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Abstract

An Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky (JACM 1996), is a
(probabilistic) RAM that hides its access pattern, i.e. for every input the observed locations
accessed are similarly distributed. Great progress has been made in recent years in minimizing
the overhead of ORAM constructions, with the goal of obtaining the smallest overhead possible.

We revisit the lower bound on the overhead required to obliviously simulate programs, due
to Goldreich and Ostrovsky. While the lower bound is fairly general, including the offline case,
when the simulator is given the reads and writes ahead of time, it does assume that the simulator
behaves in a “balls and bins” fashion. That is, the simulator must act by shuffling data items
around, and is not allowed to have sophisticated encoding of the data.

We prove that for the offline case, showing a lower bound without the above restriction is
related to the size of the circuits for sorting. Our proof is constructive, and uses a bit-slicing
approach which manipulates the bit representations of data in the simulation. This implies that
without obtaining yet unknown superlinear lower bounds on the size of such circuits, we cannot
hope to get lower bounds on offline (unrestricted) ORAMs.
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1 Introduction

An Oblivious RAM (ORAM), introduced by Goldreich and Ostrovsky [Gol87, GO96] is a (proba-
bilistic) RAM machine whose memory accesses do not reveal anything about the input—including
both program and data—on which it is executed. More specifically, for any two inputs (Π1, x1) and
(Π2, x2) with an equal number of memory accesses, the resulting distributions of accessed memory
locations is the same, or similar.

Since their inception, oblivious RAM machines (more specifically, simulations of RAM on
oblivious RAMs) have become an invaluable tool in designing cryptographic systems, where ob-
servable memory access patterns crucially must not leak sensitive information. This arises in
the context of software protection (already in the original work by [GO96]), secure computation
protocols utilizing the random access nature of computation [OS97, DMN11, GKK+12, LO13,
GGH+13, WHC+14, BCP15], building secure hardware with untrusted memory [FDD12], out-
sourcing data [SS13], protection against cache attacks [Nao09], further server-delegation scenarios
(e.g., [CKW13, GHRW14]), and much more.

One can trivially simulate a RAM program by an oblivious one by simply replacing each data
access with a scan of the entire memory. To be useful, an ORAM simulation should only intro-
duce a small overhead. The primary metric analyzed is the overhead in bandwidth: that is, how
many data items must be accessed in the oblivious simulation as compared to the original. A great
deal of research has gone toward simplifying and optimizing the efficiency of ORAM construc-
tions (e.g., [GO96, Ajt10, DMN11, GM11, GMOT11, KLO12, CP13, CLP14, GGH+13, SvDS+13,
CLP14, WHC+14, RFK+14, WCS14]), with a clear goal of obtaining the smallest overhead possible.

This spurs the immediate question: what is the best ORAM overhead possible? The origi-
nal Goldriech-Ostrovsky constructions [GO96] incurred multiplicative overhead polylog(n) for data
size n. After years of progress, the most asymptotically optimized constructions to date achieve
overhead Ω(log n) for particular choices of block sizes [WCS14]. How much further, if at all, can
this be pushed?

The lower bound of [GO96]. Presumably, the answer to this question is widely known. In the
original work introducing ORAMs, Goldreich and Ostrovsky [GO96] also showed a Ω(log n) lower
bound for ORAM overhead, for data size n. This has been described as:

• “In their seminal work [GO96], Goldreich and Ostrovsky showed that an ORAM of n blocks
must incur a O(log n) lower bound in bandwidth blowup, under O(1) blocks of client stor-
age.” [DvDF+15]

• “[M]emory bandwidth is always a bottleneck of ORAM. All ORAMs are subject to a O(log n)
lower bound on memory bandwidth overhead [Gol87, GO96], where n is the number of blocks
in ORAM.” [Ren14]

• “Even if new methods for oblivious RAM are discovered, there is an inherent limit to how
much these schemes can be improved. It was shown in the original work of Goldreich and
Ostrovsky [GO96] that there is a lower bound for oblivious RAM in this model.

Theorem ([GO96], Theorem 6): To obliviously perform n queries using only O(1) client mem-
ory, there is a lower bound of O(log n) amortized overhead per access.” [LO13]

• “...due to the lower bound by Goldreich and Ostrovsky, any ORAM scheme must have band-
width cost Ω(β log n) to read or write a block of β bits. [AKST14]
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As noted in [GO96, WHC+14], the [GO96] lower bound is very powerful, applying also for
the offline case (where all the accesses are given in advance), for arbitrary block sizes, for several
relevant overhead metrics, and even when tolerating up to O(1) statistical failure probability. E.g.,

• “This is almost optimal since the well-known logarithmic ORAM lower bound [GO96] is im-
mediately applicable to the circuit size metric as well.” [WCS14].

Altogether, the solidity of the Ω(log n) barrier would seem to be inescapable. Or is it?

Reexamining the [GO96] bound. As is well recognized, the Goldreich-Ostrovsky work [GO96]
provided a seminal foundation for understanding ORAM and its restrictions. Upon closer obser-
vation, however, one begins to see that the lower bound of [GO96] is not the end of the story.
Despite being broadly interpreted as a hard lower bound, applying to all scenarios, the [GO96]
bound actually bears significant limitations.

“Balls and bins” storage. Perhaps most surprising, the [GO96] lower bound is within a very
restricted model of “balls and bins” data manipulation. Namely, the n data items are modeled
as “balls,” CPU registers and server-side data storage locations are modeled as “bins,” and
the set of allowed data operations consists only of moving balls between bins.

This immediately precludes any ORAM construction approach making use of data encoding,
leveraging alternative representations of information, or any other form of non-black-box
data manipulation. Such techniques have been shown to surpass performance of analogous
“black-box” approaches in several related tasks within computer science, such as improving
overhead in distributed file sharing, and optimizing network throughput via network coding
(e.g., [NR95, MS11]). It is not clear whether the Ω(log n) bound extends at all once these
strong restrictions are lifted, and in light of our work this is not going to be simple to show.

Statistical security. The bound applies to ORAMs with statistical security: i.e., where the dis-
tribution of access patterns for two different inputs are statistically close. This statistical
relation is crucial for the proof approach to proceed.

However, in many cases statistical guarantees may be stronger than necessary. Interestingly
enough, the constructions presented within the same original ORAM paper [GO96]—and in
fact, all ORAM constructions for the following 15 years, until the works of Ajtai [Ajt10]
and Damgard et al. [DMN11] in 2010—were not statistically secure. Rather, due to use of
pseudorandom functions and related tools, they guaranteed only that the distributions of
memory accesses were computationally indistinguishable. Whether such constructions could
bypass the Ω(log n) bound is unknown.

1.1 Our results

In this work, we further explore the [GO96] lower bound, its extensions, and its limitations. As
our main technical contribution, we provide evidence that the [GO96] lower bound does not extend
directly beyond the “balls and bins” storage model (in the offline case)1, or at least that such an
assertion will require developing dramatically new techniques.

Think of a RAM machine that has an external memory of size n words, each of length w
bits (where log n ≤ w � n). Loosely speaking, an offline oblivious simulation RAM ′ of a RAM
machine guarantees obliviousness of memory accesses only for inputs yi = (Πi, xi) (consisting of

1Recall that offline ORAM corresponds to answering a sequence of requests all specified at once.

2



program and data) for which the program Πi specifies its desired memory access instructions up
front, within its description. We demonstrate that general logarithmic lower bounds Ω(log n) on
the overhead of offline ORAM compilers—as is implied by the [GO96] lower bound within the
“balls and bins” setting—would directly imply new circuit lower bounds. Our proof is constructive:
We show that the existence of n-word sorting circuits of size o(log n) times linear (i.e., o(nw log n)
gates, for word size w) yields secure offline ORAM with sub-logarithmic overhead. While simple
Ω(n log n) lower bounds are known on the complexity of comparator-gate sorting circuits (sorting
networks), in which data items can only be swapped as whole entities, no such lower bounds exist
for the case of Boolean circuits which may further utilize the bit representation of the data being
sorted.2 In fact, in the RAM model one can obtain near-linear O(n log log n) complexity sorting
algorithms [AHNR95, Han04]; it is not known whether these algorithms can lead to small sorting
circuits.

Theorem 1.1 (Informal). Suppose there exists a Boolean circuit family for sorting n words of size
w-bits with size o(nw log n). Then there exists an offline ORAM compiler for O(1) CPU registers,
with bandwidth overhead o(log n). The oblivious simulation uses only public randomness to hide its
access patterns.

We remark that sorting networks appear frequently as tools within existing ORAM construc-
tions, dating back to the original works [Gol87, GO96]. Our result can be interpreted as observing
that, for the offline case, sorting is essentially all you need; and, further, that one need not restrict
themselves to circuits with this special comparator-gate structure.

Our offline ORAM construction makes heavy “non-black-box” use of data storage and manip-
ulation, violating the balls and bins restriction of the [GO96] bound. For example, our ORAM-
compiled CPU will “re-pack” words to be stored on the server side such that a single word will
contain bits of information from several data items. We do not assume much on the computational
power of the (compiled) CPU, except that it be able to perform bitwise logical operations and be
able to extract parts of a word.

