
Reconstruction of ΣΠΣ(2) Circuits over Reals

Gaurav Sinha ∗

Abstract

Reconstruction of arithmertic circuits has been heavily studied in the past few years and has connec-
tions to proving lower bounds and deterministic identity testing. In this paper we present a polynomial
time randomized algorithm for reconstructing ΣΠΣ(2) circuits over R, i.e. depth−3 circuits with fan-in
2 at the top addition gate and having real coefficients.

The algorithm needs only a blockbox query access to the polynomial f ∈ R[x1, . . . , xn] of degree d,
computable by a ΣΠΣ(2) circuit C. In addition, we assume that the ”simple rank” of this polynomial
(essential number of variables after removing the gcd of the two multiplication gates) is bigger than a
fixed constant r. Our algorithm runs in time poly(n, d) and returns an equivalent ΣΠΣ(2) circuit(with
high probability).

The problem of reconstructing ΣΠΣ(2) circuits over finite fields was first proposed by Shpilka
[Shp07]. The generalization to ΣΠΣ(k) circuits, k = O(1) (over finite fields) was addressed by Karnin
and Shpilka in [KS09a]. The techniques in these previous involve iterating over all objects of certain
kinds over the ambient field and thus the running time depends on the size of the field F. Their recon-
struction algorithm uses lower bounds on the lengths of Linear Locally Decodable Codes with 2 queries.
In our settings, such ideas immediately pose a problem and we need new ideas to handle the case of real
fields.

Our main techniques are based on the use of Quantitative Syslvester Gallai Theorems from the work
of Barak et.al. [BDYW11] to find a small collection of ”nice” subspaces to iterate over. The heart of our
paper lies in subtle applications of the Quantitative Sylvester Gallai theorems to prove why projections
w.r.t. the ”nice” subspaces can be ”glued”. We also use Brill’s Equations from [GKZ94] to construct a
small set of candidate linear forms (containing linear forms from both gates). Another important tech-
nique which comes very handy is the polynomial time randomized algorithm for factoring multivariate
polynomials given by Kaltofen [KT90].

1 Introduction

The last few years have seen significant progress towards interesting problems dealing with arithmetic cir-
cuits. Some of these problems include Deterministic Polynomial Identity Testing, Reconstruction of Circuits
and recently Lower Bounds for Arithmetic Circuits. There has also been work connecting these three differ-
ent aspects. In this paper we will primarily be concerned with the reconstruction problem. Even though it’s
connections to Identity Testing and Lower Bounds are very exciting, the problem in itself has drawn a lot of
attention because of elegant techniques and connections to learning. The strongest version of the problem
requires that for any f ∈ F[x1, . . . , xn] with blackbox access given one wants to construct (roughly) most
succint representation i.e. the smallest possible arithmetic circuit computing the polynomial. This general
problem appears to be very hard. Most of the work done has dealt with some special type of polynomials i.e.

∗Department of Mathematics, California Institute of Technology, Pasadena CA 91106, USA. email : gsinha@caltech.edu

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 150 (2015)

the ones which exhibit constant depth circuits with alternating addition and multiplication gates. Our result
adds to this by looking at polynomials computed by circuits of this type (alternating addition/multiplication
gates but of depth 3). Our circuits will have variables at the leaves, operations (+,×) at the gates and scalars
at the edges. We also assume that the top gate has only two children and the ”simple rank” of this poly-
nomial (essential number of variables after removing the gcd of the two multiplication gates) is bigger than
a constant. The bottom most layer has addition gates and so computes linear forms, the middle layer then
multiplies these linear forms together and the top layer adds two such products. Later in Remark 1.2 we
discuss that we may assume the linear forms computed at bottom level to be homogeneous and the in-degree
of all gates at middle level to be the same (= degree of f). Therefore these circuits compute polynomials
with the following form :

f(x1, . . . , xn) = G(x1, . . . , xn)(T0(x1, . . . , xn) + T1(x1, . . . , xn))

where Ti(x1, . . . , xn) =
M∏
j=1

lij and G(x1, . . . , xn) =
d−M∏
j=1

Gj with the lij’s and Gj’s being linear forms

for i ∈ {0, 1}. Also assume gcd(T0, T1) = 1. Our condition about the essential number of variables (after
removing gcd from the multiplication gates) is called ”simple rank” of the polynomial and is defined as
dimension of the space

sp{lij : i ∈ {0, 1}, j ∈ {1, . . . ,M}}

When the underlying field is R (i.e. the field of real numbers) we give an efficient randomized algorithm for
reconstructing the circuit representation of such polynomials. Formally our main theorem reads :

Theorem 1.1 (ΣΠΣR(2) Reconstruction Theorem). Let f = G(T0 + T1) ∈ R[x1, . . . , xn] be any degree
d, n− variate polynomial (to which we have blackbox access) which can be computed by a depth 3 circuit
with top fan-in 2 (i.e. a ΣΠΣ(2) circuit) with G,Ti being products of homogeneous linear forms and
gcd(T0, T1) = 1. Assume span{l : l | T0T1} is bigger than a fixed constant r (defined later). We give a
randomized algorithm which runs in time poly(n, d) and computes the cicuit for f with high probability.

As per our knowledge this is the first algorithm that efficiently reconstructs such circuits (over the reals).
Over finite fields, the same problem has been considered by [Shp07] and our method takes inspiration from
their work. They also generalized this finite field version to circuits with arbitrary (but constant) top fan-in
in [KS09a]. However we need many new tools and techniques as their methods don’t generalize at a lot of
crucial steps. For eg:

• They iterate through linear forms in a finite field which we unfortunately cannot do.

• They use lower bounds for Locally Decodable Codes given in [DS07] which again does not work in
our setup.

We resolve these issues by

• Constructing candidate linear forms by solving simultaneous polynomial equations obtained from
Brill’s Equations (Chapter 4, [GKZ94]).

• Using quantitative versions of the Sylvester Gallai Theorems given in [BDYW11]. This new method
enables us to construct nice subspaces, take projections onto them and glue the projections back to
recover the cicuit representation.

2

1.1 Previous Work and Connections

Efficient Reconstruction algorithms are known for some concrete class of circuits. We list some here:

• Depth-2 ΣΠ circuits (sparse polynomials) in [KS01]

• Read-once arithmetic formulas in [SV09]

• Non-commutative ABP’s [AMS08]

• ΣΠΣ(2) circuits over finite fields in [Shp07], extended to ΣΠΣ(k) circuits (over finite fields) with
k = O(1) in [KS09a].

• Random Multilinear Formular in [GKL11]

• Depth 4 (ΣΠΣΠ) multilinear circuits with top fan-in 2 in [GKL12]

• Random Arithmetic Formulas in [GKQ14]

All of the above work introduced new ideas and techniques and have been greatly appreciated.

It’s straightforward to observe that a polynomial time deterministic reconstruction algorithm for a circuit
class C also implies a polynomial time Deterministic Identity Testing algorithm for the same class. From
the works [Agr05] and [HS80] it has been established that blackbox Identity Testing for certain circuit
classes imply superpolynomial circuit lower bounds for an explicit polynomial. Hence the general problem
of deterministic reconstruction cannot be easier than proving superpolynomial lower bounds. So one might
first try and relax the requirements and demand a randomized algorithm. Another motivation to consider
the probabilistic version comes from Learning Theory. A fundamental question called the exact learning
problem using membership queries asks the following : Given oracle access to a Boolean function, com-
pute a small description for it. This problem has attracted a lot of attention in the last few decades. For
eg. in [Kha92][GGM86] and [KV94] a negative result stating that a class of boolean circuits containing
the trapdoor functions or pseudo-random functions has no efficient learning algorithms. Among positive
works [SS96], [BBB+00], [KS06] show that when f has a small circuit (inside some restricted class) exact
learning from membership queries is possible. Our problem is a close cousin as we are looking for exact
learning algorithms for algebraic functions. Because of this connection with learning theory it makes sense
to also allow randomized algorithms for reconstruction.

1.2 Depth 3 Arithmetic Circuits

We will use the definitions from [KS09b]. Let C be an arithmetic circuit with coefficients in the field F. We
say C is a ΣΠΣ(k) circuit if it computes an expression of the form.

C(x̄) =
∑
i∈[k]

∏
j∈[d]

li,j(x̄)

li,j(x̄) are linear forms of the type li,j(x̄) =
∑
s∈[n]

asxs where (a1, . . . , an) ∈ Fn and (x1, . . . , xn) is an n−

tuple of indeterminates. For convenience we denote the multiplication gates in C as

Ti =
∏
j∈[d]

li,j(x̄)

3

k is the top fanin of our circuit C and d is the fanin of each multiplication gate Ti. With these definitions we
will say that our circuit is of type ΣΠΣF(k, d, n). When most parameters are understood we will just call it
a ΣΠΣ(k) circuit.

Remark Note that we are cosidering homogeneous circuits. There are two basic assumptions:

1. li,j’s have no constant term i.e. they are linear forms.

2. Fanin of each Ti is equal to d.

If these are not satisfied we can homogenize our circuit by considering Zd(C(X1
Z , . . . ,

Xn
Z)). Now both the

conditions will be taken care of by reconstructing this new homogenized circuit.

Definition 1.2 (Minimal Circuit). We say that the circuit C is minimal if no strict non empty subsets of the
ΠΣ polynomials {T1, . . . , Tk} sums to zero.

Definition 1.3 (Simple Circuit and Simplification). A circuit C is called Simple if the gcd of the ΠΣ poly-
nomials gcd(T1, . . . , Tk) is equal to 1 (i.e. is a unit). The simplification of a ΣΠΣ(k) circuit C denoted as
Sim(C) is the ΣΠΣ(k) circuit obtained by dividing each term by the gcd of all terms i.e.

Sim(C)
def
=
∑
i∈[k]

Ti
gcd(T1, . . . , Tk)

Definition 1.4 (Rank of a Circuit). Identifying each linear form l(x̄) =
∑
s∈[n]

asxs with the vector (a1, . . . , an) ∈

Fn, we define the rank of C to be the dimension of the vector space spanned by the set {li,j |i ∈ [k], j ∈ [d]}.

Definition 1.5 (Simple Rank of a Circuit). For a ΣΠΣ(k) circuit C we define the Simple Rank of C as the
rank of the circuit Sim(C).

