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Abstract

A Boolean function on n variables is q-resilient if for any subset of at most q variables, the
function is very likely to be determined by a uniformly random assignment to the remaining
n − q variables; in other words, no coalition of at most q variables has significant influence on
the function. Resilient functions have been extensively studied with a variety of applications in
cryptography, distributed computing, and pseudorandomness. The best known resilient function
on n variables due to Ajtai and Linial [AL93] has the property that only sets of size Ω(n/(log2 n))
can have influence bounded away from zero. However, the construction of Ajtai and Linial is
by the probabilistic method and does not give an efficiently computable function.

We construct an explicit monotone depth three almost-balanced Boolean function on n bits
that is Ω(n/(log2 n))-resilient matching the bounds of Ajtai and Linial. The best previous
explicit constructions of Meka [Mek09] (which only gives a logarithmic depth function), and
Chattopadhyay and Zuckerman [CZ15] were only (n1−β)-resilient for any constant 0 < β < 1.
Our construction and analysis are motivated by (and simplifies parts of) the recent breakthrough
of [CZ15] giving explicit two-sources extractors for polylogarithmic min-entropy; a key ingredient
in their result was the construction of explicit constant-depth resilient functions.

An important ingredient in our construction is a new randomness-optimal oblivious sampler
that preserves moment generating functions of sums of variables and could be useful elsewhere.

1 Introduction

In this work we study resilient functions introduced by Ben-Or and Linial [BL85] in the context
of collective-coin flipping. Consider the following game: There are n players who communicate
by broadcast and want to agree on a random coin-toss. If all the players are honest, this is
trivial: pick a player, have the player toss a coin and use the resulting value as the collective
coin-toss. Now suppose that there are a few bad players who are computationally unbounded,
can collude amongst themselves, and broadcast last in each round, i.e., they broadcast after
observing the bits broadcast by the good players in each round. The problem of collective coin-
flipping is to design protocols so that the bad players cannot bias the collective-coin too much.
An important and well-studied case of protocols are one-round collective coin-flipping protocols.
We will adopt the notation of boolean functions instead of protocols, as both are equivalent for
a single round.

Definition 1.1. For a Boolean function f : {0, 1}n → {0, 1}, and Q ⊆ [n], let IQ(f) be the
probability that f is not-determined by a uniformly random partial assignment to the bits not in
Q. Let Iq(f) = minQ⊆[n],|Q|≤q IQ(f). We say f is (q, δ)-resilient if Iq(f) ≤ δ. In addition, for
0 < τ < 1, we say f is τ -strongly resilient if for all 1 ≤ q ≤ n, Iq(f) ≤ τ · q.

Intuitively, Iq(f) quantifies the amount of influence any set of q variables can exert on the
evaluation of the function f . If f is almost-balanced and Iq(f) is small, say o(1), then evaluating
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f gives a one-round coin-flipping protocol that outputs a nearly unbiased bit even in the presence
of up to q bad players. More information and discussion of other models can be found in the
survey of Dodis [Dod06].

In their work introducing the problem, Ben-Or and Linial constructed an explicit balanced1

(1/nα)-strongly resilient function for α = log3 2. Subsequently, the seminal work of Kahn,
Kalai, and Linial [KKL88] showed that for any balanced function f , Iq(f) = 1 − o(1) for
q = ω(n/ log n). Following this, Ajtai and Linial [AL93] showed the existence of a balanced
function that is τ -strongly resilient for τ = O(log2 n/n); this in particular implies the existence
of a (Ω(n/ log2 n), 1/3) resilient function. However, the construction in Ajtai and Linial is
probabilistic and does not lead to an efficiently computable resilient function—it only gives a
non-uniform polynomial-size circuit for computing such a resilient function. We construct an
efficiently computable function matching the existential result of Ajtai and Linial:

Theorem 1.2 (Main). For some universal constants c1, c2 ≥ 1 the following holds. There exists
an efficiently computable function f : {0, 1}n → {0, 1} such that2

• f is almost-balanced: Prx∈u{0,1}n [f(x) = 1] = 1/2± 1/10.

• f is (c1(log2 n)/n)-strongly resilient.

• f has a uniform depth 3 monotone circuit of size at most nc2 .

The best previously known explicit resilient functions as above could only tolerate roughly
at most q � n1−β bad players for all constants 0 < β < 1: [Mek09] gave such a function of
logarithmic-depth while the recent breakthrough of [CZ15] gave such a function of depth 4.

The existential guarantee of [AL93] is slightly stronger than the above; they show the exis-
tence of a balanced constant-depth function with similar resilience; however, their function is
not monotone3. Our construction essentially matches theirs while being efficiently computable.
We can have the bias of the function be 1/2± o(1) at the expense of reducing the resilience; see
Corollary 7.4 for one such trade-off.

1.1 Two-source extractors

The present work builds on a recent breakthrough of Chattopadhyay and Zuckerman [CZ15]
who gave an explicit two-source extractor for poly-logarithmic min-entropy sources—resolving
a longstanding problem in pseudorandomness. One of the main building blocks of their work is
an efficiently computable resilient function with a stronger guarantee described below. We no-
ticeably simplify the construction and analysis of [CZ15] and obtain better quantitative bounds.
We explain these next starting with the definitions of extractors.

For a random variable X, the min-entropy of X is defined by

H∞(X) = min
x∈Support(X)

(log2(1/Pr[X = x])).

A two-source extractor is a function that takes two high min-entropy sources and outputs a
nearly uniform random bit:

Definition 1.3. A function Ext : {0, 1}n × {0, 1}n → {0, 1} is a (n, k) two-source extractor
with error ε if for any two independent X,Y with H∞(X), H∞(Y ) ≥ k, Ext(X,Y ) is ε-close to
a uniformly random bit. If Ext(X,Y ) has full support for all such sources X,Y , then we say
Ext is a two-source disperser.

1We say f : {0, 1}n → {0, 1} is balanced if Prx∈u{0,1}n [f(x) = 1] = 1/2.
2Henceforth, for a multi-set S, x ∈u S denotes a uniformly random element of S.
3While it is possible to make their construction monotone, this blows up the depth.
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Extractors have many applications across several areas including cryptography, error-correcting
codes, randomness amplification; we refer the reader to the history of the problem in [CZ15]
(the references are too many). By the probabilistic method, there exist two-source extractors
with error 2−Ω(k) for all k ≥ 2 log n (even outputting Ω(k) bits; as in [CZ15] we only focus on
extracting one bit in this work). Constructing such functions explicitly, as is required in most
applications, is much harder and has been studied extensively.

Until very recently, the best explicit two-source extractor due to Bourgain [Bou05] required
min-entropy at least k ≥ cn for some constant c = 0.49... < 0.5; the best explicit two-source
disperser due to [BRSW12] required min-entropy at least exp(poly(log log n)). Chattopadhyay
and Zuckerman broke the barrier for two-source extractors and gave an explicit construction
for min-entropies at least C(log n)74; independently, Cohen [Coh15] gave an explicit two-source
disperser for min-entropy logC n for some (unspecified) constant C. We show the following:

Theorem 1.4. For a sufficiently big constant C, there exists an explicit (n, k) two-source ex-
tractor D : {0, 1}n × {0, 1}n → {0, 1} with constant-error for k ≥ C log10 n. In particular, we
get an explicit (n, k) two-source disperser for k ≥ C log10 n.

Theorem 1.5. For any constant c ≥ 1, there exists a constant C such that there exists an
explicit (n, k) two-source extractor Ext : {0, 1}n × {0, 1}n → {0, 1} with error 1/nc for k ≥
C log18 n.

Two-source extractors and resilient functions Along with the above quantitative
improvements, our construction and analysis simplify [CZ15]:

• [CZ15] uses several known extractors in their construction of n1−β-resilient functions for
all constant 0 < β < 1; we present a simpler construction based on Reed-Solomon codes.

• More importantly, the analysis of [CZ15] uses Braverman’s celebrated result—[Bra10]—
that polylog-wise independence fools constant-depth circuits. We present a direct and
self-contained analysis without recourse to Braverman’s result that in turn uses several
non-trivial tools from the study of constant-depth circuits, e.g., [Raz87], [Smo87], [LMN93].

Chattopadhyay and Zuckerman reduce the problem of computing two-source extractors to
that of constructing an explicit n1−δ-resilient function for some constant δ > 0 with the following
stronger property; this reduction was also implicit in [Li15]. A distribution D on {0, 1}n is t-wise
independent if for X ← D, and all I ⊆ [n] with |I| ≤ t, the projection of X onto the coordinates
in I, XI , is uniformly distributed over {0, 1}I .

Definition 1.6. For a Boolean function f : {0, 1}n → {0, 1}, Q ⊆ [n], and a distribution D on
{0, 1}[n]\Q, let IQ,D(f) be the probability that f is not-determined by setting the bits not in Q
according to D. Let Iq,t(f) = min{IQ,D(f) : Q ⊆ [n], |Q| ≤ q, D is t-wise independent}. We
say f is t-wise (q, ε)-resilient if Iq,t(f) ≤ ε. In addition, for 0 < τ < 1, we say f is t-wise
τ -strongly resilient if for all 1 ≤ q ≤ n, Iq,t(f) ≤ τ · q.

The core of [CZ15] is the construction of a poly(log n)-wise (n1−β , 1/nΩ(1))-resilient function
for all β > 0. They achieve this as follows: a) Construct an explicit constant-depth mono-
tone (n1−β , 1/nΩ(1))-resilient function. b) Apply Braverman’s result to conclude that for all
q, ε > 0, a constant-depth monotone (q, ε)-resilient function is also t-wise (q, 2ε)-resilient for
t = poly(log(n/ε)). In contrast, our analysis of resilience is robust enough to imply resilience
even under limited independence with little extra work. As a corollary, we get the following:

Theorem 1.7. For some universal constant c ≥ 1 the following holds. There exists an efficiently
computable function f : {0, 1}n → {0, 1} such that,

• f is almost-balanced: For any (c log2 n)-wise independent distribution D on {0, 1}n, Prx∼D[f(x) =
1] = 1/2± 1/9.
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• f is (c log2 n)-wise (c(log2 n)/n)-strongly resilient.

