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Abstract

We introduce the Nondeterministic Strong Exponential Time Hypothesis (NSETH) as a
natural extension of the Strong Exponential Time Hypothesis (SETH). We show that both
refuting and proving NSETH would have interesting consequences.

In particular we show that disproving NSETH would give new nontrivial circuit lower bounds.
On the other hand, NSETH implies non-reducibility results, i.e. the absence of (deterministic)
fine-grained reductions from SAT to a number of problems. As a consequence we conclude that
unless this hypothesis fails, problems such as 3-sum, APSP and model checking of a large
class of first-order graph properties cannot be shown to be SETH-hard using deterministic or
zero-error probabilistic reductions.

1 Introduction

Traditionally, complexity theory has been used to distinguish very hard problems, such as NP-
complete problems, from relatively easy problems, such as those in P. However, over the past few
decades, there has been progress in understanding the exact complexities of problems, both for very
hard problems and those within P, under plausible assumptions. For example, under hypotheses
such as the k-sum conjecture [GO95] from computational geometry or the Strong Exponential
Time Hypothesis for the complexity of SAT [IPZ01, IP01], it follows that the known algorithms
for many basic problems within P, including Fréchet distance [Bri14], edit distance [BI15], string
matching [ABW15], k-dominating set [PW10], orthogonal vectors [Wil04], stable marriage for low
dimensional ordering functions [MPS15], and many others [BCH14], are essentially optimal.

Unfortunately, as our understanding of the relationship between the exact complexities of prob-
lems grows, so does the complexity of the web of known reductions and the number of distinct
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conjectures these results are based on. Ideally, we would like to show that many of these con-
jectures are in fact equivalent, or that all follow from some basic unifying hypothesis, thereby
improving our understanding and simplifying the state of knowledge. For example, it would be
nice to show that the 3-sum conjecture follows from SETH (Strong Exponential Time Hypothesis).
It would also be nice to show that SETH implies that hittingset and maxflow require nonlinear
time. Can we prove that APSP takes n3 time under SETH?

In this paper, we introduce a new technique which provides evidence that such a simplification
(i.e. hardness results under one unifying hypothesis such as SETH) is unlikely, at least when
restricted to deterministic reductions. Just as one can show that a problem is unlikely to be NP-
complete by showing that it belongs to a presumably smaller complexity class (such as NP∩coNP),
we can get non-reducibility results by comparing the complexity of problems in other models of
computation.

To obtain our non-reducibility results, we consider the nondeterministic and co-nondeterministic
complexities of the problem under question. If a problem has a smaller nondeterministic and
co-nondeterministic complexities, we show that if there were to be a deterministic fine-grained
reduction from sat to such a problem, it follows that sat can be solved faster in co-nondeterministic
time, which may be unlikely. More precisely, we introduce the following variant of SETH for
nondeterministic models.
Nondeterministic Strong Exponential Time Hypothesis (NSETH): For every ε > 0, there
exists a k so that k-taut is not in NTIME[2n(1−ε)], where k-taut is the language of all k-dnf
which are tautologies.

We feel that NSETH is plausible for many of the same reasons as SETH. Just as many al-
gorithmic techniques have been developed for k-sat, all of which approach exhaustive search for
large k, many proof systems have been considered for k-taut, and none have been shown to have
significantly less than purely exponential complexity for large k. In fact, the tree-like ([PI00]) and
regular resolution ([BI13]) proof systems have been proved to require such sizes. Moreover, we
observe that results of [JMV13] that obtain circuit lower bounds assuming SETH is false yield the
same bounds assuming that NSETH is false. So disproving NSETH would be both a breakthrough
in proof complexity and in circuit complexity.

We consider problems together with their presumed or conjectured complexities. Let the pair
(L, T ) denote the language L with (presumed) deterministic time complexity T . We use the notion
of fine-grained reducibility (a generalization of subcubic reducibility from [WW10]) introduced by
Vassilevska Williams [Wil] to reduce problems with their complexities to one another. We say that
(L1, T1) is fine-grained reducible (denoted as ≤FGR) to (L2, T2) if there is a Turing reduction from
L1 to L2 such that improvement of the sort T 1−ε

2 for ε > 0 in the complexity of L2 leads to an
improvement of T 1−δ

1 in the complexity of L1 for some δ > 0. We say that a language L with time
complexity T is SETH-hard if there is a fine-grained reduction from cnfsat with time 2n to (L, T ).

Using fine-grained reductions, an intricate web of relationships between improving basic algo-
rithms within polynomial time have been established. By considering the nondeterministic and
co-nondeterministic complexities of such problems, we show, under NSETH, that deterministic
fine-grained reductions between many of these problems do not exist. In particular,

• hittingset for sets of total size m and time T (m) = m1+γ is not SETH-hard for any γ > 0,
and no problem that is SETH-hard reduces to hittingset for any such time complexity.

• 3-sum for T (n) = n1.5+γ is not SETH-hard for any γ > 0.

• maxflow on a graph with m edges and T (m) = m1+γ is not SETH-hard.

2



• All-pairs shortest path on a graph with n vertices and T (n) = n2+
6+ω
9

+γ is not SETH-hard.

While there are many known SETH-hard problems, few are graph problems, and those few have
the same logical structure. In addition to specific problems, our method can be used to explain why
the structure of SETH-hard graph problems are all similar. In particular, we consider first-order
definable graph properties on sparse graphs (where we view the input size as the number of edges
m). We show that, under SETH, the maximum time complexity for such a property expressible with
k quantifiers will be close to O(mk−1). On the other hand, if NSETH, all SETH-hard properties
have the same logical structure: k− 1 quantifiers of one type, followed by a single quantifier of the
other type.

These results are only valid for deterministic or zero-error probabilistic fine-grained reductions.
We introduce a non-uniform variant NUNSETH under which they also hold for randomized reduc-
tions with bounded error. However, some care should be used to evaluate whether this hypothesis
is true, since it has not been the subject to previous study and Williams has recently shown related
hypotheses about Merlin-Arthur complexity of k-taut are false ([Wil15]).

2 Outline of the paper

In section 3, we provide definitions of fine-grained reducibilities and establish basic closure proper-
ties of these reductions. In section 4, we outline reasons why disproving NSETH is nontrivial. In
section 5, we examine the nondeterministic and co-nondeterministic complexities of several prob-
lems within polynomial time whose exact complexities have been extensively studied, and show
that, under NSETH, none of these problems are SETH-hard. In section 6, we explain why all the
known maximally hard SETH-hard first-order graph properties have the same logical structure.

In section 7, we show that NSETH also implies that certain new problems are hard, especially
those involving verifying solutions to known SETH-hard problems. Finally, section 8 presents our
conclusions and open problems.

3 Definitions and basic properties

Fine-grained reductions are defined with the motivation to control the exact complexity of the
reducibility. For this purpose, we consider languages together with their presumed or conjectured
complexities. We use the pair (L, T ) to denote a language together with its time complexity T .
Intuitively, if (L1, T1) fine-grained reduces to (L2, T2), then any constant savings in the exponent
of the time complexity of L2 implies some constant savings in the exponent of the time complexity
of L1.