Before we go further into the paper and explain our algorithm we state some results about uniqueness of
these circuits. In a nutshell for a ΣΠΣR(2, d, n) circuit C, if one assumes that the Simple rank of C is bigger
than a constant (cR(4) : defined later) then the circuit is essentially unique.

1.3 Uniqueness of Representation

Shpilka et. al. showed the uniqueness of circuit representation in [Shp07] using rank bounds for Polynomial
Identity Testing. Rank bounds have been further improved by Kayal et.al. in [KS09b]. Corollary 7 (Section
2.1) in Shpilka’s paper gets easily generalized using the following rank bound in [KS09b].

Theorem 1.6 (Theorem 2.2 in [KS09b]). For every k, there exists a constant cR(k) (where cR(k) ≤ 3k(k+
1)!2) such that every ΣΠΣ(k) circuit C with coefficients in R that is simple, minimal, and computes the zero
polynomial has rank(C) ≤ cR(k).

This gives us the following version of Corollary 7, Section 2.1 in [Shp07].

Theorem 1.7 ([Shp07]). Let f(x̄) ∈ R[x] be a polynomial which exhibits a ΣΠΣ(2) circuit

C = G(A+B)

A =
∏

j∈[M]

Aj , B =
∏

j∈[M]

Bj , G =
∏

i∈[d−M]

Gi, where Ai, Bj , Gk ∈ LinR[x̄]. gcd(A,B) = 1, and

Sim(C) = A+B has rank ≥ cR(4) + 1 then the representation is unique. That is if:

f = G(A+B) = G̃(Ã+ B̃)

4

where A,B, Ã, B̃ are ΠΣ polynomials over R and gcd(Ã, B̃) = 1 then we have G = G̃ and (A,B) =
(Ã, B̃) or (B̃, Ã) (upto scalar multiplication).

Proof. Let g = gcd(G, G̃) and let G = gG1, G̃ = gG̃1. Then gcd(G1, G̃1) = 1 and we get

G1A+G1B − G̃1Ã− G̃1B̃ = 0

This is a simple ΣΠΣ(4) circuit with rank bigger than cR(4) + 1 and is identically 0 so it must be not
minimal. Considering the various cases one can easily prove the required equality.

1.4 Outline of the Algorithm

The broad structure of our algorithm is similar to that of Shpilka in [Shp07] however our techniques are
different. We first restrict the blackbox inputs to a low (O(1)) dimensional random subspace of Rn and
interpolate this restricted polynomial. Next we try to recover the ΣΠΣ(2) structure of this restricted poly-
nomial and finally lift it back to Rn. The random subspace and unique ΣΠΣ(2) structure will ensure that
the lifting is unique. Similar to [Shp07] we try to answer the following questions. However our answers
(algorithms) are different from theirs

1. For a ΣΠΣ(2) polynomial f , can one compute a small set of linear forms which contains all factors
from both gates?

2. Let V0 be a co-dimension k subspace(k = O(1)) and V1, . . . , Vt be co-dimension 1 subspaces of
a linear space V . Given circuits Ci (i ∈ {0, . . . , t}) computing f |Vi(restriction of f to Vi) can we
reconstruct from them a single circuit C for f |V ?

3. Given co-dimension 1 subspaces V ⊂ U and circuits f |V when is the ΣΠΣ(2) circuit representations
of lifts of f |V to f |U unique?

Our first question is easily solved using Brill’s equations (See Chapter 4 [GKZ94]). These provide a set of
polynomials whose simultaneous solutions completely characterize coefficients of complex ΠΣ polynomi-
als. A linear form l divides one of the gates of f ⇒ f is a ΠΣ polynomial modulo l. When this is applied
into Brill’s equation we recover possible l’s which obviously include linear factors of gates. The extra linear
forms we get are not too many and also have some special structure. We call this set C of linear forms
as Candidate linear forms and non-deterministically guess from this set. It should be noted that we do all
this when our polynomial is over O(1) variables i.e. the restricted polynomial mentioned in the discussion
before these questions.

We deal with the second question while trying to reconstruct the ΣΠΣ(2) representation of the interpolated
polynomial f |V , where V is the random low dimensional subspace. There are Easy Cases and a Hard Case.

• For the Easy Cases our algorithm tries to reconstruct one of the multiplication gates of f |V by first
looking at it’s restriction to a special co-dimension 1 subspace V1. If f = A+B with A,B being ΠΣ
polynomials, the projection of one of the gates (say A) with respect to V1 will be 0 and the other (say
B) will remain unchanged giving us B and therefore both gates by factoring f |V −B.

• In the Hard Case we will first need V0, a co-dimension k (where k = O(1)) subspace and then
iteratively select co-dimension 1 subspaces V1, . . . , Vt. For some gate (say B), all pairs (V0, Vi)
(i ∈ [t]) will reconstruct some linear factors of B. This process will either completely reconstruct B
or we will fall into the Easy Case. Once B is known we can factor f |V −B to get A.

5

The restrictions that we compute always factor into product of linear forms and can be easily computed
since we know f |V explicitly. They can then be factorized into product of linear forms using the factoriza-
tion algorithms from [KT90]. It is the choice of the subspaces V0, V1, . . . , Vt where our algorithm differs
from that in [Shp07] significantly. Our algorithm selects V0 and iteratively selects the Vi’s (i ∈ [t]) such that
(V0, Vi) have certain ”nice” properties which help us recover the gates in f |V . The existence of subspaces
with ”nice” properties is guaranteed by Quantitative Sylvester Gallai Theorems given in [BDYW11]. To
use the theorems we had to develop more machinery that has been explained later.

The third question comes up when we want to lift our solution from the random subspace V to the original
space. This is done in steps. We first consider random spaces U such that V has co-dimension 1 inside them.
Now we reconstruct the circuits for f |V and f |U . The ΣΠΣ(2) circuits for f |V and f |U are unique since
the simple ranks are high enough (because U, V are random subspaces of high enough dimension) implying
that the circuit for f |V lifts to a unique circuit for f |U . When this is done for multiple U ’s we can find the
gates exactly.

1.5 Organization of the Paper

Here is how our paper is organised:

• In Subsection 2.1 we go through some definitions and notations we will follow. It is important since
some definitions are new and used very frequently.

• Subsection 2.2 talks about removing some non-degenracy from our input by making a random trans-
formation on the variables.

• We talk about some results in incidence geometry in Subsection 2.3, most importantly a Quantitative
version of the Sylvester Gallai Theorem given in [BDYW11]. The subsection ends with a corollary
we prove to be used later.

• To begin reconstruction we need a constructive description of the variety of ΠΣ (product of linear
forms) polynomials. This is given by Brill’s Equation explained in Subsection 2.4.

• A method to reconstruct product of linear forms from their projections onto subspaces is described in
Subsection 2.5.

• Section 3 is the core of the paper. It solves the reconstruction problem assuming that the number of
variables is a large enough constant.

• Section 4 deals with the most general case i.e. the rank being arbitrary (but bigger than a fixed
constant). We then use random projections to convert to the constant rank case in Section 3. Then we
describe in Subsection 4.2 how to glue different (polynomially many) such reconstructions together
and achieve the complete reconstruction.

2 Preliminaries

2.1 Notation

[n] denotes the set {1, 2, . . . , n}. Throughout the paper we will work over the field R. Let V be a finite
dimensional real vector space and S ⊂ V , sp(S) will denote the linear span of elements of S. dim(S) is
the dimension of the subspace sp(S). If S = {s1, . . . , sk} ⊂ V is a set of linearly independent vectors then

6

fl(S) denotes the affine subspace generated by points in S (also called a (k − 1)− flat or just flat when
dimension is understood). In particular:

fl(S) = {
k∑
i=1

λisi : λi ∈ R,
k∑
i=1

λi = 1}

Let W ⊂ V be a subspace, then we can extend basis and get another subspace W ′ (called the complement
of W) such that W ⊕ W ′ = V . Note that the complement need not be unique. Corresponding to each
such decomposition of V we may define orthogonal projections πW , πW ′ onto W,W ′ respectively. Let
v = w + w′ ∈ V,w ∈W,w′ ∈W ′:

πW (v) = w, πW ′(v) = w′

(x̄) will be used for the tuple (x1, . . . , xn).

LinR[x̄] = {a1x1 + . . .+ anxn : ai ∈ R} ⊂ R[x̄]

is the vector space of all linear forms over the variables (x1, . . . , xn). For a linear form l ∈ LinR[x̄] and a
polynomial f ∈ R[x] we write l | f if l divides f and l - f if it does not. We say ld || f if ld | f but ld+1 - f .

ΠΣd
R[x̄] = {l1(x̄) . . . ld(x̄) : li ∈ LinR[x̄]} ⊂ R[x̄]

is the set of degree d homogeneous polynomials which can be written as product of linear forms. This
collection for all possible d is called the set

ΠΣR[x̄] =
⋃
d∈N

ΠΣd
R[x̄]

also called ΠΣ polynomials for convenience. Let f(x̄) ∈ R[x] then Lin(f) ∈ ΠΣR[x̄] denotes the product
of all linear factors of f(x̄). Let L(f) denote the set of all linear factors of f . For any set of polynomials
S ⊂ C[x̄], we denote by V(S), the set of all complex simultaneous solutions of polynomials in S (this set is
called the variety of S), i.e.

V(S) = {a ∈ C : for all f ∈ S, f(a) = 0}

Let B = {b1, . . . , bn} be an ordered basis for V = LinR[x̄]. We define maps φB : V \ {0} → V as

φB(a1b1 + . . .+ anbn) =
1

ak
(a1b1 + . . .+ anbn)

where k is such that ai = 0 for all i < k and ak 6= 0.

A non-zero linear form l is called normal with respect to B if l ∈ ΦB(V) i.e. the first non-zero coefficient
is 1. A polynomial P ∈ ΠΣR[x̄] is normal w.r.t. B if it is a product of normal linear forms. For two
polynomials P1, P2 ∈ ΠΣR[x̄] we define :

gcdB(P1, P2) = P ∈ ΠΣR[x̄], P normal w.r.t. B such that P | P1, P | P2

When a basis is not mentioned we assume that the above definitions are with respect to the standard basis.
We can represent any linear form in LinR[x̄] as a point in the vector space Rn and vice versa. To be precise
we define the cannonical map Γ : LinR[x̄]→ Rn as

Γ(a1x1 + . . .+ anxn) = (a1, . . . , an)

7

Γ is a linear isomorphism of vector spaces LinR[x̄] and Rn. Because of this isomorphism we will in-
terchange between points and linear forms whenever we can. We choose to represent the linear form
a(x̄) = a1x1 + . . .+ anxn as the point a = (a1, . . . , an).