• f has a uniform depth 3 monotone circuit of size at most nc.

As in the case of Theorem 1.2, we can have the bias of the function be 1/2 ± o(1) at the
expense of reducing the resilience.

1.2 Oblivious samplers preserving moment generating functions

A critical ingredient in our proof of Theorem 1.2 is an explicit oblivious sampler with optimal—
up to constant factors—seed-length that approximates moment generating functions (MGF).
We state this result next which may be of independent interest.

Theorem 1.8. For all 0 < µ ≤ 1, 1 ≤ v, w, there exists an explicit generator G : {0, 1}r → [v]w

such that for all functions f1, . . . , fw : [v]→ [0, 1] with
∑w
i=1 Ex∈u[v][fi(x)] = µ,

E
y∈u{0,1}r

[
2
∑w
i=1 fi(G(y)i)

]
= 1 +O(µ).

The seed-length of the generator is r = O(w + (log v) + w((log log v) + log(1/µ))/(logw)).

We state a more precise version which works for estimating E [exp (θ ·
∑
i fi( ))] for all θ > 0,

i.e., the MGF, in Section 6; here we focus on the above for simplicity and as it captures the
main ideas.

Let us first compare the above with known randomness efficient samplers such as those of
[Zuc97, Gil98, Kah97]. For concreteness, let us consider the special case when v = 2O(w) and
µ = 1; these are the parameters we face in our application. The seed-length of Theorem 1.8 in
this case is O(w). On the other hand, the samplers of [Zuc97, Gil98, Kah97] when instantiated
to obtain a guarantee as above require a seed-length of Ω(w logw). The improvement from
O(w logw) to O(w) is critical in our application; as we enumerate our all possible seeds even-
tually, the improvement from O(w logw) to O(w) in seed-length translates to an improvement
from super-polynomial running-time (nO(log logn)) to polynomial running-time of the resilient
function.

To illustrate the gap further, with the above parameters, let Xi = fi(xi) for an independent
uniformly random xi ∈u [v] and let Yi = fi(G(y)i), where G is as in the theorem. In this case,
standard Chernoff bounds imply that for a sufficiently big constant C,

Pr[X1 + · · ·+Xw > Cw/(logw)] ≤ exp(−w). (1.1)

Our argument in Section 6 shows that our generator satisfies the same property: Pr[Y1 +
· · · + Yw > Cw/(logw)] ≤ exp(−w). Note that the seed-length used by our generator for this
setting is O(w) which is optimal4.

In contrast, if one uses the expander sampler as in [Gil98, Kah97, Hea08] on an expander
graph with degree D the best one could get using the current analyses is (cf. Corollary 23 of
[Hea08]),

Pr[Y1 + · · ·+ Yw > Cw/(logw)] ≤ exp(−w · (1− (w2/D4))).

In other words, to get an exp(−w) bound on the tail-bound, one needs the degree D of the
expander to be wΩ(1); as the number of random bits needed by such a generator is (log v) +
w(logD), the total seed-length will be O(w logw). Similarly, applying the analysis of expander
Chernoff bounds from [Gil98, Kah97, Hea08] to get a bound on the MGF as in the theorem
requires the degree of the expander to be at least wΩ(1). This in turn requires the total seed-
length to be Ω(w logw).

4To get a tail bound of exp(−w), the sample space has to have exp(w) points.
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Another potential approach for constructing samplers as in theorem is to apply the pseu-
dorandom generators (PRGs) for small-space machines of Nisan or Impagliazzo, Nisan, and
Wigderson [Nis92, INW94]. However, to obtain a guarantee on the MGF as in the theorem
or to satisfy Equation 1.1 in the special-case above, we need to instantiate the generators with
error � exp(−w). This in turn forces the seed-length of the generators to be Ω(w logw).

2 Overview of construction

We next give a high level overview of our main construction and analysis. First, some notations:

• Throughout, by a partition P of [n] we mean a division of [n] into w-sized blocks P1, . . . , Pv,
where v = n/w (we assume w divides n).

• Let Dp denote the product distribution on {0, 1}n where each bit is p-biased.

As in [AL93] and [CZ15] our construction will be an AND of several Tribe functions:

Definition 2.1. For a partition P = {P1, . . . , Pv} of [n] into w-sized blocks, the associated
Tribes function is the DNF defined by TP = ∨vj=1

(
∧`∈Pjx`

)
. A collection of partitions P =

{P 1, . . . , Pu} defines a function f ≡ fP : {0, 1}n → {0, 1} as follows:

fP(x) :=

u∧
i=1

v∨
j=1

 ∧
k∈P ij

xk

 =

u∧
i=1

TP i(x).

The final function satisfying Theorem 1.2 will be fP for a suitably chosen set of partitions.
To analyze such functions, we first state two abstract properties that allow us to analyze the
bias as well as influences of such functions; we then design partitions that satisfy the properties.
The properties we define are motivated by [CZ15] and abstracting them in this way allows us to
give a modular analysis of the construction. The partitions themselves will be designed using
the sampler we construct in Theorem 1.8 which forms the core of our analysis and construction.
The analysis of resilience under limited independence follows a similar approach in addition to
some careful, but elementary, calculations involving elementary symmetric polynomials.

Analyzing bias The first condition allows us to approximate the bias of functions of the
form fP .

Definition 2.2. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks.
For d ≤ w, we say P is a d-design if no two blocks across any of the partitions overlap in more
than w − d elements: formally, for all α 6= β ∈ [u], and i, j ∈ [v], |Pα(i) ∩ P β(j)| ≤ w − d. In
addition, for d ≤ k ≤ w and δ ∈ (0, 1), we say P is a (d, k, δ)-design if it is a d-design and for
all α ∈ [u], and i, j ∈ [v],

Pr
β∈u[u]

[
|Pαi ∩ P

β
j | ≤ w − k

]
≥ 1− δ.

We should think of k � d. Intuitively, the first condition says that any two blocks arising
in our partitions differ in at least d elements (i.e., do not overlap completely); in contrast, the
second condition says that with probability 1−δ, two random blocks differ in at least k elements
(i.e, have very little overlap if k � d).

When a collection of partitions P = {P 1, . . . , Pu} satisfies the above condition, the following
claim gives a formula for the bias of fP . To parse the formula, even if clearly false, suppose that
the tribes involved in fP were on disjoint sets of variables. Then, we would have

Pr
x∈u{0,1}n

[fP(x) = 1] =

u∏
α=1

Pr
x∈u{0,1}n

[TPα(x) = 1] = (1− (1− 2−w)v)u := bias(u, v, w).
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The next claim shows that when P forms a (d, k, δ)-design, the different tribes behave as if they
are on disjoint sets of variables and the above formula for the bias is approximately correct. As
is sufficient in our applications, we specialize to the case where bias(u, v, w) is close to 1/2; this
corresponds to choosing5 v = Θ(1)w2w and u such that 1/3 ≤ bias(u, v, w) ≤ 2/3.

Theorem 2.3. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks
that is a (d, k, δ)-design. Let u, v, w be such that v = Θ(1)w2w and 1/3 ≤ bias(u, v, w) =
(1− (1− 2−w)v)u ≤ 2/3. Then,∣∣∣∣ Pr
x∈u{0,1}n

[fP(x) = 1]− bias(u, v, w)

∣∣∣∣ ≤ min

{
O(1)w exp(−Ω(d))

O(1) · (w exp(−Ω(k)) + exp(−Ω(d)) + 2wδ)
.

The proof of Theorem 2.3 is similar to the arguments in [CZ15] and relies on Janson’s
inequality. However, our argument is more subtle as we need to handle (d, k, δ)-designs and not
just d-designs as is done there. In particular the theorem implies that when P is a d-design with
d � logw, the error is at most exp(−Ω(d)). On the other hand, when d � logw we can use
the second formula if k � logw. We need the more refined statement above where only most
blocks are far from each other as this is what our construction achieves.

Analyzing influences We next specify a sufficient condition on a collection of partitions
P = {P 1, . . . , Pu} to guarantee that small coalitions have small influence on fP .

Definition 2.4. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks.
We say P is (q, τ)-load balancing if for all Q ⊆ [n] with |Q| ≤ q, and j ∈ [v],

E
α∈u[u]

[
1(Q ∩ Pαj 6= ∅)2|Q∩P

α
j |
]
≤ τ · (q/v).

To gain some intuition for the definition and the use of the name load balancing we first
view partitions as hash functions. A partition P = {P1, . . . , Pv} can be seen as a hash function
hP : [n]→ [v]: hP (i) = j if i ∈ Pj . We can then also view a collection of partitions P as defining
a family of hash functions H = {〈P : P ∈ P}. The definition above then says that a random
hash function from the family H is load-balancing in a certain concrete way. In particular, for
any subset Q ⊆ [n], and any particular bin j ∈ [v], the number of items hashed into bin j satisfy
the following inequality:

E
h∈uH

[
1(Q ∩ h−1(j) 6= ∅)2|Q∩h

−1(j)|
]
≤ τ · (|Q|/v).

Indeed, standard Chernoff bounds imply that the above property is clearly satisfied by truly
random hash functions. Thus, the partitions we construct can be seen as imitating this property
of truly random hash functions but with a much smaller size family.

We show that load-balancing partitions give us fine control on the influences:

Theorem 2.5. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks that
is (q, τ)-load balancing. Then,

Iq(fP) ≤ (u(1− 2−w)v−q) · (τ2−w) · q.

