
Arithmetic circuit classes over Zm

Eric Allender
Department of Computer Science, Rutgers University

Piscataway, NJ, USA
allender@cs.rutgers.edu

Asa Goodwillie
Department of Mathematics, Amherst College

Amherst, MA, USA
asa.k.goodwillie@gmail.com

September 4, 2015

Abstract

We continue the study of the complexity classes VP(Zm) and ΛP(Zm)
which was initiated in [AGM15]. We distinguish between “strict” and
“lax” versions of these classes and prove some new equalities and inclu-
sions between these arithmetic circuit classes and various subclasses of
ACC1.

1 Introduction

This short note considers the complexity classes VP and ΛP, continuing an inves-
tigation that was begun in [AGM15]. VP is a relatively well-studied complexity
class (see, e.g. [Val79, VSBR83, Bür99, Bür00, GW96, KP11]), while the “dual”
notion ΛP is much less familiar. We briefly review these classes, before stating
the contributions of this paper.

VP is usually studied in the context of algebraic complexity theory, as a
class of polynomials. Given any semiring R, VP(R) is the class of multivariate
polynomials of polynomially-bounded degree that can be represented by a family
of arithmetic circuits {Cn : n ∈ N} over R, where each circuit Cn has size
polynomial in n. It is known [AJMV98] that an equivalent characterization of
VP(R) can be obtained by additionally imposing the restriction that each Cn

have depth O(log n), where each + gate has unbounded fan-in, and each × gate
has fan-in two. (Such circuits are said to have semiunbounded fan-in.)

An investigation was begun in [AGM15] into the dual notion of semiun-
bounded fan-in arithmetic circuits, where the × gates have unbounded fan-in,
the + gates have fan-in two, while the size and depth are still restricted to be

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 145 (2015)

polynomial and logarithmic in n, respectively. This class of polynomials was
dubbed ΛP(R) [AGM15].

Here, as in [AGM15], our focus is on how these classes relate to various
well-known subclasses of P. One natural way to do this is to consider the class
of languages that are logspace-Turing-reducible to VP(R) and ΛP(R), in the
following sense:

Let f be a function, f : {0, 1}∗ → {0, 1}∗ where the length of f(x) is bounded
by a polynomial in the length of x. Lf is the class of languages accepted by
logspace-bounded oracle Turing machines equipped with a query tape that is
not subject to the space bound, using the oracle {(x, i, b) : the i-th bit of f(x) is
b}. For more formal definitions, see, e.g. [LL76]. For a class of functions C (such
as VP(Q),VP(Fp),ΛP(Fp),VP(Zm), etc.) LC is defined to be the union over all
f ∈ C of Lf (using a natural encoding of elements of Q,Fp, and Zm as binary
strings). This gives a useful characterization of the computational complexity
of functions in these various classes C.

It is observed in [AGM15] that for any prime p and any positive integer

k, LVP(Fpk) and LΛP(Fpk) each correspond to the class of languages whose
characteristic functions lie in VP(Fpk) and ΛP(Fpk), respectively. That is, for

example, if A ∈ LΛP(Fpk), then there is a family of multivariate polynomials
{fn : n ∈ N} ∈ ΛP(Fpk), such that for any string x = x1 . . . xn of length n, x ∈ A
if and only if fn(x1, . . . , xn) = 1, and otherwise fn(x1, . . . , xn) = 0. Thus the
following convention was adopted in [AGM15]: When it results in no confusion,
VP(Fpk) and ΛP(Fpk) will refer to the class of languages whose characteristic
functions lie in the given class.

The phrase “When it results in no confusion” can be dangerous. For exam-
ple, consider the following conjecture that appears in [AGM15]:

Conjecture 1. ACC1 =
⋃

m LVP(Zm).

The authors of [AGM15] intended that, in this context, VP(Zm) would rep-
resent the class of functions represented by VP polynomials operating over Zm.
But the notation does not make this clear; one could also attempt to interpret
LVP(Zm) as denoting the class of languages logspace-Turing-reducible to a lan-
guage whose characteristic function lies in VP(Zm). In this paper, we show that
interpreting the notation in this way causes the statement of Conjecture 1 to
be rather unlikely to be true.

In order to disambiguate the notation, let us distinguish between the follow-
ing two classes:

• strictVP(Zm) denotes the class of languages A for which there exists a
family of multivariate polynomials {fn : n ∈ N} ∈ VP(Zm), such that for
any string x = x1 . . . xn of length n, x ∈ A if and only if fn(x1, . . . , xn) = 1,
and otherwise fn(x1, . . . , xn) = 0. (This corresponds to what is called
exact representation in the survey by Williams [Wil14].)

• laxVP(Zm) denotes the class of languages A for which there exists a family
of multivariate polynomials {fn : n ∈ N} ∈ VP(Zm), such that for any

2

string x = x1 . . . xn of length n, x ∈ A if and only if fn(x1, . . . , xn) 6=
0. (This is essentially the type of representation that is considered in
[BBR94].)

The classes strictΛP(Zm) and laxΛP(Zm) are defined analogously. For the
rest of the paper, the notation VP(Zm) and ΛP(Zm) will be used to denote the
function classes. When working over finite fields, we will continue to use the
notation VP(Fpk) and ΛP(Fpk) to denote the language classes, since these lan-
guage classes capture all of the relevant aspects of the complexity of the function
classes, and hence there is little to be gained by using the more cumbersome
notation.

1.1 Our Contributions

First, we observe that the language classes laxVP and laxΛP capture the compu-
tational complexity of the function classes VP and ΛP. Namely, we show that
the following equalities hold:

• LVP(Zm) = LlaxVP(Zm).

