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ABSTRACT. The threshold degree of a Boolean function f is the minimum degree of a
real polynomial p that represents f in sign: f .x/ ⌘ sgnp.x/. Introduced in the seminal
work of Minsky and Papert (1969), this notion is central to some of the strongest algo-
rithmic and complexity-theoretic results for constant-depth circuits. One problem that has
remained open for several decades, with applications to computational learning and com-
munication complexity, is to determine the maximum threshold degree of a polynomial-
size constant-depth circuit in n variables. The best lower bound prior to our work was
˝.n.d�1/=.2d�1// for circuits of depth d . We obtain a polynomial improvement for ev-
ery depth d; with a lower bound of ˝.n3=7/ for depth 3 and ˝.

p
n/ for depth d > 4:

The proof contributes an approximation-theoretic technique of independent interest, which
exploits asymmetry in circuits to prove their hardness for polynomials.

1. INTRODUCTION

Representations of Boolean functions by polynomials have played an important role in
theoretical computer science. The idea of representing a Boolean function by the sign of a
polynomial has been particularly fruitful. Formally, a real polynomial p is said to represent
a given Boolean function f W f0; 1gn ! f0; 1g in sign if

sgnp.x/ D
(

�1 if f .x/ D 0;

C1 if f .x/ D 1

for every input x 2 f0; 1gn: The threshold degree of f , denoted deg˙.f /, is the mini-
mum degree of a sign-representing polynomial for f . The formal study of this complexity
measure began in 1969 with the pioneering work of Minsky and Papert [21]. Motivated
by applications to neural networks, the authors of [21] proved that the parity function on n
variables has the maximum possible threshold degree, n. They obtained lower bounds on
the threshold degree of several other functions, including DNF formulas and intersections
of halfspaces. Minsky and Papert’s work has found applications far beyond artificial in-
telligence. In theoretical computer science, applications of sign-representing polynomials
range from circuit lower bounds [19, 20] and size-depth trade-offs [24, 35] to computa-
tional learning [17, 16, 23, 3, 30, 32, 11, 33, 36] and the closure properties of PP [8].

The notion of threshold degree has been especially influential in the study of AC0, the
class of constant-depth polynomial-size circuits with ^;_;: gates of unbounded fan-in.
Aspnes et al. [4] used sign-representing polynomials to give an entirely different proof of
classic lower bounds for AC0. In communication complexity, the notion of threshold de-
gree was critical in constructing the first AC0 circuit with exponentially small discrepancy
and hence maximum communication complexity in nearly every model [26, 27]. That dis-
crepancy result was used in [26] to show the optimality of Allender’s classic simulation
of AC0 by majority circuits, solving the open problem [19] on the relation between the
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two circuit classes. A more sophisticated application of threshold degree gave the first
exponential lower bound on the sign-rank of AC0 circuits [25], twenty-two years after the
problem was posed by Babai et al. [5]. Subsequent work [12, 6, 28, 34] resolved other
questions in communication complexity and circuit complexity related to constant-depth
circuits by generalizing the threshold degree method of [26, 27].

Sign-representing polynomials have also enabled algorithmic breakthroughs in the study
of constant-depth circuits. An illustrative example is the fastest known algorithm for learn-
ing polynomial-size DNF formulas, due to Klivans and Servedio [17], with running time
exp. QO.n1=3//. The authors of [17] obtained their algorithm by proving an essentially tight
upper bound of O.n1=3 logn/ on the threshold degree of that concept class. Another such
learning-theoretic breakthrough is the fastest algorithm for learning Boolean formulas, ob-
tained by O’Donnell and Servedio [23] for formulas of constant depth and by Ambainis et
al. [3] for arbitrary depth. The algorithm runs in time exp. QO.n.2d�1�1/=.2d �1/// for for-
mulas of size n and constant depth d , and in time exp. QO.pn// for formulas of unbounded
depth. In both cases, the bound on the running time follows from the corresponding upper
bound on the threshold degree.

1.1. Our results. A longstanding open problem in the area is to determine the maxi-
mum threshold degree of an AC0 circuit. This problem is motivated by algorithmic and
complexity-theoretic applications [17, 23, 18, 25, 11], in addition to being a natural ques-
tion in its own right. Table 1.1 summarizes the progress to date. In their seminal mono-
graph, Minsky and Papert [21] proved a lower bound of ˝.n1=3/ on the threshold degree
of the following DNF formula in n variables:

f .x/ D
n1=3^
iD1

n2=3_
jD1

xi;j :

Three decades later, Klivans and Servedio [17] obtained an upper bound of O.n1=3 logn/
on the threshold degree of any polynomial-size DNF formula in n variables, matching
Minsky and Papert’s result and resolving the problem for depth 2. Attempts to determine
the threshold degree for depth d > 3 have been met with limited success. Until recently,

Depth Threshold degree Reference

2 ˝.n1=3/ Minsky and Papert [21]

2 O.n1=3 logn/ Klivans and Servedio [17]

d ˝.n1=3 log2.d�2/=3 n/ O’Donnell and Servedio [23]

d ˝.n
d�1

2d�1 / Sherstov [33]

3 ˝.n3=7/ This paper

4 ˝.
p
n/ This paper

Table 1.1: Known bounds on the maximum threshold degree of ^;_;:-circuits of
polynomial size and constant depth. In all bounds, n denotes the number of variables.



THE POWER OF ASYMMETRY IN CONSTANT-DEPTH CIRCUITS 3

the only progress on this question was due to O’Donnell and Servedio [23], who proved a
threshold degree lower bound of˝.n1=3 log2.d�2/=3 n/ for circuits of depth d: The authors
of [23] formally posed the challenge of obtaining a polynomial improvement on Minsky
and Papert’s lower bound. Such an improvement was obtained last year in [33], with a
threshold degree lower bound of ˝.n.d�1/=.2d�1// for circuits of depth d: In particular,
the result in [33] subsumes all previous lower bounds, with a strict improvement starting at
depth d D 3: The main contribution of this paper is a polynomially stronger lower bound
for every depth d > 3. For depth 3; we obtain:

THEOREM 1.1 (Main result, d D 3). Let f W f0; 1gnCn6=7 ! f0; 1g be the depth-3 read-
once formula given by

f .x; y/ D
n1=7_
iD1

0@n2=7^
jD1

n4=7_
kD1

xi;j;k

1A ^
0@n3=7^
jD1

n2=7_
kD1

yi;j;k

1A :
Then

deg˙.f / D ˝.n3=7/:

Apart from improving on the previous lower bound for depth-3 circuits, this theorem
is of interest in the study of formulas. Specifically, it matches a known upper bound of
QO.n.2d�1�1/=.2d �1// on the threshold degree of formulas of depth d and size n; due to

O’Donnell and Servedio [23]. Prior to our work, that upper bound was known to be tight
only for d D 1 and d D 2, by the classic result of Minsky and Papert [21] mentioned
above. Theorem 1.1 suggests that O’Donnell and Servedio’s upper bound may be tight for
all d; a fascinating possibility.

A comment is in order on the admittedly unusual formula f in Theorem 1.1. A tradi-
tional approach to lower bounds for constant-depth circuits would certainly favor a more
symmetric construction. Surprisingly, asymmetry turns out to be essential to the tight lower
bound in Theorem 1.1. In particular, the previous lower bound of˝.n2=5/ for depth-3 for-
mulas, obtained in [33], was shown in that paper to be tight for all formulas of the form
f .x/ D Wn1

iD1
Vn2

jD1
Wn3

kD1 xi;j;k with n1n2n3 D n: Asymmetry plays a critical role in all
of our constructions, as we will shortly explain in detail.

For circuits of depth d > 4; we obtain a lower bound of ˝.
p
n/; improving polynomi-

ally on previous work and Theorem 1.1.

THEOREM 1.2 (Main result, d > 4). There is an explicitly given ^;_-circuit f W f0; 1gn !
f0; 1g of depth 4 and polynomial size such that

deg˙.f / D ˝.
p
n/:

As we discuss in Remark 9.6 at the end of the paper, one can use O’Donnell and Servedio’s
technique [23] to improve the lower bound of Theorem 1.2 by an arbitrary polylogarithmic
factor, at the expense of increasing the circuit depth by a constant. Theorem 1.2 solves
a recent open problem due to Bun and Thaler [11] and Thaler [36], who discussed the
challenge of proving an ˝.

p
n/ lower bound for constant-depth circuits and proposed

several candidate functions. Intriguingly, the construction in Theorem 1.2 seems unrelated
to Bun and Thaler’s candidate functions, whose status remains open.

Finally, we note that the threshold degree lower bounds in this paper imply improved
lower bounds in communication complexity and learning theory. Our main result, stated as
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Theorem 1.2 above and restated in technical detail as Theorem 9.4 at the end of the paper,
gives an ^;_-circuit f W f0; 1gn ! f0; 1g of polynomial size and depth 4 with discrep-
ancy exp.�˝.pn// and threshold weight and threshold density exp.˝.

p
n//: The best

previous bounds [33] were exp.�˝.n 1
2 � 1

4d�6 // for discrepancy and exp.˝.n
1
2 � 1

4d�6 //

for threshold weight and density, where d > 2 stands for the depth of the circuit. The
passage from threshold degree to these other complexity measures uses by-now standard
reductions [27, 19]. We refer the interested reader to [33, Section 8] for details, including
all definitions.

1.2. Proof overview. At first glance, Theorems 1.1 and 1.2 seem unrelated. In reality,
they are corollaries to a more general result that we prove. The key notion here is that of
one-sided approximate degree, defined for a Boolean function f W f0; 1gn ! f0; 1g as the
least degree of a real polynomial p that is close to zero on f �1.0/ and far from zero on
f �1.1/:

p.x/ 2
(
Œ�✏; ✏ç if f .x/ D 0;

Œ1 � ✏;C1/ if f .x/ D 1:

The error parameter ✏ in this definition is typically a small constant, with ✏ D 1=3 being
the default setting. One-sided approximate degree has played an important role in the
area [17, 14, 10, 29, 11, 33], with applications to both complexity theory and algorithms.
Its relation to threshold degree is straightforward: if p is a one-sided approximant for f ,
then p � 1

2
is a sign-representing polynomial for f . One-sided approximate degree is

therefore always at least as large as threshold degree, and the gap between them can be
arbitrary.

The central technical contribution of this paper is a hardness amplification result that
transforms any Boolean function with high one-sided approximate degree into a function
with proportionately high threshold degree. Quantitatively, our hardness amplification the-
orem transforms any given circuit f W f0; 1gn ! f0; 1g with one-sided approximate degree
n˛ in a black-box manner into a circuit F W f0; 1gN ! f0; 1g with threshold degree˝.N ˇ /;

where ˇ D ˇ.˛/ is the monotonically increasing function given by

ˇ D

Ä
3=7 if ˛ < 1=2;
3˛=.3˛ C 2/ if 1=2 6 ˛ < 2=3;

1=2 otherwise.
(1.1)

Technical details follow.

THEOREM 1.3 (Hardness amplification). Let f W f0; 1gn ! f0; 1g be a given function with
one-sided approximate degree n˛; where 0 6 ˛ 6 1: Then there is an explicitly given
function F W f0; 1gN ! f0; 1g of the form F D ORm1

ı..ANDm2
ıf 0/^.ANDm3

ıORm4
//

with threshold degree

deg˙.F / D ˝.N ˇ /;

where f 0 2 f:f;ORng and ˇ D ˇ.˛/ is given by (1.1).

In this theorem, the composition operator ı denotes componentwise composition on dis-
joint sets of variables, and similarly ^ denotes a conjunction on disjoint sets of variables.
Thus, F is a function on N D m1.m2nCm3m4/ variables. Observe that the transforma-
tion f 7! F preserves polynomial size and increases the circuit depth only by 2, which
is essential for our applications. Our main results follow immediately from Theorem 1.3
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and known lower bounds on the one-sided approximate degree of constant-depth circuits.
Specifically, we obtain Theorem 1.1 by applying the hardness amplification to the func-
tion f D :ORn with one-sided approximate degree ⇥.

p
n/: To obtain Theorem 1.2, we

instead use a certain polynomial-size CNF formula f with one-sided approximate degree
˝.n2=3/:

We find Theorem 1.3 of interest in its own right, independent of its role in proving
the main results of this paper. It is helpful to contrast it with the best previous hardness
amplification result for threshold degree, obtained in [33, Theorem 1.6]. In that work, we
showed how to transform any given circuit f W f0; 1gn ! f0; 1g with one-sided approximate
degree n˛ into a polynomially larger circuit F W f0; 1gN ! f0; 1g with threshold degree
˝.N ˇ /; where

ˇ D max
⇢
d � 1
2d � 1 ;

d˛

.2d � 1/˛ C 1

�
:

The integer parameter d refers to the increase in circuit depth in going from f to F: The
dependence ˇ D ˇ.˛/ improves monotonically with the depth parameter d , approaching
ˇ D 1=2 in the limit as d ! 1: In contrast, the construction in our paper features no
depth parameter; the passage f 7! F in Theorem 1.3 always corresponds to a depth
increase of 2: Figure 1.1 compares the previous hardness amplification result from [33]
with Theorem 1.3 in this paper, plotting the dependence ˇ D ˇ.˛/ in the two cases. As
the figure shows, we improve on previous work for d D 2 and d D 3; as well as for all d
starting at ˛ > 2=3. These improvements directly translate in the polynomially stronger
lower bounds in our main results.

Our proof of Theorem 1.3 departs significantly from previous work. After all, we need
to somehow amplify one-sided approximate degree n2=3 to threshold degree˝.

p
N/ using

only two levels of gates, as opposed to infinitely many in previous work. We achieve

Figure 1.1: Transforming a circuit f W f0; 1gn ! f0; 1g with one-sided approximate
degree n˛ into a polynomially larger circuit F W f0; 1gN ! f0; 1g with threshold de-
gree ˝.N ˇ /: The graphs plot the dependence ˇ D ˇ.˛/ in previous work and this
paper. Left: the best previous construction [33], with the distinct curves correspond-
ing to an increase of 2; 3; : : : 10, respectively, in circuit depth in going from f to F .
Right: the construction in this paper, corresponding to a depth increase of 2.
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these efficiency gains as follows, using asymmetry along with new intermediate notions of
approximation.

(i) By hypothesis, the original function f cannot be approximated in a one-sided
manner by a polynomial of low degree. In the notation of Theorem 1.3, our first
step is to show that the composition ANDm2

^ :f cannot be approximated in a
one-sided manner to within a small constant by any low-degree rational function
with `1 norm 2O.m2/: This passage from polynomials to rational functions is the
first stage in the hardness amplification process.

(ii) In parallel, we show that the composition ANDm3
ıORm4

cannot be approximated
in a one-sided manner to exponentially small error by any low-degree rational
function.

(iii) Using the conclusions of the previous two steps, we prove that the conjunction
.ANDm2

^ :f / ^ .ANDm3
^ ORm4

/ cannot be approximated in a one-sided
manner to within a small constant by any low-degree rational function. This step
is the centerpiece of our paper, and it holds in considerable generality. Specifically,
we are able to prove a general “composition theorem” that characterizes the one-
sided rational approximation of any composition g^h in terms of approximation-
theoretic properties of the individual functions g and h: Note the critical role of
asymmetry in this step.

(iv) Finally, we invoke a result from previous work [33] that characterizes the threshold
degree of a disjunction of functions in terms of the one-sided rational approxima-
tion of the individual functions.

Steps (i), (ii), and (iii) in this program correspond to Sections 7, 8, and 6, respectively.
These components are put together in Section 9, completing the proof. We provide addi-
tional details and intuition at each stage of the proof, and conclude the paper by discussing
the potential of our approach to give stronger bounds.

2. PRELIMINARIES

2.1. Basic notation. Given the key role of rational functions in this work, it will be con-
venient to use the extended real number system R [ f�1;C1g for all calculations. We
additionally adopt the conventions that 00 D 1 and x=0 D C1 for x > 0; where the
former is justified by continuity. As usual, log x refers to the logarithm of x to base 2.
For a multivariate real polynomial pWRn ! R, we let degp denote the total degree of p,
i.e., the largest degree of any monomial of p: We use the terms degree and total degree
interchangeably in this paper. The sign function is given by

sgn x D

Ä
�1 if x < 0;
0 if x D 0;

1 if x > 0:

For a logical condition C , we use Iverson bracket notation

IŒC ç D
(
1 if C is true,
0 otherwise.

We use the term Euclidean space to refer to Rn for some positive integer n:We let ei denote
the vector whose i th component is 1 and the others are 0: Thus, the vectors e1; e2; : : : ; en
form the standard basis for Rn: Generalizing this notation somewhat, we let 1S denote the
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characteristic vector of the set S; so that 1S D P
i2S ei : For a linear subspace L; we let

L? denote its orthogonal complement.
Set membership notation, when used in the subscript of an expectation operator, indi-

cates that the expectation is taken with respect to a uniformly random element of the indi-
cated set. A generic instance of this notation is Ex2S f .x/; which we will often shorten
further to ES f: We will often omit the argument in equations and inequalities involving
functions, as in sgnp D .�1/f . Relational and arithmetic operators for functions are
to be interpreted pointwise. For example, the statement “f > 2jgj on X” means that
f .x/ > 2jg.x/j for every x 2 X:

2.2. Boolean functions, formulas, and circuits. Throughout this paper, Boolean func-
tions are mappings X ! f0; 1g for some finite subset X of Euclidean space, most often
X D f0; 1gn: The functions ANDn;ORn;XORn on the Boolean hypercube f0; 1gn have
their standard definitions: ANDn.x/ D Vn

iD1 xi ; ORn.x/ D Wn
iD1 xi ; and XORn.x/ DLn

iD1 xi : For a Boolean function f; we let :f denote the negation of f: We use the com-
mon shorthands NANDn D :ANDn and NORn D :ORn: To avoid clutter, we will often
omit the floor and ceiling operators when indicating the input length of Boolean functions.
For example, ORp

n stands for ORdp
ne or ORbp

nc, depending on context. A key func-
tion in this paper is the element distinctness function EDn;mW fe1; e2; : : : ; emgn ! f0; 1g,
defined for m > n by

EDn;m.x1; x2; : : : ; xn/ D
(
1 if x1; x2; : : : ; xn are pairwise distinct,
0 otherwise.

The input to EDn;m can be viewed as an m ⇥ n Boolean matrix in which every column
contains exactly one nonzero entry. In that representation, the function evaluates to true if
and only if every row contains at most one nonzero entry. Observe that EDn;m is defined
on a small subset of the ambient hypercube f0; 1gnm; unlike ANDn;ORn; and XORn:

For Boolean functions f W f0; 1gn ! f0; 1g and gWX ! f0; 1g; we let f ı g denote
the componentwise composition of f with g; i.e., the Boolean function on Xn that sends
.x1; x2; : : : ; xn/ 7! f .g.x1/; g.x2/; : : : ; g.xn//: By associativity, this definition extends
unambiguously to compositions f1 ıf2 ı � � � ıfk of three or more functions. For functions
f WX ! f0; 1g and gWY ! f0; 1g; we let f ^ g stand for the function on X ⇥ Y given
by .f ^ g/.x; y/ D f .x/ ^ g.y/: The shorthand f _ g is defined analogously. We often
use this notation along with the composition operator, as in OR` ı ..ANDk ı :f / ^ g/:

Observe that in our notation, f and f ^f are completely different functions, with domain
X and X ⇥X , respectively.

For our purposes, a Boolean circuit, or equivalently an ^;_-circuit, is a circuit with
gates ^ and _ of unbounded fan-in, with negations allowed at the input gates. In this
terminology, the circuit class AC0 consists of function families ffng1

nD1 such that each
fnW f0; 1gn ! f0; 1g can be represented by an ^;_-circuit with cnc gates and depth c, for
some constant c > 1 and all n: A Boolean formula, or equivalently an ^;_-formula, is an
^;_-circuit in which every gate has fan-out 1. Common examples of ^;_-formulas are
DNF and CNF formulas. We define size somewhat differently for circuits vs. formulas,
as the number of gates in the former case and the number of leaf nodes in the latter case.
An ^;_-formula is called read-once if its leaf nodes correspond to pairwise distinct input
variables. In particular, the size of a read-once ^;_-formula never exceeds the number of
input variables. We refer to an ^;_-circuit or -formula f W f0; 1gn ! f0; 1g as explicitly
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given if our manuscript provides an algorithm that runs in time nO.1/ and produces the
representation of f as a circuit or formula.

2.3. Combinatorial identities. For an integer k > 0 and an arbitrary real number ˛;
recall the generalized binomial coefficient 

˛

k

!
D ˛

k
� ˛ � 1
k � 1 � � � � � ˛ � k C 1

1
:

This notation specifically allows ˛ D 0 and ˛ < 0; both of which arise frequently in this
paper. For example, 

�1
k

!
D .�1/k .k D 1; 2; 3; : : : /

and more generally 
�n
k

!
D .�1/k

 
nC k � 1

k

!
.n; k D 1; 2; 3; : : : /:

We will need the following combinatorial identities.

FACT 2.1.

(i) For any integer n > 1 and any real polynomial p of degree less than n;

nX
iD0
.�1/i

 
n

i

!
p.i/ D 0I

(ii) for any integers n > 0 and k > 1;

nX
iD0

.�1/i
k C i

 
n

i

!
D 1

k

 
nC k

k

!�1
I

(iii) for any integers n > k > 0; 
n

k

!ˆ 1

0

xk.1 � x/n�k dx D 1

nC 1
I

(iv) for any integers n > k > 0; 
k

k

!
C
 
k C 1

k

!
C
 
k C 2

k

!
C � � � C

 
n

k

!
D
 
nC 1

k C 1

!
:

The first identity, (i), is well-known [15]. The other three are less so, and we provide
their short proofs for the reader’s convenience.
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Proof. (ii) We have
nX
iD0

.�1/i
i C k

 
n

i

!
D

nX
iD0

.�1/i .i C k � 1/.i C k � 2/ � � � .i C 1/

.nC k/.nC k � 1/ � � � .nC 1/

 
nC k

i C k

!

D
nX

iD�kC1

.�1/i .i C k � 1/.i C k � 2/ � � � .i C 1/

.nC k/.nC k � 1/ � � � .nC 1/

 
nC k

i C k

!

D
nX

iD�k

.�1/i .i C k � 1/.i C k � 2/ � � � .i C 1/

.nC k/.nC k � 1/ � � � .nC 1/

 
nC k

i C k

!