Aside from offline ORAM, our construction also obliviously simulates a different restricted class
of RAM programs: those that do not necessarily contain their access instructions in explicit form
(in contrast to the offline setting), but which can be heavily parallelized. Namely, we can provide
oblivious simulation of Parallel RAM (PRAM) of the CRCW-Priority variety (see [KR88, Vis15]
for a survey) that has n processors and memory of size n. The overhead in simulating such
PRAM programs is as above, yielding an improved complexity for this special highly-parallel case.3

Intuitively, the offline and the PRAM cases fall within the same general framework with respect to
our techniques, where in the offline case the explicit specification of access instructions allows us
to parallelize the oblivious simulation over time. We elaborate on this topic in Section 3.3.

In Appendix A, we include a complete restatement and proof of the Goldreich-Ostrovksy [GO96]
lower bound, together with a collection of specific extensions. For example, the bound’s strict balls
and bins data storage model can be mildly relaxed, allowing the CPU to copy and delete balls, and to
also write non-data information in “bins” (but cannot output such information). Note that several
recent positive results in ORAM make use of the latter technique, storing “helper” information in
memory unrelated to the data values themselves, used to locate where within memory the data is
stored.

2An O(n logn) sorting network (such as the famed AKS [AKS83] or the most recent work of Goodrich [Goo14]),
translates to a Boolean circuit of size O(nw logn) gates.

3Note, however, the resulting system is still a sequential RAM, and not an Oblivious Parallel RAM as in [BCP14].
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Additionally, in Section 1.2, we highlight several key research questions that remain open. In
this context, we propose additional notions of ORAM security (both stronger and weaker) within
which we can hope to either prove full lower bounds, or to extend our circuit-based upper bounds.

Technical Overview. Our offline ORAM compiler construction proceeds in two primary steps.

Step 1: Sorting Circuit → Oblivious-Access Sort. We first demonstrate how to use
the structure of the given sorting circuit to obtain an efficient Oblivious-Access Sorting algorithm:
that is, a (randomized) RAM program for sorting the values within an n-word database, where
the distribution of access patterns is statistically close over any two choices of the input database
(analogous to the definition of obliviousness in ORAM).

The challenge is in making this transformation tight. We can of course immediately obtain
an oblivious algorithm, by directly emulating the circuit structure with the RAM (i.e., for each
Boolean gate, read into memory the 2 words in which the desired bits reside, evaluate the gate on
the bits, and write the result back to memory). However, unless the Boolean circuit has a very
specific “word-preserving” structure, for which all bits within a single word are operated on at the
same time, this approach will generically incur overhead equal to the word size w—since we are
stuck reading an entire word just to operate on a single bit. In our solution, we show how to avoid
this w multiplicative overhead, suffering only an additive term comparable to logw.

Two important ideas we employ in our solution are: (i) a bit-slicing/SIMD approach where we
utilize the inherent w parallelism of a CPU with words of size w in order to simulate w circuits
in parallel. This approach was used by Biham in 1997 [Bih97] in order to speed up software
implementations of DES. To do so, we make use of efficient (recursive) algorithms for transposing
data.4 The main issue with using this idea is to get w independent problems. (ii) When we
randomly split the data into w parts, and sort each one separately, then for each element we have
a pretty good idea where its location in the full sorted list should be, up to

√
n accuracy. We can

then refine this almost-sorted via a new set of w parallel sorts, this time independently within local
regions.

Step 2: Oblivious-Access Sort → Offline ORAM. Next, we use this oblivious-access
sort algorithm as a black box in order to construct the final offline ORAM compiler. The main
idea within this step is to treat the program Π and the data x together, and to make use of the
Oblivious-Access Sort procedure to enable routing of values to particular desired sub-orderings.

Consider, for example, a slightly simplified case where the programs simply indicate a length-n
sequence of Read operations at fixed addresses in [n]. This can be obliviously simulated via the
following sub-steps. First, the entire size-2n memory contents—including both the query sequence
and the data—are labeled and sorted so as to move memory into blocks each associated with a single
index of data: starting with the data value itself xi, and followed by the chronological sequence of
Read requests to this address i. This is depicted in the first figure below (where “Ri” denotes Read
request at address i). Once we have this structure, each Read request can be satisfied by a single
pass through the database, “filling in” the correct value by (always) looking at the preceding word.
This is depicted in the second figure below.

4This transpose step is the source of the logw additive complexity overhead term.
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x1# R1# R1# x2# x3# R3# x4# R4# x5# R5#

x1# x1# x1# x2# x3# x3# x4# x4# x5# x5#

Then, the memory contents are returned to their original ordering by a reverse label and sort,
yielding the n data items followed by the n requested items in desired order.

We remark that in this work we consider a somewhat restricted offline setting, where access
Read/Write instructions are pre-specified, as opposed to simply access addresses. However, this
case is already strong enough to be covered by the [GO96] lower bound, assuming balls and bins.

1.2 Open Questions

The observations and results above draw forth several interesting open questions in oblivious RAM
research. We view these research directions as a further contribution of the present work.

Online lower bound? A good starting point toward proving general ORAM lower bounds (without
balls and bins restrictions) is within an even stronger online model, where the simulation must
successfully answer each data access request before learning the next. This more stringent
variant is, in fact, the notion satisfied by essentially all known positive results in ORAM. We
propose a definition of online ORAM in Section 2.2 (Definition 2.10).

Relaxing Balls and Bins? One can orthogonally relax the balls and bins model restriction. For
example, does the [GO96] lower bound extend to a setting of Balls and Bins with Linear
Encoding, where the CPU may generate balls of a different “color” (say, black) as linear
combinations of original white balls (treated as formal monomials), may only output white
balls at the conclusion of simulation, and can convert a black ball back to white only if its
formal polynomial reduces to a single monomial. Note that this model captures approaches
in the style of network coding, but does not allow for the type of bit-slicing manipulation we
employ in our offline ORAM solution.

Strong offline ORAM from circuits? Is it possible to extend our circuit-based ORAM construction
to a more expressive class of programs? For example, suppose the programs explicitly specify
the addresses of memory accesses, but only know at runtime (e.g., as a result of partial
computation) what actual read/write instruction will be performed at this location. We refer
to this as a “strong offline” case.

Converse Relation? We show that small sorting circuits imply efficient offline ORAMs; does
the converse also hold? Namely, given an offline (or even online) n-word ORAM with O(1)
registers and bandwidth and/or computation overhead o(log n), does this imply the existence
of sorting circuits of size o(nw log n)? The challenge here is that, although the access patterns
of the ORAM are (essentially) input-independent, they may rely on randomness generated at
runtime in order to attain low overhead.

Computationally Secure ORAM? As mentioned, the [GO96] lower bound crucially relies on the
statistical closeness of access pattern distributions for any two inputs. As soon as this is
relaxed to computational indistinguishability, where distributions of access patterns generated
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from two inputs cannot be distinguished by efficient algorithms (but may even be disjoint),
we could even hope to attain constant overhead in bandwidth and computation.5

1.3 Related Work

Pippenger and Fischer [PF79] were the first to consider the issue of oblivious access patterns, in
their case, for Turing Machines (TM). Our work can be seen as a converse of the Pippenger-Fischer
approach who showed how to efficiently translate a TM into a circuit via Oblivious TMs, whereas
we obtain Oblivious RAM via circuits. Note that they obtain an Ω(log n) lower bound for online
oblivious simulation of Turing Machines, but it is not clear that their bound is relevant to the
question of online oblivious simulation of RAM.

Beame and Machmouchi [BM11] showed a super-logarithmic lower bound for oblivious branching
programs. However, as they noted, this bound is not applicable to the standard model of Oblivious
RAM: The standard ORAM model requires the probability distribution of the observed access
patterns to be statistically close regardless of the input; in contrast, Beame’s model requires that
this holds for every random string chosen. Hence, to date, Goldreich and Ostrovsky’s original lower
bound is the only applicable bound known.

Damg̊ard, Medlegard, and Nielsen [DMN11] proved a lower bound on the amount of secret
randomness required for a probabilistic RAM to obliviously simulate an arbitrary RAM in an online
setting. Namely, if fewer than n/8 items are accessed per original access, then the simulation must
use at least θ(1) secret random bits on average per simulated read operation. Their lower bound
applies to online ORAMs. Our work (on offline ORAMs) demonstrates that this is essential, since
instantiating our construction with known sorting circuit constructions yields an unconditional
offline ORAM that does not make use of any secret randomness.

It was observed by Apon et al. [AKST14] that the Goldriech-Ostrovsky [GO96] bandwidth
lower bound does not hold if one allows server-side computation on data before sending. Recent
constructions (e.g., [AKST14, DvDF+15]) provide ORAM-like access pattern security with constant
bandwidth per data query, by leveraging polylogarithmic server computation (and computational
assumptions). In fact, we argue that the reason these works overcome the lower bound is that they
‘violated’ the balls and bins restriction (and provide computational security).

An alternative weaker “Oblivious Network RAM” model was proposed by Dachman-Soled et
al. [DSLP+15] which does not fall within the [GO96] lower bound, where the adversary sees only
the most significant bits of accessed addresses (and the lower-order bits are hidden from adversarial
view).