A similar claim is used in the analysis of [AL93, CZ15]. However, [CZ15] work with the
stronger condition that for anyQ ⊆ [n] with |Q| � q, |Q∩Pαj | � w for most α (as opposed to just

having a bound on the expectation of 2|Q∩P
α
j |). The above generalization, while straightforward,

is important as one cannot hope to satisfy their stronger requirement for Q very large (n1−o(1))
as needed for the proof of Theorem 1.2.

5Our arguments also give analogous, albeit more cumbersome, bounds for all u, v, w and even other product
distributions.
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2.1 Constructing nice partitions

We next outline how to construct a collection of partitions which is a good design as well as
sufficiently load-balancing. Fix v, w. For a string α ∈ [v]w, define an associated partition Pα of
[n] ≡ [vw] into w-sized blocks as follows:

• Write {1, . . . vw} from left to right in w blocks of length v each. Now, permute the k’th
block by shifting the integers in that block by adding αk modulo v.

• The i’th part now comprises of the elements in the i’th position in each of the w blocks.

Formally, for i ∈ [v] Pαi = {(k − 1)v + ((i − αk) mod v) : k ∈ [w]}. As in [CZ15], our final
function will be fP for P := PU = {Pα : α ⊆ U} for a suitably chosen set of strings U ⊆ [v]w;
in their work, U is chosen by using known seeded extractors.

For intuition, fix a constant 0 < β < 1 and first consider the case where U is the set of
Reed-Solomon codewords corresponding to degree ` ≥ 1/β polynomials over [v] 6. Then, a
simple calculation shows that PU is a (w − `)-design; that is, no two blocks in the partitions
of P overlap in more than ` positions. Further, note that a random element of U is `-wise
independent; combining this with standard Chernoff-type bounds for `-wise independent hash
functions implies that P is (q,Oβ(1))-load balancing for q � n1−β . Setting the parameters
appropriately and applying Theorems 2.3 and 2.5 shows that fP is almost-balanced and (n1−β)-
resilient—giving a simpler construction matching [CZ15].

For the main theorem, Theorem 1.2, we follow the same outline as above using Theorem 1.8
to get a suitable set of partitions. Indeed, a look at the definition of load-balancing suggests
that Theorem 1.8 should be relevant as it also involves a similar expression. Concretely, as a
first attempt, we take U to be the range of the generator from Theorem 1.8 and study the bias
and influence of f ≡ fPU . Theorem 1.8 immediately implies that PU is (Ω(n/ log n), O(1))-load
balancing. This combined with Theorem 2.5 implies that f is O((log2 n)/n)-strongly resilient.

To complete the proof, we need to show that f is almost-balanced. Unfortunately, PU need
not be a good-enough design to apply Theorem 2.3 directly. We get around this at a high-level
by encoding parts of the output of the oblivious sampler in Theorem 1.8 using a Reed-Solomon
code; doing so, we get PU to be a (C,w/2, 2−Cw)-design for any large constant C. We then
apply Theorem 2.3 to show that f is almost-balanced. We leave the details of the encoding to
the actual proof.

2.2 Construction of the oblivious sampler

The generator is obtained by instantiating the Nisan-Zuckerman [NZ96] PRG for small-space ma-
chines with k-wise independent seeds being fed into the extractor rather than truly independent
ones. Concretely, let E : [vc]× [D]→ [v] be a (c(log v)/2, ε)-extractor (see Section 3 for formal
definitions) with error ε ≈ 1/w. For ` = Θ(w/(logw)), let G` : [D]` → [D]w generate a `-wise
independent distribution. Then, our generator satisfying Theorem 1.8, G : [vc]× [D]` → [v]w is
defined as follows:

G(x, y) = (E(x,G`(y)1), E(x,G`(y)2), · · · , E(x,G`(y)w)) . (2.1)

While the above construction serves as the base, in our proof of Theorem 1.2 we need a
generator that satisfies certain additional constraints: output strings on different seeds should
be far from each other. We satisfy these constraints by careful modifications of the above
construction.

6Assuming for simplicity that v is a prime.
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2.3 Analyzing bias and resilience under limited independence

The extension to obtain resilient functions under limited independence, as in Theorem 1.7,
follows from our analysis of Theorem 2.3 along with the following claim. The core of the proof
of Theorem 2.3 involves calculating the biases of disjunctions of a small number of Tribes, i.e.,
functions of the form h = ∨α∈ITPα , where Pα are partitions of [n] and |I| is not too large. We
directly show that such functions are fooled to within error ε by O(|I|2w2 + |I|w log(1/ε))-wise
independence; that is, for any O(|I|2w2 + |I|w log(1/ε))-wise independent distribution D on
{0, 1}n, ∣∣∣∣ Pr

x∈u{0,1}n
[∨α∈ITPα(x) = 1]− Pr

x∼D
[∨α∈ITPα(x) = 1]

∣∣∣∣ < ε.

The proof of the above claim involves standard approximations based on the inclusion-exclusion
principle and some inequalities involving elementary symmetric polynomials.

3 Preliminaries

3.1 Pseudorandomness

We first recall some standard notions from pseudorandomness.

Definition 3.1. A collection of random variables {X1, . . . , Xm} is k-independent if for any
I ⊆ [m], |I| ≤ k, the random variables {Xi : i ∈ I} are independent of each other.

Definition 3.2. For a distribution X, H∞(X) = minx∈Support(X) log(1/Pr[X = x]).

Definition 3.3 ([NZ96]). A function E : [N ]×[D]→ [M ] is a (k, ε)-strong extractor if for every
distribution X over [N ] with H∞(X) ≥ k, and Y ∈u [D], (Y,E(X,Y )) is ε-close in statistical
distance to the uniform distribution over [D]× [M ].

We need the following sampling properties of strong extractors, c.f., [Zuc97].

Lemma 3.4. Let E : [N ] × [D] → [M ] be a (k, ε)-strong extractor. Then, for all functions
g1, . . . , gD : [M ] → {0, 1}, with µ = (1/D)

∑
i Ex∈u[M ][gi(x)], there are at most 2k elements

x ∈ [N ] such that ∣∣∣∣∣∣ 1

D

∑
z∈[D]

gz(E(x, z))− µ

∣∣∣∣∣∣ ≥ ε.
We also need the following explicit extractor construction due to Zuckerman [Zuc97]:

Theorem 3.5. There exists a constant C ≥ 1 such that for all ε > 0, and 1 ≤M ≤ N1/3, there
is an explicit ((logN)/2, ε)-strong extractor E : [N ] × [D] → [M ] with D = ((logN)/ε)C . We
also assume without loss of generality that E(X,Y ) is uniformly random over [M ] when X,Y
are uniformly random over [N ] and [D] respectively.

Finally, we also need the following explicit generator of `-wise independent distributions
which follows for instance from the Reed-Solomon code.

Definition 3.6 (Shift-Hamming distance). For two sequences x, x′ over an alphabet [B]d, let
dH(x, x′) = mina∈[B] |{i ∈ [d] : xi − x′i 6= a mod B}|.

Lemma 3.7. For all prime v and 1 ≤ ` ≤ m ≤ v, there exists an explicit function G` : [v]` →
[v]m such that

• For any y 6= y′ ∈ [v]`, dH(y, y′) ≥ m− `.
• For y ∈u [v]`, G`(y) is `-wise independent.
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Proof. Follows by using the Reed-Solomon code over [v] of degree ` and length m.

We need the following theorem of [DETT10] on fooling read-once Conjunctive Normal For-
mulas (CNFs) using limited independence. A CNF f : {0, 1}n → {0, 1} is said to be a readonce
formula if each variable appears in at most one clause. The width of a CNF is the maximum
length of any clause in the CNF.

Theorem 3.8. There exists a constant C such that the following holds for all 0 < ε < 1 and
t ≥ Cw log(1/ε): For any width w read-once CNF f : {0, 1}n → {0, 1} and t-wise independent
distribution D on {0, 1}n, ∣∣∣∣ Pr

x←D
[f(x) = 1]− Pr

x∈u{0,1}n
[f(x) = 1]

∣∣∣∣ ≤ ε.
3.2 Probability

We next review some results from probability theory.
We need Janson’s inequality from probability theory, c.f., [AS11] that allows us to bound

the bias of monotone Disjunctive Normal Formulas (DNFs).

Theorem 3.9. Let S1, . . . , Sm ⊆ [n] be a collection of sets and define fi : {0, 1}n → {0, 1} by
fi(x) = ∧j∈Sixj. Let x ∈u {0, 1}n. Then,

m∏
i=1

Pr [¬fi(x) = 1] ≤ Pr

[
m∧
i=1

(¬fi(x)) = 1

]
≤ exp

(
∆

1− γ

) m∏
i=1

Pr [¬fi(x) = 1] ,

where γ = maxmi=1 Pr[fi(x) = 1] and

∆ =
∑

i 6=j:Si∩Sj 6=∅

Pr[fi(x) ∧ fj(x) = 1].

The following immediate corollary is more convenient for us.

Theorem 3.10. Let S1, . . . , Sm ⊆ [n] be a collection of sets and define fi : {0, 1}n → {0, 1} by
fi(x) = ∧j∈Sixj. Let x ∈u {0, 1}n, and Zi = fi(x) for i ∈ [m]. Then,

m∏
i=1

E[(1− Zi)] ≤ E

[
m∏
i=1

(1− Zi)

]
≤ exp

(
∆

1− γ

)
·
m∏
i=1

E[(1− Zi)],

where γ = maxmi=1 E[Zi] and

∆ =
∑

i 6=j:Si∩Sj 6=∅

E[ZiZj ].

We need the following instantiation of Holder’s inequality.