Definition 3.1 (Fine-Grained Reductions (≤FGR)). Let L1 and L2 be languages, and let T1 and
T2 be time bounds. We say that (L1, T1) fine-grained reduces to (L2, T2) (denoted (L1, T1) ≤FGR
(L2, T2)) if

(a) ∀ε > 0 ∃δ > 0, ∃ML2 , a deterministic Turing reduction from L1 to L2, such that

TIME[M] ≤ T 1−δ
1

(b) Let Q̃(M, x) denote the set of queries made byM to the oracle on an input x of length n. The
query lengths obey the following time bound.∑

q∈Q̃(M,x)

(T2(|q|))1−ε ≤ (T1(n))1−δ
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If a fine-grained reduction exists from (L1, T1) to (L2, T2), algorithmic savings for L2 can be
transferred to L1. The definition gives us exactly what is needed to establish savings for L1 by
simulating the machine ML2 using the faster algorithm for L2. The role of each parameter in the
definition of fine-grained reducibility makes this clear.

T1: The presumed time to decide L1, usually given by a trivial algorithm.

T2: The presumed time to decide L2.

ε: Any savings (assumed or real) on computing L2.

δ: The savings (as a funciton of ε) that can be obtained over T1 when deciding L1 by reducing to
L2.

Definition 3.2 (Randomized Fine-Grained Reductions (≤srFGR)). Exactly as in the deterministic
case, except the Turing reduction from (L1, T1) to (L2, T2) is a probabilistic machine with some
two-sided error bound

Pr[ML2(x) = L1(x)] ≥ s

We denote a randomized fine grained reduction from L1 to L2 with error bound s by (L1, T1) ≤srFGR
(L2, T2). Generally, we will use s = 2/3, so we denote ≤2/3

rFGR by ≤rFGR.

We will have occasion to consider FGRs between function problems. This poses the problem
that, in certain situations, just writing down the solution to a problem could exceed the time bound
and wipe out fine-grained savings. In the deterministic case, we cope with this by adding another
restriction to the definition of a fine-grained reduction:

Definition 3.3 (Fine-Grained Reductions for Functions (≤fFGR)). Exactly as in the decision
deterministic case, except that the Turing reductionMf2 is to a function problem f2 and is expected
to produce a functional output. In addition to the existing resource bounds, we bound the size of
answers given by the f2 oracle. ∑

q∈Q̃(M,x)

(|f2(q)|) ≤ (T1(n))1−δ

The bound on query answer size ensures that each proof about decision FGRs goes through in
the function FGR case, with an additional step corrosponding to the bound on query answers that
is identical to checking the bound on query sizes of the definition of a decision FGR.

We will also consider FGRs between nondeterministic computation of function problems. Defin-
ing exactly what it means for a nondeterministic machine to compute a function is fairly involved,
so we sidestep this issue by using the graph of the function as a decision problem. That is, by
convention we use the language gr(f) = {〈x, f(x)〉|x ∈ {0, 1}∗} to assess the nondeterministic
complexity of every function f we are interested in. Since here we only only study (N ∩ coN)TIME
complexity, this convention does not unduly simplify our model. It is equivalent to being able to
print the ith bit of f(x) on input x in (N ∩ coN)TIME, which we would have anyway. Thus, using
the graph of a function, all properties of FGRs between the nondeterministic complexity of decision
problems hold between function problems as well.
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3.1 Deterministic Fine-grained Reductions

The properties of deterministic fine-grained reductions are exactly what one would expect and
follow by standard methods. See Appendix C for proofs.

Lemma 3.4 (Fine-grained reductions translate savings for DTIME). Let (L1, T1) ≤FGR (L2, T2),
and L2 ∈ DTIME[T2(n)1−ε] for ε > 0. There exists δ > 0 such that

L1 ∈ DTIME[T1(n)1−δ]

Lemma 3.5 (Fine-grained reductions transfer savings for (N ∩ coN)TIME). Let (L1, T1) ≤FGR
(L2, T2), and L2 ∈ (N ∩ coN)TIME[T2(n)1−ε] for some ε > 0. Then there exists a δ > 0 such that

L1 ∈ (N ∩ coN)TIME[T1(n)1−δ]

To prove both of these “savings” lemmas, we simply run the reduction TM and simulate oracle
calls to L2 using the efficient algorithm for L2 to get savings for L1.

Corollary 3.6 (Fine-grained reductions translate savings from reductions). When the true com-
plexity of a problem is meaningfully smaller than the time bound used in a fine-grained reduction,
savings are translated.

1. Let (L1, T1) ≤FGR (L2, T
1+γ
2 ), and L2 ∈ DTIME[T2]. Then there exists δ > 0 such that

L1 ∈ DTIME[T 1−δ
1 ]

2. Let (L1, T1) ≤FGR (L2, T
1+γ
2 ), and L2 ∈ (N ∩ coN)TIME[T2]. Then there exists a δ > 0 such

that
L2 ∈ (N ∩ coN)TIME[T 1−δ

1 ]

The above follows from the saving transfer lemmas by a simple substitution.

Lemma 3.7 (Fine-grained reductions are closed under composition). Let (A, TA) ≤FGR (B, TB)
and (B, TB) ≤FGR (C, TC). It then follows (A, TA) ≤FGR (C, TC).

Finally, composition is proved by carefully verifying time and query bounds on the obvious
“nested” simulation of A using the algorithm for C.

3.2 Randomized FGRs

As we will show, many of the problems such as k-sum and hittingset which have served as
starting points for fine-grained reductions have substantially smaller nondeterministic complexities
than their conjectured deterministic complexities. From the above closure properties, it will follow
that if NSETH is true, none of these problems is SETH-hard under deterministic (or zero-error
probabilistic) fine-grained reductions. This leaves a major loophole: these problems might still
be SETH-hard under randomized reductions. In this section, we will outline a reason why even
randomized SETH-hardness would be somewhat surprising. We introduce a non-uniform version
of NSETH, NUNSETH, and show that this hypothesis would imply the non-existence of even
randomized SETH-hardness results.

Definition 3.8. Let k-taut be the tautology problem restricted to k-dnf’s. The Non-uniform
Nondeterministic Strong Exponential Time Hypothesis (NUNSETH) is the statement : ∀ε > 0∃k ≥
0, so that there are no nondeterministic circuit families of size O(2n(1−ε)) recognizing the language
k-taut.
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While we do not have any general conservation of non-uniform nondeterministic time by ran-
domized reductions, we do have a limit for the special case of problems that are SETH-hard under
randomized reductions.

Lemma 3.9. Assume L is -SETH-hard with T (N) via a randomized reduction. If NUNSETH,
then there is no δ > 0 so that L ∈ (N ∩ coN)TIME[T 1−δ(n)].

Proof. Let ε be the constant corresponding to δ in the reduction, and letML be the corresponding
randomized oracle machine. Let m < nk be the length in bits of a description of a k-sat formula
on n inputs. By repeating ML O(m) times and taking the majority answer, we can make the
error probability less than 2−m. Therefore, there is one random tape that has no errors, using the
standard argument that BPP ∈ P/poly. Since M runs in total time 2(1−ε)n), this tape will have
length at most m2(1−ε)n), and so will be an exponential improvement over 2n. Once we have fixed
the tape, we can simulate the oracle queries nondeterministically as in the case of deterministic
reductions, with total complexityO(m) times what it is for one run. Thus, we get a nondeterministic
circuit with total size O(m2(1−ε)n).

Note that the above argument, in addition to needing advice, multiplies the complexity by
an amount polynomial in the input size. While this is not an issue for SAT, it would render the
consequences of randomized reductions for problems within P moot, since we are trying to preserve
exact polynomial complexities.