We emphasize that our offline ORAM construction is in the oblivious RAM computation model
of [GO96], where server-side computation is not allowed, and the adversary sees the full addresses
of accessed memory.

2 RAM and Oblivious RAM

We follow the terminology in [GO96].

5Constructions attaining O(1) bandwidth overhead in the computational setting have recently been demonstrated,
however fall outside of the standard ORAM model since they assume the RAM memory can perform local computa-
tions on data before sending to the CPU: See Related Work.
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2.1 Random Access Machines

A Random Access Machine (RAM) is modeled as a pair of interactive Turing machines (ITM),
corresponding to CPU and Memory, which “interact” with each other via a set of specified actions.
In what follows, n,w, and r ∈ N will be used to denote the memory size, word size, and number of
registers (i.e., CPU memory size) of the system.

Definition 2.1 (Memory). For every n,w, r ∈ N, let MEMn,w,r be an ITM with communication
tape and input/output/work tapes of size O(rw) and O(nw), respectively. It partitions its work
tape into n words, each of size O(w). After copying its input to its work tape, machine MEMn,w,r

is message-driven. Upon receiving a message (inst, addr, val), where inst ∈ {store, fetch, halt} (an
instruction), addr ∈ [n] (an address), and val ∈ {0, 1}O(w) (a value), machine MEMn,w,r acts as
follows:

• If inst = store, then machine MEMn,w,r copies the value val from the current message into
word number addr of its work tape.

• If inst = fetch, then machine MEMn,w,r sends a message consisting of the current contents of
word number addr (of its work tape).

• If inst = halt, then machine MEMn,w,r copies a prefix of its work tape (until a special symbol)
to its output tape, and halts.

Definition 2.2 (CPU). For every n,w, r ∈ N, let CPUn,w,r be an ITM with communication and
work tapes of size O(rw), operating as hereby specified. After copying its input to its work tape,
machine CPUn,w,r conducts a computation on its work tape, and sends a message determined by this
computation. In subsequent rounds, CPUn,w,r is message driven. Upon receiving a new message,
machine CPUn,w,r copies the message to its work tape, and based on its computation on the work
tape, sends a message. In case the CPUn,w,r sends a halt message, the CPUn,w,r halts immediately
(with no output).

Definition 2.3 (RAM). For every n,w, r ∈ N, let RAMn,w,r be a pair of (CPUn,w,r,MEMn,w,r),
where CPUn,w,r’s read-only message tape coincides with MEMn,w,r’s write-only message tape, and
vice versa. The input to RAMn,w,r is a pair (s, y), where s is an initialization input for CPUn,w,r,

6

and y is the input to MEMn,w,r. The output of RAMn,w,r on input (s, y), denoted RAMn,w,r(s, y),
is defined as the output of MEMn,w,r(y) when interacting with CPUn,w,r(s).

A probabilistic-RAMn,w,r is a RAMn,w,r in which CPUn,w,r additionally has the ability to generate
randomness on the fly as part of its local computation.

To view RAMn,w,r as a universal machine, we separate the input y to MEMn,w,r as y = (Π, x)
containing both the “program” and “data.”

Remark 2.4. For purposes of lower bounds, it is generally considered that the running time of
RAMn,w,r is always greater than the length of the input (i.e., |y|). Under this assumption, we may
ignore the “loading time” and count only the number of machine cycles in the execution of Π on x
(ie., the number of rounds of message exchange between CPUn,w,r and MEMn,w,r).

6Without loss of generality, s may be a fixed “start symbol.”
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2.2 Oblivious RAM

To define oblivious simulation of RAMs, we first define oblivious RAM machines. Loosely speaking,
the “memory access pattern” in an oblivious RAM, on each input, depends only on its running
time (on this input). Note that we do not regard hiding the contents of memory, which can be
achieved independently (e.g., using encryption).

Definition 2.5 (Access Pattern). The access pattern of a (probabilistic-)RAMn,w,r on input y,
denoted by A ccess(RAMn,w,r, y), is a distribution (over the random coins of CPUn,w,r) of sequences
(addr1, . . . , addri, . . .), such that for every i, the ith message sent by CPUn,w,r, when interacting with
MEMn,w,r(y) with corresponding random coins, is of the form (·, addri, ·).

We define an oblivious RAM to be a probabilistic RAM for which the probability distribution of
memory access patterns during an execution depends only on the running time (i.e., is independent
of the particular input y = (Π, x)).

Definition 2.6 (Oblivious RAM). For every n,w, r ∈ N, we define an oblivious RAMn,w,r as a prob-
abilistic RAMn,w,r satisfying the following condition. For every two strings y1, y2, if |A ccess(RAMn,w,r, y1)|
and |A ccess(RAMn,w,r, y2)| are identically distributed, then A ccess(RAMn,w,r, y1) and A ccess(RAMn,w,r, y2)
are identically distributed.

We consider three primary notions (of varying strength) for oblivious simulation of an arbitrary
RAM program on an oblivious RAM. The first, “standard” notion (as in [GO96]) holds for all RAM
programs, and requires only that both machines compute the same function. In contrast, the [GO96]
lower bound holds also within a weaker “offline” setting—considering only those programs whose
memory access addresses are specified explicitly within their descriptions. We additionally propose
a definition of a stronger “online” notion of oblivious simulation (that is obtained by most ORAM
constructions)—where the compiler must satisfy each access query on the fly.

Definition 2.7 ((Standard) Oblivious RAM Simulation). We say that a probabilistic-RAM′n′,w′,r′
obliviously simulates RAMn,w,r if the following conditions hold:

• Correctness. There exists a negligible function ν for which the probabilistic-RAM′n′,w′,r′
simulates RAMn,w,r with probability 1 − ν(n). That is, for every input y, with probability
1− ν(n) over the choice of random coins of CPU′n′,w′,r′ , the output of RAM′n′,w′,r′ on input y
equals the output RAMn,w,r(y) of RAMn,w,r on the input y.

• Obliviousness. The probabilistic-RAM′n′,w′,r′ is oblivious (as per Definition 2.6).

• Non-triviality. The random variable representing the running-time of probabilistic-RAM′n′,w′,r′
(on input y) is fully specified by the running-time of RAMn,w,r (on input y).

Definition 2.8 (Offline Oblivious RAM Simulation). We say that a probabilistic-RAM′n′,w′,r′ is
an offline oblivious simulation of RAMn,w,r if the Correctness, Obliviousness, and Non-triviality
properties of Definition 2.7 hold for the restricted class of y = (Π, x) corresponding to Fixed-
Access programs: A Fixed-Access program Π contains within its description the explicit sequence
of communication triples of the form (fetch, addr,⊥) or (store, addr, val) for pre-specified val.

Note that, for the above definition to be non-trivial, each fetch operation will implicitly be
followed by an output of the fetched value.

Intuitively, an online ORAM simulation requires that each access instruction (and output) is
successfully completed before learning the next. This prevents the simulation from “pre-processing”
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any of its access patterns in order to aid future lookups. We formalize this by splitting the program
into sequential sub-programs Π = Π1,Π2, . . . ,Πt (determined at runtime based on execution), each
with a single memory access (and, we will assume, a single output), and introducing an oracle
ONextStep. Instead of the entire input program Π being loaded into memory at initialization, Π is
instead given only oracle access to ONextStep. At any time during execution, the CPU may send a
message next to ONextStep, who responds by loading the next piece Πi+1 of the program into memory
(i.e., the work tape of MEMn,w,r). However, the CPU must specify its output to the previous Πi

before requesting Πi+1: namely, the ith output cannot be modified after the ith next request is
made.

Definition 2.9 (Online RAM Model). For every n,w, r ∈ N, let a (probabilistic) online RAM
onlineRAMn,w,r be a triple of ITMs (CPUn,w,r,MEMn,w,r,ONextStep). The input to onlineRAMn,w,r

is a triple (s, x,Π), where s is an initialization start input for CPUn,w,r, x is the (data) input to
MEMn,w,r, and Π is the (program) input to ONextStep. CPUn,w,r begins by performing a computation
on its work tape, and then may send a message to either MEMn,w,r or ONextStep based on this
computation. In subsequent rounds, CPUn,w,r is message driven, as before.

Messages sent from CPUn,w,r to MEMn,w,r take the same form as in the standard RAM model,
and are responded to identically. Messages sent from CPUn,w,r toONextStep take the form (inst, state, out),
corresponding to an instruction inst ∈ {next, halt}, the current contents state ∈ {0, 1}rw of the work
tape of CPUn,w,r, and an intermediate output value out ∈ {0, 1}w. ONextStep maintains a local
counter i (initialized at the beginning of execution to i = 0), and upon receiving such message from
CPUn,w,r, does the following.

• If inst = next, then ONextStep determines the (i+1)th instruction Πi+1 of Π given the received
value state, and sends a description Πi+1 to MEMn,w,r, who copies it into a designated location
in its work tape. In addition, ONextStep writes out to the ith position of its output tape.

• If inst = halt, then ONextStep outputs the full contents of its output tape.