LI will be the abbreviation for Linearly Independent and LD will be the abbreviation for Linearly Depen-
dent.

Definition 2.1 (Standard Linear Form). A non zero vector v is called standard with respect to basis B =
{b1, . . . , bn} if the coefficient of b1 in v is 1. When a basis is not mentioned we assume we’re talking about
the standard basis. (Equivalently for linear forms the coefficient of x1 is 1). A ΠΣ polynomial will be called
standard if it is a product of standard linear forms.

We close this section with a lemma telling us when can we replace the span of some vectors with the affine
span or flat. We’ve used this several times in the paper.

Lemma 2.2. Let l, l1, . . . , lt ∈ LinR[x̄] be standard linear forms w.r.t. some basis B = {b1, . . . , bn} such
that l ∈ sp({l1, . . . , lt}) then

l ∈ fl({l1, . . . , lt})

Proof. Since l ∈ sp({l1, . . . , lt}), we know that l =
∑
i∈[t]

αili for some scalars αi ∈ R. All linear forms

are standard w.r.t. B ⇒ comparing the coefficients of b1 we get that
∑
i∈[t]

αi = 1 and therefore l ∈

fl({l1, . . . , lt}).

Let T ⊂ Rn, By a scaling of T we mean a set where all vectors get scaled (possibly by different scalars).

2.2 Random Linear Transformations

This section will prove some results about linear independence and non-degeneracy under random trans-
formations on Rr. This will be required to make our input non-degenerate. From here onwards we fix a
natural number N ∈ N and assume 0 < k < r. Let T ⊂ Rr be a finite set with dim(T) = r. Next we
consider two r × r matrices Ω,Λ. Entries Ωi,j ,Λi,j are picked independently from the uniform distribution
on [N]. For any basis B of Rr and vector v ∈ Rr, let [v]B denote the co-ordinate vector of v in the basis
B. If B = {b1, . . . , br} then [v]iB denotes the i-th co-ordinate in [v]B. Let S = {e1, . . . , er} be the standard
basis of Rr. Let Ej = sp({e1, . . . , ej}) and E′j = sp({ej+1, . . . , er}), then Rr = Ej ⊕ E′j . Let πWEj

be
the orthogonal projection onto Ej . For any matrix M , we denote the matrix of it’s co-factors by co(M). We
consider the following events :

• E0 = {Ω is not invertible }

• E1 = {∃t(6= 0) ∈ T : πWE1
(Ω(t)) = 0}

• E2 = {∃{t1, . . . , tr} LI vectors in T : {Ω(t1), . . . ,Ω(tr)} is LD }

• E3 = {∃{t1, . . . , tr} LI vectors in T : {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)} is LD }

• When ti,Λ,Ω are clear we define the matrix M = [M1 . . .Mr] with columns Mi given as :

Mi =

{
[Ω(ti)]S : i ≤ k
[ΛΩ(ti)]S : i > k

8

M corresponds to the linear map

ei 7→ Ω(ti) for i ≤ k and ei 7→ ΛΩ(ti) for i > k

E4 = {{∃{t1, . . . , tr} LI vectors in T and t ∈ T \ sp({t1, . . . , tk}) : [co(M)[Ω(t)]S]k+1
S = 0}

• E5 = E4 | Ec3

Next we show that the probability of all of the above events is small. Before doing that let’s explain the
events. This will give an intuition to why the events have low probabilities.

• E0 is the event where Ω is not-invertible. Random Transformations should be invertible.

• E1 is the event where there is a non-zero t ∈ T such that the projection to the first co-ordinate
(w.r.t. S) of Ω applied on t is 0. We don’t expect this for a random linear transformation. Random
Transformation on a non-zero vector should give a non-zero coefficient of e1.

• E2 is the event such that Ω takes a basis to a LD set i.e. Ω is not invertible (random linear operators
are invertible).

• E3 is the event such that for some basis applying Ω to the first k vectors and ΛΩ to the last n − k
vectors gives a LD set. So this operation is not-invertible. For ranrom maps this should not be the
case.

• E4 is the event that there is some basis {t1, . . . , tr} and t outside sp(t1, . . . , tk) such that the (k+1)th

co-ordinate of co(M)[Ω(t)]S w.r.t the standard basis is 0. If M were invertible, clearly the set B =
{Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)} would be a basis and co(M) will be a scalar multiple of
M−1. So we are asking if the (k + 1)th co-ordinate of Ω(t) in the basis B is 0. For random Ω,Λ we
would expect M to be invertible and this co-ordinate to be non-zero.

Now let’s formally prove everything. We will repeatedly use the popular Schawrtz-Zippel Lemma which
the reader can find in [Sax09].

Claim 2.3. Pr[E1] ≤ |T |Nr

Proof. Fix a non-zero t =


a1

.

.
ar

 with ai ∈ R and let Ω = (Ωi,j), 1 ≤ i, j ≤ r. Then the first co-ordinate

of Ω(t) is Ω1,1a1 +Ω1,2a2 + . . .+Ω1,rar. Since t 6= 0, not all ai are 0 and this is therefore not an identically
zero polynomial in (Ω1,1, . . . ,Ω1,r). Therefore by Schwartz-Zippel lemma Pr[[Ω(t)]1S = 0] ≤ 1

Nr . Using
a union bound inside T we get Pr[∃t(6= 0) ∈ T : [Ω(t)]1S = 0] ≤ |T |Nr .

Claim 2.4. Pr[E2] ≤ r

Nr2

Proof. Clearly E2 ⊆ E0 and so Pr[E2] ≤ Pr[E0]. E0 corresponds to the polynomial equation det(Ω) = 0.
det(Ω) is a degree r polynomial in r2 variables and is also not identically zero, so using Schwartz-Zippel
lemma we get Pr[E2] ≤ Pr[E0] ≤ r

Nr2
.

Claim 2.5. Pr[E3] ≤
(|T |
r

)
2r

N2r2

9

Proof. Fix an LI set t1, . . . , tr. The set {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . .ΛΩ(tr)} is LD iff the r× r matrix
M formed by writing these vectors (in basis S) as columns (described in part 2.2 above) has determinant
0. M has entries polynomial (of degree ≤ 2) in Ωi,j and Λi,j and so det(M) is a polynomial in Ωi,j ,Λi,j
of degree ≤ 2r. For Ω = Λ = I (identity matrix) this matrix just becomes the matrix formed by the basis
{t1, . . . , tr} which has non-zero determinant and so det(M) is not the identically zero polynomial. By
Schwartz-Zippel lemma Pr[det(M) = 0] ≤ 2r

Nr2Nr2
= 2r

N2r2
. Now we vary the LI set {t1, . . . , tr}, there

are ≤
(|T |
r

)
such sets and so by a union bound Pr[E3] ≤

(|T |
r

)
2r

N2r2
.

Claim 2.6. Pr[E4] ≤
(|T |
r+1

)
2r−1

N2r2

Proof. Fix an LI set t1, . . . , tr and a vector t /∈ sp({t1, . . . , tk}). Let t =
r∑
i=1

aiti. Since t /∈ sp({t1 . . . , tk}),

as 6= 0 for some s ∈ {k + 1, . . . , r}. Let B = {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . .ΛΩ(tr)}. Let M be the
matrix whose columns are from B (Construction has been explained in part 2.2 above). We know that the
co-factors of a matrix are polynomials of degree ≤ r− 1 in the matrix elements. In our matrix M all entries
are polynomials of degree ≤ 2 in Ωi,j ,Λi,j , so all entries of co(M) are polynomials of degree ≤ 2r − 2

in Ωi,j ,Λi,j . Thus [co(M)[Ω(t)]S]k+1
S =

r∑
i=1

co(M)k+1,i[Ω(t)]iS is a polynomial of degree ≤ 2r − 1. This

polynomial is not identically zero. Define Ω to be the matrix (w.r.t. basis S) of the linear map Ω(ti) = ei
and Λ to be the matrix (w.r.t. basis S) of the map

Λ =


Λ(ei) = ei : i /∈ {s, k + 1}
Λ(es) = ek+1

Λ(ek+1) = es

With these values the set B becomes {e1, . . . , ek, es, ek+2, . . . , es−1, ek+1, es+1, . . . , er}. If one now looks
at M i.e. the matrix formed using entries of B as columns it’s just the permutation matrix that flips es
and ek+1. This matrix is the inverse of itself and so has determinant = ±1, thus co(M) = ±M−1 = ±M .

Therefore co(M)[Ω(t)]S = ±M


a1

.

.
ar

 = ±



a1

.
ak
as
ak+2

.
as−1

ak+1

.as+1

.
ar



. Since as 6= 0, we get [co(M)[Ω(t)]S]k+1
S 6= 0.

So the polynomial is not identically zero and we can use Schwartz-Zippel Lemma to say thatPr[[co(M)[Ω(t)]S]k+1
S =

0] ≤ 2r−1

Nr2Nr2
= 2r−1

N2r2
. Now we vary {t1, . . . , tr, t} inside T and use union bound to show Pr[E4] ≤(|T |

r+1

)
2r−1

N2r2
.

Even though this is just basic probability we include the following:

Claim 2.7. Pr[E5] ≤
(|T |
r

)
2r−1

N2r2−(|T |r)2r

Proof. Pr[E5] = Pr[E4 | Ec3] =
Pr[E4∩Ec3]
Pr[Ec3] ≤

Pr[E4]
Pr[Ec3] ≤

(|T |
r+1

) 2r−1

N2r2

1−(|T |r) 2r

N2r2

=
(|T |
r+1

)
2r−1

N2r2−(|T |r)2r

10

In our application of the above r = O(1), |T | = poly(d), N = 2d and so all probabilities are very small as
d grows. So we will assume that none of the above events occur. By union bound that too will have small
probability and so with very high probability E0, E1, E2, E3, E4, E5 do not occur.

2.3 Tools from Incidence Geometry

Later in the paper we will use the quantitative version of Sylvester-Gallai Theorem from [BDYW11]. In
this subsection we do preparation for the same. Our main application will also involve a corollary we prove
towards the end of this subsection.