C 1

k

 
nC k

k

!�1

D 1

k

 
nC k

k

!�1
;

where the final step uses (i).
(iii) Applying the binomial theorem, 

n

k

!ˆ 1

0

xk.1 � x/n�k dx D
 
n

k

!
n�kX
iD0
.�1/i

 
n � k
i

!ˆ 1

0

xkCi dx

D
 
n

k

!
n�kX
iD0
.�1/i

 
n � k
i

!
1

k C i C 1

D
 
n

k

!
� 1

k C 1

 
n � k C .k C 1/

k C 1

!�1

D 1

nC 1
;

where the third step uses (ii).
(iv) This equality has a simple combinatorial interpretation: to choose a size-.k C 1/

subset S ✓ f1; 2; : : : ; nC 1g, one can first choose an integer m and then choose one of the
size-.k C 1/ subsets S ✓ f1; 2; : : : ; nC 1g with maxS D m:

2.4. Norms and products. For a finite set X; we let RX denote the linear space of func-
tions f WX ! R: This space is equipped with the usual norms and inner product:

kf k1 D max
x2X

jf .x/j;
kf k1 D

X
x2X

jf .x/j;

hf; gi D
X
x2X

f .x/g.x/:

The tensor product of f 2 RX and g 2 RY is the real function f ˝g 2 RX⇥Y defined by
.f ˝ g/.x; y/ D f .x/g.y/: The tensor product f ˝ f ˝ � � � ˝ f (n times) is abbreviated
f ˝n: The support of a function f WX ! R is denoted suppf D fx 2 X W f .x/ ¤ 0g: A
convex combination of f1; f2; : : : ; fk 2 RX is any function of the form �1f1C�2f2C� � �C
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�kfk ; where �1;�2; : : : ;�k are nonnegative and sum to 1: The convex hull of F ✓ RX ,
denoted convF; is the set of all convex combinations of functions in F:

Throughout this manuscript, we view probability distributions as real functions. This
convention makes available the shorthands introduced above. In particular, for probability
distributions � and �; the symbol supp� denotes the support of �, and � ˝ � denotes
the probability distribution given by .� ˝ �/.x; y/ D �.x/�.y/: If � is a probability
distribution onX;we consider � to be defined on any superset ofX with the understanding
that � D 0 outside X:

2.5. Symmetrization. For a bit string x 2 f0; 1gn; we let jxj D x1Cx2C � � �Cxn denote
the Hamming weight of x: We let Sn stand for the symmetric group of order n; and define
�x D x�.1/x�.2/ : : : x�.n/ for any � 2 Sn and x 2 f0; 1gn: The following simple but
fundamental fact, due to Minsky and Papert [21], allows one to transform a multivariate
real polynomial on f0; 1gn into a related univariate polynomial on f0; 1; 2; : : : ; ng without
an increase in degree.

PROPOSITION 2.2 (Minsky and Papert). Let pW f0; 1gn ! R be an arbitrary polynomial.
Then the mapping

t 7! E
x2f0;1gn

jxjDt
p.x/ .t D 0; 1; 2; : : : ; n/

is a univariate real polynomial of degree at most degp:

Minsky and Papert’s result has the following multivariate generalization.

COROLLARY 2.3 (cf. Minsky and Papert). Let pW .f0; 1gn/m ! R be an arbitrary poly-
nomial. Then there is a polynomial qWRm ! R of degree at most degp such that

E
�12Sn

E
�22Sn

� � � E
�m2Sn

p.�1x1; : : : ; �mxm/ D q.jx1j; jx2j; : : : ; jxmj/

for all x1; x2; : : : ; xm 2 f0; 1gn:
This generalization follows by induction on m; where the base case m D 1 corresponds to
Proposition 2.2. For details, see, e.g., [25].

2.6. Approximation by polynomials. Let f WX ! f0; 1g be given, for a finite subset
X ⇢ Rn: The ✏-approximate degree of f; denoted deg✏.f /; is the least degree of a real
polynomial p such that kf � pk1 6 ✏: We refer to any such polynomial for f as a
uniform approximant (equivalently, `1-norm approximant) for f with error ✏. In the
study of Boolean functions, the standard setting of the error parameter is ✏ D 1=3. A
related notion is that of threshold degree, denoted deg˙.f / and defined as the least degree
of a real polynomial p that represents f in sign:

sgnp.x/ D
(

�1 if f .x/ D 0;

C1 if f .x/ D 1:

It is intuitively clear that sign-representation is a weaker notion than uniform approxima-
tion. Formally, we have

deg˙.f / D lim
✏%1=2

deg✏.f /:
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In particular,

deg˙.f / 6 deg✏.f /; 0 6 ✏ <
1

2
:

Key to our work is a hybrid of uniform approximation and sign-representation, whereby
a Boolean function f is approximated uniformly on f �1.0/ and represented in sign on
f �1.1/: Formally, the one-sided ✏-approximate degree of f; denoted degC

✏ .f /; is the least
degree of a real polynomial p such that

f .x/ � ✏ 6 p.x/ 6 f .x/C ✏; x 2 f �1.0/;

f .x/ � ✏ 6 p.x/; x 2 f �1.1/:

We refer to any such polynomial as a one-sided approximant for f with error ✏: Again,
the canonical setting of the error parameter is ✏ D 1=3: The gap between the one-sided
approximate degree of a Boolean function f W f0; 1gn ! f0; 1g and that of its negation :f
can be as large as 1 versus ˝.

p
n/; achieved for f D ORn: In contrast, threshold degree

and approximate degree are invariant under negation:

deg˙.f / D deg˙.:f /; (2.1)
deg✏.f / D deg✏.:f / (2.2)

for every Boolean function f and every ✏:
Basic approximation theory allows one to efficiently reduce the error in a uniform or

one-sided approximation of a Boolean function. We will only need error reduction in the
setting of one-sided approximation, where the analysis is particularly simple.

FACT 2.4. For any Boolean function f WX ! f0; 1g and any 0 6 ✏ 6 1=2;

degC
✏k

✏k C.1�✏/k

.f / 6 k degC
✏ .f / .k D 1; 2; 3; : : : /:

Proof. If p is a one-sided approximant for f with error ✏; then pk=.✏k C .1 � ✏/k/ is a
one-sided approximant for f with error ✏k=.✏k C .1 � ✏/k/:

Fact 2.4 makes it clear, among other things, that the canonical constant ✏ D 1=3 in the
definition of one-sided approximate degree can be replaced by any other number in .0; 1=2/
without changing the model in any significant way.

A natural approach to approximating a composed function f ı g is to approximate f
and g individually and compose the resulting approximants. For this approach to work,
the approximating polynomial for f needs to be robust to noise in the inputs, i.e., it needs
to approximate f not only on the Boolean hypercube but also on any perturbation of a
Boolean vector. The following result from [31] gives an optimal procedure for making any
polynomial robust to noise in the inputs.

THEOREM 2.5 (Sherstov). Let pW f0; 1gn ! Œ�1; 1ç be a given polynomial. Then for every
ı > 0; there is a polynomial probustWRn ! R of degree O.degp C log 1

ı
/ such that

jp.x/ � probust.x C ✏/j < ı
for every x 2 f0; 1gn and ✏ 2 Œ�1=3; 1=3çn:
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2.7. Approximate degree of concrete functions. The most studied Boolean functions
in the context of polynomial approximation are ORn and ANDn. The following seminal
theorem, due to Nisan and Szegedy [22], was one of the first results in this line of work.

THEOREM 2.6 (Nisan and Szegedy).

deg1=3.ANDn/ D deg1=3.ORn/ D ⇥.
p
n/;

degC
1=3
.ANDn/ D degC

1=3
.NORn/ D ⇥.

p
n/:

Buhrman et al. [9] and de Wolf [13] generalized Nisan and Szegedy’s theorem to an
arbitrary error parameter ✏: For our purposes, only the upper bound is needed.

THEOREM 2.7 (Buhrman et al.; de Wolf). For ✏ 6 1=3;

deg✏.ANDn/ D deg✏.ORn/ D O

 r
n log

1

✏

!
:

Another extensively studied function in the context of polynomial approximation is ele-
ment distinctness, EDn;m. It has played an important role in quantum query complex-
ity [1, 2] and more recently in the study of constant-depth circuits [11, 33]. The following
tight lower bound is due to Ambainis [2].

THEOREM 2.8 (Ambainis).

deg1=3.EDn;n/ D ˝.n2=3/:

Bun and Thaler [11] recently showed, with a short and elegant proof, that Ambainis’s
lower bound on the approximate degree of element distinctness carries over to the one-
sided setting:

THEOREM 2.9 (Bun and Thaler).

degC
1=3
.EDn;n/ D ˝.n2=3/:

For the reader’s convenience, we include the proof.

Proof (adapted from [11]). Bun and Thaler define the element distinctness function EDn;n
somewhat differently, with domain .f0; 1glogn/n rather than fe1; e2; : : : ; engn. However,
their proof works equally well in both settings. Details follow.

Let 0 6 ✏ < 1=2 be arbitrary, and let pW .Rn/n ! R be a one-sided approximant
for EDn;n with error ✏: Symmetrize p to obtain a new polynomial of the same or smaller
degree,

q.x1; x2; : : : ; xn/ D E
�2Sn

p.x�.1/; x�.2/; : : : ; x�.n//:

Recall that EDn;n.x1; x2; : : : ; xn/ D EDn;n.x�.1/; x�.2/; : : : ; x�.n// for all � 2 Sn:Hence,
the symmetrized polynomial q is also a valid one-sided approximant for this function, with
jqj 6 ✏ on ED�1

n;n.0/ and q > 1 � ✏ on ED�1
n;n.1/: The key observation is that ED�1

n;n.1/ D
f.e�.1/; e�.2/; : : : ; e�.n// W � 2 Sng and therefore the symmetrized polynomial q is constant
on ED�1

n;n.1/: By normalizing q; we obtain a uniform approximant for EDn;n:����EDn;n � 1 � ✏
q.e1; e2; : : : ; en/

� q
����

1
6 ✏:
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We conclude that deg✏.EDn;n/ D degC
✏ .EDn;n/ for all ✏, which completes the proof in

view of Theorem 2.8.

2.8. Dual characterizations. Approximate degree, one-sided approximate degree, and
threshold degree each have an exact dual characterization, obtained by an appeal to linear
programming duality. We will only need the dual characterization for one-sided approxi-
mate degree, due to Bun and Thaler [11].

THEOREM 2.10 (Bun and Thaler). Let f WX ! f0; 1g be given, d > 0. Then degC
✏ .f / >

d if and only if there exists  WX ! R such that
(i) hf; i > ✏k k1;

(ii) h ;pi D 0 for every polynomial p of degree less than d; and
(iii)  .x/ > 0 whenever f .x/ D 1:

Recent papers refer to the function  in Theorem 2.10 as a dual object or dual polyno-
mial. Its role is to serve as an explicit witness to the fact that f has one-sided approximate
degree larger than a given number. It will be convenient to specialize this result to the
negated function :f :

COROLLARY 2.11. Let f WX ! f0; 1g be given, d > 0. Then degC
✏ .:f / > d if and only

if there exists  WX ! R such that
(i) hf; i > ✏k k1;

(ii) h ;pi D 0 for every polynomial p of degree less than d; and
(iii)  .x/ 6 0 whenever f .x/ D 0:

Proof. Theorem 2.10 ensures the existence of  0WX ! R with
(i) h1 � f; 0i > ✏k 0k1;

(ii) h 0; pi D 0 for every polynomial p of degree less than d; and
(iii)  0.x/ > 0 whenever f .x/ D 0:

Property (ii) implies in particular that h1;  0i D 0; whence �hf; 0i > ✏k 0k1 by (i). The
proof is now complete by letting  D � 0.

The dual objects that arise in Theorem 2.10 and its corollary share the following metric
properties [33].

PROPOSITION 2.12. Let  WX ! R be given with h ; 1i D 0: Then
(i)

P
xW .x/>0 j .x/j D k k1=2;

(ii) k k1 6 k k1=2;
(iii) hf; i 6 k k1=2 for every Boolean function f WX ! f0; 1g:

Proof. (i) We haveX
xW .x/>0

j .x/j D hj j C  ; 1i
2

D hj j; 1i
2

D k k1
2

:

(ii) For every x⇤ 2 X;
0 D jh ; 1ij > j .x⇤/j �

X
x¤x⇤

j .x/j D 2j .x⇤/j � k k1:

(iii) Immediate from (i) since f ranges in f0; 1g:
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It is often necessary to have a dual object with additional properties, beyond what linear
programming duality guarantees. In such cases the dual object must be constructed from
first principles. In this paper, we will need such a specially constructed dual object for
the OR function. Previous constructions due to Špalek [37], Bun and Thaler [10], and the
author [33] do not provide all the properties that we require.

THEOREM 2.13. Let ✏ be given, 0 < ✏ < 1. Then for every n > 2 and every probability
distribution  on f1; 2; : : : ; ng; there is an .explicitly given/ function !W f0; 1; 2; : : : ; ng !
R such that

!.0/ >
1 � ✏
2

� k!k1;

.�1/nCt!.t/ > ✏.t/

3
� k!k1 .t D 1; 2; : : : ; n/;

degp <
p
ın H) h!; pi D 0;

where ı D ı.✏/ > 0 is a constant independent of n:

Theorem 2.13 generalizes a result from previous work [33, Theorem 2.8], which in our
notation corresponds to the special case

 D
⇣c
1
;
c

22
;
c

32
; : : : ;

c

n2

⌘
for a normalizing factor c ⇠ 6=⇡2. We provide the proof of Theorem 2.13 in Appendix B.

We will also need a special kind of dual object for the high-accuracy approximation of
ORn, in contrast to the bounded-error regime of the previous theorem.

THEOREM 2.14. Let 0 < c < 1 be a sufficiently small absolute constant. Then for all
integers n; r with 1 6 r 6 n=2; there exists a function ⌫W f0; 1; 2; : : : ; ng ! R such that

degp 6 c
p
nr H) h⌫; pi D 0;

⌫.t/ D 0 .t D 1; 2; : : : ; r � 1/;
.�1/nCt⌫.t/ > 0 .t D 1; 2; : : : ; n/;

⌫.0/ > crk⌫k1;
j⌫.t/j > cnk⌫k1 .t > n=2/;

j⌫.t/j 6
⇣ r
ct

⌘r k⌫k1 .t D 1; 2; : : : ; n/:

This theorem is a modification of an earlier result due to Bun and Thaler [10], who con-
structed a dual object for the bounded-error approximation of any given symmetric func-
tion. It is straightforward to verify that their construction is also a dual object for OR in
the high-accuracy regime of interest to us, and we need only adapt it to ensure the addi-
tional metric properties and sign behavior. We provide a complete proof of Theorem 2.14
in Appendix C.

3. A HARD CNF FORMULA

The technical centerpiece of this paper, developed in Sections 4–8, is a technique that
transforms any given constant-depth ^;_-circuit with high one-sided approximate degree
into a constant-depth ^;_-circuit with proportionately high threshold degree. This section
focuses on constructing the former object, a circuit of polynomial size and small depth



THE POWER OF ASYMMETRY IN CONSTANT-DEPTH CIRCUITS 15

(in fact, a CNF formula) with high one-sided approximate degree. Prior to our work, the
strongest lower bound on the one-sided approximate degree of a polynomial-size CNF
formula in n variables was ˝.n= logn/2=3, due to Bun and Thaler [11]. Here, we obtain a
logarithmically stronger bound of!.n2=3/:We pursue this quantitative improvement solely
for aesthetic reasons, although the technique in question seems quite general and is likely
relevant to other problems in polynomial approximation and quantum query complexity
(see Remark 3.4 for details). The reader can skip this section on a first reading and proceed
with the rest of the development in Section 4 without loss of continuity.

3.1. The role of the input encoding. When studying the approximation of Boolean func-
tions by polynomials, one most often considers functions defined on the entire hypercube.
A notable departure from this convention is a line of research in quantum query complexity
that studies Boolean functions on the set fe1; e2; : : : ; emgn for appropriate integers n and
m; which is a tiny subset of the ambient hypercube f0; 1gnm: For example, the function
SURJn;mW fe1; e2; : : : ; emgn ! f0; 1g is defined for m 6 n by

SURJn;m.x1; x2; : : : ; xn/ D
(
1 if fx1; x2; : : : ; xng D fe1; e2; : : : ; emg;
0 otherwise.

If we interpret the input as encoding a mapping i 7! xi ; then SURJn;m evaluates to true
precisely when the input represents a surjection. For this reason, SURJn;m is known as the
surjection problem [7]. It would be logical to call its counterpart the “injection problem,”
but instead it is better known as element distinctness. As the reader will recall from Sec-
tion 2, the element distinctness function EDn;mW fe1; e2; : : : ; emgn ! f0; 1g is defined for
m > n by

EDn;m.x1; x2; : : : ; xn/ D
(
1 if x1; x2; : : : ; xn are pairwise distinct,
0 otherwise.

The choice of fe1; e2; : : : ; emgn as the domain for these functions has to do with the man-
ner in which a quantum query algorithm accesses the input bits. Our applications are con-
cerned with the parameter setting m D n; in which case these two functions are the same:
SURJn;n D EDn;n: Their study in this paper and previous work [7, 11, 33] is motivated by
the fact that they are efficiently representable as constant-depth ^;_-circuits.

From the standpoint of applications, a technical obstacle arises due to the inefficient
encoding of the input in the definition of these functions. To illustrate, consider the el-
ement distinctness function EDn;n. Recall from Theorem 2.8 due to Ambainis [2] that
deg1=3.EDn;n/ D ˝.n2=3/. At first glance, this lower bound on the approximate degree
seems clearly superior to the ˝.

p
n/ lower bound for the ORn function. One quickly re-

alizes, however, that the input to the former is much larger in terms of bit length, with n2
bits for EDn;n versus n bits for ORn: As a result, the lower bound for EDn;n is only a cube
root of the input length, versus a square root for ORn: It is the wasteful encoding of the in-
put to EDn;n that artificially weakens the otherwise strong lower bound on its approximate
degree.

To overcome this obstacle, it is necessary to encode the input to EDn;n more efficiently.
The folklore approach [7, 11, 33] is to work with the composition EDn;n ı ◆, where the
gadget ◆W f0; 1glogn ! fe1; e2; : : : ; eng is the canonical one-to-one correspondence. The
input to EDn;n ı ◆ has bit length n logn; whereas its approximate degree is easily seen to
satisfy deg1=3.EDn;n ı ◆/ > deg1=3.EDn;n/ D ˝.n2=3/. Thus, EDn;n ı ◆ is a function on
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N D n logn variables with approximate degree ˝.N= logN/2=3, a significant improve-
ment. In fact, prior to our paper, this was the strongest lower bound on the approximate
degree of a polynomial-size CNF formula [2, 11].

3.2. The new gadget. The folklore construction just described is still unsatisfying in that
the gadget ◆ counts toward the bit length of the input but does not contribute to the func-
tion’s approximate degree, which weakens the resulting lower bound. Here, we present an
alternate construction that entirely eliminates this inefficiency. Specifically, we construct a
gadget �W f0; 1g6dlogme ! fe1; e2; : : : ; emg such that

deg1=3.f ı �/ > deg1=3.f /d1C logme (3.1)

for every function f W fe1; e2; : : : ; emgn ! f0; 1g. Thus, the new gadget actually increases
the approximate degree by a factor proportional to the gadget’s size. This contrasts with the
folklore gadget ◆, which only guarantees deg1=3.f ı◆/ > deg1=3.f /: The lower bound (3.1)
carries over to other approximation-theoretic measures such as one-sided approximate de-
gree and threshold degree, as well as to partial functions on fe1; e2; : : : ; emgn:

Our construction of � is based exclusively on elementary linear algebra. Its crux is the
following first-principles lemma.

LEMMA 3.1. For every m > 2; there is a surjection �W f0; 1g6dlogme ! fe1; e2; : : : ; emg
such that

E
��1.ei /

p D E
f0;1g6dlog me

p .i D 1; 2; : : : ; m/ (3.2)

for every polynomial pW f0; 1g6dlogme ! R of degree at most dlogme. Moreover, � can be
constructed deterministically in time mO.1/.

Proof. We will abbreviate k D dlogme and identify f0; 1g throughout the proof with the
two-element field F2. We start by constructing vectors v1; v2; : : : ; v6k 2 F5k2 among which
any k are linearly independent, using a greedy algorithm. Assume that v1; v2; : : : ; vi�1
have already been constructed, and we need to find a vector vi that is not contained in the
span of fewer than k vectors from among v1; v2; : : : ; vi�1. The union of all such spans
has size at most

�
6k
k�1

�
2k�1 < 25k : Thus, it suffices to deterministically enumerate these

offending possibilities in time 2O.k/ and take vi to be one of the remaining vectors in F5k2 .
This completes the construction.

Now, let L ⇢ F6k2 be the row span of the matrix with columns v1; v2; : : : ; v6k : By
basic linear algebra, the linear independence of any k vectors from among v1; v2; : : : ; v6k
implies that the coordinates of a uniformly random vector in L are k-wise independent
and distributed uniformly in F2. Let X1; X2; X3; : : : denote the distinct cosets of L in the
ambient linear space F6k2 . There are 26k�dimL > 2k such cosets. We let � be the surjection
that sends Xi 7! eminfi;mg for i D 1; 2; 3; : : : : The k-wise independence property for a
uniformly random vector of L is inherited by any translate of L; whence (3.2) for every
real polynomial of degree at most k.

The construction of � in the previous lemma can be made more efficient with regard to
running time using coding theory. However, this efficiency improvement is irrelevant for
our purposes because the input length in our applications will be polynomial in m, making
the running time in Lemma 3.1 efficient to start with. We have reached the main technical
result of this section.
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THEOREM 3.2. Let m > 2 be a given integer. Then there is a function �W f0; 1g6dlogme !
fe1; e2; : : : ; emg; constructible in time mO.1/; such that

degC
✏ .f ı �/ > degC

✏ .f /d1C logme; (3.3)
deg✏.f ı �/ > deg✏.f /d1C logme (3.4)

for every ✏ and every (possibly partial) Boolean function f on fe1; e2; : : : ; emgn.

Passing to the limit in (3.4) as ✏ % 1=2 gives an analogous conclusion for threshold
degree: deg˙.f ı �/ > deg˙.f /d1 C logme: We will not need this additional bound,
however.

Proof of Theorem 3.2. Let � be the surjection constructed in Lemma 3.1. Fix n arbitrar-
ily and consider the following averaging operator A that linearly sends every function
pW .f0; 1g6dlogme/n ! R to a function ApW fe1; e2; : : : ; emgn ! R, according to

.Ap/.x1; x2; : : : ; xn/ D E
��1.x1/⇥��1.x2/⇥���⇥��1.xn/

p:

The intuition behind this definition is straightforward: if p is a one-sided approximant
for f ı � with error ✏; then Ap is a one-sided approximant for f with the same error ✏
(and likewise for `1-norm approximation). Therefore, the proof will be complete once we
show that

degAp 6 degp
dlogme C 1

(3.5)

for every real polynomial p:
By the linearity of A, it suffices to prove (3.5) for factored polynomials of the form

p.x1; x2; : : : ; xn/ D p1.x1/p2.x2/ � � �pn.xn/, where p1; p2; : : : ; pn are real polynomials
on f0; 1g6dlogme: Then the defining equation simplifies to

.Ap/.x1; x2; : : : ; xn/ D
nY
iD1

E
��1.xi /

pi :

We now examine the individual contributions of p1; p2; : : : ; pn to the degree of Ap as a
real polynomial. For any polynomial pi of degree at most dlogme; Lemma 3.1 ensures
that the corresponding expectation E��1.xi /

pi is a constant independent of the input xi .
Thus, polynomials pi of degree at most dlogme do not contribute to the degree of Ap. For
the other polynomials pi , the expectation E��1.xi /

pi is a linear polynomial in xi , namely,

E
��1.xi /

pi D xi;1 E
��1.e1/

pi C xi;2 E
��1.e2/

pi C � � � C xi;m E
��1.em/

pi ;

where we are crucially exploiting the fact that the input xi is a vector in the restricted set
fe1; e2; : : : ; emg rather than an arbitrary vector in f0; 1gm. Thus, polynomials pi of degree
greater than dlogme contribute at most 1 each to the degree of Ap. In summary, we have
shown that degAp 6 jfi W degpi > dlogme C 1gj; which immediately implies (3.5).