While NUNSETH seems plausible, we should exercise some caution before adopting it as an
axiom. First, there are no known consequences if NUNSETH fails to be true. Secondly, we originally
were going to add equally plausible (to us) hypotheses concerning the total time for bounded round
interactive protocols for k-taut. However, Williams recently showed that even the general formula
counting problem has a Merlin-Arthur protocol of total complexity Õ(2n/2). Because there is a
polynomial overhead in making such a protocol a nondeterministic algorithm with advice, this does
not contradict NUNSETH. However, it does remind us that counter-intuitive things can happen
when randomness and nondeterminism are combined, so we should be cautious in assuming non-
uniformity might not speed up computation in this circumstance.

4 What if ¬NSETH?

SETH is an interesting hypothesis because both ¬SETH and SETH have interesting consequences
that seem difficult to prove unconditionally. In this section, we show that the same proofs that
show “¬SETH implies circuit lower bounds” can be applied to ¬NSETH as well. This is evidence
that NSETH will be hard to refute.

Algorithms for ckt-sat or ckt-taut imply circuit lower bounds (see [Wil13] and [Wil14b]).
For some restricted circuit classes C, we can reduce satisfiability or tautology of C-circuits to k-sat
or k-taut by decomposing C circuits into a “big OR” of CNF formulas. Thus, both ¬SETH and
¬NSETH imply faster C-circuit analysis algorithms (tautology or satisfiability) for these classes,
which imply lower bounds.

The proofs of [JMV13] optimize the reduction of arbitrary nondeterministic time languages to
3-sat to obtain new “failure of a hardness hypothesis about k-sat implies circuit lower bounds”
results for a variety of circuit classes. The following (see Appendix B for details) is implicit in their
work:

Theorem 4.1. We have the following implications from failure of a k-taut hardness hypothesis
to circuit lower bounds for restricted classes:
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1. If the nondeterministic exponential time hypothesis (NETH) is false; i.e., for every ε > 0,
3-taut is in time 2εn, then ∃f ∈ ENP such that f does not have linear-size circuits.

2. If the nondeterministic strong exponential time hypothesis (NSETH) is false; i.e., there is a
δ < 1 such that for every k, k-taut is in time 2δn, then ∃f ∈ ENP such that f does not have
linear-size series-parallel circuits.

3. If there is α > 0 such that nα-taut is in time 2n−ω(n/ log logn), then ∃f ∈ ENP such that f
does not have linear-size log-depth circuits.

Since (by item 2 above) refuting NSETH would give nontrivial circuit lower bounds, it is unlikely
to be easy to refute.

5 The nondeterministic time complexity of problems in P

How could we show that one language is not reducible to another language? There is an ever-growing
web of problems, hypotheses, and reductions that reflect the fine-grained complexity approach to
explaining hardness. Could this structure collapse into a radically simpler graph, with just a few
equivalence classes? If we assume NSETH, the answer to this question is probably not as much as
one might hope.

We can broadly categorize computational problems into two sets. In the first category, the de-
terministic time complexity is higher than both the nondeterministic and co-nondeterministic time
complexity. In the second category, at least one of nondeterminism or co-nondeterminism does not
help in solving the problem more efficiently. Corollary 3.6 shows that savings in (N ∩ coN)TIME are
preserved under deterministic fine-grained reductions. As a result, we can rule out tight reductions
from a problem that is hard using nondeterminism or co-nondeterminism to a problem that is easy
in (N ∩ coN)TIME.

If NSETH holds, then k-tautk is in the category of problems that do not benefit fron nondeter-
minism.. benefit from co-nondeterminism. So, any problem that is SETH-hard under deterministic
reductions also falls in this category.

In this section we explore problems that do benefit from (N ∩ coN)TIME, i.e. we give nonde-
terministic algorithms that are faster than their presumed deterministic time complexities. This
rules out deterministic fine-grained reductions from cnfsat to these problems with their presumed
time complexities. As a consequence, it is not possible to show that these problems are SETH-hard
using a deterministic reduction.

We begin by formalizing the notion of non-reducibility.

Theorem 5.1 (NSETH implies no reduction from SAT). If NSETH and C ∈ (N ∩ coN)TIME[TC ]
for some problem C, then (SAT, 2n) 6≤FGR (C, T 1+γ

C ) for any γ > 0.

Proof. Assume NSETH, (SAT, 2n) ≤FGR (C, T 1+γ
C ), and C ∈ (N ∩ coN)TIME[TC ]. By Corollary

3.6, preservation of (N ∩ coN)TIME savings under fine-grained reductions, there exists δ > 0 such
that SAT ∈ (N ∩ coN)TIME[2n(1−δ)]. This contradicts NSETH, therefore it cannot be the case
(under NSETH) that (SAT, 2n) ≤FGR (C, TC).

Corollary 5.2 (NSETH implies no reductions from SETH-hard problems). If NSETH and C ∈
(N ∩ coN)TIME[TC ], then for any B that is SETH-hard under deterministic reductions with time
TB, and γ > 0, we have

(B, TB) 6≤FGR (C, T 1+γ
C )
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Proof. Assume NSETH, and that (B, TB) is SETH-hard. Therefore, we know (SAT, 2n) ≤FGR
(B, TB). Now assume (B, TB) ≤FGR (C, T 1+γ

C ). Then by Lemma 3.7, composition of fine-grained
reductions, we have that (SAT, 2n) ≤FGR (C, TC). But by Theorem 5.1 above, this is impossible
under NSETH.

We now give the main result of this section.

Theorem 5.3. Under NSETH, there is no deterministic or zero-error fine-grained reduction from
SAT or any SETH-hard problem to the following problems with the following time complexities for
any γ > 0.

• maxflow with T (m) = m1+γ

• hittingset with T (m) = m1+γ

• 3-sum with T (n) = n1.5+γ

• All-pairs shortest path with T (n) = n2+
6+ω
9

+γ

Note that for graph problems, n refers to the number of vertices, m refers to the number of
edges, and ω is the matrix multiplication exponent.

To prove Theorem 5.3 we give both nondeterministic and co-nondeterministic algorithms for
these problems.

5.1 Maximum Flow

The maximum flow problem has been an extensively studied problem for decades and has a large
number of theoretical and practical applications. While approximate maximum flow on undirected
graphs has a Õ(m) algorithm [KLOS14], where m is the number of edges, no linear time algorithm
is known for the exact version of the problem.

A natural question from the point of conditional hardness is if we can prove a superlinear lower
bound by proving that the problem is SETH-hard.

In this section we use the max-flow/min-cut theorem to give a (N ∩ coN)TIME algorithm for the
decision version of max-flow with time linear in the number of edges. Assuming NSETH, we can
then conclude that there is no deterministic fine-grained reduction from any SETH-hard problem
to maximum flow with a superlinear time bound.

Definition 5.4 (Maximum Flow Problem). Let G = (V,E) be a connected directed graph, s, t ∈ V
be vertices and k ∈ R.

The maximum flow problem (maxflow) is to decide if there exists a flow from s to t of value
at least k.

The nondeterministic algorithm for maximum flow is straight-forward and the co-nondeterministic
algorithm follows directly for the max-flow/min-cut theorem.

Lemma 5.5. maxflow ∈ (N ∩ coN)TIME[O(m)]

Proof. For the nondeterministic algorithm, nondeterministically guess the flow on each edge. We
can verify in linear time that the value of the flow is at least k, that no edge flow exceeds the edge
capacity, and that for all nodes the inflow is equal to the outflow.