Definition 2.8 ([BDYW11]). Let S be a set of n distinct points in complex space Cr. A k − flat is
elementary if its intersection with S has exactly k + 1 points.

Definition 2.9 ([BDYW11]). Let S be a set of n distinct points in Cr. S is called a δ−SGk configuration if
for every independent s1, . . . , sk ∈ S there are atleast δn points t ∈ S such that either t ∈ fl({s1, . . . , sk})
or the k−flat fl({s1, . . . , sk, t}) contains a point in S \ {s1, . . . , sk, t}.

Theorem 2.10 ([BDYW11]). Let S be a δ − SGk configuration then dim(S) ≤ 2C
k

δ2
. Where C > 1 is a

universal constant.

Corollary 2.11. Let dim(S) > 2C
k

δ2
then S is not a δ − SGk configuration i.e. there exists a set of

independent points {s1, . . . , sk} and ≥ (1 − δ)n points t such that fl({s1, . . . , sk, t}) is an elementary
k − flat. That is:

• t /∈ fl({s1, . . . , sk})

• fl({s1, . . . , sk, t}) ∩ S = {s1, . . . , sk, t}.

Right now we set δ to be a constant < 0.5, Ck = 2C
k

δ2
. Note that Ci < Ci+1. Using the above theorem we

prove the following lemma which will be useful to us later

Lemma 2.12 (Bichromatic semi-ordinary line). Let X and Y be disjoint finite sets in Cr satisfying the
following conditions.

1. dim(Y) > C4.

2. |Y | ≤ c|X| with c < 1−δ
δ .

Then there exists a line l such that |l ∩ Y | = 1 and |l ∩X| ≥ 1

Proof. We consider two cases:
Case 1 : c|X| ≥ |Y | ≥ |X|
Since dim(Y) > C1, using the corollary above for S = X ∪ Y, k = 1 we can get a point s1 ∈ X ∪ Y for
which there exist (1− δ)(|X|+ |Y |) points t in X ∪ Y such that t /∈ fl{s1} and fl{s1, t} is elementary. If
s1 ∈ X then (1− δ)(|X|+ |Y |)− |X| ≥ (1− 2δ)|X| > 0 of these flats intersect Y and thus we get such a
line l. If s1 ∈ Y then (1 − δ)(|X| + |Y |) − |Y | ≥ ((1 − δ)(1

c + 1) − 1)|Y | > 0 of these flats intersect X
giving us the required line l with |l ∩X| = 1 and |l ∩ Y | = 1.

Case 2: |Y | ≤ |X|
Now choose a subsetX1 ⊆ X such that |X1| = |Y |. Now using the same argument as above for S = X1∪Y
there is a point s1 ∈ X1∪Y such that (1−δ)(|X1|+ |Y |) = 2(1−δ)|Y | = 2(1−δ)|X1| flats through it are

11

elementary in X1 ∪ Y . If s1 ∈ Y (1− 2δ)|Y | > 0 of these flats intersect X1. If s1 ∈ X1, (1− 2δ)|X1| > 0
of these flats intersect Y . In both these above possibilities the flat intersects Y and X1 in exactly one point
each. But it may contain more points from X \ X1 so we can find a line l such that |l ∩ Y | = 1 and
|l ∩X| ≥ 1.

2.4 Characterizing ΠΣ polynomials (Brill’s Equations)

In this section we will explicitly compute a set of polynomials whose common solutions characterize the
coefficients of all homogeneous ΠΣC[x1, . . . , xr] polynomials of degree d. A clean mathematical construc-
tion is given by Brill’s Equations given in Chapter 4, [GKZ94]. However we still need to calculate the time
complexity. But before that we define some operations on polynomials and calculate the time taken by the
operation along with the size of the output. Note that all polynomials are over the field of complex numbers
C and all computations are also done for the complex polynomial rings.

Let x̄ = (x1, . . . , xr) and ȳ = (y1, . . . , yr) be variables. For any homogeneous polynomial f(x̄) of degree
d, define

fx̄k(x̄, ȳ) =
(d− k)!

d!
(
∑
i

xi
∂

∂yi
)kf(ȳ)

Expanding (
∑
i
xi

∂
∂yi

)k as a polynomial of differentials takes O((r + k)r) time and has the same order of

terms in it. f(ȳ) has O((r + k)r) terms. Taking partial derivatives of each term takes constant time and
therefore overall computing (

∑
i
xi

∂
∂yi

)kf(ȳ) takes O((r + k)2r) time. Also the expression obtained will

have atmost O((r + k)2r) terms. Computing the external factor takes poly(d) time and so for an arbitrary
f(x̄) computing all fx̄k(x̄, ȳ) for 0 ≤ k ≤ d takes poly((r + d)r) time and has poly((r + d)r) terms in it.
From Section E., Chapter 4 in [GKZ94] we also know that fx̄k(x̄, ȳ) is a bihomogeneous form of degree k
in x̄ and degree d− k in ȳ. It is called the kth polar of f .

Next we define an � opeartion between homogeneous forms. Let f(x̄) and g(x̄) be homogeneous polyno-
mials of degrees d, define

(f � g)(x̄, ȳ) =
1

d+ 1

d∑
k=0

(−1)k
(
d

k

)
fȳk(ȳ, x̄)gx̄k(x̄, ȳ)

From the discussion above we know that computing fȳk(ȳ, x̄)gx̄k(x̄, ȳ) takes poly((r + d)r) time and it is
obvious that this product has poly((r + d)r) terms. Rest of the operations take poly(d) time and therefore
computing (f�g)(x̄, ȳ) takes poly((r+d)r) time and has poly((r+d)r) terms. From the discussion before
we may also easily conclude that the degrees of x̄, ȳ in (f �g)(x̄, ȳ) are poly(d). The form (f �g) is called
the vertical(Young) product of f and g. See Section G., Chapter 4 in [GKZ94].

Next for k ∈ {0, . . . , d} and z̄ = (z1, . . . , zr) consider homogeneous forms:

ek =

(
d

k

)
fx̄k(x̄, z̄)f(z̄)k−1

Following arguments from above, it’s straightforward to see that computing ek takes poly((r + d)r) time
and has poly((r + d)r) terms. Each ek is a homogeneous form in x̄, z̄ and f . It has degree k in x̄, degree

12

k(d−1) in z, and k in coefficients of f . See Section H. of Chapter 4 in [GKZ94]. Let’s define the following
function of x̄ with parameters f, z

Pf,z(x̄) = (−1)dd
∑

i1+2i2+...+rir=d

(−1)(i1+...+ir) (i1 + . . .+ ir − 1)!

i1! . . . ir!
ei11 . . . e

ir
r

Note that {(i1, . . . , ir) : i1 + 2i2 + . . .+ rir = d} ⊆ {(i1, . . . , ir) : i1 + i2 + . . .+ ir ≤ d} and therefore
the number of additions in the above summand is O(poly(r + d)r). For every fixed (i1, . . . , ir) computing
the coefficient (i1+...+ir−1)!

i1!...ir! takes O(poly((r + d)r)) time using multinomial coefficients. Each ek takes
poly((r+ d)r) time to compute. There are r of them in each summand and so overall we take O(poly((r+
d)r)) time. A similar argument shows that number of terms in this polynomial is O(poly((r + d)r)). Some
more analysis shows that Pf,z(x̄) is a form of degree d in x̄whose coefficients are homogeneous polynomials
of dedgree d in f and degree d(d− 1) in z̄. Let

Bf (x̄, ȳ, z̄) = (f � Pf,z)(x̄, ȳ)

By the arguments given above calculating this form also takes time poly((r+ d)r) and it has poly((r+ d)r)
terms. This is a homogeneous form in (x̄, ȳ, z̄) of multidegree (d, d, d(d−1)) and it’s coefficients are forms
of degree (d+ 1) in the coefficients of f . See Section H., Chapter 4 in [GKZ94]. So in time poly((r+ d)r)
we can compute Bf (x̄, ȳ, z̄) explicitly.

Now we arrive at the main theorem

Theorem 2.13 (Brill’s Equation, See 4.H, [GKZ94]). A form f(x̄) is a product of linear forms if and only
if the polynomial Bf (x̄, ȳ, z̄) is identically 0.

We argued above that computing Bf (x̄, ȳ, z̄) takes O(poly((r + d)r)) time. It’s degrees in x̄, ȳ, z̄ are all
poly(d) and so the number of coefficients when written as a polynomial over the 3r variables
(x1, . . . , xr, y1, . . . , yr, z, . . . , zr) is poly((r + d)r). We mentioned that each coefficient is a polynomial of
degree (d+ 1) in the coefficients of f . Therefore we have the following corollary.

Corollary 2.14. Let

I
def
= {(α1, . . . , αn) : ∀i : αi ≥ 0,

∑
i∈[r]

αi = d}

be the set capturing the indices of all possible monomials of degree exactly d in r variables (x1, . . . , xr).
Let fa(y1, . . . , yr) =

∑
α∈I aαy

α denote an arbitrary homogeneous polynomial. The coefficient vector then
becomes a = (aα)α∈I . Then there exists an explicit set of polynomials F1(a), . . . , Fm(a) on poly((r+d)r)
variables (a = (aα)α∈I), with m = poly((r + d)r), deg(Fi) ≤ poly(d) such that for any particular value
of a, the corresponding polynomial fa(y) ∈ ΠΣd

R[ȳ] if and only if F1(a) = . . . = Fm(a) = 0. Also this set
{Fi, i ∈ [m]} can be computed in time poly((r + d)r) time.

Proof. Clear from the theorem and discussion above.

Note that in our application r = O(1) and so poly((d+ r)r) = poly(d).

2.5 A Method of Reconstructing Linear Forms

In a lot of circumstances one might reconstruct a linear form (upto scalar multiplication) inside V = LinR[x̄]
from it’s projections (upto scalar multiplication) onto some subspaces of V . For example consider a linear

13

form L = a1x1 + a2x2 + a3x3(∈ LinR[x1, x2, x3]) with a3 6= 0, and assume we know scalar multiples of
projections of L onto the spaces Rx1 and Rx2 i.e. we know L1 = α(a2x2+a3x3) and L2 = β(a1x1+a3x3)
for some α, β ∈ R. Scale these projections to L̃1 = x3 + a2

a3
x3 and L̃2 = x3 + a1

a3
x3. Using these two define

a linear form x3 + a1
a3
x1 + a2

a3
x2. This is a scalar multiple of our original linear form L. We generalize this

a little more below.