3.3. The CNF construction. By applying Theorem 3.2 to the element distinctness func-
tion, we will now obtain an explicit polynomial-size CNF formula F W f0; 1gN ! f0; 1g
with one-sided approximate degree degC

1=3
.F / D !.N 2=3/. This lower bound improves

on all previous lower bounds for CNF formulas [11] and matches up to a polylogarithmic
factor all known lower bounds for ^;_-circuits of arbitrary constant depth [23]. Details
follow.
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THEOREM 3.3. Consider the function F W f0; 1gN ! f0; 1g on N D 6dlognen variables
given by

F D EDn;n ı �;
where �W f0; 1g6dlogne ! fe1; e2; : : : ; eng is as constructed in Theorem 3.2. Then F is
computable by a CNF formula of polynomial size and satisfies

degC
1=3
.F / D ˝.N 2=3 log1=3N/:

Proof. Recall from Theorem 2.9 that degC
1=3
.EDn;n/ D ˝.n2=3/: As a result, Theorem 3.2

shows that

degC
1=3
.F / D ˝.n2=3 logn/

D ˝.N 2=3 log1=3N/:

It remains to verify that F is computable by a polynomial-size CNF formula. By definition,

F.x1; x2; : : : ; xn/ D EDn;n.�.x1/;�.x2/; : : : ;�.xn//

D
^
i¤j
.�.xi / ¤ �.xj //:

Each of the predicates �.xi / ¤ �.xj / in this expression features only 12dlogne Boolean
variables and can therefore be computed by a CNF formula with O.n12/ clauses. The
conjunction of these CNF formulas for all pairs of distinct i and j gives the desired
polynomial-size CNF formula for F:

REMARK 3.4. The technique of Theorem 3.2 seems quite general and is likely relevant to
other problems where a logarithmic gap arises due to the input encoding. In this paper,
we have focused on the application to polynomial approximation (Theorem 3.3). An-
other application is to quantum query complexity, as follows. Recently, Beame and Mach-
mouchi [7] proved a lower bound of ˝.n= logn/ on the quantum query complexity of a
function in AC0; improving on the previous bound of˝.n= logn/2=3 due to Ambainis [2].
The logarithmic factor in both cases is due to the use of the folklore gadget ◆, which counts
toward the function’s input length but does not contribute to its query complexity. We are
confident that by using our gadget � instead of ◆; one can eliminate the logarithmic fac-
tors in previous work [2, 7] and obtain a tight lower bound of ˝.n/ on the quantum query
complexity of AC0, answering Beame and Machmouchi’s question.

4. ONE-SIDED RATIONAL APPROXIMATION

We now review one-sided rational approximation of Boolean functions, studied recently
in [33]. Let f WX ! f0; 1g be a Boolean function of interest, d0; d1 > 0 given reals.
Following [33], we define R.f; d0; d1/ as the infimum over all ✏ > 0 for which there exist
polynomials p0; p1 such that

(i) jp1j < ✏p0 on f �1.0/;
(ii) jp0j < ✏p1 on f �1.1/;

(iii) degp0 6 d0;

(iv) degp1 6 d1:
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Observe thatR.f; d0; d1/ is always well-defined and ranges in Œ0; 1ç: This quantity formal-
izes one-sided approximation of f by rational functions in that the quotient p1=p0 is close
to zero on f �1.0/ and far from zero on f �1.1/:ˇ̌̌̌

p1

p0

ˇ̌̌̌
2
(
Œ0; ✏/ on f �1.0/;
.1
✏
;C1ç on f �1.1/:

(4.1)

4.1. Examples and key facts. To illustrate, consider the familiar functions ORn and
ANDn with domain X D f0; 1gn: For any ✏ > 0; we have R.ORn; 0; 1/ < ✏ by tak-
ing p1.x/ D x1 C x2 C � � � C xn and p0.x/ D ✏=2 in the definition above. Passing to the
limit, we conclude that

R.ORn; 0; 1/ D 0: (4.2)

An analogous argument shows that

R.ANDn; 1; 0/ D 0: (4.3)

Furthermore, it is straightforward to see that ORn and ANDn have `1-norm rational ap-
proximants of degree 1 with error arbitrarily close to 0: Indeed,

lim
✏&0

����ANDn � ✏

✏ CP
.1 � xi /

����
1

D 0; (4.4)

lim
✏&0

����ORn �
P
xi

✏ CP
xi

����
1

D 0: (4.5)

These results on rational approximation should be contrasted with Theorem 2.6, which
states that approximating the ANDn function even in the one-sided sense requires a poly-
nomial of degree ˝.

p
n/.

As one might expect, the constructions in (4.4) and (4.5) are helpful in analyzing
formulas of greater depth as well. Specifically, it turns out that any read-once formula
f W f0; 1gn ! f0; 1g of depth 2 satisfies

R
⇣
f; t;

n

t

⌘
D 0 .0 < t < 1/:

We give a detailed proof of this fact, for use in later sections.

LEMMA 4.1. Let f W f0; 1gn ! f0; 1g be an arbitrary read-once formula of depth 2: Then
for any ✏ > 0 and t > 0; there is a one-sided rational approximant R✏;t for f with a
positive denominator of degree at most t; a nonnegative numerator of degree at most n=t;
and error ✏:

Proof. There are two cases to consider, depending on the top gate of f: If f D ORn1
^

ORn2
^ � � � ^ ORnr

for some integers n1; n2; : : : ; nr with
P
ni 6 n; then the desired

approximant is

R✏;t .x1; x2; : : : ; xr / D ✏
Q
i Wni>t

Pni

jD1 xi;j
✏ C nn

P
i Wni 6t NORni

.xi /
;

where we view NORni
as a degree-ni real polynomial. In the complementary case f D

ANDn1
_ ANDn2

_ � � � _ ANDnr
, the approximant is

R✏;t .x1; x2; : : : ; xr / D ✏ C nn
P
i Wni 6n=t ANDni

.xi /

✏ CQ
i Wni>n=t

Pni

jD1.1 � xi;j /
;



20 ALEXANDER A. SHERSTOV

where we similarly view ANDni
as a degree-ni real polynomial.

Analogous to polynomial approximation, we have the following efficient procedure for
reducing the error in a one-sided rational approximant.

PROPOSITION 4.2. For all d0; d1 > 0 and every Boolean function f WX ! f0; 1g;
R.f; kd0; kd1/ 6 R.f; d0; d1/

k .k D 1; 2; 3; : : : /:

Proof. Let p0; p1 be any polynomials of degree at most d0; d1; respectively, such that
jp1j < ✏p0 on f �1.0/ and jp0j < ✏p1 on f �1.1/: Then clearly jpk1 j < ✏kpk0 on f �1.0/
and jpk0 j < ✏kpk1 on f �1.1/:

Another aesthetically pleasing feature of the above formalism of rational approximation
is the ease of switching between a function and its negation:

PROPOSITION 4.3. For all d0; d1 > 0 and every f WX ! f0; 1g;
R.:f; d0; d1/ D R.f; d1; d0/:

Proof. Immediate from the definition.

4.2. Relation to sign-representation. Our interest in rational approximation is motivated
by its central role in constructing sign-representing polynomials. In particular, rational
approximation allows for a complete and elegant characterization of the threshold degree
of every composition of the form OR` ı f . The upper bound on the threshold degree
of OR` ı f in terms of rational approximation was discovered by Beigel et al. [8] in
their breakthrough paper on the closure of PP under intersection. Several variations and
reformulations of that upper bound have been obtained in subsequent work [16, 30, 32].
The tightest and most recent version is as follows [33], stated in the terminology of this
paper.

THEOREM 4.4 (cf. Beigel et al.). Let f WX ! f0; 1g be given. Then for all `;

deg˙.OR` ı f / 6 2 min
d0;d1

⇢
`d0 C d1 W R.f; d0; d1/ < 1

`1=4

�
: (4.6)

In particular,

deg˙.OR` ı f / 6 2 min
d0;d1

⇢
`d0 C d1 W R.f; d0; d1/ < 1

2

�⇠
log `
4

⇡
: (4.7)

Proof (cf. [8, 16]). Fix arbitrary polynomials p0; p1 of degree at most d0; d1, respectively,
such that p0 > `1=4 jp1j on f �1.0/ and p1 > `1=4 jp0j on f �1.1/: By perturbing p0 if
necessary, we may assume that p0 does not vanish on the domain of f: As a result,

p21p
` p20

<
1

`
on f �1.0/;

p21p
` p20

> 1 on f �1.1/:
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Then

sgn

 X̀
iD1

p1.xi /
2

p
` p0.xi /2

� 1
!

D
(

�1 on .OR` ı f /�1.0/;
1 on .OR` ı f /�1.1/:

Multiplying the expression in parentheses by the positive quantity
Q
p0.xi /

2 gives a sign-
representing polynomial for OR` ı f of degree at most 2`d0 C 2d1; namely,

1p
`

X̀
iD1

p1.xi /
2
Ỳ
jD1
j¤i

p0.xj /
2 �

Ỳ
jD1

p0.xj /
2:

This settles (4.6), which in turn implies (4.7) in light of Proposition 4.2.

It was recently shown in [33] that Theorem 4.4 is optimal up to a logarithmic factor, an
unexpected finding given the construction’s simplicity. Specifically, we have the following
matching lower bound on the threshold degree of OR` ı f in terms of one-sided rational
approximation [33, Theorem 6.7].

THEOREM 4.5 (Sherstov). Let d0; d1 > 0 be integers, f WX ! f0; 1g a given Boolean
function. If R.f; d0; d1/ > ✏; then

deg˙.OR` ı f / > minfb✏2`c.d0 C 1/; d1 C 1g; ` D 1; 2; 3; : : : :

4.3. A dual characterization. An essential property of R.f; d0; d1/ for our purposes is
that it admits an exact and intuitive dual characterization. To start with, an appeal to linear
programming duality reveals the following fact [33, Theorem 6.4].

THEOREM 4.6 (Sherstov). Let f WX ! f0; 1g be a given Boolean function, d0; d1 > 0.
Then for every ✏ > 0; the nonexistence of polynomials p0; p1 such that

(i) jp1j < ✏p0 on f �1.0/;
(ii) jp0j < ✏p1 on f �1.1/;

(iii) degp0 6 d0;

(iv) degp1 6 d1;

is equivalent to the existence of �0;�1WX ! R such that
(v) �0 > ✏j�1j on f �1.0/;

(vi) �1 > ✏j�0j on f �1.1/;
(vii) degp 6 d0 H) h�0; pi D 0;

(viii) degp 6 d1 H) h�1; pi D 0;

(ix) �0 ¥ 0;

(x) �1 ¥ 0.

As an immediate corollary, we have the following dual characterization of one-sided
rational approximation [33, Corollary 6.5].

COROLLARY 4.7 (Sherstov). Let f WX ! f0; 1g be a given function, R.f; d0; d1/ > 0:

Then R.f; d0; d1/ is the supremum over all ✏ > 0 for which there exist �0;�1WX ! R
with

(i) �0 > ✏j�1j on f �1.0/;
(ii) �1 > ✏j�0j on f �1.1/;

(iii) degp 6 d0 H) h�0; pi D 0;
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(iv) degp 6 d1 H) h�1; pi D 0;

(v) �0 ¥ 0;

(vi) �1 ¥ 0.

5. HYBRID RATIONAL APPROXIMATION

We now introduce a hybrid notion of approximation by rational functions, which seam-
lessly interpolates between `1-norm and one-sided approximation and plays a key role in
this paper. Fix d0; d1 > 0 and a Boolean function f WX ! f0; 1g: For � > 1, we define
R�.f; d0; d1/ as the infimum over all ✏ > 0 for which there exist polynomials p0; p1 such
that

(i) jp1j < ✏p0 on f �1.0/;
(ii) p0 2 . ✏

�
p1; ✏p1/ on f �1.1/;

(iii) degp0 6 d0;

(iv) degp1 6 d1:

A moment’s reflection shows that the feasibility of (i)–(iv) is monotonic in ✏; in the sense
that increasing ✏ can only make it easier to satisfy (i)–(iv). As a result, R�.f; d0; d1/ is
always well-defined and ranges in Œ0; 1ç:

5.1. Relation to one-sided approximation. The quotient of the polynomials in the above
definition obeysˇ̌̌̌

p1

p0

ˇ̌̌̌
2
(
Œ0; ✏/ on f �1.0/;
.1
✏
; �
✏
/ on f �1.1/:

(5.1)

It is helpful to contrast (5.1) with its counterpart (4.1) for one-sided rational approxima-
tion. Simply put, R�.f; d0; d1/ formalizes the approximation of f by rational functions
whereby the approximant is close to zero on f �1.0/ and is “large but not too large” on
f �1.1/: As� ranges in .1;C1/; this new formalism monotonically interpolates between
`1-norm approximation (� ⇡ 1/ and one-sided approximation (� ! C1/. In particular,
we have:

THEOREM 5.1. Let f WX ! f0; 1g be given. Then for all d0; d1 > 0;

R.f; d0; d1/ 6 lim
�!C1

R�.f; d0; d1/; (5.2)

R.f; d0; d1/ > R.f; d0; d1/
2 > lim

�!C1
R�.f; 2d0; 2d1/: (5.3)

Proof. For any pair of polynomials p0; p1 and any � > 1; the conditions

jp1j < ✏p0 on f �1.0/;

p0 2 . ✏
�
p1; ✏p1/ on f �1.1/

trivially imply

jp1j < ✏p0 on f �1.0/;

jp0j < ✏p1 on f �1.1/;

which proves (5.2). Conversely, fix ✏ > 0 and polynomials p0; p1 that obey the last two
equations. By perturbing p0 if necessary, we may assume that p0 does not vanish on the
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domain of f: Taking

M > ✏2 max
x2X

p1.x/
2

p0.x/2
;

we arrive at

p21 < ✏
2p20 on f �1.0/;

p20 2
✓
✏2

M
p21 ; ✏

2p21

◆
on f �1.1/;

which yields lim�!C1R�.f; 2d0; 2d1/ 6 R.f; d0; d1/
2. This directly implies (5.3)

since R.f; d0; d1/ 2 Œ0; 1ç.

5.2. A dual characterization. Hybrid rational approximation admits an exact dual char-
acterization. It is helpful to compare the theorem that follows with its earlier counterpart
for one-sided rational approximation (Theorem 4.6).

THEOREM 5.2. Let f WX ! f0; 1g be a given Boolean function, ✏ > 0; and � > 1. Then
for all d0; d1 > 0; the nonexistence of polynomials p0; p1 such that

(i) jp1j < ✏p0 on f �1.0/;
(ii) p0 2 . ✏

�
p1; ✏p1/ on f �1.1/;

(iii) degp0 6 d0;

(iv) degp1 6 d1

is equivalent to the existence of �0;�1WX ! R such that
(v) �0 > ✏j�1j on f �1.0/;

(vi) �1 > ✏maxf��0;� 1
�
�0g on f �1.1/;

(vii) degp 6 d0 H) h�0; pi D 0;

(viii) degp 6 d1 H) h�1; pi D 0;

(ix) �0 ¥ 0;

(x) �1 ¥ 0.

Proof. Let P0 and P1 denote the linear subspaces of real polynomials on X of degree at
most d0 and d1, respectively. Conditions (i) and (ii) can be rewritten as

✏1�f p0 C .� ✏
�
/f p1 > 0;

.�✏/1�f p0 C .�✏/f p1 < 0
on X: By linear programming duality, this system of inequalities in p0 2 P0; p1 2 P1 is
infeasible if and only if there exist nonnegative functions �;� on X; not both identically
zero, such that

✏1�f � � .�✏/1�f � 2 P?
0 ; (5.4)

.� ✏
�
/f � � .�✏/f � 2 P?

1 : (5.5)

By basic arithmetic, the existence of such � and � is in turn equivalent to the existence of
�0;�1WX ! R, not both identically zero, that obey (v)–(viii), where we identify �0 and
�1 with the left-hand side of (5.4) and (5.5), respectively.

Finally, the requirement that at least one of �0;�1 be not identically zero is logically
equivalent to the requirement that �0 ¥ 0 and �1 ¥ 0 simultaneously. Indeed, if ex-
actly one of �0;�1 were identically zero, then by (v)–(vi) the other would have to be a
nonnegative function, contradicting h�0; 1i D h�1; 1i D 0:
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As a corollary, we obtain a complete dual characterization of R�.f; d0; d1/:

COROLLARY 5.3. Let f WX ! f0; 1g be a given Boolean function,� > 1; and d0; d1 > 0:

If R�.f; d0; d1/ > 0; then R�.f; d0; d1/ is the supremum over all ✏ > 0 for which there
exist �0;�1WX ! R with

(i) �0 > ✏j�1j on f �1.0/;
(ii) �1 > ✏maxf��0;� 1

�
�0g on f �1.1/;

(iii) degp 6 d0 H) h�0; pi D 0;

(iv) degp 6 d1 H) h�1; pi D 0;

(v) �0 ¥ 0;

(vi) �1 ¥ 0.

6. THE COMPOSITION THEOREM

Recall that our goal is to construct an ^;_-circuit of constant depth and polynomial size
with high threshold degree. We focus in our search on circuits of the form OR`ıF for some
F and ` > 2: Our starting point is Theorem 4.5, which characterizes the threshold degree
of every such composition. Specifically, that theorem shows that the threshold degree of
OR` ı F is large if F does not have a low-degree one-sided rational approximant with
constant error. Quantitatively,

deg˙.OR` ı F / D ˝.minf`.d C 1/;D C 1g/
whenever F does not have a one-sided rational approximant with numerator degree D;
denominator degree d; and error 1=3. The theorem holds for all D and d; but clearly it is
only meaningful to work with D > d: To summarize, the project of this paper reduces to
proving lower bounds for the one-sided rational approximation of small-depth circuits F:

Rational approximation is, however, itself a challenging model for which to prove lower
bounds. After exploring various lines of attack, we discovered an approach that is at once
intuitive and sufficiently powerful to give optimal lower bounds for the rational approx-
imation of all functions of interest to us. Specifically, we study functions of the form
F D f ^ g for arbitrary nonconstant f and g, and characterize the one-sided rational
approximation of any such composition F in terms of natural analytic properties of f and
g: Approximating F in a one-sided manner is of course at least as hard as approximat-
ing f or g individually; what our results in this section show is that approximating F is
much harder in general, and we are able to characterize by how much. This “composition
theorem” is the technical centerpiece of our paper.

6.1. The upper bound. Before we state our lower bound for the one-sided rational ap-
proximation of f ^ g, it is helpful to pause and think about upper bounds first. To use
the notation of the opening paragraph, suppose that we would like to construct an ✏-error
one-sided approximant for f ^ g with numerator and denominator degree on the order of
D and d; respectively, where 0 < ✏ 6 1=3 and D > d . The simplest approach is to take
one-sided rational approximants Qf and Qg for the corresponding functions and approximate
f ^ g in a one-sided manner by

Qf � Qg: (6.1)

For this construction to work, Qf and Qg must have error sufficiently small relative to k Qgk1
and k Qf k1, respectively, as well as numerator degreeO.D/ and denominator degreeO.d/.
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Another, incomparable approach is to appeal to DeMorgan’s law and approximate f ^ g
by

1

1

Qf 2 C 1

Qg2
; (6.2)

where Qf and Qg again stand for one-sided rational approximants of f and g; respectively.
In this alternate construction, it suffices for Qf and Qg to have error ✏, but now both the
numerator and denominator in these approximants must have degree O.d/:

These two constructions can be succinctly described using our notation for one-sided
and hybrid rational approximation. The first construction shows that for any �;�0 > 1,
the conditions

R�.f; d;D/ 6 ✏p
�0 ;

R�0.g; d;D/ 6 ✏p
�

are sufficient to conclude that

R.f ^ g;O.d/;O.D// 6 ✏:

The second construction allows one to reach the same conclusion whenever

R.f; d; d/ 6 ✏;

R.g; d; d/ 6 ✏:

These equations make it clear that in both constructions, the individual approximants for
f and g must in general have significantly stronger parameters—error or degree—than the
target parameters for the composed function f ^ g:

6.2. The lower bound. Given the restricted form of (6.1) and (6.2), there is no reason a
priori to expect these constructions to give an optimal approximant. We are nevertheless
able to show quite generally that they do, a result to which we refer in this paper as the
“composition theorem”:

THEOREM 6.1. Let f WX ! f0; 1g and gWY ! f0; 1g be given functions, 0 < ✏ 6 1; and
� > 1: Assume that there exist �0;�0

1;�
00
1 WX ! R such that

�0 > ✏j�0
1j on f �1.0/; (6.3)

�0 > ✏j�00
1 j on f �1.0/; (6.4)

�0
1 > ✏maxf��0;� 1

�
�0g on f �1.1/; (6.5)

�00
1 > ✏j�0j on f �1.1/; (6.6)

degp 6 d H) h�0; pi D 0; (6.7)

degp 6 D H) h�0
1; pi D 0; (6.8)

degp 6 d H) h�00
1 ; pi D 0; (6.9)

�0 ¥ 0; (6.10)

�0
1 ¥ 0; (6.11)

�00
1 ¥ 0: (6.12)
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Assume furthermore that

R.g; d;D/ >
✏p
�
: (6.13)

Then

R

✓
f ^ g; d

2
;
D

2

◆
> ✏p

2
: (6.14)

The statement of Theorem 6.1 is admittedly technical but its intuitive content is satisfy-
ing and easy to explain. Conditions (6.3), (6.5), (6.7), (6.8), (6.10), (6.11), (6.13) can be
summarized as

R�.f; d;D/ >
✏p
�0

R�0.g; d;D/ >
✏p
�

Å
for every �0 > 1; (6.15)

by the dual characterization of hybrid rational approximation (Theorem 5.2). The remain-
ing conditions (6.4), (6.6), (6.7), (6.9), (6.10), (6.12) correspond to

R.f; d; d/ > ✏; (6.16)

by the dual characterization of one-sided rational approximation (Theorem 4.6). Hypothe-
sis (6.15) rules out an approximant for f ^ g of the form (6.1), whereas hypothesis (6.16)
rules out an approximant of the form (6.2). The theorem states, informally, that ruling out
these two constructions is enough to rule out all possibilities.

The reader may have expected to see the conclusion of the composition theorem arrived
at under the following weaker hypotheses:

R�.f; d;D/ >
✏p
�0 ;

R�0.g; d;D/ >
✏p
�
;

R.f; d; d/ > ✏

for some fixed values �;�0 > 1: A moment’s thought shows, however, that this expecta-
tion is misplaced. Indeed, under these weaker assumptions it may well turn out that f and
g have one-sided approximants with error 0 and degree d C 1, in which case f ^ g would
have an efficient approximant of the form (6.1).