The output of onlineRAMn,w,r on input (s, d,Π), denoted onlineRAMn,w,r(s, x,Π), is defined as the
output of ONextStep(Π) when interacting with CPUn,w,r(s) and MEMn,w,r(x).

An online oblivious RAM is on online RAM satisfying the obliviousness requirement of Defini-
tion 2.6, where A ccess(RAMn,w,r, y) is as in Definition 2.5 (i.e., the sequence of accessed memory
addresses, without information on calls to ONextStep).

Note that the CPU commits itself to the ith step output before it gains access to the next
instruction Πi+1 (through MEM).

Definition 2.10 (Online Oblivious RAM Simulation). We say that a probabilistic-RAM′n′,w′,r′ is
an online oblivious simulation of RAMn,w,r if the Correctness, Obliviousness and Non-triviality
properties of Definition 2.7 hold in the Online RAM Model, as per Definition 2.9.

In any case (standard, offline, etc.), simulation of a RAM by an oblivious RAM incurs certain
overhead costs. In this work, we focus on the overhead in computation and bandwidth.

Definition 2.11 (Overhead of Oblivious Simulations). Suppose that a probabilistic-RAM′n′,w′,r′
obliviously simulates the computations of RAMn,w,r.

• We say that the bandwidth overhead of the simulation is at most g for some function g : N→ N
if, for every y, at most g(B) · B bits are written by MEM′n′,w′,r′ to its communication tape
throughout the course of the simulation, where B denotes the number of bits written by
MEMn,w,r to its communication tape in the original execution.
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• We say that the computation overhead of the simulation is at most g for some function
g : N → N if, for every y, at most g(t) · t computation steps are taken during the execution
of RAM′n′,w′,r′(y), where t denotes the number of computation steps taken in the original
execution RAMn,w,r(y).

3 Offline ORAM Lower Bounds Imply Circuit Lower Bounds

Our main theorem demonstrates that in the offline case, lifting the “balls and bins” restriction
from the Goldreich-Ostrovsky lower bound will require proving yet unknown circuit lower bounds
on the size of Boolean sorting circuits. This conclusion is obtained constructively: Given a small
sorting circuit, we show how to build a secure offline ORAM with sub-logarithmic overhead.

Theorem 3.1. Suppose there exists a Boolean circuit ensemble C = {C(n,w)}n,w of size s(n,w),
such that each C(n,w) takes as input n words each of size w bits, and outputs the words in sorted
order. Then for word size w ∈ Ω(log n) ∩ no(1) and constant CPU registers r ∈ O(1), there exists
a secure offline ORAM (as per Definition 2.8) with total bandwidth and computation O(n logw +
s(2n/w,w)).

In particular, given the existence of any sorting circuit ensemble with size o(nw log n), we obtain
an offline ORAM construction that bypasses the [GO96] lower bound:

Corollary 3.2. If there exist Boolean sorting circuits C = {C(n,w)}n,w of size s(n,w) ∈ o(nw log n)
(for w ∈ Ω(log n)∩no(1)), then there exists secure offline ORAM with O(1) CPU registers and band-
width and computation overhead o(log n).

The total storage requirement of our offline ORAM construction is O(n + s(2n/w,w)). For
circuits of size s(m,w) ∈ o(mw logm), this corresponds to o(log n) storage overhead. We do not
assume much on the computational power of the (compiled) CPU, except that it be able to perform
bitwise logical operations and be able to extract parts of a word.

The proof of Theorem 3.1 proceeds via two steps. First, in Section 3.2, we begin by constructing
and analyzing an efficient Oblivious-Access Sort algorithm: i.e., a (randomized) RAM program for
sorting an n-word database, where the distribution of access patterns is statistically close over any
two choices of the input database. We remark that this notion of oblivious-access aligns directly
with that of ORAM. (In contrast, the term “Oblivious Sort” refers in the literature to sorting
algorithms whose access patterns are fixed).

Definition 3.3 (Oblivious-Access Sort). An Oblivious-Access Sort algorithm for input size n (and
word size w) and computation comp(n,w) is a (possibly randomized) RAM program Π in which
the following properties hold:

• Efficiency: The program Π terminates in comp(n,w) computation steps.

• Correctness: With overwhelming probability in n, at the conclusion of Π, the database con-
tains the n inputs, in sorted order.

• Oblivious Access: There exists a negligible function ν such that for any two inputs x, x′ of
size n, then A ccess(RAMn,w,r, (Π, x)) is ν(n)-close statistically to A ccess(RAMn,w,r, (Π, x

′))
(see Definition 2.5).

Then, in Section 3.3, this oblivious-access sort algorithm will be used as a black box in order
to construct the final offline ORAM compiler.

We first begin in Section 3.1 by introducing some useful notation.
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3.1 Notation

Throughout this work, n,w, and r ∈ N will be used to denote the (external) memory size, word
size, and number of registers (i.e., CPU memory size) of the system. We consider the range in
which w ∈ Ω(log n) ∩ no(1) and r ∈ O(1).

We denote the work tapes of CPUn,w,r and MEMn,w,r as arrays Reg,Mem.
In general, capital letters are used to denote arrays (e.g., Reg,Mem), lowercase letters to denote

words (sometimes interpreted as bit strings). Indexing: for an array (e.g., memory Mem), Mem[i]
denotes word i in the array; Mem[i][j] denotes the jth bit of Mem[i] in the array. For a single word,
x[j] denotes the jth bit of x. When describing addresses of the head of an array (in particular, to
be passed as an argument to a function call), we will denote by D′ := “D[×n]” the array D′ for
which each D′[i+ 1] = D[n · i+ 1]

For n ∈ N, we denote by Sn the symmetric group on n items.
We consider general binary circuits of fan-in 2. Denote by G = {f : {0, 1}2 → {0, 1}} the set of

all possible boolean gate functions on two inputs, indexed by an integer in {1, . . . , 16}.

Notation 3.4 (Boolean Circuit Model). A (fan-in 2) boolean circuit C with n-bit inputs, m-bit
outputs, and size |C| = s is a collection of s gates gi of the following form:

• Input gates: {gi}1≤i≤n each directly associated with bit i of the input bit string.

• Computation gates: {gi}n<i≤s−m each specified by a triple (f, iL, iR), where f ∈ G (see
above), and 1 ≤ iL, iR < i.

• Output gates: {gi}s−m<i≤s each specified by a single index iout < i.

3.2 From Sorting Circuits to Oblivious-Access Sort

For simplicity of exposition, we treat the case of oblivious-access sorting of distinct data items.
This will suffice for our Offline ORAM application. However, a few modifications to the algorithm
will enable sorting of non-distinct items.

Proposition 3.5 (Oblivious-Access Sort). If there exist Boolean sorting circuits C = {C(n,w)}n,w
of size s(n,w), then there exists an Oblivious-Access Sort algorithm for n distinct elements using
O(1) CPU resisters, with total bandwidth and computation complexity each O(n logw+s(2n/w,w)),

and probability of error e−n
Ω(1)

.

In order to avoid the factor of w overhead in directly emulating the circuit by RAM, in our
sorting algorithm the CPU will manipulate the bit structure of words stored in memory, so that
we can “make progress” on all bits within words pulled into memory. The governing observation
is that the above circuit-emulation approach is not too costly when executing independently on w
groups of only n/w words in parallel, taking a bit-slicing/SIMD approach.

At a high level, our Oblivious-Access Sort RAM program OASort takes the following form.
Phases 1 and 2 are depicted visually in Figure 1; Phases 3 and 4 are depicted in Figure 2.

1. First, we perform a random public shuffle of database items. Since the permutation may
be public (without attempting to hide the effective permutation), this step may be executed
straightforwardly, e.g. via Knuth (Fisher-Yates) shuffle [Knu97]. The purpose of this initial
shuffle is to reduce the problem of worst-case sorting to that of sorting a list in random order.
Note, however, that no secret randomness is required.
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2. Second, we sort w separate groups of only n/w words each, in parallel. This requires the
algorithm to first “repack” words to contain consistent bits from each of the w parallel execu-
tions (corresponding to transpose of bits in memory), then to emulate the circuit on “packed”
words SIMD-style, and finally to transpose the words back to original form.

At the conclusion of this step, we have w interleaved sets of n/w sorted words. Our remaining
task is to merge these sorted lists into a single sorted list of n words.

3. Because of the random shuffle in Step 1, we are guaranteed with overwhelming probability
that no element’s current position is too far from its position in the final sorted list. We may
thus split the list into new blocks of size n/w ∈ ω(

√
n) and sort each block independently, in

parallel. To handle elements near the boundary of these blocks, we extend the “window” of
each block by an extra n/(2w) on either side, introducing overlaps between blocks.

At the conclusion of this step, we have a database of size 2n (because of overlaps), where
each ith consecutive block of 2n/w words is individually sorted, and is guaranteed to contain
as a subsequence the ith set of n/w words in the final sorted list. The goal is now to remove
duplicated words, leaving behind this complete sorted subsequence.