Fact 3.11. Let Y1, . . . , Yr be real-valued random variables. Then,

E [|Y1Y2 · · ·Yr|] ≤
r∏
i=1

E [|Yi|r]1/r .

Definition 3.12. For any collection of variables x1, . . . , xm and 1 ≤ a ≤ m, Sa(x1, . . . , xm) =∑
I⊆[m],|I|=a

∏
i∈I xi denotes the a’th symmetric polynomial.

We will use the following bound on moments of symmetric polynomials of independent
Bernoulli random variables; see the appendix for proof.
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Lemma 3.13. Let 0 < p < 1/2 and X1, . . . , Xv be independent indicator random variables with
Pr[Xi = 1] = p. Then, for k ≥ 2e2vp, and all r ≥ 1,

E[Sk(X1, . . . , Xv)
r] ≤ (1/2)k.

We will use the following standard fact about symmetric polynomials.

Fact 3.14. For all 1 ≤ a ≤ m and 0 ≤ q1, . . . , qm with
∑
i qi ≤ µ, Sa(q1, . . . , qm) ≤

(
m
a

)
·(µ/m)a.

We need the following elementary approximations; see the appendix for proofs.

Fact 3.15. For all x ≥ 2, e−1(1− 1/x) ≤ (1− 1/x)x ≤ e−1.

Fact 3.16. Let 1 ≤ w ≤ v ≤ u, B ≥ 1 with 0 ≤ v − 2w(ln(u/ ln 2)) ≤ B, and θ = (1 − 2−w)v.
Then, (1 + θ)u = O(1) and (1− θ)u = 1/2±O(B lnu)2−w.

4 Analyzing bias

Here we prove Theorem 2.3. Let P = {P 1, . . . , Pu}, fP , be as in the theorem statement. Let
x ∈u {0, 1}n and for α ∈ [u] let Zα = TPα(x). Then,

fP(x) =
∏
α∈[u]

TPα(x) =
∏
α∈[u]

Zα.

The theorem essentially states that E[
∏
α Zα] ≈

∏
α E[Zα]. We will prove this by showing

that Zα’s satisfy a weak notion of limited independence. Roughly speaking, we will show that
for I ⊆ [u], |I| ≤ d,

E

[∏
α∈I

(1− Zα)

]
≈
∏
α∈I

E[(1− Zα)]. (4.1)

The proof of Equation 4.1 uses Janson’s inequality and the design properties of P. The theorem
then follows by writing

∏
α

Zα =
∏
α

(1− (1− Zα)) =

u∑
a=1

Sa({1− Zα : α ∈ [u]})

and applying Bonferroni inequalities to truncate the latter expansion to the first d terms; the
error from the truncation is bounded by applying Equation 4.1. We next gives a concrete form
of Equation 4.1.

Lemma 4.1. Let P be as in Theorem 2.3 and {Zα}’s be as defined above. Then, for all a ≤ d,(
u

a

)
· (1− 2−w)va ≤ E [Sa(1− Z1, 1− Z2, . . . , 1− Zu)] ≤ γ ·

(
u

a

)
· (1− 2−w)va,

where γ = exp
(
O(1)wd2−Ω(k)

)
+ 2O(w)δ.

Note that E[Zα] = (1−2−w)v for all α ∈ [u]. Therefore, if the Zα’s were actually independent
of each other, then E [Sa(1− Z1, 1− Z2, . . . , 1− Zu)] =

(
u
a

)
(1− 2−w)va. Thus, the lemma says

that for a design, the expectation of the symmetric polynomial is close to what it would be if
{Zα}’s were independent of each other.

Before proving the lemma, we first show it implies Theorem 2.3.

10



Proof of Theorem 2.3. Let Zα’s be as above; for brevity, let Yα = 1 − Zα and θ = (1 − 2−w)v.
Note that

Pr[fP(x) = 1] = E

 ∏
α∈[u]

Zα

 , ∏
α∈[u]

E[Zα] = (1− θ)u = bias(u, v, w). (4.2)

Now, by Bonferroni inequalities, we have

∏
α

Zα =
∏
α

(1− Yα) =

d−1∑
a=0

(−1)tSa(Y1, . . . , Yu)± Sd(Y1, . . . , Yu).

Thus, ∣∣∣∣∣E
[∏
α

Zα

]
−
d−1∑
a=0

(−1)t E[Sa(Y1, . . . , Yu)]

∣∣∣∣∣ ≤ E[Sd(Y1, . . . , Yu)].

Further, by Lemma 4.1, for all 1 ≤ a ≤ d,(
u

a

)
θa ≤ E[Sa(Y1, . . . , Yu)] ≤ γ

(
u

a

)
θa.

Let Y ′1 , . . . , Y
′
u be independent random variables with Y ′i having the same marginal as Yi.

Clearly, E[Sa(Y ′1 , . . . , Y
′
u)] =

(
u
a

)
θa. Therefore, for any a ≤ d,

|E[Sa(Y1, . . . , Yu)]− E[Sa(Y ′1 , . . . , Y
′
u)]| ≤ (γ − 1)

(
u

a

)
θa.

Combining the above inequalities, we get∣∣∣∣∣E
[∏

i

Zi

]
−
d−1∑
a=0

(−1)t E[Sa(Y ′1 , . . . , Y
′
u)]

∣∣∣∣∣ ≤ E[Sd(Y1, . . . , Yu)] + (γ − 1)

d−1∑
a=1

(
u

a

)
θa

≤ γ
(
u

d

)
θd + (γ − 1)(1 + θ)u.

Note that the above arguments also apply to the case when Zi’s were truly independent of each
other with γ = 1. Therefore,∣∣∣∣∣∣E [Z1 · · ·Zu]−

∏
i∈[u]

E[Zi]

∣∣∣∣∣∣ ≤ 2γ

(
u

d

)
θd + 2(γ − 1)(1 + θ)u.

We next simplify the error bound by plugging in the values of γ and θ. Recall that
bias(u, v, w) = (1 − θ)u ∈ [1/3, 2/3] so that (1 + θ)u = O(1) and θ = O(1/u). Therefore,∣∣∣∣∣E[

∏
α∈u

Zα]−
∏
α∈u

E[Zα]

∣∣∣∣∣ = exp(−Ω(d)) +O(γ − 1). (4.3)

Note that 1 is a trivial upper bound on the left-hand side; further, a simple calculation shows
that

min(1, γ − 1) = min
(

1, exp
(
O(wd)2−Ω(k)

)
+ 2O(w)δ − 1

)
≤ min

(
1, exp

(
O(wd)2−Ω(k)

)
− 1
)

+ 2O(w)δ

= O(wd)2−Ω(k) + 2O(w)δ = O(w)2−Ω(k) + 2O(w)δ,
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where we used the fact that for all λ > 0 min(1, eλ − 1) = O(λ) and d2−Ω(k) ≤ k2−Ω(k) =
O
(
2−Ω(k)

)
.

Combining the above with Equation 4.2 and Equation 4.3 we get

|Pr[fP(x) = 1]− bias(u, v, w)| ≤ exp(−Ω(d)) +O(w) exp(−Ω(k)) + 2O(w)δ.

This proves the second bound of the theorem. The first bound is a special case as any
(d, k, δ)-design is also a (d, d, 0)-design by definition.

Proof of Lemma 4.1. We first further break up each Zα according to the blocks of the partition
Pα; for each i ∈ [v], let Zαi = ∧j∈Pαi xj (recall x ∈u {0, 1}n). Then, Zα = ∨i∈[v]Zαi so that
1− Zα =

∏
i∈[v](1− Zαi). Therefore, for any I ⊆ [u],∏

α∈I
(1− Zα) =

∏
α∈I

∏
i∈v

(1− Zαi).

Note that we can apply Theorem 3.10 to the latter product. Fix a set I ⊆ [u]. Define (α, i) 6=
(β, j) to be adjacent, (α, i) ∼ (β, j), if Pαi ∩ P

β
j 6= ∅. Let,

∆I =
∑

(α,i)∼(β,j)∈I×[v]

E[Zαi · Zβj ].

We next bound ∆I . Let dI = w − max{|Pαi ∩ P
β
j | : α 6= β ∈ I, i, j ∈ [v]} quantify the

maximum overlap among any two blocks of the partitions Pα, α ∈ I. Then, as P is a d-design,
dI ≥ d for all I. Fix α 6= β ∈ I and an in index i ∈ [v], and let j1, . . . , jb ∈ [v] be the indices

such that (α, i) ∼ (β, j), and let w` = |Pαi ∩ P
β
j`
|. Then, 1 ≤ w1, . . . , wb ≤ w − dI . Now,

∑
j∈[v]:(β,j)∼(α,i)

E[ZαiZβj ] =

b∑
`=1

2
−|Pαi ∪P

β
j`
|

=

b∑
`=1

2−(2w−w`) = 2−2w ·
b∑
`=1

2w` .

As wi ∈ [w− dI ], and
∑
i wi = w, the above expression is maximized by setting as many of the

wi’s to w − dI as possible. Thus,

b∑
`=1

2w` ≤ dw/(w − dI)e2w−dI = 2wdw/(w − dI)e2−dI ≤ 2w+12−dI/2.

Therefore, ∑
j∈[v]:(β,j)∼(α,i)

E[ZαiZβj ] = 21−w−dI/2.

Summing over all indices (α, i), we get

∆I ≤ (vd) · 21−w−dI/2 = O(wd2−dI/2).

Finally, observe that maxα,i E[Zαi] = 2−w ≤ 1/2. Thus, by Theorem 3.10,

∏
α∈I

E[(1− Zα)] ≤ E

[∏
α∈I

(1− Zα)

]
≤ exp(2∆I) ·

∏
α∈I

E[(1− Zα)]. (4.4)
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Note that E[(1− Zα)] = (1− 2−w)v. Therefore, summing over all sets I ⊆ [u], |I| = a gives
us the lower bound of the claim. For the upper bound, we have

E [Sa(1− Z1, . . . , 1− Zu)] ≤ (1− 2−w)va ·
∑

I∈([u]
a )

exp(2∆I)

≤ (1− 2−w)va ·
∑

I∈([u]
a )

exp(O(wd2−dI/2)))

= (1− 2−w)va ·
(
u

a

)
· E
I∈u([u]

a )

[
exp(O(wd2−dI/2)))

]
.