Proof of Theorem 6.1. Applying the dual characterization of one-sided rational approxi-
mation (Theorem 4.6), we infer from (6.13) the existence of functions  0;  1WY ! R
such that

 0 > ✏j 1j=
p
� on g�1.0/; (6.17)

 1 > ✏j 0j=
p
� on g�1.1/; (6.18)

degp 6 d H) h 0; pi D 0; (6.19)
degp 6 D H) h 1; pi D 0; (6.20)
 0 ¥ 0; (6.21)
 1 ¥ 1: (6.22)
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Define ⇣0; ⇣1WX ⇥ Y ! R by

⇣0 D
✓
1

✏
�0 C 1

2
�00
1

◆
� j 0j � g C ✏

2
j�0j � f �  0; (6.23)

⇣1 D �0
1 � j 0j � g C 1p

�
j�0j � f �  1; (6.24)

where f;�0;�0
1;�

00
1 ; g;  0;  1; ⇣0; ⇣1 above and in the rest of the proof are shorthands for

f .x/; �0.x/; �
0
1.x/; �

00
1 .x/; g.y/;  0.y/;  1.y/; ⇣0.x; y/; ⇣1.x; y/; respectively. Then by

(6.7), (6.9), (6.19), and linearity,

degp 6 d H) h⇣0; pi D 0: (6.25)

Analogously, by (6.8), (6.20), and linearity,

degp 6 D H) h⇣1; pi D 0: (6.26)

We now establish relevant metric properties of ⇣0 and ⇣1:

CLAIM 6.2. ⇣1 > ✏2 maxf�⇣0; 0g whenever f ^ g D 1:

Proof. For f D g D 1;

�⇣0 D �
✓
1

✏
�0 C 1

2
�00
1

◆
� j 0j � ✏

2
j�0j �  0 by (6.23)

6 �
✓
1

✏
�0 C ✏

2
j�0j

◆
� j 0j � ✏

2
j�0j �  0 by (6.6)

6 �1
✏
�0 � j 0j

and

⇣1 D �0
1 � j 0j C 1p

�
j�0j �  1 by (6.24)

> ✏max
⇢
��0;� 1

�
�0

�
� j 0j C ✏

�
j�0j � j 0j by (6.5) and (6.18)

> ✏maxf��0 � j 0j; 0g: (6.27)

Comparing these bounds for ⇣0 and ⇣1 immediately gives ⇣1 > ✏2 maxf�⇣0; 0g.

CLAIM 6.3. ⇣0 > ✏2

2
j⇣1j whenever f ^ g D 0:

Proof. We examine the three possibilities, depending on the values of f and g: If f D 0

and g D 1;

⇣0 D
✓
1

✏
�0 C 1

2
�00
1

◆
� j 0j by (6.23)

>
✓
1

2
j�0
1j C 1

2
j�00
1 j C 1

2
�00
1

◆
� j 0j by (6.3) and (6.4)

> 1

2
j�0
1j � j 0j

D 1

2
j⇣1j by (6.24).
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If f D 1 and g D 0;

⇣0 D ✏

2
j�0j �  0 by (6.23)

> ✏

2
j�0j � ✏p

�
j 1j by (6.17)

D ✏2

2
j⇣1j by (6.24).

In the remaining case when f D g D 0; we immediately have ⇣0 D ⇣1 D 0 from the
defining equations for ⇣0 and ⇣1.

CLAIM 6.4. ⇣0 ¥ 0 and ⇣1 ¥ 1:

Proof. Recall from (6.3), (6.7), and (6.10) that �0 is orthogonal to the constant function 1,
is nonnegative on f �1.0/, and is not identically zero. It follows that

min
f �1.1/

�0 < 0:

Similarly, recall from (6.17), (6.19), and (6.21) that  0 is orthogonal to the constant func-
tion 1, is nonnegative on g�1.0/, and is not identically zero, whence

min
g�1.1/

 0 < 0:

But (6.27) guarantees that ⇣1 > �✏�0 � j 0j whenever f D g D 1: We conclude that ⇣1 is
strictly positive at some point where f D g D 1: In particular, ⇣1 ¥ 0 as desired. Since
by (6.26) the constant function 1 is orthogonal to ⇣1; we also conclude that ⇣1 must take on
a negative value at some point:

min
X⇥Y

⇣1 < 0: (6.28)

It remains to show that ⇣0 ¥ 0: Claims 6.2 and 6.3 ensure that ⇣1 is nonnegative when
f ^ g D 1 and is bounded in absolute value by 2

✏2 ⇣0 when f ^ g D 0: Therefore, ⇣0 ⌘ 0

would force ⇣1 > 0 everywhere, in contradiction to (6.28).

The newly established properties of ⇣0 and ⇣1 in (6.25), (6.26), and Claims 6.2–6.4
imply, in light of the dual characterization of hybrid rational approximation (Theorem 5.2),
that

R�0 .f ^ g; d;D/ > ✏2

2

for every �0 > 1: Passing to the limit as �0 ! 1 and applying Theorem 5.1, we arrive at
the desired lower bound (6.14).

7. FROM POLYNOMIAL TO HYBRID RATIONAL APPROXIMATION

The composition theorem of the previous section allows us to obtain lower bounds for
one-sided constant-error rational approximation from lower bounds for two substantially
more restricted models, namely, hybrid rational approximation with constant error and one-
sided rational approximation with exponentially small error. We tackle these two restricted
models in this section and the next, respectively. Our focus here, Theorem 7.1, is a hardness
amplification result that gives lower bounds for the hybrid rational approximation of a
large class of functions. This theorem translates lower bounds for one-sided polynomial
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approximation, of which there is an abundant supply in the literature, into lower bounds
for hybrid rational approximation.

THEOREM 7.1. Let f WX ! f0; 1g be a nonconstant Boolean function, 0 < ✏ 6 1=2. For
c D c.✏/ > 0 sufficiently large, define

F D ANDcn ı f:
Then there exist functions ˚0; ˚ 0

1; ˚
00
1 WXcn ! R such that:

(i) ˚ 0
1 > .1 � ✏/maxf�˚0;�2�n˚0g on F �1.1/;

(ii) ˚ 00
1 > .1 � ✏/j˚0j on F �1.1/;

(iii) ˚0 > .1 � ✏/maxfj˚ 0
1j; j˚ 00

1 jg on F �1.0/;

(iv) h˚ 0
1; P i D 0 whenever degP 6 1

c
degC

1=3
.:f /pn;

(v) h˚0; P i D h˚ 00
1 ; P i D 0 whenever degP 6 minf1

c
degC

1=3
.:f /; 1

2
ng;

(vi) ˚0 ¥ 0;

(vii) ˚ 0
1 ¥ 0;

(viii) ˚ 00
1 ¥ 0:

The conclusion of Theorem 7.1 is easiest to understand in terms of the dual characteriza-
tion of one-sided and hybrid rational approximation (Theorems 4.6 and 5.2, respectively).
Specifically, properties (i)–(viii) correspond to the following two lower bounds for rational
approximation:

R2n

✓
ANDcn ı f;min

⇢
1

c
degC

1=3
.:f /; n

2

�
;
1

c
degC.:f /pn

◆
> 1 � ✏;

R

✓
ANDcn ı f;min

⇢
1

c
degC

1=3
.:f /; n

2

�
;min

⇢
1

c
degC

1=3
.:f /; n

2

�◆
> 1 � ✏;

where c D c.✏/ > 0 is a constant. These two inequalities are incomparable: the former
gives a stronger lower bound on the numerator degree, whereas the latter applies to a
more general model (one-sided vs. hybrid approximation). The only property needed to
reach these conclusions is the one-sided approximate degree of :f . Thus, Theorem 7.1
transforms a function that is hard to approximate by polynomials into a related function
that is hard to approximate by rational functions.

Our proof of Theorem 7.1 is an adaptation of a recent hardness amplification result
in [33, Section 5], used in that paper to obtain the strongest lower bound on the threshold
degree of AC0 prior to our work. That earlier result is logically incomparable with ours but
requires a more complex proof. Both proofs start with a dual object for the original function
f and build from it a sequence of dual objects of increasing complexity, culminating in one
that witnesses the claimed approximation-theoretic property of the composition ANDcnıf:
In our case, the starting point is a dual object that witnesses the one-sided approximate
degree of :f , and the end result is the triple of dual objects ˚0; ˚ 0

1; ˚
00
1 in the theorem

statement. The intermediate building blocks are all borrowed from [33], but we are able to
combine them in a way that is considerably simpler and more intuitive. We have structured
our proof of Theorem 7.1 to emphasize both the similarities and differences with the earlier
work. Specifically, the preparatory Sections 7.1–7.4 below are in close correspondence
with [33], whereas the heart of our argument, in Section 7.5, is different and simpler. We
provide additional details and intuition at each stage of the proof.
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7.1. Outer dual object. Analogous to [33], the starting point in our proof is what we
call the “outer” dual object. It is derived from the dual polynomial for the OR function in
Theorem 2.13 and represents the linear combination that we use to combine the various
building blocks of our construction. Without loss of generality, we may assume that c D
c.✏/ is a sufficiently large even integer. Then for each k D 0; 1; 2; : : : ; n; Theorem 2.13
gives an explicit function !k W f0; 1; 2; : : : ; cn � kg ! R such that

k!kk1 D 1; (7.1)

!k.0/ >
1

2
� ✏

8
; (7.2)

j!k.t/j > ✏

12 � 2t .t > 1/; (7.3)

degp <
p
n H) h!k ; pi D 0: (7.4)

By Proposition 2.12(ii),

k!kk1 6 1

2
: (7.5)

7.2. Inner dual objects. We now turn to the innermost part of the construction, namely,
the dual object that witnesses the one-sided approximate degree of :f and the probability
distributions that it induces on X . This step, too, is closely analogous to [33]. Define
d D degC

1�.✏=30/2

2

.:f /: Then for a sufficiently large constant c D c.✏/ > 0, we have

d >
1

c
degC

1=3
.:f / (7.6)

by the error-reduction property of one-sided approximate degree (Fact 2.4). By the dual
characterization of one-sided approximate degree (Corollary 2.11), there exists a function
�WX ! R with

degp < d H) h�; pi D 0; (7.7)
f .x/ D 0 H) �.x/ 6 0; (7.8)

hf;�i > 1 � .✏=30/2
2

k�k1: (7.9)

Then

h�; 1i D 0; (7.10)
� ¥ 0 (7.11)

by (7.7) and (7.9), respectively. By homogeneity, we may assume that

k�k1 D 1: (7.12)

Define ˛ by

hf;�i D 1 � ˛
2

: (7.13)

Then

0 6 ˛ <
⇣ ✏
30

⌘2
; (7.14)

where the upper bound is immediate from (7.9) and (7.12), whereas the lower bound holds
by (7.10), (7.12), and Proposition 2.12(iii).
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We now consider several probability distributions that � induces on X: By (7.12), the
function j�j itself is a probability distribution on X . We further define �0 and �1 to
be the probability distributions induced by j�j on the sets fx 2 X W �.x/ < 0g and
fx 2 X W �.x/ > 0g; respectively. Equations (7.10) and (7.11) guarantee that these two
sets are nonempty, so that �0 and �1 are well-defined. By (7.10) and (7.12),

� D 1

2
�1 � 1

2
�0: (7.15)

Multiplying on both sides by f and applying (7.8), we find that hf;�i D 1
2
hf;�1i �

1
2
hf;�0i D 1

2
� 1
2
hf;�0i; which in view of (7.13) gives hf;�0i D ˛: In particular,

hf � �0 � ˛�0; 1i D hf;�0i � ˛h�0; 1i
D hf;�0i � ˛
D 0: (7.16)

We will need the following technical result from [29, 33].

LEMMA 7.2 (Sherstov). Let ⇠WX ! R be an arbitrary function. Then for every polyno-
mial P WXN ! R and every k D 0; 1; 2; : : : ; N; the mapping

´ 7!
*
⇠˝k ˝

N�kO
iD1

�´i
; P

+
; ´ 2 f0; 1gN�k ; (7.17)

is a polynomial of degree at most .degP /=d:

Proof (adapted from [29]). By linearity, it suffices to consider factored polynomials of the
form P.x1; : : : ; xN / D p1.x1/ � � �pN .xN /: In this case, (7.17) simplifies to

´ 7!
kY
iD1

h⇠; pi i �
N�kY
iD1

h�´i
; pkCi i; ´ 2 f0; 1gN�k : (7.18)

By (7.7) and (7.15), polynomials pi of degree less than d satisfy h�0; pi i D h�1; pi i
and therefore do not contribute to the degree of (7.18) as a real function on f0; 1gN�k . It
follows that the degree of (7.18) is at most jfi W degpi > dgj 6 .degP /=d:

7.3. Auxiliary distributions in tensor space. Following [33], we will now use �0 and
�1 to construct auxiliary functions⇤N

k;m
on the tensor spaceXN : For nonnegative integers

k;m;N with k Cm 6 N; define

⇤Nk;m.x1; x2; : : : ; xN /

D E
S;T

24Y
i2S

f .xi /�0.xi / �
Y
i2T

�0.xi / �
Y

i…S[T
�1.xi /

35 ; (7.19)

where the expectation is over a uniformly random pair of disjoint sets S; T ✓ f1; 2; : : : ; N g
of size jS j D k and jT j D m: Observe that ⇤N

k;m
is a nonnegative function, a fact that we

will use frequently without further mention. The following lemma from [33] collects basic
properties of ⇤N

k;m
: For the reader’s convenience, we include its short proof.

LEMMA 7.3 (Sherstov).
(i) supp⇤N

k;0
✓ f �1.1/N ;

(ii) ⇤N
k;m

D ⇤N
kCm;0 on f �1.1/N ;
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(iii) ⇤N
k;m
.x/ ¤ 0 only if jfi W �.xi / < 0gj D k Cm;

(iv) for an arbitrary real polynomial P WXN ! R; the mapping m 7! h⇤N
k;m
; P i

.m D 0; 1; 2; : : : ; N �k/ is a univariate polynomial of degree at most .degP /=d:

Proof (adapted from [33]).
(i) Immediate from the fact that supp�1 ✓ f �1.1/:
(ii) Immediate from the defining equation for ⇤N

k;m
:

(iii) Immediate from the fact that �0 and �1 are supported on fx 2 X W �.x/ < 0g and
fx 2 X W �.x/ > 0g, respectively.

(iv) For S ✓ f1; 2; : : : ; N g with jS j D k; define

⇤NS;m.x/ D E
T

24Y
i2T

�0.xi / �
Y

i…S[T
�1.xi /

35Y
i2S

f .xi /�0.xi /;

where the expectation is over a uniformly random subset T ✓ f1; 2; : : : ; N g n S of cardi-
nality jT j D m: It is clear that ⇤N

k;m
D EjS jDk ⇤NS;m; and therefore the mapping in (iv) is

a convex combination of mappings

m 7! h⇤NS;m; P i .m D 0; 1; 2; : : : ; N � k/ (7.20)

as S ranges over k-element subsets. As a result, the proof will be complete once we show
that (7.20) is a polynomial of degree at most .degP /=d:

By symmetry, we may assume that S D f1; 2; : : : ; kg: By Lemma 7.2, the mapping

´ 7!
*
.f � �0/˝k ˝

N�kO
iD1

�´i
; P

+
; ´ 2 f0; 1gN�k ;

has degree at most .degP /=d: Therefore by Proposition 2.2, the mapping

m 7! h⇤NS;m; P i D E
´2f0;1gN �k

j´jDm

*
.f � �0/˝k ˝

N�kO
iD1

�´i
; P

+
(7.21)

is a univariate polynomial on f0; 1; 2; : : : ; N � kg of degree at most .degP /=d:

7.4. Corrector for false negatives. Recall from the statement of Theorem 7.1 that the
sought dual object ˚ 00

1 must be nonnegative on F �1.1/. We ensure this sign behavior by
means of a “corrector” object, whose role is to correct the sign on any offending inputs in
F �1.1/ without disturbing the signs elsewhere on the domain. For integers k and N with
1 6 k 6 N; let Q⇤N

k
WXN ! R be given by

Q⇤Nk .x/ D 1

.dk=2e � 1/ä

⇥ E
jS jDk

24Y
i2S

.f .xi / � ˛/�0.xi /
1 � ˛ �

k�1Y
iDbk=2cC1

0@X
j2S

f .xj / � i
1A �

Y
i…S

�1.xi /

35 ;
where the expectation is over a uniformly random set S ✓ f1; 2; : : : ; N g of size jS j D k:

This definition of Q⇤N
k

is borrowed with minor changes from [33], and the following lemma
is an adaptation of the corresponding result from [33].

LEMMA 7.4 (cf. Sherstov).
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(i) h Q⇤N
k
; P i D 0 for every polynomial P of degree at most k=2;

(ii) Q⇤N
k
.x/ ¤ 0 only if jfi W �.xi / < 0gj D k;

(iii) Q⇤N
k

D ⇤N
0;k

on f �1.1/N ;

(iv) j Q⇤N
k

j 6 1
2

�
2˛
1�˛

�k=2
⇤N
0;k

outside f �1.1/N :

Proof (adapted from [33]).
(i) Recall from (7.16) that hf � �0 � ˛�0; 1i D 0: For t D 0; 1; 2; : : : , it follows that

.f ��0 �˛�0/˝t is orthogonal to every polynomial of degree less than t: In particular, the
function

x 7!
Y
i2S
.f .xi / � ˛/�0.xi / �

k�1Y
iDbk=2cC1

0@X
j2S

f .xj / � i
1A �

Y
i…S

�1.xi /;

where S ✓ f1; 2; : : : ; N g is a given subset, is orthogonal to every polynomial of degree
less than jS j�dk=2eC1. Since Q⇤N

k
is a linear combination of such functions with jS j D k;

the claim follows.
(ii) Immediate from the fact that �0 and �1 are supported on fx 2 X W �.x/ < 0g and

fx 2 X W �.x/ > 0g, respectively.
(iii) Substituting f .xi / D 1 in the defining equation for Q⇤N

k
; we obtain

Q⇤Nk .x/ D E
jS jDk

24Y
i2S

�0.xi / �
Y
i…S

�1.xi /

35 D ⇤N0;k.x/:

(iv) Fix any x … f �1.1/N : We claim that for every subset S ✓ f1; 2; : : : ; N g of size
jS j D k;

1

.dk=2e � 1/ä
Y
i2S

jf .xi / � ˛j�0.xi /
1 � ˛ �

k�1Y
iDbk=2cC1

ˇ̌̌̌
ˇ̌X
j2S

f .xj / � i
ˇ̌̌̌
ˇ̌ �
Y
i…S

�1.xi /

6 1

2

✓
2˛

1 � ˛
◆k=2Y

i2S
�0.xi / �

Y
i…S

�1.xi /: (7.22)

To see this, consider the nonempty set Z D fi W f .xi / D 0g. There are three possibilities.
IfZ ª S; then both sides of (7.22) vanish because�1 has support inside f �1.1/: IfZ ✓ S

and 1 6 jZj 6 dk=2e � 1; then
Qk�1
iDbk=2cC1 jPj2S f .xj /� i j D 0 and the left-hand side

of (7.22) vanishes. In the remaining case that Z ✓ S and dk=2e 6 jZj 6 k; the left-hand
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side of (7.22) simplifies to 
jZj � 1

dk=2e � 1

!Y
i2S

jf .xi / � ˛j�0.xi /
1 � ˛ �

Y
i…S

�1.xi /

6 2jZj�1Y
i2S

jf .xi / � ˛j�0.xi /
1 � ˛ �

Y
i…S

�1.xi /

D 2jZj�1Y
i2Z

jf .xi / � ˛j�0.xi /
1 � ˛ �

Y
i2SnZ

jf .xi / � ˛j�0.xi /
1 � ˛ �

Y
i…S

�1.xi /

D 2jZj�1
⇣ ˛

1 � ˛
⌘jZj Y

i2Z
�0.xi / �

Y
i2SnZ

�0.xi / �
Y
i…S

�1.xi /

6 1

2

✓
2˛

1 � ˛
◆k=2Y

i2S
�0.xi / �

Y
i…S

�1.xi /;

where the final step uses the fact that ˛ 6 1=3. This completes the proof of (7.22). Passing
to expectations on both sides of (7.22) with respect to a uniformly random subset S of
cardinality k; we arrive at the claimed conclusion:

j Q⇤Nk .x/j 6 1

2

✓
2˛

1 � ˛
◆k=2

⇤N0;k.x/:

7.5. Final construction. With the preparatory work now complete, we are in a position
to define the desired dual objects ˚0; ˚ 0

1; ˚
00
1 and verify their properties. This concluding

part of the proof of Theorem 7.1 departs from [33] and seems considerably simpler. Let

˚0 D
nX
kD0

3k

0@cn�kX
mD0

j!k.m/j⇤cnk;m C .2nC1 � 1/
cn�kX

mDn�kC1
j!k.m/j Q⇤cnkCm �⇤cnk;0

1A ;
˚ 0
1 D

nX
kD0

3k
cn�kX
mD0

!k.m/⇤
cn
k;m;

˚ 00
1 D

nX
kD0

3k

0@cn�kX
mD0

!k.m/⇤
cn
k;m C .2nC1 C 1/

cn�kX
mDn�kC1

j!k.m/j Q⇤cnkCm

1A :
We proceed to verify one by one the properties of these functions required by Theorem 7.1.

LEMMA 7.5. On F �1.1/; one has

˚ 0
1 > .1 � ✏/maxf�˚0;�2�n˚0g;

˚ 00
1 > .1 � ✏/j˚0j:

Proof. Take an arbitrary point x 2 F �1.1/ D f �1.1/cn and let ` D jfi W �.xi / < 0gj.
There are two cases to consider, depending on the value of `:
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CASE 0 6 ` 6 n: Using (7.2) and (7.5), one easily verifies that

X̀
kD0

3k!k.` � k/ > .1 � ✏/
 
3` �

X̀
kD0

3kj!k.` � k/j
!
: (7.23)

We have

j˚0.x/j D
ˇ̌̌̌
ˇ3`⇤cn`;0.x/ �

X̀
kD0

3kj!k.` � k/j⇤cnk;`�k.x/
ˇ̌̌̌
ˇ
by Lemmas 7.3(iii), 7.4(ii)

D
ˇ̌̌̌
ˇ3` �

X̀
kD0

3kj!k.` � k/j
ˇ̌̌̌
ˇ⇤cn`;0.x/ by Lemma 7.3(ii)

D
 
3` �

X̀
kD0

3kj!k.` � k/j
!
⇤cn`;0.x/ by (7.5)

and

˚ 00
1 .x/ D ˚ 0

1.x/ by Lemma 7.4(ii)

D
X̀
kD0

3k!k.` � k/⇤cnk;`�k.x/ by Lemma 7.3(iii)

D
 X̀
kD0

3k!k.` � k/
!
⇤cn`;0.x/ by Lemma 7.3(ii),

which gives ˚ 00
1 .x/ D ˚ 0

1.x/ > .1 � ✏/j˚0.x/j in light of (7.23).