4. Removing duplicates takes place via three sub-steps. First, the duplicate items are identi-
fied (and replaced by −∞ symbols) by a one-pass over the data. In order to remove them
obliviously (since their location is input-dependent), we re-sort each of the 2n/w-sized blocks,
allowing the −∞ garbage items to sift to the first n/w positions of each 2n/w-block. Then,
we may deterministically remove garbage items and compress back to a sorted list of size n.

In Appendix B.1, we provide and analyze useful sub-algorithms RandPerm, Transpose, EmulateCircuit,
and RemRedundant. RandPerm(D,n) shuffles the n words in D to random order. Transpose(D,n,w)
implements a bitwise transpose within each block of w words within the size-n database D.
EmulateCircuit(D,C, s, n,m) performs a SIMD execution of the circuit C on the data held in D (i.e.,
component-wise for each bit in the RAM words). RemRedundant(E,n) steps through a database
sorted in blocks with overlap, and identifies and zeroes out redundant items.

Oblivious-Access Sort. A description of our procedure OASort is given in Figure 3.

Proof of Proposition 3.5. The complexity (both computation and bandwidth) of each step in OASort
is indicated in grey below each arrow within Figures 1 and 2, yielding a total complexity of
O(n logw + s(2n/w,w)). These individual values are derived from the complexities of the un-
derlying sub-algorithms RandPerm,Transpose, etc. constructed and analyzed in Appendix B.1.

The correctness and obliviousness of the OASort procedure (Figure 3) hold via the following
sequence of intermediate claims.

The first claim shows that, in a slightly tweaked version of the OASort Steps 1-3, the items of
the n/w individually sorted lists will not appear too far from their final positions in the complete
n-sorted list, with overwhelming probability over the randomness of the initial shuffle. In the
experiment below, the values stored in D represent the indices of the distinct values to be sorted,
with respect to their correct sorted order (i.e., smallest is 1, largest is n). (The difference between
this experiment and the OASort Steps 1-3 is that here we begin with elements already in sorted
order D[i] = i, and then apply a random permutation, whereas in OASort the values begin in
arbitrary unsorted order). The experiment fails in abort if after randomly permuting and then
sorting the interleaved groups (each of size ` := n/w), any position of D holds a value that is “far”
from its target value (specifically, if it falls outside the 2`-size region assigned to the `-size region
in which it belongs).

12



…
"

n"words"

…
"

n"words,"
random"order"

Knuth""
Shuffle"

…
"

w"x"w#
Transpose"

w#

…
"

Each"color"sorted"
(along"cols)"

Emulate""
sort"circuit"

w#

…
"

Each"color"sorted"
(interleaved)"

w#

w#

w"x"w#
Transpose"

Sort"w"groups"of"n/w"in"parallel"

O(n)" O(n"log"w)" O(s(n/w,w))" O(n"log"w)"

Figure 1: First phases of OASort.

Claim 3.6. Fix ` := n/w ∈ ω(
√
n). (Recall w ∈ no(1)). With overwhelming probability in n (over

σ ← Sn), the following experiment does not end in abort:

1. Sample random σ ← Sn; ∀i ∈ [n], set D[σ(i)]← i.

2. Individually sort each of the w interleaved groups of (n/w) words of D: i.e., ∀i ∈ [w],
D[i] ≤ D[w + i] ≤ · · · ≤ D[(n/w − 1)w + i]. (Indexing as in Figure 1).

3. If for any (j, k) ∈ [w]×[n/w] (now indexing as in Figure 2) the following holds, the experiment
ends in abort (recall that in perfect sorted order, D[j`+ k] = j`+ k):

j`+ k /∈ {D[(j − 1/2)`], . . . , D[(j + 3/2)`]}.

That is, the value that should be sorted to the kth word in jth n/w-block is currently located
somewhere outside the specified 2n/w-window spanning this location (see Figure 2).

Proof. Refer to the w interleaved groups of (n/w) words defined in Step 2 by “color” C1, . . . , Cw.
Namely, Ci := {i, w+ i, . . . , (n/w− 1)w+ i}. This aligns with the colors of the right-most diagram
in Figure 1.

Fix one value of (j, k) ∈ [w]× [n/w]. The event that j`+ k = D[pos] for some pos < (j − 1/2)`
corresponds to a case where significantly fewer than the expected number of values smaller than
j` + k ended up in the same color (and thus j` + k appears unexpectedly early). Formally, this
probability of this event is bounded by the probability that, in σ ← Sn, strictly fewer than 1

w (j −
1/2)` of the first j`+ k values σ(1), . . . , σ(j`+ k) will have the same color as j`+ k (in particular,
C∗ := Cj`+k mod w). Note that in expectation, 1

w (j` + k) of these values should receive the same
color. Consider the equivalent experiment of sampling j`+ k values Xi without replacement from
a list X of n values Xi, where n/w of the Xi are equal to 1 (corresponding to those with color C∗)
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Figure 2: Final phases of OASort.

and the remaining n− n/w are equal to 0. By Hoeffding’s inequality,7

Pr

[
j`+kj∑
i=1

Xi <
(j − 1/2)`

w

]
≤ Pr

[
j∑̀
i=1

Xi <
(j − 1/2)`

w

]
≤ Pr

[∣∣∣ j∑̀
i=1

Xi −
j`

w

∣∣∣ > `

2w

]
≤ 2e−2(`/2w)2 ,

which (for w ∈ no(1)) is ≤ 2e−n
Ω(1)

.
Similarly, the event that j`+k = D[pos] for pos > (j+3/2)` is bounded by the probability that,

in σ ← Sn, strictly more than 1
w (j + 3/2)` of the first j` + k values σ(1), . . . , σ(j` + k) will have

color C∗ (as above). Consider an experiment of sampling j`+ k values without replacement from
the set X , as above. Then sampling (j + 3/2)`/w or more “1” values Xi departs significantly from
the expected number of such appearances (j`+ k)/w ≤ (j`+ `)/w, and we bound the probability
of this via Hoeffding’s inequality:

Pr

[
j`+k∑
i=1

Xi >
(j + 3/2)`

w

]
≤ Pr

[
j`+∑̀
i=1

Xi >
(j + 3/2)`

w

]
≤ Pr

∣∣∣ (j+1)`∑
i=1

Xi −
(j + 1)`

w

∣∣∣ > `

2w

 ≤ 2e−2(`/2w)2 ,

which again is ≤ 2e−n
Ω(1)

.

7Hoeffding’s inequality, sampling without replacement, special case of 0/1 values: Pr
[
|Sm−E[Sm]| ≥ t

]
≤ 2e−2t2 ,

where Sm denotes the sum of m values sampled from X [Hoe63].
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Oblivious-Access Sort OASort(D,n)
RandPerm,Transpose, EmulateCircuit, RemRedundant are given in Algorithms 1-4.

1. RandPerm(D,n). Perform a random public shuffle of the database items.

2. Sort in parallel w blocks of size n/w (see Figure 1):

(a) Transpose(D,n,w). Transpose data to SIMD form.

(b) EmulateCircuit(D[×w], Csort, s(n), n, n). SIMD emulate boolean circuit Csort on D.

(c) Transpose(D,n,w). Transpose data back to (standard) word form.

Result: w interleaved groups of n/w words, each individually sorted.

3. Merge blocks into 1 sorted list with overlaps, by sorting (overlapping) blocks in parallel.

(a) Arrange data to appropriate form (see Figure 2). Namely, let ` = n/w.
Define 2n-size database E: For each i ∈ {0, . . . , w− 1} and j ∈ {−`/2 + 1, . . . , 3`/2}, let
E[2i`+ `/2 + j]← D[i`+ j], where D[i] := −∞ (special min elmt) for i < 1 and i > n.

(b) Sort 2`-size blocks of E in parallel (see Figure 2):

i. Reorder words: Define temp array E′[iw+j+1]← E[2`j+i+1] for i ∈ {0, . . . , 2n/w−
1}, j ∈ {0, . . . , w − 1}. (Recall ` = n/w).

ii. Transpose(E′, 2n,w). Transpose E′ bitwise to SIMD form.
iii. EmulateCircuit(E′, Csort, s(2n), 2n, 2n). SIMD emulate boolean circuit Csort on w

independent blocks of E′.
iv. Transpose(E′, 2n,w). Transpose data back to (standard) word form.
v. Reorder words: Return data as E[2`j+i+1]← E′[iw+j+1] for i ∈ {0, . . . , 2n/w−1},

j ∈ {0, . . . , w − 1}. (Recall ` = n/w).

Result: 2n-size database E contains all n items of D in sorted order, but with overlaps.

4. Remove redundant items (see Figure 2).

(a) RemRedundant(E, 2n). One-pass to identify redundant items, setting to −∞:

(b) Sort each block again, repeating Step 3b.

(c) One pass: Compress E back to D, removing −∞ values. Namely, for each i ∈ {0, . . . , w−
1} and j ∈ {1, . . . , `}, set D[i`+ j]← E[2i`+ j + `].

Figure 3: Oblivious-access sorting algorithm for distinct data items.
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Finally, combining the probability of these two bad events, and taking a union bound over the
n possible choices of (j, k), the claim holds.

We now adjust the previous experiment to match that of OASort Steps 1-3. Namely, we do not
assume the items in D begin in sorted order, but rather in arbitrary permuted order π.