For the co-nondeterministic algorithm, nondeterministically guess a cut (S, T ) such that s ∈ S
and t ∈ T with value l where l < k. By the max-flow/min-cut theorem there is no flow with value
strictly greater than l. The value of a cut can be computed in O(m) time.
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This completes the part of Theorem 5.3 concerning maximum flow. In contrast, the single-
source maximum flow problem requires quadratic time under SETH [AVWY15]. In the single-
source maximum flow problem we are given a source s and need to output the maximum flow
from s to all other nodes. As a consequence, there is no deterministic fine-grained reduction from
single-source maximum flow to maximum flow under NSETH.

5.2 Hitting Set

Given two families of non-empty sets S and T defined on universe U , a set S ∈ S is a hitting set
if it has nonempty intersections with all members in T . The hittingset problem accepts input
(S, T , U) iff

∃S ∈ S ∀T ∈ T ∃u ∈ U ((u ∈ S) ∧ (u ∈ T ))

Let the size of input be m =
∑

S∈S |S| +
∑

T∈T |T |. Assume for any u ∈ U , we can in constant
time decide if u ∈ S or u ∈ T . We show that hittingset and its negation are both solvable in
nondeterministic linear time.

Lemma 5.6. hittingset ∈ (N ∩ coN)TIME[O(m)]

hittingset can be solved nondeterministically in linear time, by guessing an S, enumerating
all T ∈ T , and guessing a u ∈ T .

The negation of the hittingset problem ¬hittingset, which is defined as

∀S ∈ S ∃T ∈ T ∀u ∈ U ((u /∈ S) ∨ (u /∈ T ))

can be solved by the following algorithm.

for each S ∈ S do
Nondeterministically select T from T ;
for each u ∈ S do

if u ∈ T then
Reject.

end

end

end
Accept.

Algorithm 1: Algorithm for ¬hittingset
The algorithm runs in time O(

∑
S∈S |S|) = O(m).

Section A.3 generalizes his algorithm for model checking of arbitrary k-quantifier sentences with
at least one existential quantifier and ending with a universal quantifier.

5.3 3-sum

The conjecture that the 3-sum problem admits no O(n2−ε) algorithm for any ε > 0 has proven
immensely useful to show the conditional hardness of a large number of problems (e.g. [GO95,
DBdGO97, AW14]), most of which are not known to be hard under SETH. A fine-grained reduction
from SAT to 3-sum would therefore have a large impact, proving the 3-sum conjecture under SETH.

We give a subquadratic algorithm for 3-sum in (N ∩ coN)TIME, which rules out a deterministic
fine-grained reduction from SAT to 3-sum under NSETH.
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Definition 5.7. Given n integers a1 . . . an in the range [−nc, nc] for some constant c, the 3-Sum
problem (3-sum) is the problem of determining if there is a triple 1 ≤ i, j, k ≤ n such that ai+aj +
ak = 0.

Lemma 5.8. 3-sum ∈ (N ∩ coN)TIME[Õ(n1.5)]

Proof. There is a trivial constant time nondeterministic algorithm of guessing the triplet of indices.
The more interesting part is to show that there is an efficient nondeterministic algorithm to show
that there is no such triplet.

We nondeterministically guess a proof of the form (p, t, S), such that

• p is a prime number, such that p ≤ primen1.5 , where primei is i-th prime number.

• t is a nonnegative integer with t ≤ 3cn1.5 log n such that t = |{(i, j, k) | ai + aj + ak = 0
mod p}| is the number of three-sums modulo p.

• S = {(i1, j1, k1), . . . , (it, jt, kt)} is a set of t triples of indices, such that for all r : 0 < r ≤ t
we have air + ajr + akr = 0 mod p and air + ajr + akr 6= 0

We first show that such a proof exists. Let us assume that there is no triple of elements that
sum up to zero. Let R be set of all pairs ((i, j, k), p), such that p is a prime ≤ primen1.5 and
ai + aj + ak = 0 mod p. Then |R| ≤ n3 log (3nc) < 3cn3 log n, as any integer z can have at
most log(z) prime divisors. Then, by a simple counting argument, there indeed exists a prime

p0 ≤ primen1.5 , such that the number of pairs of the form ((i, j, k), p0) in R is at most 3cn3 logn
n1.5 =

3cn1.5 log n).
To verify a proof of that form we first need to check that for all r ≤ t:

air + ajr + akr = 0 mod p

air + ajr + akr 6= 0

Then we compute the number of 3-sums modulo p and compare it with t. In order to do this
we expand the following expression using Fast Fourier Transform in time Õ(t):(∑

i

x(ai mod p)

)3

Let bj be a coefficient before xj . We need to check that

b0 + bp + b2p = t

If it is true, then the proof is accepted, otherwise it is rejected.
The time complexity of verification is Õ(n1.5) for reading and checking the properties of all the

triples and Õ(t) = Õ(n1.5) for counting the number of triples that sum to 0 modulo p. Therefore
the total time complexity is Õ(n1.5).
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5.4 All-pairs shortest paths and related problems

The All-pairs shortest path problem (APSP) is to find the shortest path in a graph between any
pair of nodes. Like the 3-sum conjecture and SETH, the conjecture that APSP does not admit an
O(n3−ε) time algorithm for any ε > 0 has been used successfully to show the conditional hardness
of a number of problems, e.g. [WW10, VW09].

We use a similar technique as in the algorithm for 3-sum to show that the Zero Weight Triangle
problem (ZWT), which is hard under APSP, admits an efficient algorithm in (N ∩ coN)TIME.

Definition 5.9. Given a tripartite graph G(V1, V2, V3, E) with |V1| = |V2| = |V3| = n and edge
weights in [−na, na], the Zero Weight Triangle problem is the problem of determining if there is a
triangle such that the sum of the edge weights is 0.

We first show that if the range is small enough, then we can count the number of zero weight
triangles efficiently.

Lemma 5.10. There is a deterministic algorithm for counting the number of zero weight triangles
in time O(nω+4a)

Proof. Consider all O(n4a) triples x, y, z ∈ [−na, na] such that x + y + z = 0. For each triple
restrict the graph to edges between V1 and V2 of edge weight x, edges between V2 and V3 of weight
y, and edges between V1 and V3 of weight z. We can then count the number of triangles in the
resulting unweighted graph using matrix multiplication in time O(nω). The total time is O(nω+4a)
as claimed.

In particular, we will be using Lemma 5.10 when working modulo a prime p, where the time
complexity of counting the number of zero weight triangles modulo p is then O(nωp2).

Lemma 5.11. The Zero Weight Triangle Problem is in (N ∩ coN)TIME[O(n2+ω/3)].

Proof. As for 3-sum, the nondeterministic algorithm is trivial and we concentrate on the co-
nondeterministic algorithm.

Let µ = 1−ω/3. Further let c be a large constant such that there are at least nµ primes in the
range R = [nµ, cnµ log n]. We assume that there is no zero weight triangle and consider any fixed
triangle. The total weight of the triangle is in the range [−3na, 3na] and the number of primes
p ∈ R such that the triangle has weight 0 mod p is at most log(3na)/ log(nµ) < 2

µa. Since R
contains at least nµ primes, there is a prime p ∈ R such that the number of triangles with weight
0 mod p is at most 2

µan
2+ω/3.