CASE ` > nC 1: We have

˚0.x/ D
nX
kD0

3k
⇣
j!k.` � k/j⇤cnk;`�k.x/C .2nC1 � 1/j!k.` � k/j Q⇤cn` .x/

⌘
by Lemmas 7.3(iii), 7.4(ii)

D
 

nX
kD0

3k.j!k.` � k/j C .2nC1 � 1/j!k.` � k/j/
!
⇤cn`;0.x/

by Lemmas 7.3(ii), 7.4(iii)

D 2nC1
 

nX
kD0

3kj!k.` � k/j
!
⇤cn`;0.x/;
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j˚ 0
1.x/j D

ˇ̌̌̌
ˇ nX
kD0

3k!k.` � k/⇤cnk;`�k.x/
ˇ̌̌̌
ˇ by Lemma 7.3(iii)

D
ˇ̌̌̌
ˇ nX
kD0

3k!k.` � k/
ˇ̌̌̌
ˇ⇤cn`;0.x/ by Lemma 7.3(ii)

6
 

nX
kD0

3kj!k.` � k/j
!
⇤cn`;0.x/;

and

˚ 00
1 .x/ D

nX
kD0

3k
⇣
!k.` � k/⇤cnk;`�k.x/C .2nC1 C 1/j!k.` � k/j Q⇤cn` .x/

⌘
by Lemmas 7.3(iii), 7.4(ii)

D
 

nX
kD0

3k.!k.` � k/C .2nC1 C 1/j!k.` � k/j/
!
⇤cn`;0.x/

by Lemmas 7.3(ii), 7.4(iii)

> 2nC1
 

nX
kD0

3kj!k.` � k/j
!
⇤cn`;0.x/:

The estimates for ˚0 and ˚ 0
1 show that j˚ 0

1j 6 2�n�1˚0, which yields the desired inequal-
ity ˚ 0

1 > .1 � ✏/maxf�2�n˚0;�˚0g in view of 0 6 ✏ 6 1=2: The estimates for ˚0 and
˚ 00
1 immediately give ˚ 00

1 > j˚0j.
LEMMA 7.6. ˚0 > .1 � ✏/maxfj˚ 0

1j; j˚ 00
1 jg on F �1.0/:

Proof. Take an arbitrary point x 2 F �1.0/ and let ` D jfi W �.xi / < 0gj. Analogous to
the previous lemma, there are two cases to consider, depending on the value of `:

CASE 0 6 ` 6 n: We have

˚0.x/ D
X̀
kD0

3kj!k.` � k/j⇤cnk;`�k.x/ � 3`⇤cn`;0.x/

by Lemmas 7.3(iii), 7.4(ii)

D
X̀
kD0

3kj!k.` � k/j⇤cnk;`�k.x/ by Lemma 7.3(i)

and

j˚ 00
1 .x/j D j˚ 0

1.x/j by Lemma 7.4(ii)

D
ˇ̌̌̌
ˇX̀
kD0

3k!k.` � k/⇤cnk;`�k.x/
ˇ̌̌̌
ˇ by Lemma 7.3(iii).

Therefore, ˚0.x/ > j˚ 0
1.x/j D j˚ 00

1 .x/j in this case.
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CASE ` > n C 1: By Lemmas 7.3(i), 7.3(iii), and 7.4(ii), the defining equations for
˚0; ˚

0
1; ˚

00
1 simplify to

˚0.x/ D
nX
kD0

3k
⇣
j!k.` � k/j⇤cnk;`�k.x/C .2nC1 � 1/j!k.` � k/j Q⇤cn` .x/

⌘
;

˚ 0
1.x/ D

nX
kD0

3k!k.` � k/⇤cnk;`�k.x/;

˚ 00
1 .x/ D

nX
kD0

3k
⇣
!k.` � k/⇤cnk;`�k.x/C .2nC1 C 1/j!k.` � k/j Q⇤cn` .x/

⌘
:

Therefore, the proof will be complete once we show that

nX
kD0

3k
⇣
j!k.` � k/j⇤cnk;`�k.x/ � .2nC1 � 1/j!k.` � k/j j Q⇤cn` .x/j

⌘
> .1�✏/

nX
kD0

3k
⇣
j!k.` � k/j⇤cnk;`�k.x/C .2nC1 C 1/j!k.` � k/j j Q⇤cn` .x/j

⌘
:

Rearranging, it suffices to show that

✏

nX
kD0

3kj!k.` � k/j⇤cnk;`�k.x/ > 2nC2
 

nX
kD0

3kj!k.` � k/j
!

j Q⇤cn` .x/j:

Dropping all but the first term on the left-hand side, one arrives at the stronger inequality

✏j!0.`/j⇤cn0;`.x/ > 2nC2
 

nX
kD0

3kj!k.` � k/j
!

j Q⇤cn` .x/j:

This final inequality follows immediately from the estimates in (7.3), (7.5), (7.14), and
Lemma 7.4(iv).

LEMMA 7.7. Let P;QWXcn ! R be polynomials with

degP 6 1

c
degC

1=3
.:f /pn; (7.24)

degQ 6 min
⇢
1

c
degC

1=3
.:f /; n

2

�
: (7.25)

Then

h˚ 0
1; P i D h˚ 00

1 ;Qi D h˚0;Qi D 0:

Proof. By (7.6) and Lemma 7.3(iv), there are polynomials p0; p1; : : : ; pn such that

h⇤cnk;m; P i D pk.m/ .k D 0; 1; : : : ; nI m D 0; 1; : : : ; cn � k/; (7.26)

degpk <
p
n .k D 0; 1; : : : ; n/: (7.27)
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Therefore,

h˚ 0
1; P i D

nX
kD0

3k
cn�kX
mD0

!k.m/h⇤cnk;m; P i

D
nX
kD0

3kh!k ; pki by (7.26)

D
nX
kD0

3k � 0 by (7.4) and (7.27)

D 0:

We now prove analogous claims for ˚ 00
1 and ˚0. By (7.6) and Lemma 7.3(iv), there are

reals (degree-zero univariate polynomials) q0; q1; : : : ; qn such that

h⇤cnk;m;Qi D qk .k D 0; 1; : : : ; nI m D 0; 1; : : : ; cn � k/: (7.28)

Thus,

h˚ 00
1 ;Qi D

nX
kD0

3k
cn�kX
mD0

!k.m/h⇤cnk;m;Qi by (7.25) and Lemma 7.4(i)

D
nX
kD0

3kqk �
cn�kX
mD0

!k.m/ by (7.28)

D
nX
kD0

3kqk � 0 by (7.4)

D 0:

Similarly,

h˚0;Qi D
nX
kD0

3k

 
cn�kX
mD0

j!k.m/jh⇤cnk;m;Qi � h⇤cnk;0;Qi
!

by (7.25) and Lemma 7.4(i)

D
nX
kD0

3kqk �
 
cn�kX
mD0

j!k.m/j � 1
!

by (7.28)

D
nX
kD0

3kqk � 0 by (7.1)

D 0:

LEMMA 7.8. ˚0; ˚ 0
1; ˚

00
1 ¥ 0:

Proof. Let x⇤ 2 X be an arbitrary point with �.x⇤/ > 0; which exists by (7.10) and
(7.11). In light of Lemmas 7.3(iii) and 7.4(ii), the defining equations for ˚0; ˚ 0

1; ˚
00
1 show
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that

˚0.x
⇤; x⇤; : : : ; x⇤/ D .j!0.0/j � 1/⇤cn0;0.x⇤; x⇤; : : : ; x⇤/; (7.29)

˚ 0
1.x

⇤; x⇤; : : : ; x⇤/ D !0.0/⇤
cn
0;0.x

⇤; x⇤; : : : ; x⇤/; (7.30)

˚ 00
1 .x

⇤; x⇤; : : : ; x⇤/ D !0.0/⇤
cn
0;0.x

⇤; x⇤; : : : ; x⇤/: (7.31)

Recall that ⇤cn0;0.x
⇤; x⇤; : : : ; x⇤/ D �1.x

⇤/cn D 2cnj�.x⇤/jcn > 0 by definition, whereas
!0.0/ 2 .1=4; 1=2ç by (7.2) and (7.5). Therefore, the right-hand sides of (7.29)–(7.31) are
nonzero.

Lemmas 7.5–7.8 settle the required properties (i)–(viii) in Theorem 7.1, completing the
proof.

8. HIGH-ACCURACY APPROXIMATION OF THE AND-OR TREE

As a final building block of our main result, we will now study the one-sided rational
approximation of ANDnıORr for arbitrary parameters n and r . To be more specific, we are
interested in the numerator and denominator degree required for one-sided approximation
with error 2�r . We give a complete solution to this problem, with matching upper and
lower bounds. We start with the upper bound, which is significantly simpler and is actually
achieved for polynomials.

THEOREM 8.1 (Upper bound). There exists an absolute constant c > 0 such that

degC
2�r .ANDn ı ORr / 6 cmin

˚
r
p
n; n

 
:

Proof. We consider two cases, depending on the value of r:

CASE 1 6 r 6 p
n: By Theorem 2.7, there is a polynomial pW f0; 1gn ! Œ0; 1ç of

degree O.
p
nr/ with

jANDn.x/ � p.x/j 6 2�r�1; x 2 f0; 1gn: (8.1)

Theorem 2.5 ensures that this approximating polynomial can be made highly robust to
noise in the inputs with only a constant-factor increase in degree. More precisely, there
exists a polynomial probustWRn ! R of degree O.

p
nr/ with

jp.x/ � probust.x C ✏/j < 2�p
nr�1; x 2 f0; 1gn; ✏ 2 Œ�1=3; 1=3çn: (8.2)

Again by Theorem 2.7, there is a degree-O.
p
r/ polynomial q with kORr � qk1 6 1=3:

By (8.1) and (8.2), the composed polynomial probust ı q satisfies

kANDn ı ORr � probust ı qk1 6 2�r�1 C 2�p
nr�1

6 2�r :

In particular, probust ı q is a one-sided approximant for ANDn ı ORr with error 2�r :
This completes the proof since probust ı q has degree deg.probust/ deg.q/ D O.r

p
n/ D

O.minfrpn; ng/:
CASE r > p

n: Consider the polynomial p.x/ D Qn
iD1

Pr
jD1 xi;j : We have p D 0

whenever ANDn ı ORr D 0, and p > 1 whenever ANDn ı ORr D 1. Thus, p is a one-
sided approximant for ANDn ı ORr with error 0 and degree n: This completes the proof
since n 6 minfrpn; ng:
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To rephrase Theorem 8.1, ANDn ı ORr can be approximated in a one-sided manner
to within 2�r by a rational function with denominator degree 0 and numerator degree
⇥.minfrpn; ng/. This construction turns out to be optimal in a strong sense: the numera-
tor degree⇥.minfrpn; ng/ is best possible even if one allows denominator degree as large
as ⇥.r/: The formal statement follows.

THEOREM 8.2 (Lower bound). There is an absolute constant c > 0 such that

R.ANDn ı ORr ; cr; cminfrpn; ng/ > 2�r : (8.3)

The rest of Section 8 is devoted to the proof of Theorem 8.2, which unlike the up-
per bound is quite lengthy and technical. We start by settling the degenerate cases (Sec-
tion 8.1), which facilitates the exposition of the general proof. The remainder of the argu-
ment (Sections 8.2–8.7) is structured to emphasize similarities with Theorem 7.1, whose
proof was the subject of the previous section. In particular, we are able to reuse several
key results from that earlier development. The principal point of departure is the new and
challenging Section 8.6, which constructs a corrector object for false positives. No such
object was needed in the previous section. A lesser difference, in Section 8.2, is the use of
a high-accuracy dual polynomial for OR, in contrast to the bounded-error dual polynomial
in the previous section.

8.1. Degenerate cases. Before proving Theorem 8.2 for general n and r;we first take care
of the degenerate cases when either n or r is small.

THEOREM 8.3. For all integers r > 1;

R.ORr ; r � 1; 0/ D 1p
2r � 1 : (8.4)

Proof. Define �0;�1W f0; 1gr ! R by �0.x/ D .�1/x1Cx2C���Cxr and

�1.x/ D
(

�p
2r � 1 if x D 0;

1=
p
2r � 1 otherwise.

It is straightforward to verify the following:

(i) �0 > j�1j=
p
2r � 1 on OR�1

r .0/,
(ii) �1 > j�0j=

p
2r � 1 on OR�1

r .1/,
(iii) h�0; pi D 0 whenever degp 6 r � 1;
(iv) h�1; pi D 0 whenever degp D 0;

(v) �0 ¥ 0 and �1 ¥ 0:

As a result, R.ORr ; r � 1; 0/ > 1=
p
2r � 1 by the dual characterization of one-sided

rational approximation (Theorem 4.6).
For the matching upper bound, consider polynomials p0; p1W f0; 1gr ! R given by

p0.x/ D 2r .1 � ORr .x// � .�1/x1Cx2C���Cxr and p1.x/ D p
2r � 1. The proof will be

complete once we establish that:
(i) degp0 6 r � 1;

(ii) degp1 D 0;

(iii) p0 D 2r � 1 D p
2r � 1jp1j on OR�1

r .0/;

(iv) p1 D p
2r � 1 >

p
2r � 1jp0j on OR�1

r .1/:
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The last three properties are obvious, whereas the first property follows from the represen-
tation

ORr .x/ D 1 �
rY
iD1

1C .�1/xi

2
:

THEOREM 8.4. There exist constants c1; c2 > 0 such that

R.ANDn; 0; c1
p
n/ > 1p

2
;

R.ANDn; 0; c2
p
n/ 6 1p

2
:

Proof. By definition, R.ANDn; 0; d/ is the infimum over ✏ > 0 for which there exists a
polynomial p of degree at most d with p > 1=✏ on AND�1

n .1/ and jpj < ✏ on AND�1
n .0/:

Now the claim is immediate from Theorem 2.6, which asserts that the minimum degree
of a polynomial p with p > 2=3 on AND�1

n .1/ and jpj 6 1=3 on AND�1
n .0/ equals

⇥.
p
n/:

The last two theorems settle the special case of Theorem 8.2 when either n or r is bounded
by a constant. For example, Theorem 8.3 shows that (8.3) holds with c D 1=100 for all
n < 100 and all r . Similarly, Theorem 8.4 shows that (8.3) holds with c D minfc1; 1g=100
for all r < 100 and all n. In particular, we may assume henceforth that

n > 12; (8.5)
r > 11: (8.6)

We may further assume without loss of generality that

n ⌘ 0 .mod 4/; (8.7)
r ⌘ 1 .mod 2/: (8.8)

These divisibility assumptions can be ensured in the usual manner, by working with a
subfunction ANDn0 ı ORr 0 if necessary.

8.2. Outer dual object. Analogous to Section 7, we start by constructing the “outer” dual
object, so called because it serves as the glue that holds together the remaining building
blocks of the construction. Recall from (8.5) and (8.7) that n > 12 is an integer divisible
by 4. As a result, for each k D 0; 1; 2; : : : ; n=2; Theorem 2.14 ensures the existence of a
function ⌫k W f0; 1; 2; : : : ; n � kg ! R such that

degp 6 cout minfpnr; ng H) h⌫k ; pi D 0; (8.9)
k⌫kk1 D 1; (8.10)
⌫k.t/ D 0 .t D 1; 2; : : : ;minfr; n=4g � 1/; (8.11)

.�1/kCt⌫k.t/ > 0 .t > 1/; (8.12)

⌫k.0/ > c
minfr;n=4g
out ; (8.13)

j⌫k.t/j > cnout .t > n=2/; (8.14)

j⌫k.t/j 6
✓

minfr; n=4g
cout t

◆minfr;n=4g
.t > 1/; (8.15)
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for a sufficiently small constant

0 < cout <
1

4
: (8.16)

It follows from (8.9) that h⌫k ; 1i D 0 for all k; so that (8.10) and Proposition 2.12(ii) imply
that

k⌫kk1 6 1

2
.k D 0; 1; 2; : : : ; n=2/: (8.17)

Finally, we claim that✓
minfr; n=4g
cout t

◆minfr;n=4g
6

✓
minfr; n=4g
cout t

◆r
.t D 1; 2; : : : ; n/:

Indeed, the inequality is trivial when r 6 n=4 and follows from (8.16) otherwise. In
particular, (8.15) gives

j⌫k.t/j 6
✓

minfr; n=4g
cout t

◆r
.t > 1/: (8.18)

8.3. Inner dual objects. We now turn our attention to the “inner” dual object, whose
domain f0; 1gr is the domain of the inner function in the composition ANDn ıORr . Recall
from (8.8) that r > 11 is an odd integer. Let

✏ D c6out

2C c6out
: (8.19)

Taking  in Theorem 2.13 to be the uniform distribution over f2; 4; 6; : : : ; r � 1g; we infer
the existence of a function !W f0; 1; 2; : : : ; rg ! R such that

k!k1 D 1; (8.20)

!.0/ >
1 � ✏
2

; (8.21)

.�1/tC1!.t/ > 0 .t D 1; 2; : : : ; r/; (8.22)

j!.t/j > 2✏

3.r � 1/ .t D 2; 4; 6; : : : ; r � 1/; (8.23)

degp < cin
p
r H) h!; pi D 0; (8.24)

for some constant cin D cin.✏/ with 0 < cin < 1. Now define �W f0; 1gr ! R by

�.x/ D �
 
r

jxj

!�1
!.jxj/:

Then

k�k1 D 1; (8.25)

�.0r / < �1 � ✏
2

; (8.26)

.�1/jxj�.x/ > 0 .x ¤ 0r /; (8.27)

j�.x/j > 2✏

3.r � 1/

 
r

jxj

!�1
.jxj D 2; 4; 6; : : : ; r � 1/ (8.28)
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by (8.20)–(8.23), respectively. In addition, it is straightforward to deduce from (8.24) that
for any polynomial pW f0; 1gr ! R,

degp < cin
p
r H) h�; pi D 0; (8.29)

with the notable special case

h�; 1i D 0: (8.30)

This can be seen by writing h�; pi D �Pr
tD0 !.t/EjxjDt p.x/ and recalling from Propo-

sition 2.2 that t 7! EjxjDt p.x/ is a univariate polynomial on f0; 1; 2; : : : ; rg of degree at
most degp: Finally, we note that

h�;ORri D h�;ORr � 1i
D ��.0r /
>
1 � ✏
2

; (8.31)

where the first step uses (8.30) and the third step uses (8.26). We define ˛ by

1 � ˛
2

D h�;ORri: (8.32)

Then

0 6 ˛ < ✏; (8.33)

where the upper bound is immediate from (8.31), and the lower bound holds by (8.25),
(8.30), and Proposition 2.12(iii).

Analogous to the development in Section 7, we now consider several probability distri-
butions that � induces on f0; 1gr . By (8.25), the function j�j itself is a probability distri-
bution on f0; 1gr . We further define �0 and �1 to be the probability distributions induced
by j�j on the sets fx W �.x/ < 0g and fx W �.x/ > 0g; respectively. In particular, (8.26)
shows that

�0.0
r / > 0; (8.34)

�1.0
r / D 0: (8.35)

Equations (8.25) and (8.30) imply that

� D 1

2
�1 � 1

2
�0; (8.36)

with �0 and �1 well-defined. For every nonzero input x 2 f0; 1gr of even Hamming
weight, we have �.x/ > 2✏

3r

�
r

jxj
��1 from (8.27) and (8.28), whence

�1.x/ D 2j�j

> 4✏

3r

 
r

jxj

!�1
.jxj D 2; 4; 6; : : : ; r � 1/: (8.37)

Multiplying (8.36) on both sides by ORr and applying (8.35), we find that hORr ;�i D
1
2
hORr ;�1i � 1

2
hORr ;�0i D 1

2
� 1
2
hORr ;�0i; which in view of (8.32) gives

hORr ;�0i D ˛; (8.38)
h1 � ORr ;�0i D 1 � ˛: (8.39)
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In particular,

hORr � �0 � ˛�0; 1i D hORr ;�0i � ˛h�0; 1i
D hORr ;�0i � ˛
D 0: (8.40)

Since we defined �0 and �1 in terms of � exactly as in Section 7, an analogue of
Lemma 7.2 applies here as well, with the same proof as before. We restate it here, in the
notation of this section.

LEMMA 8.5. Let ⇠W f0; 1gr ! R be an arbitrary function. Then for every polynomial
P W .f0; 1gr /n ! R and every k D 0; 1; 2; : : : ; n; the mapping

´ 7!
*
⇠˝k ˝

n�kO
iD1

�´i
; P

+
; ´ 2 f0; 1gn�k ; (8.41)

is a polynomial of degree at most .degP /=.cin
p
r/:

Proof. Analogous to Lemma 7.2.

8.4. Auxiliary distributions. Analogous to Section 7, we will now use �0 and �1 to
construct auxiliary functions⇤n

k;m
on the tensor space .f0; 1gr /n: For nonnegative integers

k;m with k Cm 6 n; we define a nonnegative function

⇤nk;m.x1; x2; : : : ; xn/ D E
S;T

24Y
i2S

ORr .xi /�0.xi / �
Y
i2T

�0.xi / �
Y

i…S[T
�1.xi /

35 ;
where the expectation is over a uniformly random pair of disjoint sets S; T ✓ f1; 2; : : : ; ng
of size jS j D k and jT j D m:Observe that this definition is identical to the one in Section 7
with f D ORr . In particular, Lemma 7.3 applies in its entirety, with the same proof. For
convenience, we restate the lemma here in the notation of this section.

LEMMA 8.6.
(i) supp⇤n

k;0
✓ .f0; 1gr n f0rg/n;

(ii) ⇤n
k;m

D ⇤n
kCm;0 on .f0; 1gr n f0rg/n;

(iii) ⇤n
k;m
.x/ ¤ 0 only if jfi W �.xi / < 0gj D k Cm;

(iv) for an arbitrary real polynomialP W .f0; 1gr /n ! R; the mappingm 7! h⇤n
k;m
; P i

.m D 0; 1; 2; : : : ; n � k/ is a polynomial of degree at most .degP /=.cin
p
r/:

Proof. Analogous to the proof of Lemma 7.3, with the obvious difference that the ap-
peal to Lemma 7.2 in part (iv) should be replaced with its counterpart from this section
(Lemma 8.5).

8.5. Corrector for false negatives. As one can see from the dual characterization of one-
sided rational approximation (Theorem 4.6), the dual objects that we are to construct must
exhibit very specific sign behavior. To that end, we will use “corrector” objects to force
the correct sign on the relevant portions on the domain. Analogous to the development
in Section 7, these corrector objects are orthogonal to low-degree polynomials and are
close to zero on all but a handful of relevant inputs. Here, we build a corrector object for
.f0; 1gr n f0rg/n; corresponding to the inputs where ANDn ı ORr evaluates to true.
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For an integer k with 1 6 k 6 n; let Q⇤n
k
W .f0; 1gr /n ! R be given by

Q⇤nk.x/ D 1

.dk=2e � 1/ä

⇥ E
jS jDk

24Y
i2S

.ORr .xi / � ˛/�0.xi /
1 � ˛ �

k�1Y
iDbk=2cC1

0@X
j2S

ORr .xj / � i
1A �

Y
i…S

�1.xi /

35 ;
where the expectation is over a uniformly random set S ✓ f1; 2; : : : ; ng of size jS j D k:

Observe that this definition is identical to that in Section 7, with f D ORr : In particular,
Lemma 7.4 from that section carries over in its entirety, with the same proof as before. We
restate it here in the notation of this section.