Claim 3.7. For any fixed π ∈ Sn, Claim 3.6 holds also if the assignment in Step 1 is replaced by
“Set D[σ(i)]← π(i).”

Proof. Follows directly: D[σ(i)] ← π(i) is equivalent to D[σ(π−1(i))] ← i, and for fixed π, the
uniform distribution {σ ← Sn} is identical to {σ ◦ π−1 : σ ← Sn}.

In Appendix B.2 we use these claims in order to show correctness of OASort:

Claim 3.8 (OASort Correctness). For any sequence of n distinct initial values D = (D[1], . . . , D[n]),

then with probability 1−e−nΩ(1)
, OASort(D,n) outputs the values in sorted order D[1] ≤ · · · ≤ D[n].

Claim 3.9 (Perfect Obliviousness). For any two sequences of n distinct values D := (D[1], . . . , D[n]),
D′ := (D′[1], . . . , D′[n]), it holds that the distribution of memory access patterns of OASort on input
D and D′ are identical: A ccess[OASort(D,n)] ≡ A ccess[OASort(D′, n)].

Proof. Aside from the initial random shuffle, which induces a fixed input-independent distribution
over accesses, all steps of OASort (i.e., Transpose,EmulateCircuit,RemRedundant), in fact have fixed
access structure. (Note the accesses of EmulateCircuit are determined by the fixed sorting circuit
topology). Perfect obliviousness thus follows immediately.

This concludes the proof of OASort.

3.3 Offline ORAM from Oblivious-Access Sorting

Now, suppose there exists an oblivious-access sort algorithm OASort, as per Definition 3.3. We now
use such an algorithm as a black box in order to construct the desired offline ORAM simulation,
with only constant multiplicative cost in bandwidth and computation over the corresponding values
for OASort. This procedure is specified in Figure 4. For notational simplicity, we describe the case
where the program proceeds in n time steps (this is extended simply by considering longer request
sequence arrays S of length t > n).

Recall that to obtain an offline ORAM, we must be able to obliviously simulate for programs
consisting of data access instructions Access(addr, val) where either val = ∅ (for read) or a fixed and
explicitly specified val (see Definition 2.8).

Our transformation begins by making a single pass through the input y = (Π, x), and labeling
each item with a triple (index, time, value). Words in the data portion x, denoted by D[i] in
Figure 4, will be labeled with: index corresponding to their address i, time = 0, and their listed
value. Words in the program portion of the input Π, denoted by S[j] in Figure 4 (for request
sequence), and corresponding to a Read/Write request (addr, command), will be labeled with: index
addr, time j (i.e., the jth request in time), and value command. In each execution of OASort on
these triples, we will sort only with respect to two of the three words, and will carry the third word
simply as a “payload.”8

We next sort the entire program-data array (denoted M in Figure 4) with respect to key value
(index, time), using an execution of OASort. As a result, the array M is now ordered in blocks of

8Note that in any case, sorting on words of length 3w instead of w incurs only constant complexity overhead.
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words (of varying sizes), where each block corresponds to a separate index index ∈ [n]. The first
item of each block is the data payload itself, word D[index]. Following this, in chronological order,
will be the sequence of program requests accessing location index. In the restricted offline setting,
we are guaranteed that access requests are limited to either Access(index, val), where val is either
∅ (for read) or an explicitly specified value. We can thus satisfy each request by making a single
pass through M , with a single look-back at each step: Each Access(index, val) is assigned to val,
and each Access(index, ∅) is “filled in” with the value held in the location one previous.

As the final step, we re-sort the elements of M with respect to key (time, index), so as to return
them to their original locations. The desired output sequence is now contained within the program
portion of memory, S.

Proposition 3.10. Suppose there exists an Oblivious-Access Sorting algorithm for sorting n words
of size w ∈ Ω(log n) ∩ no(1) with computation/bandwidth complexity each comp(n,w). Then there
exists an offline ORAM simulating programs of time t ≥ n with computation/bandwidth O(comp(n+
t, 3w)).

In particular, if there exists OASort with cost comp(n,w) ∈ o(n log n), as is guaranteed by
Proposition 3.5 if there exist Boolean sorting circuits of size o(nw log n), then this yields an offline
ORAM with cost o((n+ t) log(n+ t)): i.e. (for t ≥ n), with sub-logarithmic overhead.

Offline ORAM Compiler OfflineORAM(D,S, n)
Inputs: starting address of database D, starting address of request sequence S, length n.

1. Preprocessing: Define a new array M := D||S, with appropriate labeling.

(a) For each i ∈ [n]: Parse D[i] = v; set M [i]← (i, 0, D[i]).

(b) For each j ∈ [n]: Parse S[j] = (index, command); set M [n+ j]← (index, j, command).

We now parse all entries M [i] as (index, time, v) where index ∈ [n], time ∈ [n] ∪ {0}, and
v ∈ {0, 1}w ∪ {∅}.

2. Execute OASort(M, 2n), w.r.t. key value (index, time) (i.e., index is more significant).

3. Fill out data requests via one pass:

Read Reg[1]←M [1], parse as (index, i, v), and set prevvalue← v.
For i = 2 to 2n:

(a) Read Reg[1]←M [i], and parse as (index, i, v).

(b) If v = ∅, then write M [i]← (index, i, prevvalue).

(c) Else, set prevvalue← v.

4. Execute OASort(M, 2n) w.r.t. key value (time, index) (i.e., time is more significant).

5. Output: starting address S to length-n array from M [n+ 1] to M [2n].

Figure 4: Offline ORAM, assuming oblivious-access sort procedure OASort.

Proof. The desired offline ORAM compiler OfflineORAM is given in Figure 4. We defer the proof
of correctness to Appendix B.2.

Consider the complexity of the OfflineORAM steps. Steps 1 and 3 each incur a single pass of
the database and simple manipulation, taking O(n) computation. Steps 2 and 4 correspond to
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executions of OASort on a database of size n + t with word size 3w (corresponding to index-time-
value triples), requiring time and bandwidth each comp(n+ t, 3w). The claim follows.

Obliviousness of OfflineORAM follows directly from the obliviousness of OASort (Proposition 3.5),
since all remaining steps (namely, preprocessing M := D||S and filling out data requests via one
pass over M) have fixed access structure, independent of the values of D and S.

This concludes the proof of Proposition 3.10.

Simulating a PRAM: Getting now a PRAM simulation is simple. We assume that the PRAM
has n memory cells and n processors (with O(1) registers as internal memory per processor), and
at every step each processor can access any cell, perform some computation involving its internal
registers, and update any cell. That is, a PRAM program Π is a sequence of the following steps:

1. Local computation (prepare read): Each processor performs some local computation on
its O(1) registers. At the conclusion of computation, each processor identifies an address
addr ∈ [n] within memory to read.

2. Read memory: Each CPU begins with an address addri ∈ [n] in memory to read. At the
conclusion of this step, each CPU learns the value Mem[addri].

3. Local computation (prepare write): Each processor performs some local computation on
its O(1) registers. As the result of computation, each processor identifies an address addr ∈ [n]
and word val ∈ {0, 1}w to write to this location in memory.

4. Write to memory: Each CPU begins with an address addri ∈ [n] and an explicit value val
to write in this location. At the conclusion of this step, each write instruction is implemented
within memory. Conflicts in the values written are resolved by priority (say the value of the
highest numbered processor; see [KR88, Vis15] for a survey).

The observation is that each of these steps itself has the form of a Fixed-Access program.
Indeed, consider a (single-CPU) simulation of Π where each PRAM processor’s local registers are
written in designated portions of memory. Each local computation step can be simulated directly:
Namely, for each of the PRAM processors, the simulation will read into memory all O(1) of its local
registers, perform the dictated local computation, and write the updated state back to memory,
where the resulting Read/Write request information is written in a fixed location. For each Read or
Write operation, the simulation will execute the above-described Offline ORAM procedure, where
the length-n request sequence is specified in (fixed) locations corresponding to the n processors
(instead of n sequential time steps). The priority writing is obtained automatically from the nature
of the simulation, which sorts CPU requests chronologically, and assuming that higher numbered
processors are later in the program than the lower ones. The computational power required from
our simulating CPU is essentially equivalent to that of the original PRAM CPUs, requiring (in
addition) only bitwise logical operations on words and extracting parts of a word.

We thus obtain an oblivious simulation of n-processor PRAM with computation/bandwidth
overhead equal to that of our Offline ORAM simulation. In particular, if there exist Boolean
sorting circuits of size o(nw log n), then (combining Propositions 3.5 and 3.10) for any t-step,
n-processor PRAM, our simulation requires computation and bandwidth o(tn log n). Note that
this is an asymptotic improvement over any known oblivious PRAM simulation in the standard
model [BCP14, CLT15]. However, we simulate the PRAM by a sequential oblivious RAM, in
contrast to the Oblivious PRAM setting considered in these works, where a PRAM is simulated on
an oblivious PRAM. An interesting question is to what extent our construction may be parallelized
to fit within this setting.
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A The [GO96] Lower Bound

The Goldreich-Ostrovsky bound assumes a “balls and bins” model of data manipulation, where
the CPU may shuffle data items around, but cannot perform any further computation. Recall
n,w, r ∈ N denote external memory size, word size, and local CPU memory size (i.e., number of
local registers).