Let x̄ ≡ (x1, . . . , xr), B = {l1, . . . , lr} be a basis for V = LinR[x1, . . . , xr]. For i ∈ {0, 1, 2}, let Si be
pairwise disjoint non empty subsets of B such that S0 ∪ S1 ∪ S2 = B. Let Wi = sp(Si) and W ′i =

⊕
j 6=i

Wj .

Clearly V = W0 ⊕W1 ⊕W2 = Wi ⊕W ′i , i ∈ {0, 1, 2}.

Lemma 2.15. Assume L ∈ V is a linear form such that

• πW2(L) 6= 0

• For i ∈ {0, 1}, Li = βiπW ′i (L) are known for some non-zero scalars βi.

Then L is unique upto scalar multiplication and we can construct a scalar multiple L̃ of L.

Proof. Let L = a1l1 + . . . + arlr, ai ∈ R. Since πW2(L) 6= 0, there exists lj ∈ S2 such that aj 6= 0. Let
L̃ = 1

aj
L. For i ∈ {0, 1}, re-scale Li to get L̃i making sure that coefficient of lj is 1 in them. Thus for

i = 0, 1
πW ′i (L̃) = L̃i

Since W ′0 = W1 ⊕W2 and W ′1 = W0 ⊕W2 by comparing coefficients we can get L̃.

(Algorithm) Assume we know S0, S1, S2 and therefore the basis change matrix to convert vector represen-
tations from S to B. It takes poly(r) time to convert [v]S to [v]B. Given Li in the basis B it takes poly(r)
time(by a linear scan) to find lj ∈ S2 with aj 6= 0. This lj has a non zero coefficient in both L0, L1. After
this we just rescale Li to get L̃i such that coefficient of lj is 1. Then since L̃i = πW ′i (L̃) the coefficient of lt
in L̃ is as follows :

=


coefficient of lt in L̃1 : lt ∈ S0

coefficient of lt in L̃0 : lt ∈ S1

coefficient of lt in L̃0 = coefficient of lt in L̃1 : lt ∈ S2

Finding the right coefficients using this also takes poly(r) time.

Next we try and use this to reconstruct ΠΣ polynomials. This case is slightly more complicated and so
we demand that the projections have some special form. In particular the projections onto one subspace
preserves pairwise linear independence of linear factors and onto the other makes all linear factors scalar
multiples of each other.

Corollary 2.16. Let Si,Wi, i ∈ {0, 1, 2} be as above and P ∈ ΠΣR[x1, . . . , xr] such that

1. πW2(P) 6= 0

2. For i ∈ {0, 1} there exists βi(6= 0) ∈ R such that P0 = β0πW ′0(P) = pt and P1 = β1πW ′1(P) =
d1 . . . dt. are known i.e. p, dj (j ∈ [t]) and t are known.

Then P is unique upto scalar multiplication and we can construct a scalar multiple P̃ of P .

14

Proof. Let P = L1 . . . Lt with Li ∈ LinR[x̄]. There exists βji , i ∈ {0, 1}, j ∈ [t], such that βj0πW ′0(Lj) = p

and βj1πW ′1(Lj) = dj . Since p, dj are known by above Lemma 2.15 we find a scalar multiple L̃j = βjLj

of Lj and therefore find a scalar multiple P̃ = L̃1 . . . L̃t of P . Note that this method also tells us that such
a P is unique upto scalar multiplication. Since we’ve used the above Algorithm 2.5 at most t times with
t ≤ deg(P), it takes poly(deg(P), r) time to find P̃ .

This corollary is the backbone for reconstructing ΠΣ polynomials from their projections. But first we
formally define a ”Reconstructor”

Definition 2.17 (Reconstructor). Let Si,Wi, i ∈ {0, 1, 2} be as above. Let Q be a standard ΠΣ polyno-
mial and P be a standard ΠΣ polynomial dividing Q with Q = PR. Then (Q,P, S0, S1, S2) is called a
Reconstructor if:

• πW2(P) 6= 0.

• πW ′0(P) = αpt, for some linear form p.

• Let l | R be a linear form and πW2(l) 6= 0 then gcd(πW2(P), πW2(l)) = 1.

Note :
Let L1, L2 be two LI linear forms dividing P , then one can show

L1, L2 are LI ⇔ πW ′1(L1), πW ′1(L2) are LI

To see this first observe that the second bullet implies for i ∈ [2], Li ∈W0 + p⇒ sp({L1, L2}) ⊆W0 + p.
If πW ′1(L1), πW ′1(L2) are LD then

sp({L1, L2}) ∩W1 6= {0}

⇒ (W0 + p) ∩W1 6= {0}. Since W0 ∩W1 = {0} we get that p ∈ W0 ⊕W1 = W ′2 ⇒ πW2(p) = 0 ⇒
πW2(P) = 0 contradicting the first bullet.

Geometrically the conditions just mean that all linear forms dividing P have LD projection (= γp for some
non zero γ ∈ R) w.r.t. the subspace W ′0 and LI linear forms p1, p2 dividing P have LI projections (w.r.t.
subspace W ′1). Also no linear form l dividing R belongs to fl(S0 ∪ S1 ∪ {p}).

We are now ready to give an algorithm to reconstruct P using πW ′0(Q) and πW ′1(Q) by gluing appropriate
projections corresponding to P . To be precise:

Claim 2.18. Let Q,P be standard ΠΣ polynomials and P | Q. Assume (Q,P, S0, S1, S2) is a Reconstruc-
tor. If we know both πW ′0(Q) and πW ′1(Q). Then we can reconstruct P .

Proof. Here is the algorithm:

15

Algorithm 1 Reconstruct linear forms
1: procedure RECONSTRUCTOR (πW ′0(Q) ∈ ΠΣ[x̄], πW ′1(Q) ∈ ΠΣ[x̄], S0, S1, S2)
2: bool flag, ΠΣ polynomial P0, P1;
3: Let πW ′0(Q) = γ

∏
i∈[s]

cmi
i , ci’s pairwise LI and normal, γ ∈ R (Factor using [KT90]).

4: Let πW ′1(Q) = δd1 . . . dm, δ ∈ R and dj normal (Factor using [KT90]).
5: for (i ∈ [s] && πW ′1(ci) 6= 0) do
6: flag = true, P0 = cmi

i ; // Assuming projection w.r.t. W ′0 to be cmi
i .

7: for (j ∈ [s] && j 6= i && πW ′1(cj) 6= 0) do
8: if (gcd(πW ′1(ci), πW ′1(cj)) 6= 1) then flag = false;

9: if (flag==true) then
10: P1 = 1;
11: for (j ∈ [m]) do
12: if (πW ′0(dj) 6= 0 & & {πW ′0(dj), πW ′1(ci)} are LD) then
13: P1 = P1dj // This steps collects projection w.r.t. W ′1 in P1.

14: if ((deg(P1) = mi) && ((P0, P1) give P̃ = βP using Corollary 2.16)) then
15: Make P̃ standard w.r.t. the standard basis S to get P and finally return P

2.5.1 Explanation

• The algorithm takes as input projections πW ′0(Q) and πW ′1(Q) along with the sets Si, i = 0, 1, 2
which form a partition of a basis B. We know that there exists a polynomial P | Q such that
(Q,P, S0, S1, S2) is a reconstructor and so we try to compute the projections πW ′0(P), πW ′1(P).

• If one assumes that πW ′0(Q) = γ
∏
i∈[s]

cmi
i with the ci’s co-prime, then by the properties of a recon-

structor the projection (of a scalar multiple of P) onto W ′0 say P0 = β0πW ′0(P) (for some β0) has to
be equal to cmi

i for some i. We do this assignment inside the first for loop.

• The third property of a reconstructor implies that when we project further to W2, it should not get
any more factors and so we check this inside the second for loop by going over all other factors cj of
πW ′0(Q) and checking if ci, cj become LD on projecting to W2.

• Now to find (scalar multiple of) the other projections i.e. P1 = β1πW ′1(P) (for some β1), we go
through πW ′1(Q) and find dk such that πW ′1(ci) = πW ′0(dk) (i.e. they are projections of the same
linear form). We collect the product of all such dk’s. If the choice of ci were correct then all dk’s
would be obtained correctly.

• The last ”if” statement just checks that the number of dk’s found above is the same as mi since
P0 = cmi

i tells us that the degree of P was mi. We recover a scalar multiple of P using the algorithm
explained in Corollary 2.16 and then make it standard to get P .

2.5.2 Correctness

The corectness of our algorithm is shown by the lemma below.

Claim 2.19. If (Q,P, S0, S1, S2) is a reconstructor then Algorithm 1 returns P .

Proof. (Q,P, S0, S1, S2) is a reconstructor therefore

16

• πW2(P) 6= 0

• πW ′0(P) = δpt

• q | QP ⇒ gcd(πW2(q), πW2(P)) = 1

1. It is clear that for one and only one value of i, ci divides p. Fix this i. Let Q = PR, if cmi
i - πW ′0(P)

then ci | l for some linear form l | πW ′0(R). Condition 3 in definition of Reconstructor implies that
gcd(πW2(P), πW2(l)) = 1 but πW2(ci) divides both of them giving us a contradiction. Since πW ′0(P)
has just one linear factor⇒ πW ′0(P) is a scalar multiple of cmi

i for some i.

2. Assume the correct cmi
i has been found. Now let dj | πW ′1(Q) such that {πW2(ci), πW2(dj)} are LD.

then we can show that dj | πW ′1(P). Assume not, then for some linear form l | R = Q
P , dj | πW ′1(l).

πW ′0(dj) 6= 0 (which we checked) ⇒ πW2(l) 6= 0. So we get πW2(ci) | πW2(l)(6= 0) and so
πW2(ci) | gcd(πW2(P), πW2(l)) which is therefore 6= 1 and condition 3 of Definiton 2.17 is violated.
So whatever dj we collect will be a factor of πW ′1(P) and we will collect all of them since they are all
present in πW ′1(Q).

3. We know from proof of Corollary 2.16 that if we know ci,mi and dj’s correctly then we can recover
a scalar multiple of P correctly. But Q,P are standard so we return P correctly.

In fact we can show that if we return something it has to be a factor of Q.