• LΛP(Zm) = LlaxΛP(Zm).

If m is prime, then these classes coincide with strictVP(Fm) and strictΛP(Fm),
respectively.

The following proposition is also clear:

Proposition 1. Let p be a prime divisor of m. Then VP(Fp) ⊆ laxVP(Zm) and
ΛP(Fp) ⊆ laxΛP(Zm).

To see this, let {Cn | n ∈ N} be a family of circuits defining a language in
VP(Fp). (The argument is identical for ΛP(Fp).) Then the circuit (m/p) × Cn

evaluates to 0 (mod m) on input x if and only if x is rejected by Cn.
Thus laxVP(Zm) contains the union of all VP(Fp) for all primes p that divide

m. (A similar result holds for the ΛP classes.)
The main contribution of this note is to observe that strictVP(Zm) and

strictΛP(Zm) correspond exactly to the intersection of the corresponding classes
for each p that divides m.

In Section 5, we give a somewhat better upper bound on the complexity of
LΛP(Zm) than was presented in [AGM15], where it was merely shown that this
class is contained in ACC1.

2 Background

In [AGM15], Allender et al. defined ΛP as a dual counterpart to the older
and better known VP class, and established Boolean characterizations of both
arithmetic classes over finite fields, showing that for every prime p and every
positive integer k, VP(Fpk) = VP(Fp) = CC1[p] and ΛP(Fpk) = AC1[Supp(pk −
1)], where Supp(m) denotes the set of prime factors of a positive integer m.

3

Since Zp = Fp for any prime p, these results give Boolean characterizations of
VP and ΛP over Zp when p is prime: strictVP(Zp) = laxVP(Zp) = CC1[p] and
strictΛP(Zp) = laxΛP(Zp) = AC1[Supp(p − 1)]. Focusing on the strict versions
of VP and ΛP, we extend this from prime moduli to moduli that are powers of
primes, obtaining Boolean characterizations of strictVP and strictΛP over Zpk ,
and we describe strictVP(Zm) and strictΛP(Zm) for an arbitrary modulus m in
terms of the special prime power cases.

First, we restate the central definitions.

Definition 1. Let R be a commutative semiring with unity. (Throughout, every
(semi)ring we discuss will be assumed to be a (semi)ring with unity, and a
homomorphism ψ : R→ S will be assumed to take 1R to 1S.) We let strictVP(R)
(resp. laxVP(R)) denote the class of all languages A ⊆ {0, 1}∗ for which there
exists a logspace-uniform circuit family {Cn | n ∈ N} such that

• the depth of Cn is O(log n),

• each Cn consists of n input gates, along with × gates of fan-in two and
+ gates of unbounded fan-in and perhaps some constant gates, each out-
putting some constant c ∈ R, and

• for every string w = w1 · · ·wn ∈ {0, 1}∗ of length n, the output of Cn

evaluated over R on input w1, . . . , wn is 1 (resp. non-zero) if w ∈ A and
0 otherwise.

To evaluate Cn over R on input w = w1 · · ·wn ∈ {0, 1}∗, we define vi = 0R

if wi = 0 and vi = 1R if wi = 1 (where 0R and 1R denote the additive and
multiplicative identities of R, respectively) and evaluate Cn on inputs v1, . . . , vn.

The definition of strictΛP(R) and laxΛP(R) is precisely the same, except that
the + gates are restricted to have fan-in two while the fan-in of the × gates is
unrestricted.

This paper should be viewed as a companion to [AGM15]. The reader is
referred to [AGM15] for definitions of classes (such as CC1[m]) that are not
defined here.

3 Lax Classes

In this section, we observe that laxVP(Zm) and laxΛP(Zm) capture the complex-
ity of the function classes VP(Zm) and ΛP(Zm), respectively.

Proposition 2. The following equalities hold:

• LVP(Zm) = LlaxVP(Zm).

• LΛP(Zm) = LlaxΛP(Zm).

If m is prime, then these classes coincide with strictVP(Fm) and strictΛP(Fm),
respectively.

4

Proof. In each case, containment from right to left is immediate. Thus let A be
an element of Lf for some f ∈ VP(Zm). Let g be the function f − x for a new
variable x. Clearly g ∈ VP(Zm).

In order to simulate the computation of a logspace-bounded oracle machine
with oracle f , we will use the oracle B = {(x, y) : g(x, y) 6= 0}, which is an
element of laxVP(Zm). If the machine we are simulating wants to obtain the
value of the i-th bit of f(z), we simply ask oracle B about each of the strings
(x, z) for each x ∈ Zm. There will be precisely one such x for which g(x, z) is
equal to 0, and once we have obtained this x, we have enough information to
continue the simulation of the original oracle machine, and recognize A.

The argument for ΛP is identical. (The additional characterizations for prime
m are proved in [AGM15].)

4 Strict Classes

The following lemma allows us to use ring homomorphisms to translate state-
ments about circuits over one algebraic structure to statements about circuits
over another algebraic structure.

Lemma 1. Let R and S be commutative rings and let ψ : R→ S be a function
that respects addition and multiplication; i.e., for every x, y ∈ R, ψ(x + y) =
ψ(x) + ψ(y) and ψ(xy) = ψ(x)ψ(y). Note that this is slightly weaker than the
requirement that ψ be a ring homomorphism, since we do not require ψ(1R) =
1S. Let C be an arithmetic circuit consisting of + and × gates, constant gates,
and n input gates, and let ψC denote the same circuit with each constant c ∈ R
replaced by ψ(c) ∈ S. If the output of C on inputs v1, . . . , vn is w, then the
output of ψC on inputs ψ(v1), . . . , ψ(vn) is ψ(w).