Definition A.1 (Balls and Bins Model). A (probabilistic)-RAMn,w,r operates in the balls and bins
model if CPU registers begin empty and CPUn,w,r operations are restricted to the following:

• Move ball to Memory. For some i ∈ [r] and addr ∈ [n], write the tuple (store, addr,Reg[i]) to
outgoing communication tape, and erase Reg[i]← ∅.
• Request ball. For an addr ∈ [n], write tuple (fetch, addr,⊥) to outgoing communication tape.

• Move ball to register. For some empty register i ∈ [r] (i.e., for which Reg[i] = ∅), set
Reg[i] ← val, where val is the word currently on incoming communication tape. Erase val
from the tape.

We present an adaptation of the [GO96] lower bound directly for the weakest offline simulation
(corresponding to a stronger lower bound).

Theorem A.2 ([GO96] Theorem 6.2, rephrased). Every offline oblivious simulation of RAMn,w,r

by probabilistic-RAM′n′,w′,r′ operating in the Balls and Bins Model, for any w = w′ ∈ Ω(log n),
must make at least max{|y|,Ω(t · log t/ log r′)} accesses on any input y = (Π, x), where t =
|A ccess(RAMn,w,r, y)|.

Proof. Suppose RAM′n′,w′,r′ is an offline oblivious simulation of RAMn,w,r. For sake of cleanliness, we
omit the n,w, r subscripts and write simply RAM′ and RAM. We begin by considering a simplified
version, in which the simulation has:

• Perfect security: for any inputs y1, y2, we have A ccess(RAM′, y1) ≡ A ccess(RAM′, y2).

• Perfect correctness: ∀y, Pr[RAM′(y) = RAM(y)] = 1, over CPU′n′,w′,r′ randomness.

• Fixed bandwidth overhead: |A ccess(RAM′, y)| is a fixed function of |A ccess(RAM, y)|, for
any y and any choice of randomness made by CPU′.

Consider the following collection of RAM programs that simply query and output a specified
length-t sequence from the n data items, for fixed t ≥ n. That is, for each length-t query sequence
Q = (q1, . . . , qt) ∈ [n]t, we define program ΠQ represented by the explicit sequence q1, . . . , qt. Note
that these programs each fall within the category of Fixed-Access programs, and thus apply to the
setting of offline oblivious simulation (see Definition 2.8). Further, for any x, the straightforward
execution (without simulation) satisfies |A ccess(RAM, (ΠQ, x))| = t.
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By assumption (3), for any data x ∈ ({0, 1}w)n, and any such program ΠQ, we thus have that
|A ccess(RAM′, (ΠQ, x))| is a fixed function N(t) of t. Fix an arbitrary “visible” access sequence
V = (v1, . . . , vN ) in the support of A ccess(RAM′, (ΠQ∗ , x)), for some Q∗, x. By assumption (1), V
must be in the support of A ccess(RAM′, (ΠQ, x)) for every Q ∈ [n]t. By assumption (2), it must
be that RAM′ produces the correct output RAM(ΠQ, x) conditioned on access pattern V . Namely,
by making accesses specified by V , the simulation is able to correctly output the specified sequence
of queried values x[q1], . . . , x[qt]. The lower bound proceeds by a counting argument, showing that
N must be sufficiently large in order for all nt choices of Q to be answerable by the visible access
pattern V .

For each visible access pattern (e.g., V = (v1, . . . , nN )), consider the collection of possible
“hidden” actionsH = (h1, . . . , hN ) that can be taken by CPU′. Recall that CPU′ operates in the balls
and bins model, as in Definition A.1. Each “Move ball to memory” operation (store, addr,Reg[i])
and “Request ball” operation (fetch, addr,⊥) made by CPU′ induces a new visible access addr. Since
the visible access sequence of addresses is fixed, each choice of addr is fixed. This leaves (r + 1)
distinct choices for these two operations: r choices of registers Reg[i] from which to move a ball
to memory, and a single choice for requesting the ball currently stored at addr. Between any two
executions of “Move ball to memory” or “Request ball,” CPU′ further has the option to execute
once the operation “Move ball to register.” This allows 2(r+ 1) possible hidden actions hi for each
visible access vi, resulting in 2N (r+ 1)N possible complete hidden action sequences H for any fixed
visible N -access pattern V .

Finally, for any resulting hidden action sequence, consider the set of possible programs ΠQ

(equivalently, t-query sequences Q ∈ [n]t) that can be correctly simulated. We say that an action
sequence (v1, h1), . . . , (vN , hN ) satisfies a query sequence q1, . . . , qt if there exists a sequence 1 ≤
j1 ≤ . . . ≤ jt = q so that, for every “round” i (1 ≤ i ≤ t), after actions (v1, h1), . . . , (vji , hji), the
ball corresponding to the ith queried data item x[qi] currently resides in one of the registers of
CPU′. One can then see that a fixed sequence of actions (v1, h1), . . . , (vN , hN ) can satisfy at most
rN request sequences Q ∈ [n]t.

Putting these steps together, we see that any given visible access sequence V = (v1, . . . , vN )
may satisfy at most (2N (r + 1)N )rN request sequences Q ∈ [n]t. Thus, in order to satisfy all such
sequences (as required), it must be that

2N (r + 1)NrN ≥ nt.

That is, N ∈ Ω(t log n/ log r).

Removing the above simplifying assumptions amounts to a slightly more detailed probability
analysis. Perfect security (obliviousness) and correctness can be relaxed even to have constant
probability of failure δ, because all we need is that there will be O(nt) many request sequences
Q ∈ [n]t that share the same visible access pattern (with correctness). And, fixed bandwidth
overhead can be directly relaxed, by instead analyzing expected overhead.

Simple Extensions of the [GO96] Bound

• No repeat lookups. A nearly identical bound holds even when restricting to programs that
access each data item a single time in some permutation on [n], resulting from 2N (r+1)N ≥ n!.

• Given metadata “for free.” As noted in the original work [GO96], the lower bound holds even
if the CPU is given oracle access to the addresses of each data ball in memory at no cost.
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• “Balls and Bins and Garbage.” The bound extends to a relaxed model in which the CPU may
additionally copy and delete balls, and may spawn balls of a different “color” storing arbitrary
information, as long as the final output contains only balls of the original color. Note that
existing positive results in ORAM literature use such an approach, where helper non-data
info is stored in memory to help later locate items (specifically, in recursive solutions).

• “Server-side computation” in balls and bins. Interestingly, the bandwidth bound extends also
to the case where MEM′ may perform local computation before communicating to CPU′, if
we demand statistical security, and if this computation is also restricted to the balls and bins
model (Definition A.1). To be meaningful, we consider a natural extension of the Oblivious
RAM model, where the sequence of addresses accessed by MEM′ during its computations is
also included within adversarial view. In such case, “server-side” shuffling of balls around in
bins has absolutely no effect, since MEM′ is still limited to sending intact memory values, and
the adversary knows precisely which balls are eventually sent.

This observation implies that the recent results of [AKST14, DvDF+15] are able to bypass
the [GO96] ORAM bandwidth lower bound not only because they allow server-side computa-
tion, but rather because they also violate balls and bins (and obtain computational security).

B Omitted Material

This section contains discussions and proofs omitted from the body of the paper.

B.1 Useful Sub-Algorithms

Random Public Shuffle. We make use of the Knuth (or Fisher-Yates) Shuffle [Knu97], given
as RandPerm in Algorithm 1.

Claim B.1 (RandPerm). [Knu97] The (randomized) algorithm RandPerm(D,n) terminates in O(n)
computation steps, and implements a random permutation π ← Sn on the elements D[1], . . . , D[n].

Algorithm 1 (Public) RandPerm(D,n)

1: Inputs: start address to D, database size n.
2: for i = 1, . . . , n do

3: Sample j
$← {i, . . . , n}.

4: Read Reg[1]← D[i] into local memory.
5: Read Reg[2]← D[j] into local memory.
6: Write D[i]← Reg[2] and D[j]← Reg[1].
7: end for

Bitwise Transpose. Algorithm 2 describes a basic recursive Transpose algorithm assuming Θ(1)
CPU registers (see, e.g., [ACS87, FLPR99]). The algorithm performs each w-word transpose re-
cursively, in logw iterations, each corresponding to swapping blocks of size n/2i. Each recursion
level requires reading and rewriting every word of data once, since words only affect one another
in pairs at any given recursion level. The total computation and bandwidth of the algorithm are
thus both O(n logw).
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Claim B.2 (Transpose). Assuming O(1) local CPU registers, the algorithm Transpose(D,n,w)
makes O(n logw) memory word accesses, performs O(n logw) computation, and implements a bit-
wise transpose within each block of w words of the input database D.