We next bound the last expectation. From the design properties of D and a union bound applied
to all possible pairs (α, i), (β, j) ∈ I × [v], it follows that for I ∈u

(
[u]
a

)
,

Pr[dI < k] = Pr
[
∃α 6= β ∈ I, i, j ∈ [v] |Pαi ∩ P

β
j | ≥ w − k

]
≤
∑
i,j∈[v]

Pr
[
∃α 6= β ∈ I |Pαi ∩ P

β
j | ≥ w − k

]
≤ v2d2δ.

Hence,

E
[
exp

(
O(1)wd2−dI/2

)]
= Pr[dI ≤ k] · E

[
exp

(
O(1)wd2−dI/2

)
| dI ≤ k

]
+

Pr[dI > k] · E
[
exp

(
O(1)wd2−dI/2

)
| dI > k

]
≤ exp

(
O(1)wd2−k/2

)
+ (v2d2δ) · exp

(
O(1)wd2−d/2

)
= exp

(
O(1)wd2−k/2

)
+ 2O(w)δ.

This proves the lemma.

4.1 Analyzing bias under limited independence

We next a state a version of Theorem 2.3 for distributions with limited independence.

Corollary 4.2. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks
that is a (d, k, δ)-design and ε ∈ (0, 1). Let u, v, w be such that v = Θ(1)w2w and 1/3 ≤
bias(u, v, w) = (1− (1− 2−w)v)u ≤ 2/3. Let D be a (C(w2d2 + wd log(1/ε)))-wise independent
distribution for C a sufficiently large constant. Then,∣∣∣ Pr

x∼D
[fP(x) = 1]− bias(u, v, w)

∣∣∣ ≤ ε+ min

{
O(1)w exp(−Ω(d))

O(1) · (w exp(−Ω(k)) + exp(−Ω(d)) + 2wδ)
.

We prove the corollary by repeating the proof of Theorem 2.3 while using an analogue of
Lemma 4.1 for x ∼ D. To do so, we will use the following claim saying that limited independence
is sufficient to fool disjunctions of a few Tribes.

Claim 4.3. The following holds for some constant C > 1. Let {P 1, . . . , P r} be a collection of
partitions of [n] into v blocks of length w each with v = Θ(1)w2w. Then, for any Cwr(w +
r log(1/ε) + r2)-wise independent distribution D over {0, 1}n,∣∣∣∣ Pr

x∈u{0,1}n

[
∨α∈[r]TPα(x) = 0

]
− Pr
x∼D

[
∨α∈[r]TPα(x) = 0

]∣∣∣∣ ≤ ε.
13



Proof. The lemma follows from some careful approximations of elementary symmetric polyno-
mials. We first setup some notation. Let k > max(2r, 2e2v2−w) be an even integer to be chosen
later and let x ∼ D where D is a t-wise independent distribution for t ≥ kwr. For α ∈ [r],
let Xα = (Xα

1 , . . . , X
α
v ) where Xα

i = ∧`∈Pαi x`. Note that TPα(x) = ∨ui=1X
α
i . We will use

inclusion-exclusion to approximate each TPα(x). Let pk, ek : {0, 1}v → {0, 1} be defined by

pk(z1, . . . , zv) =

k−1∑
`=0

(−1)`S`(z1, . . . , zv), ek(z1, . . . , zv) =

n∑
`=k

(−1)`S`(z1, . . . , zv).

By the inclusion-exclusion formula, for all z ∈ {0, 1}v, ¬OR(z) = pk(z) + ek(z). Further, by
Bonferroni inequalities, for all z ∈ {0, 1}v,

0 ≤ ek(z) ≤ Sk(z). (4.5)

Now,

1− ∨α∈[r]TPα(x) =
∏
α∈[r]

¬OR(Xα) =
∏
α∈[r]

(pk(Xα) + ek(Xα)) (4.6)

=
∏
α∈[r]

pk(Xα)

︸ ︷︷ ︸
:=Pk(x)

+
∑

I 6=∅⊆[r]

∏
α/∈I

pk(Xα)
∏
α∈I

ek(Xα)

︸ ︷︷ ︸
:=Ek(x)

.

We view Pk as a low-degree polynomial approximation for the left-hand-side and Ek as the
error term. Indeed, Pk is of degree at most kwr in x as each pk(Xα) is of degree at msot
k in {Xα

1 , . . . , X
α
v }’s which in-turn are of degree at most w in x. Therefore, for t ≥ kwr,

E[Pk(x)] is the same under all t-wise independent distributions. We next bound the expectation
of Ek under t-wise independent distributions. By Equation 4.5, 0 ≤ ek(z) ≤ Sk(z); further,
|pk(z)| = |¬OR(z)− ek(z)| ≤ 1 + ek(z) ≤ 1 + Sk(z). Thus, for any fixed ∅ 6= I ⊆ [r],

E

[∣∣∣∣∣∏
α∈I

ek(Xα)
∏
α/∈I

pk(Xα)

∣∣∣∣∣
]
≤ E

[∏
α∈I

Sk(Xα)
∏
α/∈I

(1 + Sk(Xα))

]
≤
∏
α∈I

E [Sk(Xα)r]
1/r ·

∏
α/∈I

E [(1 + Sk(Xα))
r
]
1/r

(by Fact 3.11)

≤
∏
α∈I

E [Sk(Xα)r]
1/r ·

∏
α/∈I

(
1 + E [Sk(Xα)r]

1/r
)

(by Minkowski’s inequality).

Note that Sk(Xα)r is of degree at most kwr as a polynomial in x. Therefore, E[Sk(Xα)r] is the
same under all t-wise independent distributions and in particular the same as for x ∈u {0, 1}n.
However, in this case (Xα

1 , . . . , X
α
v ) are independent indicator random variables with E[Xα

i ] =
2−w. Therefore, as k ≥ 2e2v2−w, by Lemma 3.13,

E [Sk(Xα)r] ≤ (1/2)k ≤ 1.

Combining the above estimates we get that for all I 6= ∅ ⊆ [r],

E

[∣∣∣∣∣∏
α∈I

ek(Xα)
∏
α/∈I

pk(Xα)

∣∣∣∣∣
]
≤ (1/2)(|I|)(k/r · 2r−|I| ≤ 2r · (1/2)k/r.
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Plugging the above into equation Equation 4.6 we get E[|Ek(x)|] ≤ 22r(1/2)k/r. Finally, as the
above estimates hold under any t-wise independent distribution and Pk is of degree at most
kwr, we get that∣∣∣∣ Pr
x∈u{0,1}n

[
∨α∈[r]TPα(x) = 0

]
− Pr
x∼D

[
∨α∈[r]TPα(x) = 0

]∣∣∣∣ ≤ E
x∈u

[|Ek(x)|]+ E
x∼D

[|Ek(x)|] ≤ 22r+1(1/2)k/r.

Plugging in k = max(3r(r+log(1/ε)), 2ev2−w) we get the above error to be at most ε. It follows
that it suffices for t = kwr to be C(wr(r2 +r log(1/ε)+w)) for a sufficiently big constant C.

Proof of Corollary 4.2. The proof of the corollary is similar to that of Lemma 4.1 and Theo-
rem 2.3 with one change. Using the notation from the above proof, for any I ⊆ [u], the event∏
α∈I(1− Zα) corresponds to the unsatisfiability of ∨α∈ITPα . By using the above theorem, we

get an analogue of Equation 4.4 for the present case as well: for any I ⊆ [u] with |I| ≤ d,

∏
α∈I

E[(1− Zα)]− ε ≤ E

[∏
α∈I

(1− Zα)

]
≤ exp(2∆I) ·

∏
α∈I

E[(1− Zα)] + ε. (4.7)

The corollary now follows by using the above inequality in place of Equation 4.4 in the rest
of the proof of Theorem 2.3.

5 Analyzing influence

Proof of Theorem 2.5. Let Q ⊆ [n] with |Q| = q. Note that for every α ∈ [u], a partial
assignment x to the variables not in Q leaves TPα undetermined if and only if

1. For every part Pαj that does not intersect Q, xi = 0 for some i ∈ Pαj .

2. For some j ∈ [v] with Pαj ∩Q 6= ∅, xi = 1 for every i ∈ (Pαj \Q).

The above two events are independent of each other. The probability of (1) is at most (1 −
2−w)v−q as there are at least v − q parts of Pα that do not intersect Q. The probability of (2)
is at most ∑

j∈[v]:Pαj ∩Q6=∅

2−(w−|Pαj ∩Q|).

Therefore, for α ∈u [u],

IQ(fP) ≤
∑
α∈[u]

IQ(TPα) ≤ u · E
u∈u[u]

[IQ(TPα)]

≤ u · E

(1− 2−w)v−q ·

 ∑
j∈[v]:Pαj ∩Q 6=∅

2−w+|Pαj ∩Q|


≤ u(1− 2−w)v−q2−w ·

∑
j∈[v]

E
α∈u[u]

[
1(Pαj ∩Q 6= ∅)2|P

α
j ∩Q|

]
≤ u(1− 2−w)v−q · 2−w · τq.

We next a state a version of Theorem 2.5 for distributions with limited independence.
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Corollary 5.1. Let P = {P 1, . . . , Pu} be a collection of partitions of [n] into w-sized blocks
that is (q, τ)-load balancing. Then, for all t ≥ Cw log(1/ε) for some sufficiently big constant C,

Iq,t(fP) ≤ (u(1− 2−w)v−q) · (τ2−w)q + (uv)ε.