Proof. The circuit C forms a directed acyclic graph, so there exists some order-
ing g1, . . . , gk of the gates of C which forms a topological sort, i.e., such that
if C contains an edge from gi to gj , then i < j. We will give an inductive
proof of the stronger statement that for each gate gi of C, if the output of gi

is wi when the circuit is evaluated on inputs v1, . . . , vn, then the output of the
corresponding gate in ψC when ψC is evaluated on inputs ψ(v1), . . . , ψ(vn) is
ψ(wi). The lemma is then just the special case of this statement where gi is
taken to be the output gate of C.

By our assumption on the ordering of the gates of C, g1 has in-degree zero,
so it is either a constant gate outputting c ∈ R or an input gate xk. If it is a
constant gate, then the corresponding gate in ψC outputs ψ(c) by construction;
in the latter case, g1 outputs vk while the corresponding gate in ψC outputs
ψ(vk). Thus the statement holds for i = 1.

Now assume that the assertion holds for gates g1, . . . , gi−1, and consider
gi. If gi is a constant gate or an input gate, the assertion holds by the same
argument that we used for g1. Suppose gi is an addition gate gi =

∑li
j=1 gni(j),

with ni(j) < i for 1 ≤ j ≤ li by our assumption on the ordering of the gates
of C. Then the output of the corresponding gate of ψC is

∑li
j=1 ψ(wni(j)) =

5

ψ
(∑li

j=1 wni(j)

)
= ψ(wi). If gi is a multiplication gate, the assertion holds by

the same argument.

Corollary 1. Let R and S be commutative rings and let ψ : R → S be a
ring homomorphism. (In particular, here we require ψ(1R) = 1S, in contrast
to the weaker hypothesis of Lemma 1.) Then strictVP(R) ⊆ strictVP(S) and
strictΛP(R) ⊆ strictΛP(S).

Proof. We will prove the statement about strictVP; the proof for strictΛP is
identical.

Let A ⊆ {0, 1}∗ be in strictVP(R), and let {Cn | n ∈ N} be the corresponding
arithmetic circuit family as described in Definition 1. Consider the arithmetic
circuit family {ψCn | n ∈ N}, where ψC is defined as in Lemma 1. For any
string w ∈ A of length n, the output of Cn evaluated over R on input w is
1R, so by Lemma 1 the output of ψCn on input w is ψ(1R) = 1S . Similarly,
on any input string w ∈ {0, 1}∗ of length n with w 6∈ A, the output of ψCn

is ψ(0R) = 0R. Thus, by the existence of the circuit family {ψCn}, we have
A ∈ strictVP(S).

Recall that (as shown in [AGM15]) VP(Fp) = VP(Fpk); that is, arithmetic
circuits of logarithmic depth with bounded fan-in × gates over a finite field of
order equal to a power of a prime provide no more expressive power than such
circuits over the finite field of the corresponding prime order. In the following
theorems, we show that similar results hold in the Zm setting for both strictVP
and strictΛP. This is in some sense a neater picture than the one obtained by
working over finite fields, where it is not believed in general that ΛP(Fp) =
ΛP(Fpk).

Theorem 1. For any prime p and any integer k ≥ 1, strictVP(Zpk) = CC1[p] =
strictVP(Zp).

Proof. The second equality was proven in [AGM15]. By Corollary 1, the con-
tainment strictVP(Zpk) ⊆ strictVP(Zp) follows from the fact that ψ : Zpk → Zp

given by ψ([n]pk) = [n]p is a homomorphism. It remains to prove that CC1[p] ⊆
strictVP(Zpk).

Given a CC1[p] circuit C, we construct an arithmetic subcircuit over Zpk to
simulate each gate g of C. If g is a NOT gate, g = ¬h, then the corresponding
subcircuit is g = (h+ (pk − 1))× (h+ (pk − 1)). If g is an AND gate of fan-in
two, g = h1 ∧ h2, then the corresponding subcircuit is g = h1 × h2. Binary OR
gates are handled with DeMorgan’s laws.

Finally, if g is a MODp gate with inputs h1, . . . , hl, consider the subcir-

cuit g′ =
(∑l

i=1 hi

)pk−1(p−1)

. If the original MODp gate evaluates to 1, then∑l
i=1 hi ≡ 0 (mod p), so the sum

∑l
i=1 hi is a multiple of p. Since pk−1(p−1) ≥

6

k,
(∑l

i=1 hi

)pk−1(p−1)

is a multiple of pk, so g′ evaluates to 0. If the origi-

nal MODp gate evaluates to 0, then the sum
∑l

i=1 hi is not a multiple of p
and is therefore a unit in Zpk , so (since pk−1(p − 1) is the size of the multi-
plicative group (Zpk)×) g′ evaluates to 1. Thus the subcircuit corresponding
to g is simply the negation of g′, using the above simulation of a NOT gate:
g = (g′ + (pk − 1)) × (g′ + (pk − 1)). The circuit constructed by this gate-
by-gate replacement is easily seen to be a strictVP(Zpk) circuit simulating the
original CC1[p] circuit, so we conclude CC1[p] ⊆ strictVP(Zpk), which completes
the proof.

In order to prove the corresponding statements about the strictΛP classes,
we need the following lemma.

Lemma 2. Let p be any prime and let k be any positive integer. If σ ∈ (Zpk)×

generates a subgroup of (Zpk)× of order q ∈ Supp(p − 1), then for any j ∈ Z,
either q | j and hence σj = 1 or σj − 1 is a unit in Zpk .