The nondeterministic algorithm now proceeds as follows: Nondeterministically pick p as above.
By Lemma 5.10 we can deterministically count the number s of triangles with weight 0 mod p in
time O(nωp2) = O(n2+ω/3). Nondeterministically pick s distinct triangles and check that each of
them has weight w 6= 0 with w = 0 mod p.

The total time is bounded by O(n2+ω/3) as claimed.

Corollary 5.12. APSP ∈ (N ∩ coN)TIME[Õ(n2+
6+ω
9 )].

Proof. A deterministic fine-grained reduction from the problem of finding a negative weight tri-
angle to ZWT can be found in [VW09], such that the negative weight triangle problem is also
in (N ∩ coN)TIME[Õ(n2+ω/3)]. Finally, [WW10] give a deterministic fine-grained reduction from
APSP to the negative weight triangle problem with time Õ(n2T (n1/3)), where T (n) is the time
complexity of the negative weight triangle problem.
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Note that [WW10] in fact give a sizable list of problems that are equivalent to APSP under
subcubic deterministic fine-grained reductions (including negative weight triangle, but not zero
weight triangle). Our non-reducibility result therefore applies to all of these problems.

6 Characterizing the quantifier structure of SETH-hard graph prob-
lems

There are many problems within P that are known to be SETH-hard, but few of them are graph
problems. And of the ones that are, they tend to have similar logical forms. For instance, k-
Dominating Set [PW10] is definable by a ∀k∃ quantified formula; Graph Diameter-2 and Bipartite
Graph Dominated Vertex [BCH14] are definable by ∀∀∃ quantified formulas. Here we study the
relations between SETH-hardness and the logical structures of model checking problems. The paper
by Ryan Williams [Wil14a] explored the first-order graph properties on dense graphs, while in this
paper, we look into sparse graphs whose input is a list of edges.

We define “graph property” quite broadly. The input to a graph property is a many-sorted
universe that we view as sets of vertices, together with a number of unary relations (node colors),
and binary relations, viewed as different categories or colors of edges. The binary relations can in
general be directed. We specify the problem to be solved by a first order sentence. Let ϕ be a first
order sentence in prenex normal form, which has k quantifiers.

ϕ = Q1x1 ∈ X1, Q2x2 ∈ X2, . . . Qkxk ∈ Xkψ

or shortened as
ϕ = Q1x1Q2x2 . . . Qkxkψ

where ϕ is a quantifier-free formula whose atoms are unary or binary predicates on x1, . . . , xk.
An instance of the model checking problem of ϕ gives k (k ≥ 3) specifies sets X1, . . . Xk, where

variable xi is an element of set Xi, and unary or binary relations on these sets. (Xi needn’t be
disjoint, so allowing them to be viewed as distinct only increases the expressive power. We assume
equality is one of the relations, so we can tell when xi = xj .)) The sets X1, . . . , Xk can be considered
as the sets of nodes in a k-partite graph, and the values of a binary predicate can be considered as
edges in the graph, i.e. for predicate P , P (xi, xj) = true means there is an edge between nodes xi
and xj . We refer to the k-partite graph with edges defined by predicate P as GP , and the union of
graphs defined on all predicates as G. The data structures used to code the relations are as follows:
For each unary relation, an array of Booleans indexed by the vertices saying whether the relation
holds, and for each binary predicate, the list representation of the corresponding directed graph.
We want to see if ϕ is true for the input model.

Examples of this problem include k-Clique, which is defined by

ϕ = ∃x1 . . . ∃xk
∧

i,j∈{1,...,k},i 6=j

E(xi, xj)

and k-Dominating Set, defined by

ϕ = ∃x1 . . . ∃xk∀xk+1 (E(x1, xk+1) ∨ · · · ∨ E(xk, xk+1))

and Graph Radius-2, defined by

ϕ = ∃x1∀x2∃x3 (E(x1, x3) ∧ E(x3, x2))

12



We let n = maxi |Xi| be the maximum size of the node parts, and m be the number of edges in
the union of the graphs. The size is n+m, but for convenience, we will assume m > n and use m
as the size.

The maximum deterministic complexity of a k-quantifier formula for k ≥ 2 is O(mk−1). For
k = 2, this is just linear in the input size, so matching lower bounds follow. So the interesting case
is k ≥ 3. If SETH is true, some formulas require approximately this time. But if NSETH holds, all
such formulas that are SETH hard are of the same logical form. This is made precise as follows:

Theorem 6.1. Let k ≥ 3. If NSETH is true, then there is a k-quantifier formula whose model
checking problem is O(mk−1) SETH-hard, but all such formulas have the form ∀k−1∃ or ∃k−1∀.

Theorem 6.1 comes directly from the following lemmas:

Lemma 6.2. If SETH or NSETH is true, then there are ∀k−1∃ problems that are SETH-hard for
time O(mk−1).

Thus by negating ϕ, the ∃k−1∀ problems are also hard under SETH.
On the other hand if a problem is of any form other than ∀k−1∃, we will show it has smaller

non-deterministic complexity. Such a problem has either exactly one existential quantifier not in
the innermost position, no existential quantifiers, or at least two existential quantifiers.

Lemma 6.3. If ϕ has exactly one existential quantifier, but it is not on the innermost position,
then it can be solved in O(mk−2) nondeterminisitic time.

Lemma 6.4. If ϕ has more than one existential quantifiers, then it can be solved in time O(mk−2)
nondeterministically.

These problems can be solved by guessing the existentially quantified variables, and exhaustive
search on universally quantified variables. Because there are at most k − 2 universial quantifiers,
the algorithm runs in time O(mk−2).

Lemma 6.5. If all quantifiers are universal, then it can be solved in deterministic time O(mk−1.5)

Thus, only ∀k−1∃ formulas require O(mk−1) non-deterministic time, and by looking at the
complements, only ∃k−1∀ formulas require O(mk−1) co-non-deterministic time. Thus, assuming
NSETH, only these two types of first-order properties might be SETH-hard for the maximum
difficulty of a k-quantifier formula.

Lemmas 6.2, 6.3 and 6.5 will be proved in Appendix A.

7 Consequences for verification of solutions

Besides implying that some problems are not SETH-hard, NSETH also implies some new lower
bounds on problems in P . Namely, if NSETH is true, then problems such as Fréchet distance, edit
distance, and longest common substring also require quadratic co-nondeterministic time (i.e., to
show that the optimal solution has cost that exceeds a given value). This immediately implies that,
even given a solution, testing optimality requires quadratic time. We can formalize this as follows:

Theorem 7.1. Let Opt(x) be the optimization problem, given x, find maxy,|y|=l(|x|) F (x, y), for
some F that is computable in time TF (n+ l(n)) ≥ n+ l(n). The verification problem Ver is: given
x and y, is y an optimal solution for Opt, i.e., is there no y′ with F (x, y′) > F (x, y). Assume that
Opt is SETH-hard for some T (n) which is greater than T 1+γ

F (n + l(n)) for some γ > 0. Then if
NSETH, Ver cannot be solved in any time T ′ so that TVer(n+ l(n)) < T 1−ε(n) for any ε > 0.
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Proof. Assume not, that Ver can be solved in some time T ′ with TVer(n + l(n)) < T 1−ε(n). Then
we can compute the function Opt in NTIME((TVer(n+ l(n)) + TF (n+ l(n)))) as follows:

Non-deterministically guess an optimal solution y and run the algorithm for Ver on the pair
(x, y). If it is optimal (i.e., in Ver), return F (x, y). The total time is l(n) to guess y, plus TF (n+l(n))
to compute F , plus TVer(n+ l(n)).