LEMMA 8.7.

(i) h Q⇤n
k
; P i D 0 for every polynomial P of degree at most k=2;

(ii) Q⇤n
k
.x/ ¤ 0 only if jfi W �.xi / < 0gj D k;

(iii) Q⇤n
k

D ⇤n
0;k

on .f0; 1gr n f0rg/n;
(iv) j Q⇤n

k
j 6 1

2

�
2˛
1�˛

�k=2
⇤n
0;k

outside .f0; 1gr n f0rg/n:

Proof. Analogous to Lemma 7.4.

8.6. Corrector for false positives. We will now build a corrector object for the comple-
mentary portion of the domain, where ANDn ı ORr evaluates to false. This part of the
proof is the most challenging and has no analogue in Section 7. The crux of our argument
is the following technical result.

THEOREM 8.8. Let N;R; d be positive integers, d 6 R=5: Then there exists a function
ZW .f0; 1gR/N ! R such that

hZ;P i D 0 whenever degP 6 d; (8.42)

suppZ ✓ f0RN g [ .f0; 1gR n f0Rg/N ; (8.43)

Z.0RN / D 1; (8.44)

jZ.x1; x2; : : : ; xN /j 6 60d
✓

6

RC 1

◆N NY
iD1

 
R

jxi j

!�1
for x ¤ 0RN : (8.45)

Proof. For subsets S1; S2; : : : ; S2d ✓ f1; 2; : : : ; N g ⇥ f1; 2; : : : ; Rg; consider the function
ZS1;S2;:::;S2d

W .f0; 1gR/N ! R given by

ZS1;S2;:::;S2d
.x/ D

X
T✓f1;2;:::;2dg

 
d � 1 � jT j
d � 1

!
.�1/jT j IŒx D 1S

j 2T Sj
ç:
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We will refer to a family of sets S1; S2; : : : ; S2d ✓ f1; 2; : : : ; N g ⇥ f1; 2; : : : ; Rg as good
if they meet the following three criteria:

Sj \ Sj 0 D ¿ .8 j ¤ j 0/;

Sj \ f.1; 1/; .1; 2/; : : : ; .1; R/g ¤ ¿ .j D 1; 2; : : : ; 2d/;�[
j2T

Sj

�
\ f.i; 1/; .i; 2/; : : : ; .i; R/g ¤ ¿ .i D 1; 2; : : : ; N; jT j > d/:

CLAIM 8.9. Let S1; S2; : : : ; S2d ✓ f1; 2; : : : ; N g ⇥ f1; 2; : : : ; Rg be a good set family.
Then

(i) hZS1;S2;:::;S2d
; P i D 0 whenever degP 6 d;

(ii) suppZS1;S2;:::;S2d
✓ f0RN g [ .f0; 1gR n f0Rg/N ;

(iii) ZS1;S2;:::;S2d
.0RN / D 1:

For clarity of exposition, we provide the proof of this and other claims after the proof of
the theorem. Now let S1;S2; : : : ;S2d ✓ f1; 2; : : : ; N g ⇥ f1; 2; : : : ; Rg be a random set
family generated by Algorithm 1.

Algorithm 1 Procedure for generating S1;S2; : : : ;S2d .
(i) Choose p1; p2; : : : ; pN 2 Œ1=2; 1ç uniformly at random.

(ii) Let ◆W f1; 2; : : : ; N g ⇥ f1; 2; : : : ; Rg ! f0; 1; 2; : : : ; 2dg be a random function
whose values at each point of its domain are independent random variables, dis-
tributed according to

◆.i; j / D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 with probability 1 � pi ;
1 with probability pi=2d;
2 with probability pi=2d;
:::

2d with probability pi=2d:

(iii) Define Sj D ◆�1.j / for j D 1; 2; : : : ; 2d:

CLAIM 8.10. PŒS1;S2; : : : ;S2d are goodç > e�2d .3=4/N�1:

CLAIM 8.11. For x ¤ 0RN ;

E
S1;S2;:::;S2d

jZS1;S2;:::;S2d
.x/j 6 8d

✓
4

RC 1

◆N NY
iD1

 
R

xi;1 C xi;2 C � � � C xi;R

!�1
:

We now complete the proof of the theorem by combining Claims 8.9–8.11. Define

Z.x/ D E
S1;S2;:::;S2d

ŒZS1;S2;:::;S2d
.x/ j S1;S2; : : : ;S2d are goodç:

Then properties (8.42)–(8.44) are immediate by Claim 8.9, whereas the remaining property
(8.45) follows from Claims 8.10 and 8.11.
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Proof of Claim 8.9. (i) Recall that S1; S2; : : : ; S2d are nonempty and pairwise disjoint. As
a result,

ZS1;S2;:::;S2d
.x/ D

 
d � 1 �P2d

jD1 IŒxjSj
D 11 : : : 1ç

d � 1

!

⇥ IŒxjS1[S2[���[S2d
D 00 : : : 0ç

2dY
jD1

.IŒxjSj
D 00 : : : 0ç�IŒxjSj

D 11 : : : 1ç/:

Multiplying out the binomial coefficient, we find that ZS1;S2;:::;S2d
is a linear combination

of functions of the form

IŒxjS1[S2[���[S2d
D 00 : : : 0ç

Y
j2A

IŒxjSj
D 11 : : : 1ç

⇥
Y
j…A

.IŒxjSj
D 00 : : : 0ç � IŒxjSj

D 11 : : : 1ç/;

with A ✓ f1; 2; : : : ; 2dg ranging over sets of size at most d � 1: This is a product of
2d C 1 functions on disjoint sets of variables, where the final 2d � jAj > d C 1 functions
are orthogonal to polynomials of degree less than 1: As a result, the entire product is
orthogonal to polynomials of degree less than .2d � jAj/ � 1 > d C 1:

(ii) Fix an arbitrary input x ¤ 0RN in the support of ZS1;S2;:::;S2d
: Then

ZS1;S2;:::;S2d
.x/ D

X
T✓f1;2;:::;2dg

 
d � 1 � jT j
d � 1

!
.�1/jT j IŒx D 1S

j 2T Sj
ç

D
X

T✓f1;2;:::;2dg
T¤¿

 
d � 1 � jT j
d � 1

!
.�1/jT j IŒx D 1S

j 2T Sj
ç

D
X

T✓f1;2;:::;2dg
jT j>d

 
d � 1 � jT j
d � 1

!
.�1/jT j IŒx D 1S

j 2T Sj
ç;

where the first equality holds by definition, the second uses the fact that x ¤ 0RN ; and the
third follows from the definition of a binomial coefficient. We conclude that x D 1S

j 2T Sj

for some set T of cardinality at least d: But by the goodness property, the union of any d
sets from among S1; S2; : : : ; S2d intersects each of the sets

f1g ⇥ f1; 2; : : : ; Rg;
f2g ⇥ f1; 2; : : : ; Rg;

:::

fN g ⇥ f1; 2; : : : ; Rg:
As a result,

VN
iD1

WR
jD1 xij D 1:

(iii) Immediate from the definition ofZS1;S2;:::;S2d
and the fact that S1; S2; : : : ; S2d are

nonempty.

Proof of Claim 8.10. By construction, S1;S2; : : : ;S2d are pairwise disjoint. As a result,

PŒS1;S2; : : : ;S2d are goodç D PŒE1 ^E2 ^ � � � ^EN ç;



48 ALEXANDER A. SHERSTOV

where E1 denotes the event that

Sj \ f.1; 1/; .1; 2/; : : : ; .1; R/g ¤ ¿; j D 1; 2; : : : ; 2d;

and Ei .i D 2; 3; : : : ; N / denotes the event that

0@[
j2T

Sj

1A \ f.i; 1/; .i; 2/; : : : ; .i; R/g ¤ ¿; T 2
 

f1; 2; : : : ; 2dg
d

!
:

Since E1; E2; : : : ; EN are independent, we further obtain

PŒS1;S2; : : : ;S2d are goodç D
NY
iD1

PŒEi ç

D PŒE1çPŒE2çN�1; (8.46)

where the second step holds by symmetry. In what follows, p1; p2; : : : ; pN 2 Œ1=2; 1ç

and ◆W f1; 2; : : : ; N g ⇥ f1; 2; : : : ; Rg ! f0; 1; 2; : : : ; 2dg refer to the random variables in
Algorithm 1.

Rephrasing, E1 is the event that the sequence

◆.1; 1/; ◆.1; 2/; ◆.1; 3/; : : : ; ◆.1; R/ (8.47)

contains each of the numbers 1; 2; 3; : : : ; 2d; in some order. Conditioned on p1; the R
random variables in (8.47) are independent and identically distributed, each taking on
0; 1; 2; : : : ; 2d with probability 1 � p1; p1=2d; p1=2d; : : : ; p1=2d; respectively. Since
p1 > 1=2 and R > 4d; with probability at least 1=2 the sequence contains at least 2d
nonzeroes. Conditioned on this event, the probability that the sequence features each of
the numbers 1; 2; : : : ; 2d is at least .2d/ä=.2d/2d : In summary,

PŒE1ç > .2d/ä

2.2d/2d
> exp .�2d/ : (8.48)

We now analyze E2: Fix an arbitrary set T ✓ f1; 2; : : : ; 2dg of cardinality d: Observe
from the definition of S1;S2; : : : ;S2d that

S
j2T Sj is a random subset of f1; 2; : : : ; N g ⇥

f1; 2; : : : ; Rg obtained by choosing p1; p2; : : : ; pN 2 Œ1=2; 1ç independently and uni-
formly at random and including each element .i 0; j 0/ 2 f1; 2; : : : ; N g ⇥ f1; 2; : : : ; Rg
independently with probability jT j � pi 0=2d D pi 0=2: In particular,

0@[
j2T

Sj

1A \ f.2; 1/; .2; 2/; .2; 3/; : : : ; .2; R/g (8.49)
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is a random set obtained by including each of .2; 1/; .2; 2/; .2; 3/; : : : ; .2; R/ indepen-
dently with probability p2=2. Therefore,

P

240@[
j2T

Sj

1A \ f.2; 1/; .2; 2/; .2; 3/; : : : ; .2; R/g D ¿

35
D 2

ˆ 1

1=2

⇣
1 � p2

2

⌘R
dp2

6 2

ˆ 2

1=2

⇣
1 � p2

2

⌘R
dp2

D 3

RC 1
�
✓
3

4

◆R
:

Recall that E2 is the event that (8.49) is nonempty for each T of cardinality d: Therefore,

PŒE2ç > 1 �
 
2d

d

!
� 3

RC 1

✓
3

4

◆R
> 1 �

 
2d

d

!
� 3

5d C 1
�
✓
3

4

◆5d
> 3

4
; (8.50)

where the first step uses the union bound and second step uses d 6 R=5: By (8.46), (8.48),
and (8.50), the proof is complete.

Proof of Claim 8.11. Let T ✓ f1; 2; : : : ; 2dg be an arbitrary nonempty set. Recall thatS
j2T Sj is a random set obtained by choosing p1; p2; : : : ; pN 2 Œ1=2; 1ç independently

and uniformly at random and including each element .i 0; j 0/ 2 f1; 2; : : : ; N g⇥f1; 2; : : : ; Rg
independently with probability jT jpi 0=2d: Abbreviating xi D .xi;1; xi;2; : : : ; xi;R/, we
obtain:

P
h
1S

j 2T Sj
D x

i
D

NY
iD1

2

ˆ 1

1=2

✓ jT jpi
2d

◆jxi j ✓
1 � jT jpi

2d

◆R�jxi j
dpi

6
NY
iD1

2

ˆ 2d=jT j

0

✓ jT jpi
2d

◆jxi j ✓
1 � jT jpi

2d

◆R�jxi j
dpi

D
✓
4d

jT j
◆N NY

iD1

ˆ 1

0

pjxi j .1 � p/R�jxi j dp

D
✓

4d

jT j.RC 1/

◆N NY
iD1

 
R

jxi j

!�1
; (8.51)
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where the final step follows by Fact 2.1(iii). Therefore,

E jZS1;S2;:::;S2d
.x/j

6
X

T✓f1;2;:::;2dg

ˇ̌̌̌
ˇ
 
d � 1 � jT j
d � 1

!ˇ̌̌̌
ˇ PŒx D 1S

j 2T Sj
ç

D
X

T✓f1;2;:::;2dg
jT j>d

 
jT j � 1
d � 1

!
PŒx D 1S

j 2T Sj
çC IŒx D 0RN ç

D
X

T✓f1;2;:::;2dg
jT j>d

 
jT j � 1
d � 1

!
PŒx D 1S

j 2T Sj
ç since x ¤ 0RN

6
X

T✓f1;2;:::;2dg
jT j>d

 
jT j
d

!✓
4

RC 1

◆N NY
iD1

 
R

jxi j

!�1
by (8.51)

D
2dX
tDd

 
2d

t

! 
t

d

!✓
4

RC 1

◆N NY
iD1

 
R

jxi j

!�1

D 2d

 
2d

d

!✓
4

RC 1

◆N NY
iD1

 
R

jxi j

!�1
:

This completes the proof of Theorem 8.8. We will now reinterpret it in our setting of
interest, relating it among other things to the probability distribution �1:

COROLLARY 8.12. For every integer t > 1; there exists Zt W .f0; 1gr /t ! R such that

Zt .0
rt / D 1; (8.52)

jZt j 6 60r=10 .9=✏/t�˝t
1 on .f0; 1gr /t n f0rtg; (8.53)

hZt ; P i D 0 whenever degP 6 r=10: (8.54)

Proof. Recall from (8.6) that r > 11. Taking R D br=2c and d D br=10c in Theorem 8.8,
we infer the existence of ZW .f0; 1gR/t ! R such that

Z.0Rt / D 1; (8.55)

suppZ ✓ f0Rtg [ .f0; 1gR n 0R/t ; (8.56)

jZ.y1; : : : ; yt /j 6 60
r

10

✓
6

RC 1

◆t tY
iD1

 
R

jyi j

!�1
for .y1; : : : ; yt / ¤ 0Rt ; (8.57)

degP 6 r=10 H) hZ;P i D 0: (8.58)

Define Zt W .f0; 1gr /t ! R by

Zt .x1; x2; : : : ; xt /

D
X

y12f0;1gR

jy1jDjx1j=2

X
y22f0;1gR

jy2jDjx2j=2

� � �
X

yt 2f0;1gR

jyt jDjxt j=2

Z.y1; y2; : : : ; yt /

tY
iD1

 
r

jxi j

!�1
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if jx1j; jx2j; : : : ; jxt j are all even, and Zt .x1; x2; : : : ; xt / D 0 otherwise.
We proceed to verify the three properties required of Zt : The first property, (8.52), is

immediate from (8.55). To verify (8.53), fix an arbitrary input .x1; x2; : : : ; xt / ¤ 0rt :

There are three cases to examine. If at least one of jx1j; jx2j; : : : ; jxt j is odd, we have
Zt .x1; x2; : : : ; xt / D 0 by definition and thus (8.53) holds trivially. If jx1j; jx2j; : : : ; jxt j
are all even but not all positive, then by (8.56) we again have Zt .x1; x2; : : : ; xt / D 0. In
the remaining case that jx1j; jx2j; : : : ; jxt j are even and positive, (8.37) and (8.57) imply
that

tY
iD1

�1.xi / >
✓
4✏

3r

◆t tY
iD1

 
r

jxi j

!�1
;

jZt .x1; x2; : : : ; xt /j 6 60r=10
✓

6

RC 1

◆t tY
iD1

 
r

jxi j

!�1
;

respectively, again forcing (8.53).
It remains to verify (8.54). Let P W .f0; 1gr /t ! R be an arbitrary polynomial of degree

at most r=10: By Corollary 2.3, there is a polynomial QWRt ! R of degree at most r=10
such that

E
�12Sr

� � � E
�t 2Sr

P.�1x1; : : : ; �txt / D Q.jx1j; : : : ; jxt j/ (8.59)

for all x 2 .f0; 1gr /t : Since Zt .x1; : : : ; xt / is uniquely determined by jx1j; : : : ; jxt j, we
have Zt .x1; : : : ; xt / D Zt .�1x1; : : : ; �txt / for all permutations �1; : : : ; �t 2 Sr : In par-
ticular,

hZt ; P i D
X

x2.f0;1gr /t

Zt .x1; : : : ; xt /P.x1; : : : ; xt /

D
X

x2.f0;1gr /t

Zt .x1; : : : ; xt / E
�12S1

� � � E
�t 2St

P.�1x1; : : : ; �txt /

D
X

x2.f0;1gr /t

Zt .x1; : : : ; xt /Q.jx1j; : : : ; jxt j/ by (8.59)

D
X

y2.f0;1gR/t

Z.y1; : : : ; yt /Q.2jy1j; : : : ; 2jyt j/ by definition of Zt

D 0 by (8.58).

At last, the following theorem constructs our desired corrector object, which allows us
to force the correct sign on all inputs outside .f0; 1gr n f0rg/n:
THEOREM 8.13. Let k > 0 and m > 1 be integers, where m C k 6 n: Then there is a
function Q⇤n

k;m
W .f0; 1gr /n ! R such that:

(i) Q⇤n
k;m

D ⇤n
k;m

outside .f0; 1gr n f0rg/nI
(ii) j Q⇤n

k;m
j 6 .maxf1;pm=rg=ccor/

r
Pm
iD0⇤

n
k;i

on .f0; 1gr n f0rg/n for some con-
stant ccor D ccor.✏/ with 0 < ccor < 1I

(iii) h Q⇤n
k;m
; P i D 0 whenever degP 6 minfr=10; cinr

p
r=2g:

Proof. The proof has two parts to it, corresponding to m small and m large. The construc-
tions in these two cases are quite different.
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CASE m 6 r: By the hypothesis of the theorem, we have 1 6 m 6 minfr; n � kg
in this case. For each t D 1; 2; : : : ; m; Corollary 8.12 provides an explicit function
Zt W .f0; 1gr /t ! R that obeys (8.52)–(8.54). Define

Q⇤nk;m.x/ D
mX
tD1

 
m

t

!
.1 � ˛/t E

i1<i2<���<it
E

S WjS jDkCm�t
i1;i2;:::;it …S

"
Zt .xi1 ; xi2 ; : : : ; xit /

⇥
Y
i2S

ORr .xi /�0.xi / �
Y

i…S[fi1;i2;:::;it g
�1.xi /

35 ;
where the first expectation is over uniformly random i1; i2; : : : ; it 2 f1; 2; : : : ; ng with
i1 < i2 < � � � < it , and the second expectation is over a uniformly random subset S ✓
f1; 2; : : : ; ng n fi1; i2; : : : ; itg of cardinality jS j D k Cm � t:

We proceed to verify the properties required of Q⇤n
k;m

. The orthogonality property fol-
lows immediately from (8.54):

degP 6 r

10
H) h Q⇤nk;m; P i D 0: (8.60)

Continuing, fix an arbitrary input x 2 .f0; 1gr n f0rg/n and substitute (8.53) in the defining
equation for Q⇤n

k;m
to obtain

j Q⇤nk;m.x/j

6 60
r

10

mX
tD1

 
m

t

!✓
9

✏

◆t
E

jS jDkCm�t

24Y
i2S

ORr .xi /�0.xi / �
Y
i…S

�1.xi /

35
D 60

r
10

mX
tD1

 
m

t

!✓
9

✏

◆t
⇤nkCm�t;0.x/

6 60
r

10

✓
1C 9

✏

◆m mX
tD1

⇤nkCm�t;0.x/:

Using Lemma 8.6(ii) and the assumption that m 6 r; we arrive at

j Q⇤nk;m.x/j 6
✓
15

✏

◆r m�1X
iD0

⇤nk;i .x/; x 2 .f0; 1gr n f0rg/n: (8.61)

It remains to verify that Q⇤n
k;m

D ⇤n
k;m

outside .f0; 1gr n f0rg/n: To start with,

�0 D ORr � �0 C NORr � �0 D ORr � �0 C .1 � ˛/NORr ;

where the second step uses (8.39). As a result,

⇤nk;m.x/ D E
T;S

Y
i2T

�0.xi / �
Y
i2S

ORr .xi /�0.xi / �
Y

i…S[T
�1.xi /

D E
T;S

Y
i2T
.ORr .xi /�0.xi /C .1 � ˛/NORr .xi // �

Y
i2S

ORr .xi /�0.xi /

⇥
Y

i…S[T
�1.xi /;
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where the expectation is over a uniformly random choice of sets T ✓ f1; 2; : : : ; ng and
S ✓ f1; 2; : : : ; ng n T of cardinalities jT j D m and jS j D k. Multiplying out,

⇤nk;m.x/ D
mX
tD0

 
m

t

!
.1�˛/t E

i1<i2<���<it
E

S WjS jDkCm�t
i1;i2;:::;it …S

"
NORrt .xi1xi2 : : : xit /

⇥
Y
i2S

ORr .xi /�0.xi / �
Y

i…S[fi1;i2;:::;it g
�1.xi /

35 ; (8.62)

where the first expectation is over uniformly random i1; i2; : : : ; it 2 f1; 2; : : : ; ng with
i1 < i2 < � � � < it , and the second expectation is over a uniformly random subset S ✓
f1; 2; : : : ; ngnfi1; i2; : : : ; itg of cardinality jS j D kCm�t: For the remainder of the proof,
fix an arbitrary input x D .x1; x2; : : : ; xn/ with xi⇤ D 0r for at least one coordinate i⇤:
We claim that for any two disjoint sets S and fi1; i2; : : : ; itg;

NORrt .xi1xi2 : : : xit /
Y
i2S

ORr .xi /�0.xi / �
Y

i…S[fi1;i2;:::;it g
�1.xi /

D Zt .xi1 ; xi2 ; : : : ; xit /
Y
i2S

ORr .xi /�0.xi / �
Y

i…S[fi1;i2;:::;it g
�1.xi /: (8.63)

Indeed, if i⇤ … fi1; i2; : : : ; itg then the left- and right-hand sides of (8.63) both van-
ish because ORr .xi⇤/�0.xi⇤/ D �1.xi⇤/ D 0: In the complementary case when i⇤ 2
fi1; i2; : : : ; itg; we have from (8.52) and (8.53) that

Zt .xi1 ; xi2 ; : : : ; xit / D
(
1 if xi1 D xi2 D � � � D xit D 0r ;

0 otherwise

D NORrt .xi1 ; xi2 ; : : : ; xit /;

settling (8.63). Substituting (8.63) in (8.62),

⇤nk;m.x/ D
mX
tD0

 
m

t

!
.1 � ˛/t E

i1<i2<���<it
E

S WjS jDkCm�t
i1;i2;:::;it …S

"
Zt .xi1 ; xi2 ; : : : ; xit /

⇥
Y
i2S

ORr .xi /�0.xi / �
Y

i…S[fi1;i2;:::;it g
�1.xi /

35 :
In this summation, the term corresponding to t D 0 vanishes because ORr .xi⇤/�0.xi⇤/ D
�1.xi⇤/ D 0: As a result, we arrive at the desired conclusion:

Q⇤nk;m.x/ D ⇤nk;m.x/; x … .f0; 1gr n f0rg/n: (8.64)

The newly established properties (8.60), (8.61), and (8.64) complete the proof for the case
m 6 r:

CASE m > r C 1: By the theorem hypothesis, we have r C 1 6 m 6 n � k in this case.
Let Q⇤n

k;1
; Q⇤n

k;2
; : : : ; Q⇤n

k;br=2c be the functions constructed in the first half of the proof, with
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properties (8.60), (8.61), and (8.64). Define

Q⇤nk;m D ⇤nk;m � .�1/br=2c
 
m � 1
br=2c

!
⇤nk;0

�
br=2cX
iD1

.�1/br=2c�i
 
m

i

! 
m � i � 1
br=2c � i

!
.⇤nk;i � Q⇤nk;i /: (8.65)

We proceed to establish properties (i)–(iii) in the theorem statement. On inputs outside
.f0; 1gr n f0rg/n, we have ⇤n

k;0
D 0 by Lemma 8.6(i) and ⇤n

k;i
� Q⇤n

k;i
D 0 by (8.64).