Claim 2.20. If Algorithm 1 returns a ΠΣ polynomial P , then P | Q

Proof. • If the algorithm returned a ΠΣ polynomial P then flag has to be true at end. So there is an
i ∈ [s] such that P0 = cmi

i with the conditions that πW ′1(ci) 6= 0 and gcd(ci, cj) = 1 for j 6= i. It
also means that for exactly mi of the dj’s (say d1, . . . , dmi) {πW ′1(ci), πW ′0(dj)} are LD and P1 =
d1 . . . dmi .

• Since cmi
i | πW ′0(Q), there exists a factor P̃ | Q of degreemi such that πW ′0(P̃) = cmi

i and πW ′1(ci) 6=
0. This ⇒ πW2(P̃) 6= 0. Clearly πW ′1(P̃) | πW ′1(Q) = d1 . . . dm, hence for all linear factors p̃ of
P̃ , πW ′1(p̃) should be some dj with the condition that {πW ′0((π′W1

)(p̃)), πW ′1(ci)} should be LD. The
only choice we have are d1, . . . , dmi . So πW ′0(P̃) = d1 . . . dmi . All conditions of Corollary 2.16 are
true and so P̃ is uniquely defined (upto scalar multiplication) by the reconstruction method given in
Corollary 2.16. So what we returned was actually a factor of Q.

2.5.3 Time Complexity

Factoring πW ′0(Q), πW ′1(Q) takes poly(d) time (using Kaltofen’s Factoring from [KT90]). The nested for
loops run≤ d3 times. Computing projections with respect to the known decompositionW0⊕W1⊕W2 = Rr
of linear forms over r variables takes poly(r) time. Computing gcd and linear independence of linear forms
takes poly(r) time. The final reconstruction of P using (P0, P1) takes poly(d, r) time as has been explained
in Corollary 2.16. Multiplying linear forms to ΠΣ polynomial takes poly(dr) time. Therefore overall the
algorithm takes poly(dr) time. In our application r = O(1) and therefore the algorithm takes poly(d) time.

17

3 Reconstruction for low rank

For this whole section we fix r to be any constant > max(C2k−1 + k, cR(4)), where Ci = Ck = 2C
i

δ2
is the

constant that appears in Theorem 2.10 used from [BDYW11]. δ is some fixed number in (0, 7−
√

37
6) and C

comes from Theorem 2.10. cR(4) is the rankbound needed for uniqueness of ΣΠΣ(2) circuits as shown in
Theorem 1.7.

Our main theorem for this section therefore is:

Theorem 3.1. Let r be as defined above. Consider f(x̄) ∈ R[x̄], a multivariate homogeneous polynomial of
degree d over the variables x̄ = (x1, . . . , xr) which can be computed by a ΣΠΣR(2)[x̄] circuit C. Assume
that rank of the simplification of C i.e. Sim(C) = r. We give a poly(d) time randomized algorithm which
computes C given blackbox access to f(x̄).

We assume f has the following ΣΠΣR(2)[x̄] representation:

f = G̃(α̃0T̃0 + α̃1T̃1)

where G̃, T̃i ∈ ΠΣR[x̄] are normal (i.e. leading non-zero coefficient is 1 in every linear factor) and α̃0, α̃1 ∈
R with gcd(T̃0, T̃1) = 1. The rank(Sim(C)) = r condition then becomes

sp(L(T̃0) ∪ L(T̃1)) = LinR[x̄]

Consider the set T = L(G̃) ∪ L(T̃0) ∪ L(T̃1). By abuse of notation we will treat these linear forms also as
points in Rr. Since linear factors of G̃, T̃i are normal, two linear factors of G̃, T̃i are LD iff they are same.

Random Transformation and Assumptions Let Ω,Λ be two r × r matrices such that their entries Ωi,j

and Λi,j are picked independently from the uniform distribution on [N]. Here N = 2d. We begin our
algorithm by making a few assumptions. All of these assumptions are true with very high probability and
we assume them in our algorithm. Consider the standard basis of Rr given as S = {e1, . . . , er}. Let
Ej = sp({e1, . . . , ej}) and E′j = sp({ej+1, . . . , er}), clearly Rr = Ej ⊕ E′j . Let πWEj

be the orthogonal
projection onto Ej w.r.t. this decomposition.

• Assumption 0 : Ω is invertible. This is just the complement of event E0 in Section 2.2 and so occurs
with high probability.

• Assumption 1 : For all t ∈ T , πWE1
(Ω(t)) 6= 0 i.e. [Ω(t)]1S 6= 0 (coefficient of e1 is non-zero) .

This is the complement of event E1 in Section 2.2 and so occurs with high probability.

• Assumption 2 : For all LI sets {t1, . . . , tr} ⊂ T , {Ω(t1), . . . ,Ω(tr)} is LI. This essentially means
that Ω is invertible. This is the complement of E2 in Section 2.2 and so occurs with high probability.

• Assumption 3 : Fix a k < r. For all LI sets {t1, . . . , tr} ⊂ T, {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(td)}
is LI i.e. is a basis. This is the complement of event E3 in Section 2.2 and so occurs with high proba-
bility. It’ll be used later in this chapter.

• Assumption 4 : Fix a k < r. For all LI sets T̃ = {t1, . . . , tr} ⊂ T and define the set B =
{Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)}. By Assumption 3 this is a basis. Consider any t ∈ T
such that Ω(t) /∈ sp({Ω(t1), . . . ,Ω(tk)}). Then [Ω(t)]k+1

B 6= 0. This event is the complement of E5

and so it occurs with high probability.

18

From now onwards we will assume that all the above assumptions are true. Since all of them occur with
very high probability, their complements occur with very low probability and by union bound the union of
their complements is a low probability event. So intersection of the above assumptions occurs with high
probability and we assume all of them are true. Note that the assumptions will continue to be true if we
scale all linear forms (possibly different scaling for different vectors, but non-zero scalars) in T i.e. if
the assumptions were true for T then they would have been true had we started with a scaling of T .

The first step of our algorithm is to apply Ω to f . We have a natural identification between linear forms and
points in Rr. This identification converts Ω into a linear map on LinR[x̄] which can be further converted to a
ring homomorphism on polynomials by assuming that it preserves the products and sums of polynomials. So
Ω gets applied to all linear forms in the ΣΠΣ(2) representation of f . Since f is a degree d polynomial in r
variables it has atmost poly(dr) coefficients. Applying Ω to each monomial and expanding it takes poly(dr)
time and gives poly(dr) terms. So computing Ω(f) takes poly(dr) time and has poly(dr) monomials.

Now we try and reconstruct the circuit for Ω(f). If this reconstruction can be done correctly, we can apply
Ω−1 and get back f . Note that Assumption 1 tells us that the coefficient of x1 in Ω(l) is non-zero for all l
in T . Let X = {x1, . . . , xr} and x̄ is used for the tuple (x1, . . . , xr). From this discussion we know that:

Ω(f) = Ω(G̃)(α̃0Ω(T̃0) + α̃1Ω(T̃1)) = G(α0T0 + α1T1)

where αi are chosen such that linear factors of G,Ti have their first coefficient(that of x1) equal to 1. So
they are standard ΠΣ polynomials. Note that we’ve used Assumption 1 here. Since we’ve moved con-
stants to make linear forms standard we can assume G = λΩ(G̃), Ti = λiΩ(T̃i) with λ, λi ∈ R. Consider
some scaling Tsc of T such that X = L(G) ∪ L(T0) ∪ L(T1) is = Ω(Tsc). All above assumptions are true
for Tsc and so we may use the conclusions about Ω(Tsc) i.e. X . Also since Ω is invertible gcd(T0, T1) = 1.

Let Ti =
∏

j∈[M]

lij , i = 0, 1 and G =
∏

k∈[d−M]

Gk, with lij , Gk ∈ LinR[x̄] (so d = deg(f)).

For simplicity from now onwards we call Ω(f) by f and try to reconstruct it’s circuit. Once this is done we
may apply Ω−1 to all the linear forms in the gates and get the circuit for f . This step clearly takes poly(dr)
time in the same way as applying Ω took.

Since r is a constant, the steps described above take poly(d) time overall.

Known and Unknown Parts We also define some other ΠΣR[x̄] polynomials Ki, Ui, i = 0, 1 which
satisfy

Ki | αiGTi, Ui =
αiGTi
Ki

.

with the extra condition
gcd(Ki, Ui) = 1.

Ki are the known factors of αiGTi and Ui the unknown factors. The gcd condition just means that that
known and unknown parts of αiGTi don’t have common factors. In other words linear forms in αiGTi are
known with full multiplicity. We initialize Ki = 1 and during the course of the algorithm update them as
and when we recover more linear forms. At the end Ki = αiGTi and so we know both gates.

3.1 Outline of the algorithm

1. Set C of Candidate Linear Forms :

19

We compute a poly(d) size set C of linear forms which contains L(Ti), i = 0, 1. We will non-
deterministically guess from this set C making only a constant number of guesses everytime(thus
polynomial work overall). It is important to note that the uniqueness of our circuit guarantees that our
answer if computed can always be tested to be right.

2. Easy Case 1 : - dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 for some i ∈ {0, 1} :

So T1−i has two linear factors l(1−i)1, l(1−i)2 such that sp({l(1−i)1, l(1−i)2}) ∩ sp(Ti) = {0}. In this
case we show that the only linear factors of f are those which appear in G. So we can first factorize
f using Kaltofen’s factoring ([KT90]) and obtain G. Update Kj = G, j = 0, 1. So Uj = αjTj for
j = 0, 1. Clearly we also have L(T1−i) (sp(Ti) = sp(Ui) and we can go to Easy Case 2 below.

3. Easy Case 2 : L(T1−i) (sp(Ui), for some i ∈ {0, 1} :

So T1−i has a linear factor l(i−1)1 such that

sp({l(i−1)1}) ∩ sp(Ui) = {0} (1)

LetW = sp({l(1−i)1}) and extend to a basis of V and in the process obtain another subspaceW ′ ⊂ V
such that W ⊕W ′ = V . We can see from Equation 1 that LI linear forms in Ui remain LI when we
project to W ′. We use this to compute Ui and then since KiUi = αiGTi we know one of the gates.
To find the other gate simply factorize f − αiGTi. If it factors into a product of linear forms we have
the reconstruction.