Proof. Suppose σj − 1 is a non-unit in Zpk for some j ∈ Z. We will show that
q | j. Since σj − 1 is a non-unit, it must be that σj − 1 = pr for some r ∈ Z,
i.e., σj = pr + 1. Let ψ : Zpk → Zp be the ring homomorphism given by
ψ([x]pk) = [x]p. Then we have that ψ(σj) = 1, so ψ(σ)j = 1, so the order of
ψ(σ) in (Zp)× divides j. (This follows since ψ induces a group homomorphism
from (Zpk)× to (Zp)×.) But the order of ψ(σ) divides the order of σ, which is
q, so since q is prime (because q ∈ Supp(p− 1)), the order of ψ(σ) is either 1 or
q. If this order is q, then j = qs for some s ∈ Z, and thus q|j, which is what we
needed to show.

Suppose (toward contradiction) that the order of ψ(σ) in (Zp)× is 1, i.e.,
ψ(σ) = [1]p. The set ψ−1([1]p) of congruence classes [n]pk of integers n ≡ 1
(mod p) forms a subgroup of (Zpk)× of order pk−1, so since (by assumption)
σ ∈ ψ−1([1]p), we have by Lagrange’s theorem that q | pk−1. Since q is prime,
this implies q = p, which contradicts our initial assumption q ∈ Supp(p−1).

We are now ready to prove the corresponding statement about strictΛP(Zm)
where the modulus m is a power of a prime.

Theorem 2. For any prime p and any positive integer k, strictΛP(Zpk) =
AC1[Supp(p− 1)] = strictΛP(Zp).

Proof. As above, the second equality was proven by Allender et al. in [AGM15],
and the containment strictΛP(Zpk) ⊆ strictΛP(Zp) is more or less immediate
from Corollary 1, so it remains to show AC1[Supp(p− 1)] ⊆ strictΛP(Zpk).

Again, we carry out a gate-by-gate simulation of an AC1[Supp(p− 1)] circuit
C, constructing an arithmetic subcircuit over Zpk using + and × gates of the
appropriate fan-in to simulate each gate g of C. A NOT gate is simulated as
in the proof of Theorem 1. An AND gate g = ∧l

i=1hi is simulated by a single
multiplication gate, g =

∏l
i=1 hi. OR gates are again handled using DeMorgan’s

laws.

7

Finally, we consider the case of a MODq gate g with inputs h1, . . . , hl with q ∈
Supp(p−1). Let σ be a generator of the multiplicative subgroup of (Zpk)× of or-
der q. For each input hi, construct a subcircuit h′i = 1+(σ−1)×hi, and note that

for hi ∈ {0, 1}, h′i = σhi . Construct a subcircuit g′ =
((∏l

i=1 h
′
i

)
− 1
)pk−1(p−1)

.

If
∑l

i=1 hi ≡ 0 (mod pk), then((
l∏

i=1

h′i

)
− 1

)pk−1(p−1)

=
(
σ

Pl
i=1 hi − 1

)pk−1(p−1)

= (1− 1)pk−1(p−1)

= 0.

If not, then
∏l

i=1 h
′
i = σ

Pl
i=1 hi 6= 1, so σ

Pl
i=1 hi − 1 is not equal to zero and

thus by Lemma 2 is a unit in Zpk . Since pk−1(p − 1) =
∣∣(Zpk)×

∣∣, we have

that
((∏l

i=1 h
′
i

)
− 1
)pk−1(p−1)

=
(
σ

Pl
i=1 hi − 1

)pk−1(p−1)

= 1. Thus we can
obtain the desired value by applying a subcircuit simulating a NOT gate (as
described above) to the output of g′. This gate-by-gate replacement produces
a strictΛP(Zpk) circuit simulating the original AC1[Supp(p − 1)] circuit, so we
conclude AC1[Supp(p− 1)] ⊆ strictΛP(Zpk), which completes the proof.

Again, in almost all cases we can obtain an even simpler characterization by
eliminating all gates other than the MODp gates.

Corollary 2. For any non-Fermat prime p > 2,

strictΛP(Zpk) = strictΛP(Zp) = AC1[Supp(p− 1)] = CC1[Supp(p− 1)].

Proof. We have strictΛP(Zpk) = strictΛP(Zp) = AC1[Supp(p − 1)], and it is
known that for any integer m, AC1[Supp(m)] = AC1[m], so AC1[Supp(p− 1)] =
AC1[p − 1]. By a similar argument, CC1[p − 1] = CC1[Supp(p − 1)]. It remains
to show that AC1[p− 1] = CC1[p− 1]. Since p is an odd prime, 2 divides p− 1,
and since p is a non-Fermat prime, p− 1 is not a power of 2. Thus p− 1 is not
a prime power, so by Theorem 10 of [AGM15], AC1[p− 1] = CC1[p− 1].

We now prove the following general result, which will allow us to describe
strictVP(Zm) and strictΛP(Zm) (for a general modulusm) in terms of the Boolean
characterizations of strictVP(Zpk) and strictΛP(Zpk) given above.

Theorem 3. Let R and S be commutative rings. Then strictVP(R × S) =
strictVP(R) ∩ strictVP(S) and strictΛP(R× S) = strictΛP(R) ∩ strictΛP(S).

Proof. We will prove the statement about strictVP; the proof for strictΛP is
identical.

(⊆) Since the projection functions ψR : R×S → R and ψS : R×S → S given
by ψR(r, s) = r and ψS(r, s) = s are homomorphisms, the inclusion strictVP(R×
S) ⊆ strictVP(R) ∩ strictVP(S) follows immediately from Corollary 1.