Proof. The argument is similar to that of Corollary 4.2. Let D be a t-wise independent distri-
bution on {0, 1}n. As in the above proof, observe that Q leaves TPα undetermined if and only
if

1. For every part Pαj that does not intersect Q, xi = 0 for some i ∈ Pαj .

2. For some j ∈ [v] with Pαj ∩Q 6= ∅, xi = 1 for every i ∈ (Pαj \Q).

However, the above two events are no longer independent. For a fixed α, let J ⊆ [v] be all parts
Pαj that do not intersect Q. Then, the first condition above is equivalent to

f1(x) :=
∧
j∈J

 ∨
i∈Pαj

(¬xi)

 .

Similarly, the second condition is equivalent to

f2(x) :=
∨
j /∈J

 ∧
i∈Pαj \Q

xj

 .

We are interested in

Pr
x←D

[f1(x) ∧ f2(x) = 1] = Pr
x←D

[f1(x) = 1]− Pr
x←D

[f1(x) ∧ (¬f2(x)) = 1].

Now, observe that

f3(x) := f1(x) ∧ (¬f2(x)) =
∧
j∈J

 ∨
i∈Pαj

(¬xi)

 ∧
j /∈J

 ∨
i∈Pαj \Q

(¬xj)

 .

Now, f1, f3 are both read-once CNFs, that is CNF formulas where each variable appears at
most once. Therefore, by Theorem 3.8, for t� w log(1/ε),∣∣∣∣ Pr

x←D
[f1(x) = 1]− Pr

x∈u{0,1}n
[f1(x) = 1]

∣∣∣∣ ≤ ε, ∣∣∣∣ Pr
x←D

[f3(x) = 1]− Pr
x∈u{0,1}n

[f3(x) = 1]

∣∣∣∣ ≤ ε.
Therefore,

Pr
x←D

[f1(x) ∧ f2(x) = 1] ≤ Pr
x∈u{0,1}n

[f1(x) ∧ f2(x) = 1] + 2ε ≤

(1− 2−w)v−q ·

 ∑
j∈[v]:Pαj ∩Q6=∅

2−w+|Pαj ∩Q|

+ 2ε,

where the last inequality follows from the arguments of Theorem 2.5. The main statement now
follows by repeating the calculations of Theorem 2.5 with the above equation leading to an
additional error of 2(uv)ε.
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6 Oblivious sampler preserving the moment generating
function

Here we prove Theorem 1.8; it will be the main building block in our final construction of
resilient functions. With a view towards future use, we modify the construction presented in
the introduction (Equation 2.1) even if the simpler construction described there suffices for
Theorem 1.8.

Let ε = µ/w, and c a sufficiently big constant to be chosen later. Let E : [vc]× [D]→ [v/D]
be a ((c log v)/2, ε)-strong extractor as in Theorem 3.5 with D = ((log v)/ε)C for some universal
constant C. Without loss of generality, suppose that D is prime. For a parameter ` ≥ 1 to be
chosen later, let G` : [D]` → [D]w generate a `-wise independent distribution as in Lemma 3.7.

Define G : [vc]× [D]` → [v]w as follows:

G(x, y)i = G`(y)i ◦ E(x,G`(y)i), (6.1)

where we associate [D]× [v/D] with [v] in a straightforward manner.
To analyze the generator we shall use the following lemma about random variables with

limited independence. A similar statement appears in [GKM15]; however, our setting is consid-
erably simpler and we give a direct proof in the appendix.

Lemma 6.1. Let Y1, . . . , Yw be `-wise independent random variables supported on [0, 1]. Then,
for all θ > 0,

E [exp(θ(Y1 + · · ·+ Yw))] ≤
∏
i

E[exp(θYi)] + exp(2θw)

(
e
∑
i E[Yi]

`

)`
.

Towards proving Theorem 1.8, we first prove a lemma with some precise but cumbersome
bounds on the moment generating function.

Lemma 6.2. Let G : [vc]× [D]` → [v]w be as in Equation 6.1 and let f1, . . . , fw : [v]→ [0, 1] be
functions with

∑
i E[fi] = µ. Let α = G(x, y) for (x, y) ∈u [vc]× [D]`. Then, for all θ ≥ 0,

E
α

[
exp

(
θ
∑
i

fi(αi)

)]
≤ exp(eθwε) · exp(eθµ) + exp(2θw)

(
e(µ+ wε)

`

)`
+ exp(θw) · (wv−c/2).

Proof. Let Yi = fi(αi). Note that for any fixed x, the random variables Y1, . . . , Yw are `-wise in-
dependent with respect to the randomness of y. We bound the expectation of exp (θ

∑
i fi(αi)) =

exp (θ
∑
i Yi) as follows:

• Using sampling properties of extractors, Lemma 3.4, w show that with probability at least
1− wv−c/2 over x ∈u [vc],

∑
i Ey[Yi] ≤ µ+ wε.

• We then apply the previous lemma to the Yi’s conditioned on x satisfying the above event.

For i ∈ [w], call x ∈ [vc] i-bad if

|E[Yi|x]− µi| =
∣∣∣∣ E
z∈u[D]

[fi(z ◦ E(x, z))]− µi
∣∣∣∣ ≥ ε.

Call x ∈ [vc] bad if it is j-bad for some j ∈ [w] and good otherwise. Fix j ∈ [w]. For z ∈ [D],
define gz : [v/D] → [0, 1] by gz(x

′) = fj(z ◦ x′). Then,
∑
z∈[D] Ex′∈u[v/D][gz(x

′)] = DEj [fj ] =
Dµj ; thus, x is j-bad if and only if∣∣∣∣∣∣(1/D)

∑
z∈[D]

gz(E(x, z))− µj

∣∣∣∣∣∣ ≥ ε.
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Therefore, by Lemma 3.4, for every j ∈ [w], there are at most vc/2 bad strings. Thus,
Prx∈u[vc][x is j-bad] ≤ v−c/2. Then, by a union bound, Prx∈u[vc][x is bad] ≤ wv−c/2. Finally,
conditioned on x being good,∑

j

E
y
[Yj ] =

∑
j

E
z∈u[D]

[fj(z ◦ E(x, z))] ≤
∑
j

(µj + ε) = µ+ wε. (6.2)

Now, conditioned on x, the random variables Y1, . . . , Yw are `-wise independent by the defi-
nition of G(x, y). Therefore, by Lemma 6.1, for good x,

E
y

[
exp

(
θ
∑
i

fi(αi)

)]
= E

y

[
exp

(∑
i

Yi

)]

≤
∏
i

E
y
[exp (θYi)] + exp(2θw)

(
e(µ+ wε)

`

)`
≤
∏
i

(
1 + (eθ)E

y
[Yi]

)
+ exp(2θw)

(
e(µ+ wε)

`

)`
≤ exp((eθ)

∑
i

E
y
[Yi]) + exp(2θw)

(
e(µ+ wε)

`

)`
≤ exp((eθ)(µ+ wε)) + exp(2θw)

(
e(µ+ wε)

`

)`
.

Finally, as exp(θ
∑
i fi(αi)) ≤ exp(θw) always, we get that

E
x,y

[
exp

(
θ
∑
i

fi(αi)

)]
≤ exp((eθ)(µ+ wε)) + exp(2θw)

(
e(µ+ wε)

`

)`
+ Pr[x is bad] exp(θw)

≤ exp(eθwε) · exp(eθµ) + exp(2θw)

(
e(µ+ wε)

`

)`
+ exp(θw) · (wv−c/2).

Proof of Theorem 1.8. The theorem follows by applying the above lemma with ε = µ/w, θ =
ln 2, ` = 12w/(logw). Note that for this setting, there exist extractors as in Equation 6.1 with
D = ((log v)/ε)O(1) so that

logD = O(log log v + logw + log(1/µ)).

With this setup, as µ ≤ 1, we get

E
z∈u{0,1}r

[
exp

(
θ
∑
i

fi(G(z)i)

)]
≤ exp(2wε) · exp(2µ) + exp(2w)

(
2eµ

`

)`
+ exp(w) · wv−c/2

≤ 1 +O(µ) + exp(w) · wv−c/2,

as ε ≤ µ/w. We now set c = C max (1, (w + log(1/µ))/(log v)) for a sufficiently large constant
C so that the last term is also O(µ).

The seed-length of the generator is

r = c log v + `(logD) = O(log v + w + w((log log v) + (log(1/µ)))/(logw)).

The theorem now follows.
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7 Explicit resilient functions

Here we present our main construction proving Theorem 1.2. Fix v, w. For a string α ∈ [v]w,
define an associated partition Pα of [n] ≡ [vw] into w-sized blocks as follows:

• Write {1, . . . vw} from left to right in w blocks of length v each. Now, permute the k’th
block by shifting the integers in that block by adding αk modulo v.

• The i’th part now comprises of the elements in the i’th position in each of the w blocks.

Formally, for i ∈ [v] Pαi = {(k − 1)v + ((i − αk) mod v) : k ∈ [w]}. As in [CZ15], our final
function will be fP for P = {Pα : α ⊆ U} for a suitably chosen set of strings U ⊆ [v]w.

7.1 Polynomially resilient functions from Reed-Solomon code

For intuition, we first use our arguments to present a simpler variant of the construction of
[CZ15] (e.g., the function below is depth 3 as opposed to the depth 4 construction of [CZ15]) to
get a (n1−δ)-resilient function from Reed-Solomon codes as alluded to in the introduction.