From the assumption that Opt is SETH-hard for time T (n), and since the time complexity of
the above procedure is O(T (n)1−ε) for some ε > 0, it follows that TAUT is in time 2n(1−δ) for some
δ > 0. This contradicts NSETH.

So NSETH gives us a way to argue that not only finding but verifying optimal solutions is
computationally intensive.

8 Conclusions and open problems

A theme running through computational complexity is that looking at general relationships between
models of computing and complexity classes can frequently shed light on the difficulty of specific
problems. In this paper, we introduce this general technique to the study of fine-grained complexity
by comparing nondeterministic complexities of problems. This raises the more general question of
what other notions and models of complexity might be useful in distinguishing the fine-grained
complexity of problems. For example, we show that neither 3-sum or all-pairs shortest path can
be SETH-hard if NSETH holds. This still leaves open the possibility that the two conjectures are
equivalent to each other (if not to SETH). One might be able to prove such an equivalence, or give
evidence against it by showing a different notion of complexity that distinguishes the two and is
preserved by FGR.
Acknowledgments: We would like to thank Ryan Williams for the many helpful comments on
an earlier draft, and Virginia Vassilevska Williams.
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Appendix A Proofs of lemmas in Section 6

A.1 ∀k−1∃ problems are hard under NSETH

In this section we prove Lemma 6.2 by showing that if the problem defined by formula

∀x1 . . . ∀xk−1∃xk (P (x1, xk) ∧ · · · ∧ P (xk−1, xk))

can be solved in O(mk−1−ε) nondeterministic time for some ε > 0, then NSETH is false. We
construct a fine-grained reduction from DNF-TAUT to the above problem.

Given a formula D in DNF, with variable set V , let V1 . . . Vk−1 be a partition of V such that
|V1| = · · · = |Vk−1| = n/(k − 1). For each variable set Vi, we create a node set Xi. For each
assignment α for the k variables in Vi, we create a node xα in Xi. For each term t in D, we create
node xt in Xk. Whenever a term t is satisfied by a partial assignment α, we let there be an edge
P (xα, xt).

D is tautology if and only if for all k − 1 tuples of partial assignments for V1 . . . Vk−1, there
exists a term t such that t is satisfied by all the partial assignments. Thus D is tautology iff the
model checking instance we have created is satisfiable.

The number of nodes and edges in the constructed graph is O∗(2n/k). Thus we have set up an
fine-grained reduction from O(2n) time to O(mk) time.

A.2 All-existential and all-universal problems

For simplicity, in sections A.2 and A.3, we will restrict all predicates to be binary. The algorithms
can easily be modified to work for unary predicates.

In this section we prove Lemma 6.5 by showing an algorithm for all-existential formulas that
run in time O(mk−1.5).

Assume there is at most one predicate on each pair of variables. Otherwise for a pair of variable
we can take the disjunction of all the predicates to be the value of the only predicate. Let the only
predicate be E.

First, we write ψ in DNF with t terms, i.e. ψ =
∨t
i=1 ψi, and then split its terms, so that

ϕ =
∨t
i=1(∃x1 . . . ∃xkψi). Thus the problem becomes a constant number of model checking sub-

problems with form ∃x1 . . . ∃xkψi where ψi is a conjunction of either positive or negative predicates.
Let the number of predicates be p. We give the predicates some canonical order, so that their

truth value correspond to strings in {0, 1}p. We call the strings colors. Specifically, the color 0p

(where all predicates are false) is called the background color. The color interpretation function
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χ maps a (x1, . . . , xk) tuple to the color c corresponding to the predicate values decided by this
assignment.

For each ψi, we find all colors satisfying it, and then for each color c, we use the following
algorithm to count the number of (x1, . . . , xk) tuples such that χ(x1, . . . , xk) = c.

Case 1: The color c contains at least two positive predicates.

Case 1-1: There exists four distinct variables a, b, c, d such that E(a, b) and E(c, d) are true
in c. Then we could exhaustively search all k − 4 variables other than a, b, c, d in time
O(nx

k−4
), and enumerate all E(c, d) and E(a, b) edges, which takes time O(m2) . The

overall running time is O(mk−2). For each k-tuple enumerated, if χ(x1, . . . , xk) = c, we
add 1 to the counter for color c.

Case 1-2: There are three distinct variables a, b, c such that E(a, b) and E(b, c) are true in
c. We take time O(mk−3) to exhaustively search all k − 3 other variables. Then we
consider the a nodes of large and small degree separately.

• For a’s whose degree is at most
√
m, we enumerate all E(a, b) edges. Then for each

b, we enumerate all (b, c) edges. The running time is O(
∑

a deg(a)) ≤ O(m
√
m) =

O(m1.5).

• For a’s whose degree is greater than
√
m, we enumerate all such a’s and all (b, c)

edges. Because there are at most O(m/
√
m) =

√
m such a’s, the running time is

O(
√
mm) = O(m1.5).

For each k-tuple enumerated, check if χ(x1, . . . , xk) = c. The overall running time is
O(mk−3m1.5) = O(mk−1.5).

Case 2: The color c contains only one positive predicate. Let the positive predicate be E(a, b).

As described in Case 1, we can compute the number of (x1, . . . , xk) with colors where where
both E(a, b) and some non-(a, b) predicates are true, Also, we can easily compute the number
of k tuples satisfying E(a, b) regardless of other predicates, by multiplying the number of
E(a, b) edges and every other vertex set’s size. Then, by inclusion-exclusion we can exclude
the cases where some other predicates are true. Because there are only a constant number of
colors, the running time is O(mk−1.5).

Case 3: c is the background color. We compute the number of (x1, . . . , xk) of all other colors,
and use inclusion-exclusion to exclude the cases where some predicates are true. The running
time is O(mk−1.5).

A.3 Single-∃ formulas ending with ∀

In this section we prove Lemma 6.3, in which case ϕ has only one ∃ and the innermost quantifier
is ∀. Let the existentially quantified variable be xj .

For a pair of nodes (xu, xv), we define its color χ(xu, xv) to be binary strings corresponding
to the truth values of all predicates on them. By preprocessing we can set up a table that allows
us to check whether χ(xu, xv) = c for given xu, xv and color c in constant time. We also define
χ(xk|x1 . . . xk−1) to be the concatenation of χ(x1, xk), . . . , χ(xk−1, xk). For colors composed of only
0 (where all the related predicates are false), we call them “background”.

Our algorithm can count the number of xk’s with color χ(xk|x1 . . . xk−1) = c for all (x1, . . . , xk−1)
and c in time O(mk−2). The main idea of the algorithm is to nondeterministically guess xj and
count valid values of xk, so that it saves the exhaustive search on xj and xk.
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1. For each combination of (x1, . . . , xj−1) nodes, we nondeterministically bundle a fixed xj value
to it. This takes time O(mj−1), which is at most O(mk−2) because j < k. In the rest of
this algorithm, given any (x1, . . . , xj−1) values we can find their corresponding xj value in
constant time.

2. We do a (k − 2)-layer nested loop. On each layer we loop through all (xi, xk) edges where xi
is a variable other than xj or xk. Then inside all the loops, for each xk in the (k− 2) current
(xi, xk) edges, we record the color χ(xk|x1 . . . xk−1), where the values of xj come from the
current (x1, . . . , xj−1).