8

(⊇) Let A ⊆ {0, 1}∗ be in strictVP(R) ∩ strictVP(S), and let
{
CR

n | n ∈ N
}

and
{
CS

n | n ∈ N
}

be the associated arithmetic circuit families as described in
Definition 1. Let χR : R→ R×S and χS : S → R×S be given by χR(r) = (r, 0S)
and χS(s) = (0R, s), and note that while χR and χS may not be ring homo-
morphisms, they do satisfy the conditions given in the statement of Lemma 1.
Define a new circuit family {Cn | n ∈ N} with subcircuits χRC

R
n and χSC

S
n (in

the notation of Lemma 1) so that on input w, Cn outputs χRC
R
n (w)+χSC

S
n (w).

In other words, our new circuit consists of a single binary addition gate whose in-
puts are the outputs of the subcircuits χRC

R
n and χSC

S
n . On input w ∈ {0, 1}∗,

if w ∈ A then the outputs of CR
n and CS

n are 1R and 1S , respectively, so by
Lemma 1 the output of Cn is χR(1R)+χS(1S) = (1R, 0S)+(0R, 1S) = 1R×S . If
w 6∈ A, then the output of Cn is χR(0R)+χS(0S) = (0R, 0S)+(0R, 0S) = 0R×S .
Thus by the existence of {Cn | n ∈ N}, we have A ∈ strictVP(R× S).

Note that for this result the restriction to the strict (rather than lax) versions
of VP and ΛP is essential, since Corollary 1 depends crucially on the fact that
circuits for strictVP and strictΛP languages always output either 0 or 1. Now that
we have this result, we easily obtain Boolean characterizations of strictVP(Zm)
and strictΛP(Zm) in the general case of a modulus m that is not a power of a
prime.

Theorem 4. For any integer m ≥ 2, strictVP(Zm) =
⋂l

i=1 CC1[pi] and strictΛP(Zm) =⋂l
i=1 AC1[Supp(pi − 1)], where m = pk1

1 · · · pkl

l is the prime factorization of m.

Proof. The characterizations of strictVP(Zm) and strictΛP(Zm) as intersections
of Boolean classes are simply the result of applying Theorem 3 to Zm = Z

p
k1
1
×

· · · × Z
p

kl
l

, using Theorem 1 and Theorem 2 for the prime power cases.

This is perhaps not as satisfying a result as one might have hoped for. When
m is a prime power, we have shown that each of strictVP(Zm) and strictΛP(Zm) is
equal to a single familiar Boolean class, whereas in the general case we have only
been able to express the arithmetic classes as intersection of Boolean classes. As
the following corollary shows, however, we can make more precise statements
about strictΛP(Zm) depending on the parity of m.

Corollary 3. If m is even, then strictΛP(Zm) = AC1. If m is odd, then AC1[2] ⊆
strictΛP(Zm).

Proof. For every prime p and every integer k ≥ 1, we have AC1 ⊆ AC1[Supp(p−
1)] = strictΛP(Zpk), so since strictΛP(Zm) is the intersection of sets of the form
strictΛP(Zpk) we have AC1 ⊆ strictΛP(Zm). Now assume m is even. Since 2
is one of the primes in the prime factorization of m, we have strictΛP(Zm) ⊆
strictΛP(Z2) = AC1[Supp(1)] = AC1[∅] = AC1 and so strictΛP(Zm) = AC1.

Now assume m is odd, so m = pk1
1 · · · pkl

l for some odd primes p1, . . . , pl.
For each prime pi in the factorization, pi − 1 is even, so 2 ∈ Supp(pi − 1) and
hence AC1[2] ⊆ AC1[Supp(pi − 1)]. Thus AC1[2] ⊆

⋂l
i=1 AC1[Supp(pi − 1)] =

strictΛP(Zm).

9

Using the fact that Z is an initial object in the category of rings — i.e., for
every ring R there exists a homomorphism ψ : Z → R — we also obtain a sim-
ple Boolean characterization of strictΛP(Z), as well as Boolean upper and lower
bounds on strictVP(Z), and we show that strictVP(Z) and strictΛP(Z) are them-
selves lower bounds on the classes strictVP(R) and strictΛP(R), respectively,
over any ring R.

Corollary 4. Let R be any ring. Then

• strictVP(Z) ⊆ strictVP(R) and strictΛP(Z) ⊆ strictΛP(R),

• strictΛP(Z) = AC1, and

• SPL ⊆ strictVP(Z) ⊆
⋂

p CC1[p] =
⋂

p VP(Fp).

Proof. As observed above, for every ring R, there exists a homomorphism ψ :
Z → R given by ψ(1) = 1R. By Corollary 1 it follows that strictVP(Z) ⊆
strictVP(R) and strictΛP(Z) ⊆ strictΛP(R).

The inclusion strictΛP(Z) ⊆ AC1 follows directly by taking R to be Z2 and
recalling that strictΛP(Z2) = AC1. We show AC1 ⊆ strictΛP(Z) directly, using a
gate-by-gate simulation: an OR gate is replaced by AND and NOT gates using
DeMorgan’s laws, a NOT gate g = ¬h is simulated by a subcircuit computing
(h+(−1))× (h+(−1)), and an AND gate g = ∧ihi is simulated by a subcircuit
computing

∏
i hi.

TakingR = Zp and recalling that strictVP(Zp) = CC1[p], we obtain strictVP(Z) ⊆
CC1[p] for every prime p and thus strictVP(Z) ⊆

⋂
p CC1[p].