4. Hard Case : L(T1−i) ⊆ sp(Ui), for i = 0 and 1 :

We know that we are not in Easy Case 1 and so dim(sp(T0)+sp(T1))−sp(Ti) ≤ 1 for i = 0, 1. Also
dim(sp(T0) + sp(T1)) = r by assumption on the simple rank of our polynomial. So this guarantees
that dim(sp(T1−i)) ≥ r− 1⇒ (by the condition of this hard case) dim(sp(Ui)) ≥ r− 1 for i = 0, 1
and therefore enables us to use the Quantitative Sylvester Gallai theorems with the sets L(Ti),L(Ui).
Our first step is to identify a certain ”bad” factor I of G and get rid of it to get G? = G

I and thus
f? = f

I . This is done using something we call a Detector Pair (See 3.5) whose existence is shown
using the Quantitative Sylvester Galai Theorems mentioned above. So now we try reconstructing f?

with known (and unknown resp.) parts as K?
0 ,K

?
1 (U?0 , U

?
1 resp.). If sp(U?1−i) becomes small we may

fall in Easy Case 2 and recover the whole circuit directly. Otherwise the same detector pairs then
provide certain ”nice” subspaces corresponding to linear forms in Ti. Projection of U?1−i onto these
subspaces can be easily glued together to recover some linear factors(with multiplicities) of U?1−i,
which will then be multiplied to K?

1−i. The process continues as long as sp(U?1−i) remains large. As
soon as this condition fails we end up in Easy Case 2 and the gates are recovered.

3.2 Set C of Candidate Linear Forms

This section deals with constructing a poly(d) size set C which contains each lij , (i, j) ∈ {0, 1}× [M]. First
we define the set and prove a bound on it’s size.

3.2.1 Structure and Size of C

Let’s recall f = G(α0T0 + α1T1) and define two other polynomials:

g =
f

G
= α0T0 + α1T1

20

h =
f

Lin(f)
=

g

Lin(g)

Assume deg(h) = dh

Definition 3.2. Our candidate set is defined as:

C def= {l = x1 − a2x2 − . . .− arxr ∈ LinR[x̄] : h(a2x2 + . . .+ arxr, x2, . . . , xr) ∈ ΠΣdh
R [x2, . . . , xr]}

(for definition of ΠΣdh
R [x2, . . . , xr] See Section 2.1)

In the claim below we show that linear forms dividing polynomials Ti, i = 0, 1 are actually inside C (first
part of claim). The remaining linear forms in C (which we call “spurious”) have a nice structure (second
part of claim). In the third part of our claim we arrive at a bound on the size of C. Recall the definition of
cR(k) from Theorem 1.6.

Claim 3.3. The following are true about our candidate set C.

1. L(Ti) ⊆ C, i = 0, 1.

2. Let k = cR(3) + 2 and suppose {lj ; j ∈ [k]} ⊂ L(Ti) are LI . Then for any l ∈ C \ (L(T0) ∪ L(T1)),
there exists j ∈ [k] such that fl({l, lj})∩L(T1−i) 6= φ i.e. the line joining l and lj does not intersect
the set L(T1−i).

3. |C| ≤M4 + 2M ≤ d4 + 2d.

Proof. See A.1 in Appendix.

Let’s now give an algorithm to construct this set.

3.2.2 Constructing the set C

Here is an algorithm to construct the set C. An explanation is given in the lemma below.

Algorithm 2 Find the set C of candidate linear forms (returns a set)
1: procedure Candidates(f ∈ ΣΠΣR(2)[x̄])
2: Define C = φ;
3: Use polynomial factorization from [KT90] to find Lin(f) i.e. the product of all linear factors of f .
4: Consider polynomial h = f

Lin(f)
5: Let a2, . . . , ar be variables.
6: Compute the coefficient vector b of h(a2x2 + . . . + arxr, x2, . . . , xr) with entries as polynomials

in a2, . . . , ar.
7: Consider the polynomials {Fi, i ∈ [m]} constructed in Corollary 2.14.
8: Using your favorite algorithm (eg. Buchberger’s [Buc76]) to solve polynomial equations, find all

complex solutions to the system {Fi(b) = 0, i ∈ [m]}.
9: For each solution (a2, . . . , ar) ∈ Rr do : C = C ∪ {(1, a2, . . . , ar)}.

return C;

Lemma 3.4. Given a polynomial f ∈ R[x1, . . . , xr] of degree d in r independent variables which admits
a ΣΠΣR(2)[x1, . . . , xr]-representation : f =

∏
i∈[d−M]

Gi(α0
∏

j∈[M]

l0j + α1
∏

k∈[M]

l1k) such that Gt, lij(t ∈

[d − M], i ∈ {0, 1}, j ∈ [M]) are standard w.r.t. the standard basis {x1, . . . , xn} then we can find in
deterministic time poly(d), the corresponding candidate set C (see Definition 3.2) described above.

21

Proof. The proof also contains an explanation of the algorithm above

• Let l = x1 − a2x2 − . . . − arxr ∈ C be a candidate linear form. We know that h(a2x2 + . . . +
arxr, x2, . . . , xr) ∈ ΠΣdh

R [x2, . . . , xr] ⊂ ΠΣdh
C [x1, . . . , xr].

• Using Theorem 2.14 we know that h(a2x2 + . . . + arxr, x2, . . . , xr) ∈ ΠΣdh
C [x2, . . . , xr] ⇔ for the

coefficient vector b of h(a2x2 + . . .+arxr, x2, . . . , xr) inside C[x2, . . . , xr] satisifes F1(b) = . . . =
Fm(b) = 0 for the polynomials {Fi : i ∈ [m]} obtained in Corollary 2.14. .

• For any t ≤ dh, computing (a2x2 + . . .+ arxr)
t requires poly(tr) time and it also has poly(tr) terms

and degree t. Multiplying such powers to other variables and adding poly(drh) many such expressions
also requires poly(drh) time. Hence computing the coefficient vector b takes polynomial time since r
is a constant. Each co-ordinate of this coefficient vector is a polynomial in r−1 variables (a2, . . . , ar)
of degree poly(drh).

• Now we think of the ai’s as our unknowns and obtain them by solving the polynomial system
{Fi(b) = 0, i ∈ [m]}. The number of polynomials is m = poly(dr) and degrees are poly(d).
Fi’s are polynomials in poly(dr) variables. Expanding Fi(b) will clearly take poly(dr) time and now
we will have poly(dr) polynomials in r variables of degrees poly(dr). Note that r = O(1) and so
we need to solve poly(d) polynomials of degree poly(d) in constant many variables. Also Claim 3.3
implies that the number of solutions ≤ M4 + 2M = O(poly(d)). So using Buchberger’s algorithm
[Buc76] we can solve the system for (a2, . . . , ar) in poly(d) time. Once we have the solutions we
consider only those linear forms which are in R[x1, . . . , xr] and add them to C.

We give algorithms for Easy Case 1 and 2. Hard Case will require more prepration and will be done after
these subsections.

3.3 Easy Case 1 : dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 for some i ∈ {0, 1}

Claim 3.5. If dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 then L(αiTi + α1−iT1−i) = φ.

Proof. dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2⇒, there exists l′1, l
′
2 ∈ L(T1−i)\sp(Ti) be such that dim({l′1, l′2}∪

L(Ti)) = dim(L(Ti)) + 2. Assume there exist l ∈ L(αiTi + α1−iT1−i).

l | αiTi + α1−iT1−i ⇒ l - Ti and l - T1−i (since they are coprime)

0 6= αi
∏
j∈[M]

lij = −α1−i
∏
j∈[M]

l(1−i)j (mod {l}).

Thus there exist l1, l2 ∈ L(Ti) and scalars γj , δj , j ∈ [2] such that l = γjlj + δjl
′
j . Since l - T0, l - T1 we

get γj , δj are non zero.
δ1, δ2 6= 0⇒,

l′1, l
′
2 ∈ sp({l} ∪ L(Ti))⇒ dim({l′1, l′2} ∪ L(Ti)) ≤ dim(L(Ti)) + 1

which is a contradiction. So L(αiTi + α1−iT1−i) = φ.

22

Therefore the only linear factors of f are present inG, which can now be correctly found by using Kaltofen’s
algorithm [KT90] and identifying the linear factors. Update Kj = G for j = 0, 1, therefore Uj = Tj . Also
this case implies that L(T1−i) (sp(Ti) = sp(Ui). and so we can go to the next case.

Algorithm 3 Easy Case 1 - Gates span different spaces
1: procedure bool gatespan uneven(f ∈ ΣΠΣR(2)[x̄], C ⊂ LinR[x̄])
2: Apply Kaltofen’s factoring algorithm [KT90] and find Lin(f);
3: if ((recon uneven(f, Lin(f), Lin(f), C) == true)) then return Both Gates and true;

return false;

The above algorithm does exactly what has been explained in the preceeding paragraph. It works in poly(d)
time if recon uneven(f,K0,K1, C) works in poly(d) time. Kaltofen’s factoring and all other steps are
poly(d) time.

3.4 Easy Case 2 : L(T1−i) (sp(Ui), for some i ∈ {0, 1}

Claim 3.6. Suppose for some i ∈ {0, 1}, L(T1−i) (sp(Ui) then we can reconstruct f .

Algorithm 4 Easy Case 2 - Some gate has extra dimensions
1: procedure bool recon uneven(f ∈ ΣΠΣR(2)[x̄],K0 ∈ ΠΣR[x̄],K1 ∈ ΠΣR[x̄], C ⊂ LinR[x̄])
2: for (i ∈ {0, 1}) do // i such that T1−i has extra dimensions
3: for (every LI set {l1, l2, . . . , lr} ⊂ C) do // Guess l1 ∈ L(T1−i), sp(Ui) ⊂ sp({l2, . . . , lr})
4: K ′i = Ki;
5: Compute t such that lt1 || f ; // i.e. lt1 | f && lt+1

1 - f
6: W = sp({l1}); and W ′ = sp({l2, . . . , lr}); // V = W ⊕W ′
7: if lt1 || K ′i then
8: f̃ = f

lt1
; K̃i =

K′i
lt1

;

9: if Ui =
πW ′ (f̃)

πW ′ (K̃i)
∈ ΠΣR[x̄] && f −KiUi ∈ ΠΣR[x̄] then

10: Ki = KiUi; K1−i = f −KiUi;
11: return Both gates and true;

return false;

Explanation and Correctness Analysis

• The first for loop just guesses the gate with extra dimensions i.e. it’s not contained in span of the
unknown part of the other gate.