Making these substitutions in (8.65) gives Q⇤n
k;m

D ⇤n
k;m

outside .f0; 1gr n f0rg/n, estab-
lishing (i). On .f0; 1gr n f0rg/n, we have

j Q⇤nk;mj 6 ⇤nk;m C
 
m � 1
br=2c

!
⇤nk;0 C

br=2cX
iD1

 
m

i

! 
m � i � 1
br=2c � i

!
.⇤nk;i C j Q⇤nk;i j/

6 ⇤nk;m C 2br=2c
 

m

br=2c

! br=2cX
iD0

⇤nk;i C 2br=2c
 

m

br=2c

! br=2cX
iD1

j Q⇤nk;i j

6 ⇤nk;m C 2br=2c
 

m

br=2c

! br=2cX
iD0

⇤nk;i

C 2br=2c
 

m

br=2c

!
�
j r
2

k✓15
✏

◆r br=2cX
iD0

⇤nk;i

6 ⇤nk;m C 2br=2c
 

m

br=2c

!✓
1C

j r
2

k✓15
✏

◆r◆ br=2cX
iD0

⇤nk;i ;

where the third step uses (8.61). This settles (ii).
It remains to prove (iii). Fix any polynomial P of degree at most minfr=10; cinr

p
r=2g:

By Lemma 8.6(iv), there exists a univariate polynomial p with

h⇤nk;i ; P i D p.i/ .i D 0; 1; 2; : : : ; m/; (8.66)

degp 6 r

2
: (8.67)

By definition,

h Q⇤nk;m; P i D h⇤nk;m; P i � .�1/br=2c
 
m � 1
br=2c

!
h⇤nk;0; P i

�
br=2cX
iD1

.�1/br=2c�i
 
m

i

! 
m � i � 1
br=2c � i

!
.h⇤nk;i ; P i � h Q⇤nk;i ; P i/:
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Applying (8.60) and (8.66),

h Q⇤nk;m; P i D p.m/ �
br=2cX
iD0

.�1/br=2c�i
 
m

i

! 
m � i � 1
br=2c � i

!
p.i/

D p.m/ �
br=2cX
iD0

.�1/br=2c�i
 
m

i

! 
m � i � 1

m � br=2c � 1

!
p.i/

D �
mX
iD0
.�1/br=2c�i

 
m

i

! 
m � i � 1

m � br=2c � 1

!
p.i/

D 0;

where last step is valid by (8.67) and Fact 2.1(i) because the degree of
�

m�i�1
m�br=2c�1

�
p.i/ as a

univariate polynomial in i is at mostm�br=2c�1Cdegp 6 m�1: This establishes (iii),
completing the proof.

8.7. Final construction. We are finally in a position to define the dual objects required to
prove Theorem 8.2. Let ˚0; ˚1W .f0; 1gr /n ! R be given by

˚0 D
n=2X
kD0

n�kX
mD1

j⌫k.m/j
ckout

Q⇤nk;m;

˚1 D
n=2X
kD0

n�kX
mD0

⌫k.m/

ckout
⇤nk;m C

nX
kD n

2 C1

1

ckout

Q⇤nk ;

where Q⇤n
k;m

is as constructed in Theorem 8.13. The four lemmas that follow establish
the properties required of ˚0 and ˚1 by the dual characterization of one-sided rational
approximation (Theorem 4.6).

LEMMA 8.14. ˚0 > j˚1j=2 outside .f0; 1gr n f0rg/n:
Proof. For any integer m with n=2 < m 6 n; we have the following bounds outside
.f0; 1gr n f0rg/n:

j Q⇤nmj 6
✓
2˛

1 � ˛
◆m=2

⇤n0;m by Lemma 8.7(iv)

6
✓
2✏

1 � ✏
◆m=2

⇤n0;m by (8.33)

6 c3mout ⇤
n
0;m by (8.19)

6 cnCm
out ⇤n0;m by (8.16)

6 j⌫0.m/j cmout⇤
n
0;m by (8.14): (8.68)
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It follows that outside .f0; 1gr n f0rg/n;

j˚1j 6
n=2X
kD0

n�kX
mD0

j⌫k.m/j
ckout

⇤nk;m C
nX

mD n
2 C1

1

cmout
j Q⇤nmj

6
n=2X
kD0

n�kX
mD0

j⌫k.m/j
ckout

⇤nk;m C
nX

mD n
2 C1

j⌫0.m/j⇤n0;m by (8.68)

6 2

n=2X
kD0

n�kX
mD0

j⌫k.m/j
ckout

⇤nk;m

D 2

n=2X
kD0

n�kX
mD1

j⌫k.m/j
ckout

⇤nk;m by Lemma 8.6(i)

D 2

n=2X
kD0

n�kX
mD1

j⌫k.m/j
ckout

Q⇤nk;m by Theorem 8.13(i)

D 2˚0:

LEMMA 8.15. ˚1 > .ccor c
2
out/

r j˚0j=14 on .f0; 1gr n f0rg/n; where 0 < ccor < 1 is the
constant from Theorem 8.13.

Proof. On .f0; 1gr n f0rg/n; we have

˚1 D
n=2X
kD0

n�kX
mD0

⌫k.m/

ckout
⇤nk;m C

nX
`D n

2 C1

1

c`out

Q⇤n`

D
n=2X
kD0

n�kX
mD0

⌫k.m/

ckout
⇤nkCm;0 C

nX
`D n

2 C1

1

c`out
⇤n`;0 by Lemmas 8.6(ii), 8.7(iii)

D
n=2X
`D0

 
⌫`.0/

c`out
C
X̀
iD1

⌫`�i .i/

c`�iout

!
⇤n`;0

C
nX

`D n
2 C1

0@ 1

c`out
C

X̀
iD`� n

2

⌫`�i .i/

c`�iout

1A⇤n`;0 by algebra

D
n=2X
`D0

0@⌫`.0/
c`out

C
X̀

iDminfr;n=4g

⌫`�i .i/

c`�iout

1A⇤n`;0
C

nX
`D n

2 C1

0@ 1

c`out
C

X̀
iD`� n

2

⌫`�i .i/

c`�iout

1A⇤n`;0 by (8.11)

>
n=2X
`D0

0@ 1

c
`�minfr;n=4g
out

� 1

2

1X
iDminfr;n=4g

1

c`�iout

1A⇤n`;0
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C
nX

`D n
2 C1

 
1

c`out
� 1

2

1X
iD1

1

c`�iout

!
⇤n`;0 by (8.13), (8.17)

> 1

3

nX
`D0

1

c
`�minfr;n=4g
out

⇤n`;0 by (8.16)

> crout

3

nX
`D0

1

c`out
⇤n`;0: (8.69)

We now turn to ˚0: For any k > 0,
n�kX
mD1

j⌫k.m/j max
⇢
1;

r
m

r

�r
D

n�kX
mDminfr;n=4g

j⌫k.m/j max
⇢
1;

r
m

r

�r
by (8.11)

6
n�kX

mDminfr;n=4g
j⌫k.m/j

✓
m

minfr; n=4g
◆r=2

6
n�kX

mDminfr;n=4g

✓
minfr; n=4g
coutm

�
r

m

minfr; n=4g
◆r

by (8.18)

D
n�kX

mDminfr;n=4g

 
1

cout

r
minfr; n=4g

m

!r

6 1

crout

 
1C
ˆ 1

minfr;n=4g

✓
minfr; n=4g

m

◆r=2
dm

!
D 1

crout

✓
1C 2minfr; n=4g

r � 2
◆

6 1

crout

✓
1C 2r

r � 2
◆
:

In view of (8.6), we arrive at
n�kX
mD1

j⌫k.m/j max
⇢
1;

r
m

r

�r
6 31

9crout
: (8.70)

It remains to piece the above calculations together. On .f0; 1gr n f0rg/n,

j˚0j 6
n=2X
kD0

n�kX
mD1

j⌫k.m/j
ckout

j Q⇤nk;mj

6
n=2X
kD0

n�kX
mD1

j⌫k.m/j
ckout

✓
1

ccor
max

⇢
1;

r
m

r

�◆r n�kX
iD0

⇤nk;i by Theorem 8.13(ii)

6 31

9.ccor cout/r

n=2X
kD0

1

ckout

n�kX
iD0

⇤nk;i by (8.70)
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D 31

9.ccor cout/r

n=2X
kD0

1

ckout

n�kX
iD0

⇤nkCi;0 by Lemma 8.6(ii)

6 31

9.ccor cout/r

nX
`D0

 X̀
kD0

1

ckout

!
⇤n`;0 by algebra

6 31

9.ccor cout/r
� 4
3

nX
`D0

1

c`out
⇤n`;0 by (8.16)

6 14

.ccor cout/r
� 1
3

nX
`D0

1

c`out
⇤n`;0

6 14

.ccor c
2
out/

r
� ˚1 by (8.69).

LEMMA 8.16. Let P;QW .f0; 1gr /n ! R be polynomials with

degP 6 minfr=10; cinr
p
r=2g; (8.71)

degQ 6 minfcin cout r
p
n; cin cout n

p
r; n=4g: (8.72)

Then

h˚0; P i D h˚1;Qi D 0:

Proof. The claim for˚0 is immediate by Theorem 8.13(iii). To prove it for˚1; recall from
Lemma 8.6(iv) that there exist univariate polynomials q0; q1; : : : ; qn=2 with

h⇤nk;m;Qi D qk.m/ .k D 0; 1; : : : ; n=2I m D 0; 1; : : : ; n � k/; (8.73)

deg qk 6 cout minfprn; ng .k D 0; 1; : : : ; n=2/: (8.74)

Then

h˚1;Qi D
n=2X
kD0

n�kX
mD0

⌫k.m/

ckout
h⇤nk;m;Qi C

nX
kD n

2 C1

1

ckout
h Q⇤nk ;Qi

D
n=2X
kD0

n�kX
mD0

⌫k.m/

ckout
h⇤nk;m;Qi by (8.72) and Lemma 8.7(i)

D
n=2X
kD0

h⌫k;qki
ckout

by (8.73)

D 0: by (8.9) and (8.74).

LEMMA 8.17. ˚0; ˚1 ¥ 0:
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Proof. We have

˚0.0
r ; : : : ; 0r /

D
n=2X
kD0

n�kX
mD1

j⌫k.m/j
ckout

Q⇤nk;m.0r ; : : : ; 0r / by definition

D
n=2X
kD0

n�kX
mD1

j⌫k.m/j
ckout

⇤nk;m.0
r ; : : : ; 0r / by Theorem 8.13(i)

> j⌫0.n/j⇤n0;n.0r ; : : : ; 0r / since ⇤nk;m > 0

D j⌫0.n/j�0.0r /n by definition
> 0 by (8.14), (8.16), and (8.34).

The proof for ˚1 is based on a similar argument. On the nonempty set .supp�1/n D
fx W �.x/ > 0gn;

˚1 D
n=2X
kD0

n�kX
mD0

⌫k.m/

ckout
⇤nk;m C

nX
kD n

2 C1

1

ckout

Q⇤nk by definition

D ⌫0.0/⇤
n
0;0 by Lemmas 8.6(iii), 8.7(ii)

D ⌫0.0/�
˝n
1 by definition

> 0 by (8.13) and (8.16).

In view of the dual characterization of one-sided rational approximation (Theorem 4.6),
the newly established Lemmas 8.14–8.17 imply that

R
�
ANDn ı ORr ;

minfr=10; cinr
p
r=2g;

minfcin cout r
p
n; cin cout n

p
r; n=4g� > .ccor c

2
out/

r

14
;

where cin; cout; ccor 2 .0; 1/ are sufficiently small absolute constants. We conclude that

R.ANDn ı ORr ; cr; cminfrpn; ng/ > c�r

for a sufficiently small absolute constant c > 0: This conclusion is logically equivalent to
Theorem 8.2, in view of the error reduction procedure for rational approximation (Propo-
sition 4.2).

9. MAIN RESULTS

The main technical contribution of this paper is a hardness amplification result that
transforms any Boolean function f W f0; 1gn ! f0; 1g with high one-sided approximate
degree into a related Boolean function F W f0; 1gN ! f0; 1g with proportionately high
threshold degree. The transformed function is of the form F D OR` ı ..ANDk ı:f /^g/,
where g is an auxiliary function to which we refer as the amplifier. If the original function
has one-sided approximate degree n˛; then the transformed function has threshold degree
˝.N ˇ / for some monotonically growing exponent ˇ D ˇ.˛/ that depends on g. We
formalize our technique in this generality in Section 9.1. In Section 9.2, we specialize the
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amplifier g to be a read-once formula of depth 2 and prove that the resulting construction
achieves

ˇ D

‚
3=7 if ˛ < 1=2;

3˛=.3˛ C 2/ if 1=2 6 ˛ 6 2=3;

1=2 if ˛ > 2=3:

As corollaries, we obtain our main lower bounds on the threshold degree of constant-depth
circuits and read-once formulas, by choosing f accordingly in each case. In Section 9.3,
we prove matching upper bounds. In the concluding Section 9.4, we discuss the limitations
of our technique and propose directions for future work.

9.1. The general theorem. We start with a general statement of our hardness amplifica-
tion technique. This result brings together the dual view of one-sided and hybrid rational
approximation from Sections 4 and 5, the composition theorem from Section 6, and the
lower bound on hybrid rational approximation from Section 7.

THEOREM 9.1. Let f and g be nonconstant Boolean functions. Fix integers d;D > 0

and k > 1 such that

R.g; d;D/ > 2�k : (9.1)

Then

R..ANDk ı :f / ^ g; cminfk; d; degC
1=3
.f /g;

cminf
p
k degC

1=3
.f /;Dg/ > 1p

2
(9.2)

and

deg˙.OR` ı ..ANDk ı :f / ^ g//
> cminf`k; `.d C 1/; ` degC

1=3
.f /;

p
k degC

1=3
.f /;Dg (9.3)

for all ` > 2; where c > 0 is an absolute constant, independent of f; g;D; d; k; `:

Proof. The lower bound (9.3) on the threshold degree is a direct consequence of (9.2) and
Theorem 4.5. Thus, it suffices to prove (9.2).



THE POWER OF ASYMMETRY IN CONSTANT-DEPTH CIRCUITS 61

For some absolute integer constant c0 > 1 and all k > c0; Theorem 7.1 ensures the
existence of functions ˚0; ˚ 0

1; ˚
00
1 W .domf /k ! R such that

˚0 > 1

2
j˚ 0
1j on .ANDk ı :f /�1.0/; (9.4)

˚0 > 1

2
j˚ 00
1 j on .ANDk ı :f /�1.0/; (9.5)

˚ 0
1 > 1

2
maxf�˚0;�2�k=c0˚0g on .ANDk ı :f /�1.1/; (9.6)

˚ 00
1 > 1

2
j˚0j on .ANDk ı :f /�1.1/; (9.7)

h˚0; P i D 0 whenever degP 6 1

2c0
minfdegC

1=3
.f /; kg; (9.8)

h˚ 0
1; P i D 0 whenever degP 6 1

c0
p
c0

degC
1=3
.f /

p
k; (9.9)

h˚ 00
1 ; P i D 0 whenever degP 6 1

2c0
minfdegC

1=3
.f /; kg; (9.10)

˚0; ˚
0
1; ˚

00
1 ¥ 0: (9.11)

On the other hand, it follows from (9.1) and the error-reduction property of rational ap-
proximation (Proposition 4.2) that

R

✓
g;

d

2c0
;
D

2c0

◆
> 2�k=2c0 : (9.12)

Applying Theorem 6.1 to (9.4)–(9.12) with parameters ✏ D 1=2 and � D 2k=c0 , we infer
that

R

✓
.ANDk ı :f / ^ g; 1

4c0
minfk; d; degC

1=3
.f /g;

1

4c0
p
c0

minfdegC
1=3
.f /

p
k;Dg

◆
> 1

2
p
2

(9.13)

for all k > c0:

We now claim that (9.2) holds with c D 1=.16c0
p
c0/: For k > c0, the bound follows

directly from (9.13) and the error-reduction property (Proposition 4.2). To prove validity in
the complementary case k < c0; observe that the left-hand side of (9.2) is trivially bounded
from below by R..ANDk ı :f / ^ g; cd; cD/; where

R..ANDk ı :f / ^ g; cd; cD/ > R.g; cd; cD/ since f is nonconstant

> R

✓
g;
d

2k
;
D

2k

◆
since c 6 1

2c0
<

1

2k

> R.g; d;D/1=.2k/ by Proposition 4.2

>
1p
2

by (9.1).

9.2. Results using depth-2 amplifiers. We now establish the main results of our paper
by invoking Theorem 9.1 with appropriate functions f and g: In all of our applications,
the amplifier g will be a read-once formula of depth 2.

Our first application concerns the threshold degree of constant-depth formulas. In their
inspiring work twelve years ago, O’Donnell and Servedio [23, Theorem 5.2] obtained
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an upper bound of QO.N .2d�1�1/=.2d �1// on the threshold degree of any ^;_-formula of
depth d and size N: This bound was known to be tight only for d D 1 and d D 2, by
the classic results of Minsky and Papert [21]. We are able to show that O’Donnell and
Servedio’s bound is tight for depth d D 3 as well by constructing a depth-3 formula of
size N and threshold degree ˝.N 3=7/: The best previous lower bound, obtained in [33],
was polynomially weaker: ˝.N 2=5/:

THEOREM 9.2. Let F W f0; 1gNCN6=7 ! f0; 1g be the read-once formula given by

F D ORN1=7 ı ..ANDN2=7 ı ORN4=7/ ^ .ANDN3=7 ı ORN2=7//:

Then

deg˙.F / D ˝.N 3=7/:

This result settles Theorem 1.1 from the Introduction. The reader will note that our con-
structed formula is highly asymmetric. It turns out that asymmetry is crucial to the optimal
lower bound in Theorem 9.2. Specifically, we showed in [33] that all formulas of the form
ORN1

ıANDN2
ıORN3

onN D N1N2N3 variables have threshold degreeO.N 2=5 logN/:

Proof of Theorem 9.2. Theorem 8.2 implies that the function g D ANDn3=4 ı ORp
n has

one-sided rational approximation error

R.g; c
p
n; cn3=4/ > 2�p

n

for some constant c > 0. On the other hand, Theorem 2.6 states that

degC
1=3
.f / D ˝.

p
n/

for f D NORn: Appealing to Theorem 9.1 with d D c
p
n; D D cn3=4; k D p

n; and
` D n1=4, we obtain a lower bound of ˝.n3=4/ on the threshold degree of the composition

ORn1=4 ı ..ANDp
n ı ORn/ ^ .ANDn3=4 ı ORp

n//:

Setting n D N 4=7 completes the proof.

We now obtain a general hardness amplification result for polynomial approximation,
which transforms any Boolean function with given one-sided approximate degree into a
related Boolean function with proportionately high threshold degree. This result extends
Theorem 9.2 on the threshold degree of constant-depth formulas and settles Theorem 1.3
from the Introduction.

THEOREM 9.3. Let f W f0; 1gn ! f0; 1g be given with degC
1=3
.f / > n˛; where ˛ 2 Œ0; 1ç:

Consider the function F W f0; 1gN ! f0; 1g on N D maxfn7=4 C n3=2; n � n˛p
n˛ C n3˛g

variables, given by

F D
(

ORn1=4 ı ..ANDp
n ı ORn/ ^ .ANDn3=4 ı ORp

n// if ˛ < 1=2;

ORp
n˛ ı ..ANDn˛ ı :f / ^ .ANDn˛

p
n˛ ı ORn˛ // otherwise.

Then

deg˙.F / D ˝.maxfn3=4; n˛p
n˛g/

>

Ä
cN 3=7 if ˛ < 1=2;
cN 3˛=.3˛C2/ if 1=2 6 ˛ < 2=3;

c
p
N otherwise,
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where c > 0 is an absolute constant, independent of f; ˛; n:

Proof. The claim for ˛ < 1=2 is a restatement of Theorem 9.2, and we focus on the
complementary case ˛ > 1=2: Theorem 8.2 implies that for some absolute constant c > 0;
the function g D ANDn˛

p
n˛ ı ORn˛ obeys

R.g; cn˛; cn˛
p
n˛/ > 2�n˛

:

Invoking Theorem 9.1 with parameters d D cn˛; D D cn˛
p
n˛; k D n˛; and ` D p

n˛ ,
we obtain deg˙.F / D ˝.n˛

p
n˛/:

As a corollary, we now obtain a lower bound of ˝.
p
N/ on the threshold degree of an

^;_-circuit F W f0; 1gN ! f0; 1g of constant depth and polynomial size. This lower bound
is the main result of our paper, stated earlier as Theorem 1.2.

THEOREM 9.4. Consider the function F W f0; 1gN ! f0; 1g onN D ⇥.n logn/2 variables
given by

F D OR.n logn/1=3 ı ..AND.n logn/2=3 ı :.EDn;n ı �//
^ .ANDn logn ı OR.n logn/2=3//;

where �W f0; 1g6dlogne ! fe1; e2; : : : ; eng is as constructed in Theorem 3.2. Then

deg˙.F / D ˝.
p
N/: (9.14)

Moreover, F is computable by an ^;_-circuit of depth 4 and polynomial size.

Proof. Recall from Theorem 3.3 that the composition EDn;n ı � on 6ndlogne variables
has one-sided approximate degree degC

1=3
.EDn;n ı �/ D ˝.n logn/2=3: As a result, (9.14)

follows directly from Theorem 9.3. Theorem 3.3 further states that EDn;n ı � is com-
putable by a CNF formula of polynomial size, which settles the claim regarding the circuit
complexity of F .