Then after the loops we can count the number of xk’s of for each (x1, . . . , xk−1) and each
color.

This step can be done in time O(mk−2).

3. The previous step did not count the xk’s that only appear in (xj , xk) edges, i.e. whose
χ(xk|x1 . . . xk−1) is all-zero on all non-(xj , xk) predicate positions, but not all-zero on some
(xk, xj) predicate positions. We will count these xk’s in this step.

For each xj , we can enumerate all the (xj , xk) edges to count the number of xk’s where
χ(xj , xk) = cjk for any not all-zero cjk. Also, from the previous step, we can count the number
of xk’s s where χ(xk|x1 . . . xk−1) is not all-zero on some non-(xj , xk) predicate positions, and
also equals cij on its (xj , xk) predicate positions. By subtraction we can get the number
of xk’s, where χ(xk|x1 . . . xk−1) is all-zero on non-(xj , xk) predicate positions, and equals cij
on its (xj , xk) predicate positions. Similarly as the previous step, this process runs in time
O(mk−2).

4. Now we have counted the xk’s with all non-background colors for all (x1, . . . , xk−1). The
number of xk’s where χ(xk|x1 . . . xk−1) is background can be computed by |Xk| subtracting
the numbers of all non-background xk’s.

5. Finally, for all (x1, . . . , xk−1), we sum the number of xk’s of all colors that satisfy ϕ. If it
always equals |Xk|, then the algorithm accepts.

Appendix B Proof Sketches for Section 4

In this appendix, we sketch the details of Theorem 4.1, which is implicit in [JMV13]. Essentially,
they reduce ckt-sat for certain circuit classes C to k-cnf, and then use the ckt-sat algorithm to
circuit lower bound framework plus some assumed failure of k-sat hardness (which gives a k-sat
algorithm) to imply circuit lower bounds. We observe that a reduction to k-taut is implicit in
their proofs, and therefore failure of k-taut hardness implies identical circuit lower bounds.

The following theorem (and others like it) is proved in [Wil13] and applied in [Wil14b] to prove
breakthrough circuit lower bounds against ACC:

Theorem B.1. Let s(n) be super-polynomial, and let C ⊆ P/poly a class of circuit closed under
composition that contains AC0. If satisfiability or tautology of C-circuits on n variables and nc gates
can be solved in co-nondeterministic time (2n · poly(nc))/s(n), then NE does not have polynomial
size C-circuits.

The final step in proving the above simulates arbitrary L ∈ NTIME[2n] using a reduction to
ckt-sat or ckt-taut; the only difference between these two arguments is a single negation.
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Let φx be the 3-cnf such that x ∈ L ⇐⇒ φx ∈ 3-sat, and let Wx encode a canonical
assignment to var(φx) witnessing that φx ∈ 3-sat, if such an assignment exists. The reduction to
ckt-sat constructs a circuit D ∈ C such that:

D(j) ⇐⇒ clause j of φx is satisfied by assignment Wx

Let I(φx) be some index set for the clauses of φx. So, we have x ∈ L ⇐⇒ ∀j ∈ I(φx) D(j).
Therefore:

x ∈ L ⇐⇒ D ∈ ckt-taut ⇐⇒ ¬D 6∈ ckt-sat

The standard reduction runs a fast ckt-sat algorithm on ¬D and accepts iff this algorithm
rejects. Of course, if we instead make the assumption that there is a fast algorithm for ckt-taut,
we can run fast ckt-taut on D and output the result, which will also be a correct simulation for
L.

These techniques were pushed further to the following classes C, which are not closed under
composition, by optimizing the reduction of arbitrary nondeterministic time languages to 3-sat
[JMV13].

Theorem B.2. For each of the following classes C, if satisfiability or tautology of circuits in C can
be solved in time 2n/nω(1) then there is a problem f ∈ ENP that is not solvable by circuits in C:

1. linear-size circuits

2. linear-size series-parallel circuits,

3. linear-size log-depth circuits

4. quasi-polynomial-size SYM-AND circuits.

The proof of part (1) of the above was already present in [Wil13], but items 2 - 4 required
more efficient reductions to 3-sat. The authors of [JMV13] also showed that if k-sat is easier than
expected, this implies circuit lower bounds for classes 1 - 3 listed above:

Corollary B.3. In Items (1), (2), and (3) of Theorem B.2 we can, in place of the assumption
about C-SAT, substitute (respectively) the following assumptions and obtain a problem in ENP that
is not solvable in C

1. The exponential time hypothesis (ETH) [IP01] is false; i.e., for every ε > 0, 3-sat is in time
2εn

2. The strong exponential time hypothesis (SETH) is false [IPZ01]; i.e., there is a δ < 1 such
that for every k, k-sat is in time 2δn

3. There is α > 0 such that nα-sat is in time 2n−ω(n/ log logn)

The failure of NETH, NSETH, and the k-taut version of (3) above imply identical lower bounds,
because each argument of Corollary B.3 concludes with a simulation of arbitrary L ∈ NTIME[2n]
that reduces to k-sat. As with Theorem B.1, a single negation transforms this into a reduction to
k-taut. We sketch the details below.

Build D ∈ C, the same clause-evaluation circuit used by the proof of Theorem B.1, and then
use a structural decomposition of circuits in the class C to re-express ¬D as the OR of a (relatively)
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small number of CNFs. Then, run the assumed faster k-sat algorithm on each CNF. The overall
¬D =

∨
CNF formula is satisfiable iff one of the CNF formulas is satisfiable, so the simulation of

arbitrary L ∈ ENP will reject if any CNF is found to be satisfiable, correctly deciding L in too little
time.

To reduce to k-taut instead of k-sat, we simply negate the structural decomposition of ¬D
to see that D =

∧
DNF. Recall that x ∈ L ⇐⇒ D ∈ ckt-taut. Therefore if we assume a fast

(non)deterministic k-taut algorithm, we can check if D is a tautology by running a fast k-taut
algorithm on each “leaf” DNF, thus obtaining a fast simulation of L.

This outlines the proof of:

Corollary B.4. In Items (1), (2), and (3) of Theorem B.2 we can, in place of the assumption
about C-SAT, substitute (respectively) the following assumptions and obtain a problem in ENP that
is not solvable in C

1. The nondeterministic exponential time hypothesis (NETH) is false; i.e., for every ε > 0,
3-taut is in time 2εn

2. The nondeterministic strong exponential time hypothesis (NSETH) is false ; i.e., there is a
δ < 1 such that for every k, k-taut is in time 2δn

3. There is α > 0 such that nα-taut is in time 2n−ω(n/ log logn)

Appendix C Proofs of lemmas in Section 3

We prove the lemmas from section 3 about deterministic FGRs.