Let 1 ≤ w ≤ v, where v is prime. For some parameter ` ≥ 1 to be chosen later, let G` : [v]` →
[v]w be an `-wise independent generator as in Lemma 3.7 and let RS = {G`(x) : x ∈ [v]`}. Let
f ≡ fRS = fP , where P = {Pα : α ∈ RS}. We show that for any constant 0 < β < 1, and
` ≥ 1/2β, fRS is Ω(n1−β)-resilient and has bias 1/2± n−Ω(1).

Lemma 7.1. For 1 ≤ ` ≤ w, fRS as defined above is a (w − `)-design.

Proof. First note that for any α, β ∈ [v]w and i, j ∈ [v],, |Pαi ∩P
β
j | = |{k ∈ [w] : βk−αk = (j−i)

mod v}| ≤ w − dH(α, β). From the properties of RS as in Lemma 3.7, for α 6= β ∈ RS,

dH(α, β) ≥ w − `. Therefore, for α 6= β ∈ RS, |Pαi ∩ P
β
j | ≤ w − dH(α, β) ≤ `. The claim now

follows from the definition of design.

Lemma 7.2. For 1 ≤ ` ≤ w/2, RS is (q, τ)-load balancing for τ = 2` + 2w(q/v)`−1.

Proof. The argument here is similar to the proofs of Chernoff bounds for random variables with
limited independence (especially those typically used in analyzing limited independence hash
functions).

Let Q ⊆ [n] with |Q| = q ≤ v and fix an index j ∈ [v]. Let α ∈u RS and let X = |Q ∩ Pαj |;
note that E[X] = q/v. We are interested in estimating E[1(X > 0)2X ]. We do so by first proving
a tail bound on X. To this end, for 1 ≤ i ≤ w, let

Xi =

{
1 if j − αi ∈ Q ∩ {(i− 1)v + 1, (i− 1)v + 2, . . . , (iv)}
0 otherwise

.

Then, from the definition of the parition Pαj , X = X1 + X2 + · · · + Xw. Further, as each Xi

only depends on αi, X1, . . . , Xw are `-wise independent. Therefore, by a standard calculation,

Pr[X ≥ `] ≤ E[S`(X1, . . . , Xw)] =
∑

I⊆[w],|I|=`

E

[∏
i∈I

Xi

]

=
∑

I⊆[w],|I|=`

∏
i∈I

E[Xi] ≤
(
w

`

)(∑w
i=1 E[Xi]

w

)`
.

where the last inequality follows from Fact 3.14. Now, as E[X] = q/v, the above expression
simplifies to

Pr[X > `] ≤
(
w

`

)
· (q/wv)` ≤

(eq
v`

)`
.
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Thus, for ` ≥ 3,

E
[
1(Q ∩ Pαj 6= ∅)2|Q∩P

α
j |
]

= E
[
1(X > 0)2X

]
= Pr[X < `]E

[
1(X > 0)2X |X < `

]
+ Pr[X ≥ `]E

[
1(X > 0)2X |X ≥ `

]
≤ 2` Pr[X > 0] + 2w Pr[X > `]

≤ 2`(q/v) + 2w(q/v)`.

The claim now follows from the definition of load balancing.

We next use the above claims along with Theorems 2.3 and 2.5 for a suitable setting of
parameters.

Lemma 7.3. For all 0 < δ < 1, there exists a constant cδ ≥ 1 and a suitable choice of
v = Θδ(2

ww) such that the following holds. For ` ≥ 1/δ, the function fRS as defined above is
cδ2
−w-strongly resilient and Prx∈u{0,1}n [fRS(x) = 1] = 1/2± 2−Ω(w).

Proof. Let ` = max(3, d1/δe). For v to be chosen in a little bit, let u = v` and f ≡ fRS . We
would like our choice of v to minimize |v−2w ln((ln 2)/v`)| so that we can get an almost-balanced
function using Fact 3.16. To this end, let φ : R+ → R be defined by

φ(x) = x− 2w ln((ln 2)x`)

and let x∗ ≥ 1 be such that φ(x∗) = 0. There exists such an x∗ by the continuity of φ. It is also
easy to check that for w sufficiently large, φ′(y) ≥ 0 for all y ≥ x∗. We set v to be the smallest
prime larger than x∗.7 Note that v ≤ x∗+B where B = 2c1w for some universal constant c1 < 1
(see [Wik] for instance), so that 0 = φ(x∗) ≤ φ(v) ≤ φ(x∗) + B. Let θ = (1− 2−w)v. Then, by
Fact 3.16, (1 + θ)u = O(1) and

bias(u, v, w) = (1− θ)u = 1/2±O(1)2−Ω(w).

Now, by Lemma 7.1 and Theorem 2.3,

Pr
x←D1/2

[fRS(x) = 1] = bias(u, v, w)± exp(−Ω(w − `)) = bias(u, v, w)± exp(−Ω(w)).

Next, by Lemma 7.2 and Theorem 2.5, for any q ≤ 2w(1−δ), as ` ≥ d1/δe,

Iq(fRS) ≤ u(1− 2−w)v−q · (2−wq) ·
(
2` + 2w(q/v)`−1

)
≤ O(1) · (2−wq) · (2` + 2w2−`δw)

= Oδ(2
−wq).

Therefore, fRS is Oδ(2
−w)-strongly resilient.

Corollary 7.4. For all 0 < δ < 1, there exists a constant cδ ≥ 1 such that the following
holds. There exists an explicit depth-three monotone function f : {0, 1}n → {0, 1} which can be
computed in time ncδ such that for t ≥ cδ(log n)4

• f is almost balanced: for any t-wise independent distribution D on {0, 1}n, Prx←D[f(x) =
1] = 1/2± n−Ω(1).

• f is t-wise cδn
−(1−δ)-strongly resilient.

7We can find such a prime in time 2O(w) which is fine for us.
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Proof. We instantiate the previous lemma to get f ≡ fRS for δ′ = δ/2. Then, n = O(2ww2)
so that 2w(1−δ′) = Ω(n1−δ). To analyze the bias under t-wise independent distributions, we
apply Corollary 4.2 with d = w/2, ε = 1/n instead of Theorem 2.3 in the above argument.
Similarly, to analyze the influence under t-wise independent distributions we use Corollary 5.1
with ε′ = 1/(n3) instead of Theorem 2.5. Then, the amount of independence needed is O(w2d2+
wd log(1/ε)) = O(log4 n).

7.2 Proof of Theorem 1.2

We now prove Theorem 1.2. The approach is similar to the above with one crucial difference:
we use the output of the generator from Theorem 1.8 instead of the Reed-Solomon code. We
ensure the requisite design properties to apply Theorem 2.3, at a high-level, by padding the
output of the generator with a Reed-Solomon code.

Let c be a sufficiently big constant to be chosen later and suppose that v,D are prime
numbers below. Let E : [vc]× [D]→ [v/D] be a strong extractor with error ε = poly(1/w) and
D = poly(w) to be chosen later. Let ` = Θ(w/(logw)) be a parameter to be chosen later. Let
Gc : [v]c → [v]2c, G` : [D]` → [D]w−2c generate a c-wise independent distribution over [v] and a
`-wise independent distribution over [D] respectively as guaranteed by Lemma 3.7.

Now, define U : [vc]× [D]` → [v]w as follows:

U(x, y)i =

{
Gc(x)i if 1 ≤ i ≤ 2c

G`(y)i−2c ◦ E(x,G`(y)i−2c) if 2c < i ≤ w
. (7.1)

(Here, we associate an element of [D]× [v/D] with an element of v in a straightforward bijective
manner.)

Abusing notation, we let U = {U(x, y) : x ∈ [vc], y ∈ [D]`} ⊆ [v]w as well. Our final function
will be f ≡ fP for P = {Pα : α ∈ U}. The following claims help us apply Theorem 2.3 and
Theorem 2.5 to analyze fP .

Lemma 7.5. For all c < (w − `)/3, P is a (c, w − 2c− `, 1/D`)-design.

Proof. Note that for any α, β ∈ [v]w, and any i, j ∈ [v], |Pαi ∩P
β
j | = |{k ∈ [w] : βk−αk = (j− i)

mod v}| ≤ w − dH(α, β).
Let α = G(x, y) 6= β = G(x′, y′) ∈ U . We consider two cases depending on whether

y 6= y′. If y 6= y′, then dH(α, β) ≥ dH(G`(y), G`(y
′)) ≥ w − 2c − `; similarly, if x 6= x′, then

dH(α, β) ≥ dH(Gc(x), Gc(x
′)) ≥ c. Therefore, dH(α, β) ≥ min(c, w − 2c− `) = c. Hence, P is a

c-design.
Now, consider any fixed α = G(x, y) ∈ U , i, j ∈ [v], and β = G(x′, y′) ∈u U . Then, by the

above argument, if y 6= y′, dH(α, β) ≥ w−2c− ` so that |Pαi ∩P
β
j | ≤ 2c+ `. On the other hand,

Pr[y′ 6= y] ≥ 1− 1/D`. Thus,

Pr
β∈uU

[|Pαi ∩ P
β
j | ≥ w − (w − 2c− `)] ≤ Pr[y′ = y] ≤ 1/D`.

Therefore, P is a (c, w − 2c− `, 1/D`)-design as needed.

We next use Lemma 6.2 to analyze the load-balancing properties of P.

Lemma 7.6. Let U be as in Equation 7.1 for E being a ((c log v)/2, ε)-extractor for ε < 1/w
and ` ≥ 6w/(logw). Then, P = {Pα : α ∈ U} is (q, τ)-load balancing for q ≤ v and τ =
O(22c + (vw2w)v−c/2).
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Proof. Let Q ⊆ [n] with |Q| = q ≤ v and fix an index j ∈ [v]. Let α ∈u U and let X = |Q∩Pαj |;
note that E[X] = q/v. For 1 ≤ i ≤ w, let

Xi =

{
1 if j − αi ∈ Q ∩ {(i− 1)v + 1, (i− 1)v + 2, . . . , (iv)}
0 otherwise

.