The tight lower bound in Theorem 9.4 crucially depends on the newly developed gadget
� from Section 3. For completeness, we also include a simpler version that only uses the
folklore gadget, achieving a logarithmically weaker lower bound.

THEOREM 9.5. Consider the function F W f0; 1gN ! f0; 1g onN D ⇥.n2 logn/ variables
given by

F D ORn1=3 ı ..ANDn2=3 ı :f / ^ .ANDn ı ORn2=3//;

where f W .f0; 1gdlogne/n ! f0; 1g is defined by

f .x/ D
^

i;jD1;2;:::;nW
i¤j

dlogne_
kD1

xi;k ˚ xj;k :

Then

deg˙.F / D ˝

 s
N

logN

!
: (9.15)

Moreover, F is computable by an ^;_-circuit of depth 4 and polynomial size.
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Proof. Without loss of generality, we may assume that n is a power of 2. Observe that
f D EDn;nı◆, where ◆W f0; 1glogn ! fe1; e2; : : : ; eng is the lexicographic bijection referred
to as the “folklore gadget” in Section 3. Bun and Thaler [11] show that this composition has
one-sided approximate degree degC

1=3
.f / D ˝.n2=3/: As a result, (9.15) follows directly

from Theorem 9.3. Since f is a polynomial-size CNF formula, the claim regarding the
circuit complexity of F is immediate.

REMARK 9.6. O’Donnell and Servedio [23] proved that deg˙.F ı XORk/ D k deg˙.F /
for every Boolean function F . As a result, our lower bounds on the threshold degree of
AC0 can be strengthened by an arbitrary polylogarithmic factor by composing the functions
in Theorems 9.4 and 9.5 with XORlogO.1/N :

9.3. Tightness for degree-2 amplifiers. In Theorem 9.3 on hardness amplification, the
lower bound on the threshold degree of the transformed functionF W f0; 1gN ! f0; 1g never
exceeds ˝.

p
N/; no matter how large the one-sided approximate degree of the original

function f W f0; 1gn ! f0; 1g: We now show that this square root barrier is inherent rather
than an artifact of our analysis. Along the way, we will prove that the lower bound in our
main result, Theorem 9.4, is tight up to a logarithmic factor.

THEOREM 9.7. Let f W f0; 1gn ! f0; 1g be given. Then for all k and `; and all depth-2
read-once formulas gW f0; 1gkn ! f0; 1g; the composition

F D OR` ı ..ANDk ı :f / ^ g/

on N D 2`kn variables obeys

deg˙.F / 6 3

q
2N degC

0 .:f /:

To see the relevance of this result to our work, observe that degC
0 .:EDn;n/ 6 2 and there-

fore degC
0 .:EDn;n ı �/ D O.logn/ in Theorem 9.4. In particular, Theorem 9.7 shows

that the threshold degree lower bound in our main result (Theorem 9.4) is tight up to a
factor of O.

p
logN/ and cannot be improved by adjusting the fan-ins or using a different

depth-2 amplifier g: More generally, Theorem 9.7 shows that the square root barrier in our
hardness amplification technique (Theorem 9.3) is inherent due to the possibility of a large
gap between the one-sided approximate degree of f and that of :f:

Proof of Theorem 9.7. Abbreviate d D degC
0 .:f / and fix a polynomial pW f0; 1gn ! R

of degree d that vanishes on f �1.1/ and ranges in Œ1;C1/ on f �1.0/: For every ✏ > 0

and t > 0; Lemma 4.1 gives a one-sided rational approximant R✏;t for g with a positive
denominator of degree at most t; a nonnegative numerator of degree at most kn=t; and
error ✏: Then for ı > 0 small enough, the rational functions

ı

ı CPk
iD1 f .xi /

�R✏;t .y/;
kY
iD1

p.xi / �R✏;t .y/
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are one-sided approximants for :f .x1/ ^ � � � ^ :f .xk/ ^ g.y/ with error ✏ and ✏kpkk1,
respectively. Passing to the limit as ✏ & 0; we conclude that

R

✓
.ANDk ı :f / ^ g; nC t;

kn

t

◆
D 0;

R

✓
.ANDk ı :f / ^ g; t; kn

t
C kd

◆
D 0;

where t > 0 is arbitrary. Theorem 4.4 now gives

deg˙.F / 6 2min
t>0

⇢
kn

t
C `.nC t /

�
6 4

p
`knC 2`n

and

deg˙.F / 6 2min
t>0

⇢
kn

t
C kd C `t

�
6 4

p
`knC 2kd:

Taking the minimum of these two upper bounds on the threshold degree of F completes
the proof:

deg˙.F / 6 4
p
`knC 2minf`n; kdg

6 4
p
`knC 2

p
`knd

6 6
p
`knd:

9.4. Tightness for arbitrary amplifiers. In this final section, we explore the limitations
of Theorem 9.1 as a technique for hardness amplification and propose directions for future
work. Let f W f0; 1gn ! f0; 1g be a given Boolean function, with degC

1=3
.f / > n˛: The

theorem is concerned with the composition

F D OR` ı ..ANDk ı :f / ^ g/
for a suitably chosen Boolean function g and integer parameters ` and k. This composi-
tion, when viewed as a Boolean function F W f0; 1gN ! f0; 1g, is defined on N > `kn

variables. It is clear from the statement of Theorem 9.1 that it cannot give a threshold
degree lower bound for F better than ˝.minf`k; `n˛;pkn˛g/: Passing to a judiciously
chosen geometric mean,

minf`k; `n˛;
p
kn˛g 6

(
.`n˛/

1
3 .

p
kn˛/

2
3 if ˛ < 1=3;

.`k/
3˛�1
3˛C2 .`n˛/

1
3˛C2 .

p
kn˛/

2
3˛C2 otherwise

6 maxf.`kn/ 1
3 ; .`kn/

3˛
3˛C2 g

6 maxfN 1
3 ; N

3˛
3˛C2 g:

Thus, Theorem 9.1 by itself cannot give a threshold degree lower bound asymptotically
superior to

maxfN 1=3; N 3˛=.3˛C2/g (9.16)

for any composition F W f0; 1gN ! f0; 1g.
Recall that Theorem 9.3 in this paper actually achieves (9.16) for any 0 6 ˛ 6 2=3,

with g taken to be a suitable read-once formula of depth 2. We are confident that it is
possible to achieve (9.16) for ˛ > 2=3 as well by using read-once formulas g of somewhat
larger depth—in fact, depth 3 may well suffice. In particular, we believe that the approach
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of this paper paves the way to lower bounds as large as˝.N 3=5/ on the threshold degree of
constant-depth ^;_-circuits F W f0; 1gN ! f0; 1g, provided of course that strong enough
lower bounds for one-sided polynomial approximation are discovered soon.

Apart from matching the hardness amplification in (9.16) for all ˛, it is natural to wonder
how to go beyond it. In other words, given a constant-depth polynomial-size ^;_-circuit
f W f0; 1gn ! f0; 1g with one-sided approximate degree n˛; we would like to construct
a related constant-depth polynomial-size ^;_-circuit F W f0; 1gN ! f0; 1g with threshold
degree ˝.N ˇ / for some ˇ > 3˛=.3˛ C 2/: We are optimistic on this front as well and
believe that the ideas of this paper provide a good starting point. Specifically, a promising
construction is to take F D OR`ı..hı:f /^g/ for some parameter ` and some read-once
formulas h and g of constant depth. In this paper, we have only instantiated this approach
for h and g of depth 1 and 2; respectively. Higher-depth constructions will likely give
stronger results.
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APPENDIX A. USEFUL BOUNDS

In this appendix, we collect various bounds that are useful in the construction of dual
objects for the OR function (Theorems 2.13 and 2.14). We start with two facts that involve
factorials.
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FACT A.1. For any integers n > k > 0;

kä .n � k/ä >
jn
2

k
ä
ln
2

m
ä:

Proof. Immediate from the inequality
�
n
k

�
6

�
n

bn=2c
�
; after dividing through by nä.

FACT A.2. There are constants c1 > 0 and c2 > 0 such that for every integer n > 1;

c1
p
n
⇣n

e

⌘n
6 nä 6 c2

p
n
⇣n

e

⌘n
;

c14
n

p
n

6
 
2n

n

!
6 c24

n

p
n
:

Proof. Immediate from Stirling’s factorial approximation.

We move on to somewhat specialized bounds that pertain to products of differences of
squares.

FACT A.3. For any integer i > 1;

1Y
jD1
j¤i

✓
1 � 1

ji2 � j 2j
◆

> 4 sin.
p
5⇡/p

5⇡
D 0:3846 : : : :

This lower bound is tight, as one can verify by setting i D 2:

Proof. To restate the claim, we are interested in the minimum value of f .i/g.i/ over
i D 1; 2; 3; : : : ; where the functions f; gW f1; 2; 3; : : : g ! R are given by

f .i/ D
i�1Y
jD1

✓
1 � 1

i2 � j 2
◆
;

g.i/ D
1Y

jDiC1

✓
1 � 1

j 2 � i2
◆
:

The first function satisfies

f .1/ D 1;

min
i>2

f .i/ > min
i>2

✓
1 � 1

i2 � .i � 1/2
◆✓

1 � i � 2
i2 � .i � 2/2

◆
D 2

3
:

A factor-by-factor comparison shows that g is monotonically increasing, with the first two
values

g.1/ D 2 sin.�p
2⇡/p

2⇡
;

g.2/ D 6 sin.
p
5⇡/p

5⇡
:

As a result,

min
i>1

f .i/g.i/ > min
⇢
f .1/g.1/;

2

3
g.2/

�
D 4 sin.

p
5⇡/p

5⇡
�
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FACT A.4. For any integers d > i > 1;

dY
jD1
j¤i

ji2 � j 2j > d ä d ä

2i2
:

Proof:

dY
jD1
j¤i

ji2 � j 2j D
dY
jD1
j¤i

ji � j j �
dY
jD1
j¤i

.i C j /

D .i � 1/ä .d � i/ä � .d C i/ä

i ä 2i

D .d � i/ä .d C i/ä

2i2

> d ä d ä

2i2
;

where the final step uses Fact A.1.

APPENDIX B. CONSTANT-ERROR APPROXIMATION OF OR

The purpose of this appendix is to prove Theorem 2.13, which gives a bounded-error
dual object for the OR function with a number of additional properties. Our construction is
a minor modification of the corresponding dual object in [33], which has almost all of the
properties that we need. We start with a technical lemma from that work [33, Lemma A.2].

LEMMA B.1. Let ✏ be given, 0 < ✏ < 1. Then for some ı D ı.✏/ > 0 and every n > 2;

there exists an .explicitly given/ function !W f0; 1; 2; : : : ; ng ! R such that

!.0/ >
1 � ✏
2

� k!k1; (B.1)

.�1/nCt!.t/ > 0 .t D 1; 2; : : : ; n/; (B.2)

degp <
p
ın H) h!; pi D 0: (B.3)

We have reached the main result of this section.

THEOREM (restatement of Theorem 2.13). Let ✏ be given, 0 < ✏ < 1. Then for every
n > 2 and every probability distribution  on f1; 2; : : : ; ng; there is an .explicitly given/
function !W f0; 1; 2; : : : ; ng ! R such that

!.0/ >
1 � ✏
2

� k!k1; (B.4)

.�1/nCt!.t/ > ✏.t/

3
� k!k1 .t D 1; 2; : : : ; n/; (B.5)

degp <
p
ın H) h!; pi D 0; (B.6)

where ı D ı.✏/ > 0 is a constant independent of  and n:
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Our proof closely follows [33]. Specifically, we obtain the desired sign behavior and metric
properties by defining ! as the convex combination of several shifted copies of the dual
object in Lemma B.1.

Proof. The cases n D 2 and n D 3 can be handled directly by taking ı D ı.✏/ D 1=3 and
defining

!W .0; 1; 2/ 7!
✓
1

2
� ✏

3
;�1
2
;
✏

3

◆
;

!W .0; 1; 2; 3/ 7!
✓
1

2
� ✏

3
;
✏.1/

3
;�1
2
;
✏.1 � .1//

3

◆
;

respectively. In the rest of the proof, we treat the case n > 4:

For some ı D ı.✏/ > 0 and all n > 4; Lemma B.1 ensures the existence of functions
!0W f0; 1; 2; : : : ; 2bn=4cg ! R and !1W f0; 1; 2; : : : ; ng ! R such that

k!0k1 D k!1k1 D 1; (B.7)

!0.0/ >
1

2
� ✏

6
; (B.8)

!1.0/ >
1

2
� ✏

6
; (B.9)

.�1/t!0.t/ > 0; t > 0; (B.10)

.�1/nCt!1.t/ > 0; t > 1; (B.11)

degp <
p
ın H) h!0; pi D h!1; pi D 0: (B.12)

For convenience, extend !0 and !1 to all of Z by defining these functions to be zero outside
their original domain. Define !W f0; 1; 2; : : : ; ng ! R by

!.t/ D !1.t/C ⇢

bn=2cX
iD1

.�1/iCn.i/!0.t � i/

C ⇢

nX
iDbn=2cC1

.�1/iCn.i/!0.�t C i/;

where

⇢ D 2

3
� ✏

1 � ✏ :
We proceed to verify the three properties of ! claimed in the theorem statement. To

begin with,

k!k1 6 k!1k1 C ⇢

nX
iD1

.i/k!0k1

D 1C ⇢

D 3 � ✏
3.1 � ✏/ ; (B.13)

where the second step uses (B.7). Now (B.4) is immediate because !.0/ D !1.0/ >

.3 � ✏/=6 by (B.9).
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Property (B.5) for t > 1 can be verified as follows:

.�1/nCt!.t/ D j!1.t/j C ⇢

bn=2cX
iD1

.i/j!0.t � i/j C ⇢

nX
iDbn=2cC1

.i/j!0.�t C i/j

> ⇢ � .t/ j!0.0/j
> ⇢ � .t/ � 3 � ✏

6

> ✏.t/

3
� k!k1;

where the first step follows from (B.10) and (B.11), the third from (B.8), and the fourth
from (B.13).

The remaining property (B.6) is immediate from (B.12).

APPENDIX C. HIGH-ACCURACY APPROXIMATION OF OR

In Appendix B, we constructed a dual object for the bounded-error approximation of
OR. Here, we obtain its counterpart for high-accuracy approximation. Analogous to the
bounded-error case, the new dual object is tailored to the needs of this paper and has special
metric properties and sign behavior. Our construction is a modification of an earlier result
due to Bun and Thaler [10], who studied the bounded-error approximation of arbitrary
symmetric functions. A glance at the dual object in that paper reveals that it doubles as
a high-accuracy dual object for OR, and we need only adapt it somewhat to ensure the
additional properties that we need. Overall, the analysis below seems less demanding than
in [10] because we do not need to ensure the large inner products that the bounded-error
case requires.

THEOREM (restatement of Theorem 2.14). Let 0 < c < 1 be a sufficiently small abso-
lute constant. Then for all integers n and r with 1 6 r 6 n=2; there exists a function
⌫W f0; 1; 2; : : : ; ng ! R such that

degp 6 c
p
nr H) h⌫; pi D 0;

⌫.t/ D 0 .t D 1; 2; : : : ; r � 1/;
.�1/nCt⌫.t/ > 0 .t D 1; 2; : : : ; n/;

⌫.0/ > crk⌫k1;
j⌫.t/j > cnk⌫k1 .t > n=2/;

j⌫.t/j 6
⇣ r
ct

⌘r k⌫k1 .t D 1; 2; : : : ; n/:

Proof. We first consider the case bn=5c 6 r 6 n=2: Define ⌫0W f0; 1; 2; : : : ; ng ! R by

⌫0.t/ D .�1/t
mä

 
n

t

!
mY
iD1
.i � t /;

where m 2 fbn=2c � 1; bn=2cg is chosen such that m ⌘ n .mod 2/: Then

degp < n=2 H) h⌫0; pi D 0; (C.1)

⌫0.t/ D 0 .t D 1; 2; : : : ; bn=2c � 1/; (C.2)

.�1/nCt⌫0.t/ > 0 .t D 1; 2; : : : ; n/; (C.3)
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where the first assertion follows from Fact 2.1(i), and the other two are immediate. Con-
tinuing, we have

⌫0.0/ D 1;

j⌫0.t/j D
 
n

t

! 
t � 1
m

!
> 1 .t D mC 1;mC 2; : : : ; n/;

k⌫0k1 6 4n;

where the first two bounds are trivial, and the third follows from the observation that
j⌫0.t/j 6 2n

�
n
t

�
. As a result,

⌫0.0/ > 4�nk⌫0k1; (C.4)

j⌫0.t/j > 4�nk⌫0k1 .t > n=2/: (C.5)

Finally, the assumption that r > maxfbn=5c; 1g trivially implies that

j⌫0.t/j 6 k⌫0k1
6

✓
10r

t

◆r
k⌫0k1 .t D 1; 2; : : : ; n/: (C.6)

In view of (C.1)–(C.6), the theorem holds in this case for ⌫ D ⌫0 and small enough c > 0.
We now examine the complementary case 1 6 r < bn=5c: The construction here uses

the function ⌫0 defined above as well as an additional function ⌫00; to be introduced shortly.
Let

R D
(
r if r is odd;
r C 1 otherwise,

d D
�r

n

R
� 1

⌫
;

S1 D fRC .n mod 2/C j W j D 0; 1; 2; : : : ; 3R � 1g;
Si D fi2RC .n mod 2/C j W j D 0; 1; 2; : : : ; R � 1g .i D 2; 3; : : : ; d /:

Note that the sets S1; S2; : : : ; Sd are pairwise disjoint. Define

S D f0g [ S1 [ S2 [ � � � [ Sd ;
so that S ✓ f0; 1; 2; : : : ; ng: Define ⌫00W f0; 1; 2; : : : ; ng ! R by

⌫00.t/ D .�1/t
nä

 
n

t

! Y
iD0;1;2;:::;nW

i…S

.i � t /:

It follows from Fact 2.1(i) that ⌫00 is orthogonal to every polynomial of degree less than
n � .nC 1 � jS j/ D R.d C 2/: Thus,

degp <
p
rn H) h⌫00; pi D 0: (C.7)

A routine calculation reveals that

⌫00.t/ D

Ä
.�1/jfi2S Wi<tgj Y

i2Snftg

1

jt � i j if t 2 S;

0 otherwise.
(C.8)
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In particular,

⌫00.t/ D 0 .t D 1; 2; : : : ; r � 1/; (C.9)

.�1/nCt⌫00.t/ > 0 .t D 1; 2; : : : ; n/: (C.10)

We now proceed to examine metric properties of ⌫00:

1

⌫00.0/
6 .2RC 1/.2RC 2/ � � � .4R/

dY
iD1

RY
jD1

.i2RC j /

D .4R/ä

.2R/ä
.d ä d äRd /R

dY
iD1

RY
jD1

✓
1C j

i2R

◆

<
.4R/ä

.2R/ä
.d ä d äRd /R exp

0@ 1X
iD1

RX
jD1

j

i2R

1A
D .4R/ä

.2R/ä
.d ä d äRd /R exp

✓
⇡2.RC 1/

12

◆
6

⇣
c1 � d ä d äRdC2

⌘R
(C.11)

for some constant c1 > 0; where the final step uses Fact A.2. For t 2 S1 [ S2; we have

1

j⌫00.t/j D t � .t �R � .n mod 2//ä .5RC .n mod 2/ � 1 � t /ä

⇥
dY
iD3

R�1Y
jD0

.i2RC .n mod 2/C j � t /

> .2R/ä .2R/ä

dY
iD3
.i2R � 5R/R

> .2R/ä .2R/ä

 
d ä d äRd�2

4

!R 1Y
iD3

✓
1 � 5

i2

◆R
>

⇣
c2 � d ä d äRdC2

⌘R
(C.12)
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for some constant c2 > 0; where the second and fourth steps use Fact A.1 and Fact A.2,
respectively. Finally, for t 2 Si 0 with i 0 > 3;

1

j⌫00.t/j D t �
 
t � 2R � .n mod 2/

2R

!
� .2R/ä

⇥ .t � i 02R � .n mod 2//ä

⇥ .i 02RC .n mod 2/CR � 1 � t /ä

⇥
dY

iD1

i¤i 0

R�1Y
jD0

ji2RC .n mod 2/C j � t j

>
 
t � 2R � .n mod 2/

2R

!
� .2R/ä

�
R

2

⌫
ä

⇠
R

2

⇡
ä

⇥
dY

iD1

i¤i 0

R�1Y
jD0

.ji2 � i 02j � 1/R

>
 
t � 2R � .n mod 2/

2R

!
� .2R/ä

�
R

2

⌫
ä

⇠
R

2

⇡
ä

⇥RR.d�1/
dY

iD1

i¤i 0

ji2 � i 02jR �
1Y
iD1
i¤i 0

✓
1 � 1

ji2 � i 02j
◆R

>
 
t � 2R � .n mod 2/

2R

!
� .2R/ä

�
R

2

⌫
ä

⇠
R

2

⇡
ä

⇥RR.d�1/
✓
d äd ä

2i 02

◆R
� 1
3R

>
✓
t

R

◆R ⇣
c3 � d ä d äRdC2

⌘R
(C.13)

for some constant c3 > 0; where the second step uses Fact A.1, and the final two steps use
Facts A.2–A.4. As a result,

k⌫00k1 � j⌫00.0/j D
X

t2S1[S2

j⌫00.t/j C
dX
iD3

X
t2Si

j⌫00.t/j

6 4R�
c2 � d ä d äRdC2�R C R�

c3 � d ä d äRdC2�R 1X
iD3

✓
1

i2

◆R
6 5R�

minfc2; c3g � d ä d äRdC2�R ; (C.14)

where the second step uses the estimates in (C.12) and (C.13). Now the bounds

⌫00.0/ > cr4k⌫00k1; (C.15)

j⌫00.t/j 6
✓
r

c4t

◆r
k⌫00k1 .t D 1; 2; : : : ; n/ (C.16)
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are immediate from (C.8) and (C.12)–(C.14), where c4 > 0 is a small enough constant.
We now claim that the theorem holds for

⌫ D 1

2nk⌫0k1 ⌫
0 C 1

k⌫00k1 ⌫
00:

To start with, properties (C.1)–(C.3) of ⌫0 and properties (C.7)–(C.10) of ⌫00 directly imply

degp <
p
nr=2 H) h⌫; pi D 0; (C.17)

⌫.t/ D 0 .t D 1; 2; : : : ; r � 1/; (C.18)

.�1/nCt⌫.t/ > 0 .t D 1; 2; : : : ; n/: (C.19)

By (C.4) and (C.15),

⌫.0/ > crk⌫k1 (C.20)

for a small enough constant c > 0: Similarly, properties (C.3) and (C.5) of ⌫0 and property
(C.10) of ⌫00 give

j⌫.t/j > cnk⌫k1 .t > n=2/ (C.21)

for a small enough constant c > 0: Finally, (C.16) forces

j⌫.t/j 6
⇣ r
ct

⌘r k⌫k1 .t D 1; 2; : : : ; n/; (C.22)

again for c > 0 small enough. By (C.17)–(C.22), the proof is complete.
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