Definition C.1 (Fine-Grained Reductions (≤FGR)). Let L1 and L2 be languages, and let T1 and
T2 be time bounds. We say that (L1, T1) fine-grained reduces to (L2, T2) (denoted (L1, T1) ≤FGR
(L2, T2)) if

(a) ∀ε > 0 ∃δ > 0, ∃ML2 , a deterministic Turing reduction from L1 to L2, such that

TIME[M] ≤ T 1−δ
1

(b) Let Q̃(M, x) denote the set of queries made byM to the oracle on an input x of length n. The
query lengths obey the following time bound.∑

q∈Q̃(M,x)

(T2(|q|))1−ε ≤ (T1(n))1−δ

Definition C.2 (Randomized Fine-Grained Reductions (≤srFGR)). Exactly as in the deterministic
case, except the Turing reduction from (L1, T1) to (L2, T2) is a probabilistic machine with some
two-sided error bound

Pr[ML2(x) = L1(x)] ≥ s

We denote a randomized fine grained reduction from L1 to L2 with error bound s by (L1, T1) ≤srFGR
(L2, T2). Generally, we will use s = 2/3, so we denote ≤2/3

rFGR by ≤rFGR.
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Definition C.3 (Fine-Grained Reductions for Functions (≤fFGR)). Exactly as in the decision
deterministic case, except that the Turing reductionMf2 is to a function problem f2 and is expected
to produce a functional output. In addition to the existing resource bounds, we bound the size of
answers given by the f2 oracle. ∑

q∈Q̃(M,x)

(|f2(q)|) ≤ (T1(n))1−δ

C.1 Deterministic Fine-grained Reductions

We prove several properties of deterministic fine-grained reductions. They are exactly what one
would expect and follow by standard methods.

Lemma C.4 (Fine-grained reductions translate savings for DTIME). Let (L1, T1) ≤FGR (L2, T2),
and L2 ∈ DTIME[T2(n)1−ε] for ε > 0. There exists δ > 0 such that

L1 ∈ DTIME[T1(n)1−δ]

Proof. We use the reduction and simulate the oracle calls to L2 with the efficient algorithm for L2

to get savings for L1.
Let AL2 be the algorithm for L2 that runs in deterministic time T2(n)1−ε. LetML2 be the oracle

Turing machine that achieves the fine-grained reducibility from L1 to L2. Since ML2 achieves a
fine-grained reduction from L1 to L2, we know that ML2 runs in time T 1−δ

1 for some δ > 0. We
simulateML2 by running AL2 wheneverML2 queries L2. The total time spent running AL2 when
oracle calls are made is less than T 1−δ

2 . Overall, the simulation of ML2 will be completed in time
O(T 1−δ

1 ), which shows L1 ∈ DTIME[T1(n)1−δ].

Lemma C.5 (Fine-grained reductions transfer savings for (N ∩ coN)TIME). Let (L1, T1) ≤FGR
(L2, T2), and L2 ∈ (N ∩ coN)TIME[T2(n)1−ε] for some ε > 0. Then there exists a δ > 0 such that

L1 ∈ (N ∩ coN)TIME[T1(n)1−δ]

Proof. We proceed as in the proof of Lemma C.4, but we need to work with the nondeterministic
and co-nondeterministic algorithms for L2. Let ML2 be the deterministic oracle Turing machine
that achieves a fine-grained reduction from L2 to L1. We design a nondeterministic machine M′
for deciding L1 to show that L1 ∈ NTIME[T1(n)1−δ]. M′ guesses a table of queries to L2 (by the
machine ML2) and their answers. M′ will use the nondeterministic algorithm for L2 to verify the
answers to the queries which belong to the language L2 and the nondeterministic algorithm for the
complement L̄2 of L2 to verify the answers to the queries which are not in L2. It then simulates
ML2 , looking up queries in the verified guess table. If ML2 ever asks a query which is not in the
table, M′ rejects. The simulation itself takes time at most T 1−δ

2 . The additional cost is writing
down the query table and checking the answers. Guessing and verification of the query table takes
at most O(T 1−δ

1 ) time. Therefore, L1 ∈ NTIME[T1(n)1−δ].
Similarly, we can design a nondeterministic machine for deciding the complement L̄2 of L2 to

conclude L1 ∈ (N ∩ coN)TIME[T1(n)1−δ].

Corollary C.6 (Fine-grained reductions translate savings from reductions). When the true com-
plexity of a problem is meaningfully smaller than the time bound used in a fine-grained reduction,
savings are translated.
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1. Let (L1, T1) ≤FGR (L2, T
1+γ
2 ), and L2 ∈ DTIME[T2]. Then there exists δ > 0 such that

L1 ∈ DTIME[T 1−δ
1 ]

2. Let (L1, T1) ≤FGR (L2, T
1+γ
2 ), and L2 ∈ (N ∩ coN)TIME[T2]. Then there exists a δ > 0 such

that
L2 ∈ (N ∩ coN)TIME[T 1−δ

1 ]

Proof. For both cases, perform the following substitution. Let T̂2 = T 1+γ
2 ,and set ε = γ

1+γ < 1.

Observe that T2 = T̂
1/(1+γ)
2 = T̂ 1−ε

2 . Therefore, if (L1, T1) ≤FGR (L2, T
1+γ
2 ), we have (L1, T1) ≤FGR

(L2, T̂2), and if L2 ∈ TIME[T2] then L2 ∈ TIME[T̂ 1−ε
2 ]. Therefore, either Lemma C.4 or Lemma C.5

applies, and we have the required savings for L1.

Lemma C.7 (Fine-grained reductions are closed under composition). Let (A, TA) ≤FGR (B, TB)
and (B, TB) ≤FGR (C, TC). It then follows (A, TA) ≤FGR (C, TC).

Proof. Let MB
AB be the machine that achieves a fine-grained reduction from (A, TA) to (B, TB).

Also let MC
BC be the machine that achieves a fine-grained reduction from (B, TB) to (C, TC). We

construct a machine MC
AC that achieves a fine-grained reduction from (A, TA) to (C, TC).

MC
AC simulates the machine MB

AB and when it makes an oracle call to B, MC
AC simulates the

machine MC
BC . We argue thatMC

AC satisfies the requied time and query length bounds so it does
indeed achieve a fine-grained reduction from (A, TA) to (C, TC).

Let x be an input. Let Q̃AB(x) be the set of queries that the fine-grained reduction machine
MB

AB makes on x. Fix arbitrary εC > 0. MC
AC on input x behaves as follows.

1. Simulate MB
AB(x)

2. For any query q ∈ B to the oracle, run MC
BC(q)

We will show that MC
AC satisfies the time and query length bounds as desired.

Time bound We need to show thatMC
AC runs in time T 1−δ

A (|x|) for some δ > 0. Let TIME[M(x)]
denote the number of steps of M on input x. Let δA and δB be the constants guaranteed by the
corresponding fine-grained reductions

TIME[MC
AC(x)] = TIME[MB

AB(|x|)] +
∑

q∈Q̃AB(x)

TIME[MC
BC(q)]

≤ TIME[MB
AB(|x|)] +

∑
q∈Q̃AB(x)

T 1−δB
B (|q|) since (B, TB) ≤FGR (C, TC)

≤ TIME[MB
AB(|x|)] + TA(|x|)1−δA

≤ O(TA(|x|)1−δA) since A ≤FGR B
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Bounded Queries We need to bound the time complexity of deciding all queries to C made by
MC

AC , i.e., we need to show ∑
q∈Q̃AC(x)

TC(|q|)1−εC ≤ TA(|x|)1−δA

First, observe that since each query to C made by MC
AC is simulated by a run of MC

BC , we have
Q̃AC(x) =

⋃
z∈Q̃AB(x) Q̃BC(z).

It follows

∑
q∈Q̃AC(x)

TC(|q|)1−εC =
∑

z∈Q̃AB(x)

∑
q∈Q̃BC(z)

TC(|q|)1−εC

≤
∑

z∈Q̃AC(x)

TB(|z|)1−δB since B ≤FGR C

≤ TA(|x|)1−δA since A ≤FGR B

Since εC is arbitrary, we conclude A ≤FGR C.
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