The complexity class SPL has been studied in [ARZ99, TH04, DKR10,
PTV12, DKTV12, DK13]. It consists of all of those languages A for which
there is a nondeterministic logspace machine with the property that, for all
x ∈ A, the number of accepting paths is one more than the number of reject-
ing paths, and for all x 6∈ A, the number of accepting and rejecting paths is
equal. (This class arises in the study of various versions of the perfect matching
problem.) It is known that L ⊆ SPL, and under a plausible derandomization
hypothesis NL ⊆ SPL. Since every function in #L is in VP(Z), it is immediate
from the definition that SPL ⊆ strictVP(Z).

One could define a class analogous to SPL, based on functions in #SAC1 in-
stead of on #L, and a similar argument shows that this class is actually identical
to strictVP(Z). This class contains the class that is called UAuxPDA(log n, nO(1))
in [RA00], and which is shown there to coincide with SAC1 under the same de-
randomization hypothesis mentioned above.

It is worth emphasizing that the first two parts of Corollary 4, taken to-
gether, show that for any ring R, AC1 ⊆ strictΛP(R); in other words, polyno-
mial size, logarithmic depth arithmetic circuits with bounded fan-in + gates
and unbounded fan-in × gates are at least as powerful as AC1 regardless of the
ring over which they are evaluated, even when the outputs of the circuits are

10

restricted to be 0 or 1. Similarly, the first and third parts of the corollary show
that for any ring R, SPL ⊆ strictVP(R).

We should also mention that no inclusion is known (in either direction)
between AC1 and SPL, or between AC1 and CC1[p] for any prime power p. (In
contrast, if m is not a prime power, then AC1 ⊆ CC1[m] = AC1[m] [AGM15].)

5 An improved complexity bound

It is mentioned in [AGM15] that all of the functions in ΛP(Zm) can be computed
in ACC1, and thus these functions lie in AC[m′] for some m′, but no attempt
was made in [AGM15] to be precise about the value of m′. In this section, we
make use of standard tools from number theory to pin down the correct value
of m′.

For an arbitrary x ∈ Zm, consider the sequence (x, x2, x3, . . .). Since there
are only finitely many values that each element of the sequence may take on, it
is obvious that the sequence must eventually repeat a value; it is also obvious
that once it does so, it will continue to repeat cyclically, since xr+s = xs implies
xr+s+1 = xr+1, xr+s+2 = xr+2, etc. We are interested in the possible values of
r and s, in the notation of the previous sentence; in particular, we want to find
an upper bound for r and we want to characterize the possible prime factors of
s. We first describe the case in which m is a prime power.

Lemma 3. Let p be any prime and k be any positive integer, and let m = pk.
Then for any x ∈ Zm, either p | x and xi ≡ 0 (mod m) for all i ≥ k or p - x
and there exists some minimal l | (pk−1(p− 1)) such that xl ≡ 1 (mod m).

Note that in the notation of the above paragraph, this means that if p | x
we have r ≤ k and s = 0; otherwise, we have r = 0 and s | (pk−1(p− 1)).

Proof. Take x ∈ Zm. If p | x, then pk | xk, so xk ≡ 0 (mod m). Thus for any
i ≥ k, xi = xkxi−k is divisible by pk, i.e., xi ≡ 0 (mod m).

If p - x, then gcd(p, x) = 1 (since p is prime) so gcd(pk, x) = 1 and thus
x is in (Zm)×, the multiplicative group consisting of the units of Zm. Let
l be the order of x as an element of (Zm)×. Since the order of an element
of a finite group must divide the size of the group, we have that l divides
|(Zm)×| = ϕ(m) = pk−1(p − 1). By the definition of the order of a group
element, l is minimal: for any smaller (positive) integer l′, xl′ 6= 1 in (Zm)×,
i.e., xl′ 6≡ 1 (mod m).

Theorem 5. Fix an integer m ≥ 2, and let m = pk1
1 · · · pkn

n (pi prime, ki ∈ N)
be the prime factorization of m. Given x ∈ Zm, without loss of generality let
p1, . . . , pj be the prime factors of m that do not divide x, and let pj+1, . . . , pn be
those prime factors which do divide x. Then there exist integers r and s such
that xr+s = xr and xr+s′ 6= xr for 0 < s′ < s (i.e., the sequence (x, x2, x3 . . .)
enters a cycle of length s starting at xr), where r ≤ max(kj+1, . . . , kn) and
s = lcm(l1, . . . , lj) for some integers l1, . . . , lj such that li divides pki−1

i (pi − 1).

11

Proof. Note that Zm is isomorphic to the product Z
p

k1
1
× · · · × Zpkn

n
. Let ψ :

Zm → Z
p

k1
1
×· · ·×Zpkn

n
be the natural isomorphism given by ψ(x) = (x1, . . . , xn)

where xi ≡ x (mod pki
i). We first consider the periodic behavior of each xi in

the corresponding Z
p

ki
i

.
Note that since x and xi differ by a multiple of pi (in particular, a multiple

of pki
i), a prime factor pi of m divides x if and only if it divides xi. Thus

for 1 ≤ i ≤ j, we have pi - xi, so Lemma 3 guarantees the existence of some
li | (pki

i (pi − 1)) such that xli
i ≡ 1 (mod pki

i). Let s = lcm(l1, . . . , lk), and let
r = max(kj+1, · · · , kn).1

For 1 ≤ i ≤ j, we have li | s. Writing s = bli, and applying the fact that
xli

i ≡ 1 (mod pki
i), we can see that xr+s

i = xr
ix

s
i = xr

i (x
li
i)b ≡ xr

i (mod pki
i).