Then, from the definition of the parition Pαj , X = X1 +X2 + · · ·+Xw.

For brevity, let E[X] = µ = q/v ≤ 1, Y =
∑2c
i=1Xi, and Z =

∑w
i=2c+1Xi. Note that

X = Y + Z. We are interested in estimating E[1(X > 0)2X ]. We do so mainly by applying
Lemma 6.2 to the random variable Z combined with the trivial observation that Y is at most
2c:

E
α∈uU

[
1(Q ∩ Pαk 6= ∅)2|Q∩P

α
k |
]

= E
[
1(X > 0)2X

]
= E

[
2X
]
− Pr[X = 0]

= E
[
2X
]
− 1 + Pr[X ≥ 1]

≤ E
[
2X
]
− 1 + E[X]

= E[2Y − 1] + E[2Y (2Z − 1)] + µ

≤ E[2Y − 1] + 22c · E[2Z − 1] + µ

≤ E[22cY ] + 22c · E[2Z − 1] + µ.

By Lemma 6.2 applied to Z with θ = ln 2, ` = 12w/(logw), and ε < 1/2w, we get that

E[2Z ] = O(1) exp(O(µ)) + 2w
(

2e

`

)`
+O(w2w)v−c/2

≤ 1 +O(µ) + 2−w +O(w2v)v−c/2.

Further, E[Y ] ≤ E[X] = µ. Therefore, as µ ≥ 1/v,

E
[
1(Q ∩ Pαk 6= ∅)2|Q∩P

α
k |
]
≤ O(22c)µ+O(1)w2wv−c/2 ≤ O(1) · µ · (22c + w2wv−c/2+1).

Proof of Theorem 1.2. The theorem follows essentially by combining the above two lemmas and
Theorem 2.3, Theorem 2.5. We first set up some parameters. Let c ≥ 2 be a sufficiently large
constant to be chosen later. Let w ≥ 1 be arbitrary and ε = 1/w3. Let D = ((c log v)w)C

for some universal constant C so that there exists an explicit (c(log v)/2, ε)-strong extractor
E : [vc] × [D] → [v/D] for all c ≥ C as in Theorem 3.5. Set v = Θ(2ww) to be chosen
precisely in a little bit. For this setting of v, let U ⊆ [v]w be as defined in Equation 7.1 with
` = 12w/(logw) and E as the extractor. Let P = PU . Then, |U| := u = vc ×D`. We will show
that f ≡ fP satisfies the conditions of Theorem 1.2 for c sufficiently large.

As in the proof of Lemma 7.3, we would like v to be as close as possible to 2w ln((ln 2)u).
To this end, let φ : R+ → R be defined by

φ(x) = x− 2w (c lnx+ C` ln(log x) + C` ln(cw) + ln ln 2)

and let x∗ ≥ 1 be such that φ(x∗) = 0. There exists such an x∗ by the continuity of φ. Let
v be the smallest prime larger than x∗. Note that v ≤ x∗ + B where B = 2c1w for some
universal constant c1 < 1 (see [Wik] for instance), so that 0 = φ(x∗) ≤ φ(v) ≤ φ(x∗) + B. Let
θ = (1− 2−w)v. Then, by Fact 3.16, (1 + θ)u = O(1) and

bias(u, v, w) = (1− θ)u = 1/2±O(1)2−Ω(w). (7.2)
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Analyzing bias: By Lemma 7.5, P is a (c, w − 2c − `, 1/D`)-deisgn. Therefore, by Theo-
rem 2.3,

Pr
x∈u{0,1}n

[fP(x) = 1] = bias(u, v, w) + w exp(−Ω(w)) + exp(−Ω(c)) + 2w/D`

= bias(u, v, w) + exp(−Ω(c)),

as D` � 2w for C a sufficiently large constant.

Analyzing influence: We claim that fP has small influence for coalitions of size o(2w).
Let 1 ≤ q ≤ v so that q/v ≤ 1. Then, by Lemma 7.6, P is (q, τ)-load balancing for

τ = O(22c)(1 + v−c/2+1) = O(22c).

Therefore, by Theorem 2.5, for all q ≤ v,

Iq(fP) ≤ u(1− 2−w)v−q · 22c(2−wq) = O(22c)2−wq = O(22c) ·
(
(log2 n)/n

)
· q.

Here, the last inequality follows as 2w = Θ(n/(log2 n)).
The theorem now follows by choosing c to be a sufficiently large constant.

We next prove Theorem 1.7.

Proof of Theorem 1.7. The proof is exactly the same as the above argument for Theorem 1.2
but instead of using Theorem 2.3 we use Corollary 4.2 with d = c, ε = 1/u and instead of
Theorem 2.5 we use Corollary 5.1 with ε = 1/(uv2). The amount of independence we need is
t � O(w2d2 + wd log(1/ε)) = O(log2 n) as required for the theorem. Note that the error 1/9
can be made to be an arbitrary small constant.

8 Better two-source extractors

Our improved quantitative bounds for two-source extractors follow immediately by using our
resilient functions, Theorem 1.7 and Corollary 7.4 in the reduction of [CZ15]. Concretely, [CZ15]
show the following for some universal constants 0 < c < 1 and C,C ′ ≥ 1. Suppose for some
functions ε : Z+ → [0, 1], and t : Z+ → Z+, the following holds: for all m ≥ 1, there exists
an explicit t(m)-wise (m1−c, ε)-resilient function f : {0, 1}m → {0, 1} with Prx∈u{0,1}m [f(x) =
1] = 1/2 ± ε(m). Then, there exists an explicit (n, k) two-source extractor with error at most
ε(nC) and k ≥ C ′ · (t(nC))4 log2 n. Instantiating this reduction with the resilient function from
Theorem 1.7 (with 1/9 replaced with a sufficiently small constant) gives Theorem 1.4; similarly,
using Corollary 7.4 gives Theorem 1.5.
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A Missing proofs

Proof of Lemma 3.13. For a set T ⊆ [v], let n(T ) = |{(I1, . . . , Ir) : |Ij | = k, ∀j ∈ [r] and ∪rj=1

Ij = T}|. Then,

Sk(X1, . . . , Xv)
r =

∑
I1,...,Ir∈([v]

k )

∏
i∈∪rj=1Ij

Xi =
∑
T⊆[v]

n(T )
∏
i∈T

Xi.

Thus,

E[Sk(X1, . . . , Xv)
r] =

∑
T⊆[v]

n(T )p|T |.

Finally, observe that for any T with |T | = t, n(T ) ≤
(
t
k

)r ≤ (et/k)r. Thus,

E[Sk(X1, . . . , Xv)
r] ≤

kr∑
t=k

(
v

t

)
· pt
(
et

k

)r

≤
kr∑
t=k

(evp
t

)t
·
(
et

k

)r
≤

kr∑
t=k

(
1

2

)r
·
(evp
t

)t−r
≤ (1/2)k,

as evp/t ≤ 1/4, and e2vp/k ≤ 1/2.

Proof of Fact 3.16. Note that under the assumptions we must have v = Ω(2ww). Then, by Fact
3.15,

(1− 2−w)B+2w ln(u/(ln 2)) ≤ θ ≤ (1− 2−w)2w ln(u/(ln 2)) ≤ (ln 2)/u.

Therefore, (1 + θ)u = O(1) and

(1− θ)u ≥ (1− (ln 2)/u)u ≥ 1/2(1− (ln 2)/u)ln 2 ≥ 1/2(1−O(1)/u).

Further,

θ ≥ ((ln 2)/u) · (1− 2−w)B+ln((ln 2)u) ≥ ((ln 2)/u) · (1−O(B + lnu)2−w).

Thus,

(1− θ)u ≤ exp(−uθ) ≤ (1/2)(1−O(B lnu)2−w) ≤ 1/2±O(B lnu)2−w.

Proof of Lemma 6.1. The proof relies on the following elementary inequality about symmetric
polynomials: for all 0 ≤ a1, . . . , aw ≤ A,

∏
i

(1 + ai) ≤
`−1∑
i=1

Si(a1, . . . , aw) + (1 +A)w · S`(a1, . . . , aw).
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Let Zi = exp(θYi) − 1. Let p(Z) =
∑`−1
i=1 Si(Z1, . . . , Zw). Applying the above inequality to

Z = (Z1, . . . , Zw) we get

E [exp(θ(Y1 + · · ·+ Yw))] = E

[∏
i

(1 + Zi)

]
≤ E[p(Z)] + exp(θw) · E[S`(Z)] ≤

E[p(Z)] + exp(θw) ·
(
w

`

)
·
(∑

i E[Zi]

w

)`
,

where the last inequality follows because Z’s are `-wise independent so that by Fact 3.14

E[S`(Z)] =
∑

I⊆[w],|I|=`

∏
i∈I

E[Zi] ≤
(
w

`

)
·
(∑

i E[Zi]

w

)`
.

Now, for any i ∈ [w],

E[Zi] =

∞∑
j=1

θj E[Y ji ]

j!
≤
∞∑
j=1

θj E[Yi]

j!
= E[Yi](e

θ − 1).

Therefore,
∑
i E[Zi] ≤ eθ(

∑
i E[Yi]) = eθ · µ. Finally, note that as {Z1, . . . , Zw} are `-wise

independent, the expectation of p(Z) would be the same as when the Z’s were independent.
However, in this case,

E[p(Z)] ≤ E

[∏
i

(1 + Zi)

]
=
∏
i

E[(1 + Zi)].

Combining the above equations, we get

E [exp(θ(Y1 + · · ·+ Yw))] ≤
∏
i

E[exp(θYi)] + exp(θw) ·
(
w

`

)
· (eθµ/w)`

≤
∏
i

E[exp(θYi)] +
exp(2θw)(eµ)`

``
.

This finishes the claim.
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