Proof. It suffices to argue correctness and O(w logw) complexity of each w × w transpose (Lines
4-13 of Algorithm 2). The complexity claim is clear: within each logw level of iteration, O(w) work
is performed, pulling words into local memory in pairs and performing simple bit swap operations
on the words. To see correctness, note that after each level of iteration j ∈ {0, . . . , logw − 1}, the
(`,m)th bit in the original w × w array (i.e., D[`][m]) for which ` = `top||`bot and m = mtop||mbot

(split at bit position j) now resides in position D[`top||mbot][mtop||`bot]. Thus, after the final (logw−
1)th iteration, each original bit D[`][m] will lie in position D[m][`], as desired.

Remark B.3 (Transpose with Θ(w) CPU registers). Note that if the CPU has Θ(w) local registers,
then we may simplify the iterated transpose procedure: For each w×w transpose, read all w words
into local CPU memory at once and transpose locally. This reduces the total bandwidth required
in this step from O(n logw) down to O(n) (but maintains O(n logw) computation).

Algorithm 2 Transpose(D,n,w) (with O(1) local CPU registers)

1: Inputs: start address to D, database size n, word size w.
2: for i = 1 to n/w do //Over all w-word blocks, transpose each block
3: Let start← wj;
4: for j = 0 to (logw − 1) do //Iteratively compute 2j-square transposes
5: for ` = 1 to w/2 do //Pull words into memory & modify in pairs
6: Read Reg[1]← D[start + `];
7: Read Reg[2]← D[start + `+ 2j ];
8: Store temp copy of 1: temp← Reg[1];
9: For every bit index m ∈ [w] for which (m∧2j == 1), set Reg[1][m]← Reg[2][m−2j ];

10: For every bit index m ∈ [w] for which (m ∧ 2j == 0), set Reg[2][m]← temp[m+ 2j ];
11: Write D[start + `]← Reg[1] back to memory
12: Write D[start + `+ 2j ]← Reg[2] back to memory
13: end for
14: end for
15: end for

SIMD Circuit Emulation via RAM. EmulateCircuit is given in Algorithm 3.
Note that the circuit description is written to data as an array C, where C[i] is initialized with

the information defining gate i (see Notation 3.4). EmulateCircuit takes two addresses, identifying
the start of of the database D and of the circuit description array C.

Claim B.4 (EmulateCircuit). The algorithm EmulateCircuit(D,C, s, n,m) terminates in O(s) time
steps; at the conclusion of execution, the m data words output := (C[s−m+1], . . . , C[s]) correspond
to the output of circuit C computed bitwise on n-word input input := (D[1], . . . , D[n]). That is,
outputi = C(input).

Proof. The time complexity claim follows by inspection: the first loop counts through 1 to n; the
second through (n + 1) to (s −m), and the final through (s −m + 1) to s. The first loop copies
the n input words into the first n components of the array C. The second loop executes each

25



boolean gate of C bitwise on the pair of values generated so far in the partial computation at the
appropriate indices iL, iR. Finally, the remaining loop copies the output values from their current
locations within the computation to the final m indices of C. That is, the claim holds.

Algorithm 3 EmulateCircuit(D,C, s, n,m)

1: Inputs: start address to database D, start address to circuit description C, circuit size s, input
length n, output length m.

2: for i = 1 to n do //Copy input
3: Read Reg[1]← D[i].
4: Write C[i]← Reg[1].
5: end for
6: for i = (n+ 1) to (s−m) do //Evaluate circuit
7: Read Reg[1]← C[i]. Parse Reg[1] = (f, iL, iR).
8: Read Reg[2]← C[iL].
9: Read Reg[3]← C[iR]

10: Write C[i]← f(Reg[2],Reg[3]). //Boolean gate f performed bitwise on words
11: end for
12: for i = (s−m+ 1) to s do //Copy output
13: Read Reg[1]← C[i]. Parse Reg[1] = iout.
14: Read Reg[2]← C[iout].
15: Write C[i]← Reg[2].
16: end for

Remove Redundant Items in Sorted List. In the final stage of the OASort algorithm, we
reach an array E that contains all items of the original database in sorted order, but with redundant
overlapping items. The following procedure RemRedundant(E,n), given in Algorithm 4, provides a
means for identifying and zeroing out these redundant items (to be removed in a proceeding step).
Note that this process is facilitated when the items are guaranteed distinct; however, a modification
of the protocol will enforce this generically even when beginning with a list of non-distinct items.

Algorithm 4 RemRedundant(E,n) One-pass: Remove redundant items

currentval← −∞.
for i = 1 to w − 1 do // For each (2n/w)-size block

blockctr← 0.
for j = 1 to 2` do // Step through the block

Read Reg[1]← D[2i`+ j].
if (Reg[1] > currentval) && (blockctr < `) then

currentval← Reg[1].
blockctr++.

else
Zero out D[i`+ j]← −∞

end if
end for

end for
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B.2 Omitted Correctness Proofs

Claim B.5 (OASort Correctness). For any sequence of n distinct initial values D = (D[1], . . . , D[n]),

then with probability 1−e−nΩ(1)
, OASort(D,n) outputs the values in sorted order D[1] ≤ · · · ≤ D[n].

Proof. Consider the steps of OASort.

1. RandPerm(D,n). By Claim B.1, the n items of D are permuted via random π ← Sn.

2. Sorting in parallel. (a) Transpose(D,n,w): By Claim B.2, every block of w words of D
is individually bitwise transposed. That is, within each w-block, the ith word (i ∈ [w])
now contains the concatenation of ith bits from each of the corresponding w words. (b)
EmulateCircuit(D[×w], Csort, s(n), n, n): By Claim B.4, together with the assumption that
Csort is a valid sorting circuit, we have at the conclusion of execution that D satisfies the
following: for each bit position i ∈ [w] within a word, and each j ∈ [n/w], defining D(i)[j] :=
(D[wj + 1]i||D[wj + 2]i|| . . . ||D[wj + w]i), then D(i)[1] ≤ D(i)[2] ≤ · · · ≤ D(i)[n/w]. (c)
Transpose(D,n,w): By Claim B.2, we now have for each i ∈ [w] that D[i] ≤ D[i + w] ≤
D[i+ 2w] ≤ · · · ≤ D[i+ (n/w − 1)w].

3. Merging blocks (with overlap). In (a), data is copied from D into the size-2n array E
with overlaps as illustrated in Figure 2. Step (b) directly mimics the parallel sort ana-
lyzed above, with the modification that words are first reordered from “same-colored” blocks
to be interleaved, and then this is reversed at the very end. From the same analysis as
before, together with the added reordering, this means that in effect each of the w con-
tiguous “same-colored” 2n/w-blocks is individually sorted: i.e., for every i ∈ [w], we have
E[i`] ≤ E[i`+ 1] ≤ E[i`+ 2] ≤ · · · ≤ E[i`+ (`− 1)] (recall ` = n/w).

We further claim the following property of E with respect to the original database D. Denote
by D̃ the correctly sorted version of D (i.e., the target output), and recall that ` = n/w ∈
ω(
√
n). Then each (sorted) `-block of D̃ is contained as a subsequence of the corresponding

2`-block of E. That is, there exists a subsequence of indices i1 < i2 < i3 < · · · < in ∈ [2n] for
which i1, . . . , i` ≤ 2` ≤ i`+1, . . . , i2` ≤ 4` ≤ i2`+1, etc, and E[ij ] = D̃[j] ∀j ∈ [n].

This follows directly from Claims 3.6 and 3.7, with the required error probability over the
execution of RandPerm.

4. Remove redundant items.

Since the items of the original data set D are assumed to be distinct, the one-pass procedure of
RemRedundant(E, 2n) in Step (a) will necessarily identify some index sequence i1 < i2 < · · · <
in ∈ [2n] satisfying the properties above, and set all elements of E outside of these indices to
−∞. Indeed, RemRedundant keeps precisely the first ` distinct values of each 2`-block of E
that have not appeared yet in the sequence.

From the same analysis as above, the parallel block sort in Step 4(b) (repeating the procedure
of Step 3(b)) will precisely sort each of the “same-colored” contiguous 2`-blocks of E, in effect
placing the ` elements of each 2` block that were assigned to −∞ during RemRedundant to
the left-most ` positions of the block.

Finally, this means that in the final one-pass step of Step 4(c), these −∞ items are removed,
leaving behind precisely the sorted elements of D.
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Claim B.6 (OfflineORAM Correctness). OfflineORAM satisfies the correctness property of an offline
ORAM compiler, for Fixed-Access programs.

Proof. By the correctness of OASort, the following will happen with overwhelming probability in
n. At the conclusion of Step 2, all entries of the matrix M = D||S will be correctly sorted with
respect to the key value (index, time): i.e., for each index i ∈ [n], there will be a sequence beginning
with the original database value entry D[i], and proceeding with the subsequence of data requests
S[j] of the form (index, command) for index = i, in order of increasing j (corresponding to the time
order of the requests). Thus, at the conclusion of Step 3, each data request entry S[j] will be
fulfilled with the correct requested value (note this relies on the Fixed−Access structure of the
compiled program). Finally, after Step 4, the array M will be correctly sorted by key (time, index),
returning it to the original order M = D||S (since all items of D have time = 0 and index equal
to its originating index, and all items of S have sequential time values in [n]). Thus, the values
M [n+ 1] to M [2n] will hold precisely the fulfilled requests from S.
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