For j < i ≤ n, we have ki ≤ r and thus ki ≤ r+ s, so xr+s
i ≡ 0 ≡ xr

i (mod pki
i).

Since xr+s
i and xr

i are congruent modulo pki
i for 1 ≤ i ≤ n, and since xi and x

are congruent modulo pki
i as well, we have that xr+s ≡ xr (mod pki

i) for each i.
This implies that xr+s and xr are congruent modulo m and thus are identical
as elements of Zm. (Alternatively, the congruences xr+s

i ≡ xr
i (mod pki

i) tells
us that ψ(xr+s) = ψ(xr), and we conclude xr+s = xr by the injectivity of ψ.)

It remains to show that s is minimal. Fix any integer s′ with 0 < s′ < s,
and suppose toward contradiction that xr+s′ = xr. Since s′ < s, it must be
(by the definition of lcm) that li - s′ for some i ∈ {1, . . . , j}. Using the division
algorithm, we can write s′ = ali + b for some a, b ∈ Z with 0 < b < li. Reducing
the equality xr+s′ = xr modulo pki

i , substituting ali + b for s′, and applying the
fact that xli

i ≡ 1 (mod pki
i), we obtain that xr

ix
b
i ≡ xr

i (mod pki
i). Since pi - x

and x ≡ xi (mod pki
i), we have pi - xi, so xi is a unit in Z

p
ki
i

and thus we can

cancel it from both sides of the above congruence to obtain xb
i ≡ 1 (mod pki

i).
Since 0 < b < li, this contradicts the minimality of li, and we obtain the desired
contradiction.

The statement of Theorem 5 is more complicated than we need for our
purposes, since we really only care about the question of which primes may
divide s, the multiplicative period of x (i.e., the length of the cycle eventually
reached by the sequence (x, x2, . . .)). Here is one way to phrase the answer to this
question. As in the statement of the theorem, let p1, . . . , pj be the primes from
the factorization ofm that do not divide x. For each such pi, let Si = Supp(pi−1)
if ki = 1; otherwise, let Si = Supp(pi−1)∪{p}. Then the prime factors of s all lie
in S1∪· · ·∪Sj =

(⋃j
i=1 Supp(pi − 1)

)
∪{pi | 1 ≤ i ≤ j, ki ≥ 2}. More generally,

without confining our attention to a particular element x ∈ Zm, we can observe
that the prime factors of the multiplicative period of any element of Zm must

1The choice to let r = max(kj+1, · · · , kn) may seem odd in light of the weaker restriction
r ≤ max(kj+1, · · · , kn) in the statement of the theorem. In fact, the initial part of the
sequence (x, x2, . . .) before the cycle begins may have length less than max(kj+1, · · · , kn),
but choosing r to have exactly that value works fine for our purposes.

12

lie in
⋃n

i=1 Si where, by extension of the above definition, Si = Supp(pi − 1) if
ki = 1 and Si = Supp(pi − 1) ∪ {p} otherwise.

We are now ready to use this result to give an upper bound on laxΛP(Zm)
in terms of Boolean circuit classes.

Theorem 6. Fix an integer m, let m = pk1
1 · · · pkn

n be the prime factorization
of m, and for 1 ≤ i ≤ n define Si = Supp(pki−1

i (pi − 1)), i.e.,

Si =

{
Supp(pi − 1) if ki = 1
Supp(pi − 1) ∪ {pi} if ki > 1.

Then laxΛP(Zm) ⊆ AC1 [
⋃n

i=1 Si].

Proof. Consider a ΛP(Zm) circuit C. We will create a circuit C ′ that has sub-
circuits computing the Boolean truth values [g = a] for each gate g of C and
each a ∈ Zm. If g is the output gate of C, then [g = 1] is the output gate of
C ′. Since the input gates of C take on only binary values (by the definition of
ΛP(Zm)), for each input gate g of C the subcircuit computing [g = 1] is simply
g and the subcircuit computing [g = 0] is just ¬g.

If g is a + gate of C (necessarily of fan-in 2), then we can simulate any gate
[g = a] by simply constructing a truth table using NC0 circuitry and the O(1)
Boolean gates of the form [g′ = a′], where g′ is one of the two inputs to g.

Now suppose g is an unbounded fan-in× gate of C, g =
∏

i hi. For each input
hi, we have a subcircuit computing the Boolean value [hi = a] for each a ∈ Zm.
For each a ∈ Zm, let va = |{i | hi = a}|, the number of inputs which are set to
the value a. It is clear that

∏
i hi =

∏
a∈Zm

ava . We will create subcircuits to
compute the truth value [ava = b] for every pair of values a, b ∈ Zm. From these
values, we can compute each desired output [g = c] (c ∈ Zm) by constructing a
truth table using NC0 circuitry and the O(1) Boolean gates of the form [ava = b]
for a, b ∈ Zm.

Fix a ∈ Zm. By Theorem 5, there exist r, s ∈ N with r ≤ max(k1, . . . , kl)
and Supp(s) ⊆ S1 ∪ · · · ∪ Sj such that ar+s = ar. Pick t ∈ N such that
st ≥ max(k1, · · · , kl); then it follows that a(st+s) = a(st) as well. Using AC0

circuitry, we can simulate a single threshold gate outputting 1 if and only if
more than st of the [hi = a] values are 1 (since st = O(1)). If this threshold
gate outputs 1, then more than st of the inputs hi to g carry the value a, so
va > st. Thus the product

∏
hi=a hi = ava is in the cyclical part of the sequence

(a, a2, a3, . . .) and thus is determined by the value of va modulo s. If this
threshold gate outputs 0, then va < st and so there are only O(1) possibilities
for ava , each of which we can compute explicitly. In each case, the number of
values to be multiplied is O(1), since the values of r and s do not depend on
the number of inputs to C. In the final Boolean subcircuit simulating the gate
g =

∏
i hi, we have the following gates.

