < 1/2w, we get that

E[2Y−1] ≤ O(µ)(1+2/(w−1))w−1+O(µ)2w−2c

(
w − 1

`

)
(2/w−1)`+2w−2cwv−c/2 = O(µ)+2w−2cwv−c/2.

15

Further, E[X1 + . . .+X2c] ≤ µ. Therefore, as µ ≥ 1/v,

E
[
1(Q ∩ Pαk 6= ∅)2|Q∩P

α
k |
]
≤ O(22c)µ+O(1)w2wv−c/2 ≤ O(1) · µ · (22c + w2wv−c/2+1).

Proof of Theorem 1.2. We first set up some parameters. Let c ≥ 2 be a sufficiently large con-
stant to be chosen later. Let w ≥ 1 be arbitrary and ε = 1/w3. Let D = ((c log v)w)C

for some universal constant C so that there exists an explicit (c(log v)/2, ε)-strong extractor
E : [vc] × [D] → [v/D] for all c ≥ C as in Theorem 2.5. Set v = Θ(2ww) to be chosen pre-
cisely in a little bit. For this setting of v, let U ⊆ [v]w be as defined in Equation 6.1 with
` = 6w/(logw) and E as the extractor. Let P = PU . Then, |U| := u = vc ×D`. We will show
that f ≡ fP satisfies the conditions of Theorem 1.2 for c sufficiently large.

As in the proof of Lemma 6.3, we would like our choice of v to be such that v = 2w ln((ln 2)u).
To this end, let φ : R+ → R be defined by

φ(x) = x− 2w (c lnx+ C` ln(log x) + C` ln(cw) + ln ln 2)

and let x∗ ≥ 1 be such that φ(x∗) = 0. There exists such an x∗ by the continuity of φ. Let
v be the smallest prime larger than x∗. Note that v ≤ x∗ + B where B = 2c1w for some
universal constant c1 < 1 (see [Wik] for instance), so that 0 = φ(x∗) ≤ φ(v) ≤ φ(x∗) + B. Let
θ = (1− 2−w)v. Then, by Fact 2.13, (1 + θ)u = O(1) and

(1− θ)u = 1/2±O(1)2−Ω(w). (6.2)

?

Analyzing bias: By Lemma 6.5, P is a (c, 2c+ `, 1/D`)-deisgn. Therefore, by Theorem 1.8
applied with r = c, Prx∈u{0,1}n [fP(x) = 1] = (1− θ)u ±O(δ1) +O(δ2) +O(δ3), where

δ1 = v2c2(1/D`) · exp(2vc22−w−c)(1 + θ)u

δ2 = vc22−2w+`+2c ≤ wc22−w+`+2c(1 + θ)u

δ3 = 2(uθ)w(e/c)c ≤ 2(e/c)c.

We next bound each of these terms. Note that 1/D` ≤ 1/w` ≤ 1/6w. Therefore, as c ≥ C,
and v = O(1)c2ww,

δ1 ≤ O(1)

(
w2c2

3w

)
exp(O(1)wc32−c) = O(c2)2−Ω(w),

for c sufficiently large. Next,

δ2 ≤ O(1)wc22−w+`+2c ≤ O(c2)2−Ω(w),

for c ≤ w/4. Thus, for a universal constant C ′, if C ′ ≤ c ≤ w/4, by Equation 6.2,

Pr
x∈u{0,1}n

[fP(x) = 1] = 1/2±O(c2)2−Ω(w) ± 2(e/c)c.

16

Analyzing influence: We claim that fP has small influence for coalitions of size o(2w).
Let 1 ≤ q ≤ v so that q/v ≤ 1. Then, by Lemma 6.6, P is (q, τ)-load balancing for

τ = O(22c)(1 + v−c/2+1) = O(22c).

Therefore, by Theorem 1.10, for all q ≤ v,

Iq(fP) ≤ u(1− 2−w)v−q · 22c(2−wq) = O(22c)2−wq = O(22c)q(log2 n)/n,

where the last inequality follows as 2w = Θ(n/(log2 n)). The theorem now follows by choosing
c to be sufficiently large.

We next prove Corollary 1.4.

Proof of Corollary 1.4. The proof is exactly the same as the above argument for Theorem 1.2
but instead of using Theorem 1.8 we use Corollary 3.2 with r = O(c), ε = u−O(r) and instead
of Theorem 1.10 we use Corollary 4.1 with ε = 1/(uv2). The amount of independence we need
is t� rw log(1/ε) = O(log2 n) as required for the theorem.

References

[AL93] Miklós Ajtai and Nathan Linial. The influence of large coalitions. Combinatorica,
13(2):129–145, 1993.

[AN93] Noga Alon and Moni Naor. Coin-flipping games immune against linear-sized coali-
tions. SIAM J. Comput., 22(2):403–417, 1993.

[AS11] N. Alon and J.H. Spencer. The Probabilistic Method. Wiley Series in Discrete Math-
ematics and Optimization. John Wiley & Sons, 2011.

[BL85] Michael Ben-Or and Nathan Linial. Collective coin flipping, robust voting schemes and
minima of banzhaf values. In 26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21-23 October 1985, pages 408–416, 1985.

[BN00] Ravi B. Boppana and Babu O. Narayanan. Perfect-information leader election with
optimal resilience. SIAM J. Comput., 29(4):1304–1320, 2000.

[Bra10] Mark Braverman. Polylogarithmic independence fools AC 0 circuits. J. ACM, 57(5),
2010.

[CZ15] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and
resilient functions. Electronic Colloquium on Computational Complexity (ECCC),
22:119, 2015.

[Dod06] Yevgeniy Dodis. Fault-tolerant leader election and collective coin-flipping in the full
information model, 2006.

[Fei99] Uriel Feige. Noncryptographic selection protocols. In 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY,
USA, pages 142–153, 1999.

[Gil98] David Gillman. A chernoff bound for random walks on expander graphs. SIAM J.
Comput., 27(4):1203–1220, 1998.

[Hea08] Alexander Healy. Randomness-efficient sampling within nc1. Computational Com-
plexity, 17(1):3–37, 2008.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In STOC, pages 356–364, 1994.

17

[Kah97] Nabil Kahale. Large deviation bounds for markov chains. Combinatorics, Probability
& Computing, 6(4):465–474, 1997.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean func-
tions (extended abstract). In FOCS, pages 68–80, 1988.

[KLW10] Adam R. Klivans, Homin K. Lee, and Andrew Wan. Mansour’s conjecture is true for
random DNF formulas. In COLT, pages 368–380, 2010.

[Li15] Xin Li. Three-source extractors for polylogarithmic min-entropy. Electronic Collo-
quium on Computational Complexity (ECCC), 22:34, 2015.

[Mek09] Raghu Meka. Explicit coin flipping protocols, 2009. Unpublished manuscript.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combina-
torica, 12(4):449–461, 1992.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst.
Sci., 52(1):43–52, 1996.

[RSZ02] Alexander Russell, Michael E. Saks, and David Zuckerman. Lower bounds for leader
election and collective coin-flipping in the perfect information model. SIAM J. Com-
put., 31(6):1645–1662, 2002.

[RZ01] Alexander Russell and David Zuckerman. Perfect information leader election in log*
n+o (1) rounds. J. Comput. Syst. Sci., 63(4):612–626, 2001.

[Sak89] Michael E. Saks. A robust noncryptographic protocol for collective coin flipping.
SIAM J. Discrete Math., 2(2):240–244, 1989.

[Wik] Wikipedia. Prime gap — Wikipedia, the free encyclopedia.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algo-
rithms, 11(4):345–367, 1997.

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