• For 0 ≤ j ≤ st we have a MODst gate taking in the inputs [hi = a] as well
as st − j constant inputs set to 1. This outputs a 1 if and only if va ≡ j

13

(mod st). An ∧ gate taking as inputs this MODst gate and the negation
of the output of the threshold gate outputs a 1 if and only if va = j. If
this ∧ gate outputs a 1, then the partial product

∏
hi=a hi = ava is equal

to aj .

• For 0 ≤ j < s we have a MODs gate taking in the inputs [hi = a] as well
as a number of constant 1 inputs congruent to −j modulo s. This outputs
a 1 if and only if va ≡ j (mod s). An ∧ gate taking as inputs this MODs

gate and the output of the threshold gate outputs a 1 if and only if va > st

and va ≡ j (mod s). If this ∧ gate outputs a 1, then the partial product
is equal to ast+j .

For every a ∈ Zm, we can compute the truth value [ava = b] using the outputs
of the AND gates described above. Then the full product g =

∏
i hi can be

computed as a product of the O(1) values ava (for a ∈ Zm) using NC0 circuitry
and the truth values [ava = b]. This completes the gate-by-gate simulation.

6 Conclusions

This paper grew out of a desire to understand Conjecture 1, which concerns the
power of VP over Zm for various m. It became clear that there was a need to
specify more precisely what was meant by “the class of languages in VP(Zm) and
ΛP(Zm)”, which led to the definition of the “strict” and “lax” classes defined
and studied here. We have shown that the “strict” classes over Zm correspond
precisely to the intersection of the corresponding classes over Fp over all p di-
viding m. In contrast, the “lax” classes provide enough computational power
to simulate the union of these same classes. It would be interesting to know
more about various inclusions, such as VP(Z2) ∪ VP(Z3) ⊆ LVP(Z6) ⊆ AC1[6]. Is
there any reason to think that either the upper bound or the lower bound on
the complexity of VP(Z6) might be more-or-less tight?

Acknowledgments

The first author acknowledges the support of NSF grant CCF-1555409. This
work was carried out while the second author was a participant in the 2015
DIMACS REU program at Rutgers University, supported in part by NSF grant
CCF-1263082.

References

[AGM15] Eric Allender, Anna Gál, and Ian Mertz. Dual VP classes. In Sympo-
sium on Mathematical Foundations of Computer Science (MFCS),
LNCS. Springer, 2015. to appear.

14

[AJMV98] Eric. Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-
commutative arithmetic circuits: Depth reduction and size lower
bounds. Theoretical Computer Science, 209:47–86, 1998.

[ARZ99] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, match-
ing, and counting: Uniform and nonuniform upper bounds. Journal
of Computer and System Sciences, 59(2):164–181, 1999.

[BBR94] David A. Mix Barrington, Richard Beigel, and Steven Rudich. Rep-
resenting boolean functions as polynomials modulo composite num-
bers. Computational Complexity, 4:367–382, 1994.

[Bür99] Peter Bürgisser. On the structure of Valiant’s complexity classes.
Discrete Mathematics & Theoretical Computer Science, 3(3):73–94,
1999.

[Bür00] Peter Bürgisser. Cook’s versus Valiant’s hypothesis. Theoretical
Computer Science, 235(1):71–88, 2000.

[DK13] Samir Datta and Raghav Kulkarni. Space complexity: What makes
planar graphs special? Bulletin of the EATCS, 109:35–53, 2013.

[DKR10] Samir Datta, Raghav Kulkarni, and Sambuddha Roy. Deterministi-
cally isolating a perfect matching in bipartite planar graphs. Theory
Comput. Syst., 47(3):737–757, 2010.

[DKTV12] Samir Datta, Raghav Kulkarni, Raghunath Tewari, and N. V. Vin-
odchandran. Space complexity of perfect matching in bounded
genus bipartite graphs. Journal of Computer and System Sciences,
78(3):765–779, 2012.

[GW96] Anna Gál and Avi Wigderson. Boolean complexity classes vs.
their arithmetic analogs. Random Struct. Algorithms, 9(1-2):99–111,
1996.

[KP11] Pascal Koiran and Sylvain Perifel. Interpolation in Valiant’s theory.
Computational Complexity, 20(1):1–20, 2011.

[LL76] Richard E. Ladner and Nancy A. Lynch. Relativization of ques-
tions about log space computability. Mathematical Systems Theory,
10:19–32, 1976.

[PTV12] Aduri Pavan, Raghunath Tewari, and N. V. Vinodchandran. On
the power of unambiguity in log-space. Computational Complexity,
21(4):643–670, 2012.

[RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unam-
biguous. SIAM Journal on Computing, 29:1118–1131, 2000.

15

[TH04] Thomas Thierauf and Thanh Minh Hoang. On closure proper-
ties of GapL. Electronic Colloquium on Computational Complexity
(ECCC), (024), 2004.

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proc. 11th
ACM STOC, pages 249–261, 1979.

[VSBR83] Leslie G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast
parallel computation of polynomials using few processors. SIAM
Journal on Computing, 12(4):641–644, 1983.

[Wil14] Ryan Williams. The polynomial method in circuit complexity ap-
plied to algorithm design (invited talk). In Conference on Foun-
dations of Software Technology and Theoretical Computer Science
(FST&TCS), number 29 in LIPIcs, pages 47–60. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2014.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