• If for some basis {l1, . . . , lr} ⊂ C the algorithm actually computes a ΣΠΣ(2) representation in the
end then it ought to be correct since the last ’if’ also checks if it is correct.

• If our guess for i is correct, we show that there exists a basis {l1, . . . , lr} ⊂ C for which all conditions
will be satisfied and we actually arrive at a ΣΠΣ(2) representation in the end. Since L(T1−i) (
sp(Ui) and L(T1−i), sp(Ui) ⊂ C there exists l1 ∈ L(T1−i) \ sp(Ui) ⊂ C. Choose a basis {l2, . . . , ls}
of sp(Ui), then {l1, . . . , ls} is an LI set. Now extend this to a basis {l1, . . . , ls, ls+1, . . . , lr} ⊂ C of
V . We go over all such choices of basis in C and will arrive at the right one.

23

• We initialize a dummy polynomial K ′i to represent Ki since we do not want to update Ki till we
actually have a solution. Let’s assume lt1 || f . We know l1 | T1−i ⇒ l1 - Ti ⇒ l1 - αiTi + α1−iT1−i.
Therefore lt1 || G ⇒ lt1 || αiGTi = KiUi. Also l1 /∈ sp(Ui) ⇒ l1 - Ui thus lt1 || Ki ⇒ lt1 || K ′i.
We remove lt1 from both f,K ′i to get f̃ , K̃i. Let W = sp({l1}) and W ′ = sp({l2, . . . , lr}), therefore
V = W ⊕W ′. Note that since l1 ∈ L(T1−i)

πW ′(f̃) = πW ′(Ui)πW ′(K̃i)

Since πW ′(K̃i) 6= 0, we get πW ′(Ui) =
πW ′ (f̃)

πW ′ (K̃i)
. If Ui = u1 . . . us with uj ∈ W ′, we see that

πW ′(Ui) = πW ′(u1) . . . πW ′(us) = u1 . . . us = Ui. So we get Ui and hence αiGTi = KiUi . Once
αiGTi is known we factorize f − αiGTi to get α1−iGT1−i. For the correct choice of our basis this
will factorize completely into a ΠΣ polynomial. Now we update Ki = KiUi and K1−i = f − kiUi
and return true. Throughout the algorithm we use Kaltofen’s factoring [KT90] wherever necessary.

• If we were not able to find the ΣΠΣ(2) representation then we were not in this case and return false.

Time Complexity - We can see above all loops run only poly(d) many times. The most expensive step
is choosing r vectors from C. But recall that r is a constant and so this also takes only polynomial time
in d. Other steps like factoring polynomials (using Kaltofen’s factoring algorithm from [KT90]), taking
projection onto known subspaces, divding by polynomials require poly(d) time (r is a constant) as has been
explained multiple times before.

Now we need to handle the Hard Case. This is quite technical and so we do some more preparation. We
devise a technique to get rid of some factors of f to get a new polynomial f? without destroying the ΣΠΣ(2)
structure. If Easy Case 2 holds for f? we stop there itself. Otherwise we will use combination of different
subspaces of V , project f? onto them and glue projections to get gates for f?.

3.5 Detector Pair, Reducing Factors, Hard Case Preparation

We outline an approach to identify some factors of f . These factors will divide G but won’t divide g. This
is going to be useful in the Hard Case. The linear factors left after removing these identified factors will
have very strong structural properties and so will be instrumental in reconstruction. The main tool in this
identification is a pair (S,D) (defined below) inside one of the L(Ti)’s. This pair will be called a “Detector
Pair”. It will also decide the subspaces on which we take projections of f and glue back to get the gates.

Detector Pairs (S,D) Fix k = cR(3) + 2 (See Theorem 1.6 for definition of cR(m)). Let S =
{l1, . . . , lk} ⊂ L(Ti) be an LI set of linear forms. Let D(6= φ) ⊆ L(Ti) .We say that (S,D) is a ”De-
tector Pair” in L(Ti) if the following are satisfied for all lk+1 ∈ D:

• {l1, . . . , lk, lk+1} is an LI set. Let F = fl({l1, . . . , lk, lk+1}). F is elementary in L(Ti) i.e. F ∩
L(Ti) = {l1, . . . , lk, lk+1}. See Definition 2.8.

• F ∩ L(T1−i) ⊆ fl({l1, . . . , lk}) i.e. F contains only those points from L(T1−i) which lie inside
fl({l1, . . . , lk}).

3.5.1 Identifying Some Factors Which Don’t Divide g

The two claims below give results about structure of linear forms which divide g. The proofs are easy but
technical and so we move them to the appendix.

24

Claim 3.7. Let (S = {l1 . . . , lk}, D) be a Detector set in L(Ti). Let lk+1 ∈ D. For a standard linear form
l ∈ V , if l | g then l /∈ sp({l1, . . . , lk}) .

Proof. See B.1 in Appendix

Claim 3.8. Let l ∈ LinR[x̄] be standard such that l | g and C be the candidate set. Assume (S =
{l1, . . . , lk}, D(6= φ)) is a Detector pair in L(Ti). Then |L(T1−i)∩ (fl(S ∪ {l}) \ fl(S))| ≥ 2. That is the
flat fl({l1, . . . , lk, l}) contains atleast two distinct points from L(T1−i)(⊆ C) outside fl({l1, . . . , lk}).

Proof. See B.2 in Appendix

Claim 3.9. Suppose (S = {l1, . . . , lk}, D(6= φ)) is a Detector in L(Ti). The following algorithm identifies
some factors in L(G) \ L(g). It returns the product of all linear forms identified.

Algorithm 5 Identifies linear forms dividing L(G) but not L(g)

1: procedure IdentifyFactors(f ∈ ΣΠΣR(2)[x̄], C ⊂ LinR[x̄], S = {l1, . . . , lk} ⊂ LinR[x̄])
2: I = 1, bool flag;
3: for (each factor l of f) do
4: flag = false;
5: if (l, l1, . . . , lk are LI) then
6: for (l′1 6= l′2 ∈ C \ fl({l1, . . . , lk})) do
7: if (l′1, l

′
2 ∈ sp({l, l1, . . . , lk})) then

8: flag = true; //This factor should not identified
9: break();

10: if (!flag) then
11: I = I ×l // identified l ∈ L(G) \ L(g)

return I;

Proof. The proof of the claim is a part of Lemma 3.10 below.

Time Complexity - Since C has size poly(d) and deg(f) = d, the nested loops run poly(d) times. k, r are
constants so checking linear independence of k+1 linear forms in r variables takes constant time. Checking
if some vectors belong to a k + 1 dimensional space also takes constant time. Multiplying linear forms to I
takes poly(d) time. So overall the algorithm runs in poly(d) time.

So the above algorithm identified a factor I of G for us. Let us define new polynomials

G? =
G

I
=
∏
t∈[N1]

Gt

and
f? =

f

I
= G?(α0T0 + α1T1)

Lemma 3.10. The following are true:

1. If l | I (i.e. l was identified) then l ∈ L(G) \ L(g).

25

2. If l | G? (i.e. l was retained) then (fl({l1, . . . , lk, l})\fl({l1, . . . , lk}))∩(L(T1−i)∪(L(Ti)\D)) 6= φ
that is:

(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) contains a point from L(Ti) \D or L(T1−i).

3. If l | G? and lk+1 ∈ D then l /∈ sp({l1, . . . , lk, lk+1}).

Proof. See B.3 in Appendix.

3.5.2 Overestimating the set D of the detector pair (S,D)

Lemma 3.10 is going to help us actually find an overestimate of D corresponding to S = {l1, . . . , lk} in the
detector pair (S,D) as described in the lemma below. This will be important since we need D during our
algorithm for the Hard Case.

Lemma 3.11. Let (S = {l1, . . . , lk}, D) be a detector in L(Ti). For each (l, lj) ∈ C × S define the
space U{l,lj} = sp({l, lj}). Extend {l, lj} to a basis and in the process obtain U ′{l,lj} such that V =

U{l,lj} ⊕ U ′{l,lj}. Define the set:

X = {l ∈ C : πU ′{l,lj}
(f?) 6= 0, for all lj ∈ S}

Then D ⊂ X ⊂ L(Ti).

Proof. See B.4 in Appendix.

This set X is an overestimate of D inside L(Ti) and also easy to compute. Given S we may easily construct
X in time poly(d) because of it’s simple description. Let’s give an algorithm to compute X given f?, S, C.

Algorithm 6 Overestimate the Detector (Returns a set of linear forms)
1: procedure overest detector(f? ∈ ΣΠΣR(2)[x̄], S = {l1, . . . , lk} ⊂ LinR[x̄], C ⊂ LinR[x̄])
2: bool flag;
3: Define X = φ;
4: for (each l ∈ C) do // Searching for linear forms in D
5: flag = true;
6: for (each lj ∈ S) do
7: Find {l′1, . . . , l′r−2} ⊂ C such that {l, lj , l′1, . . . , l′r−2} is LI
8: U = Rl ⊕ Rlj ;U ′ = Rl′1 ⊕ . . .⊕ Rl′r−2; // Spaces for projection
9: if (πU ′(f?) = 0) then // l is not in D

10: flag = false;

11: if (flag) then
12: X = X ∪ {l};

return X;

Time Complexity - Inside the inner for loop we look for (r − 2) linear forms from C. |C| = poly(d) and
r is a constant and so this step only needs poly(d) time. The nested loops run polynomially many times.
Checking linear independece of r linear forms and projecting to known constant dimensional subspaces also
take poly(d) time as has been discussed before. So the algorithm runs in poly(d) time.

26

3.6 Hard Case : L(T1−i) ⊆ sp(Ui), for i = 0 and 1

This Subsection will involve the most non trivial ideas. We handled the case dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥
2 completely in Easy Case 1 and 2 (See Sections 3.3 and 3.4), so let’s assume dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≤
1 ⇒ dim(L(T1−i) ∪ L(Ti)) ≤ dim(L(Ti)) + 1 for both i = 0, 1. We already know that rank(f) = r,
implying dim(L(Ti)∪L(T1−i)) = r. Thus for i = 0, 1; dim(L(Ti)) ≥ r− 1. This works in our favour for
applying the quantitative version of the Sylvester Gallai theorems given in [BDYW11]. To be precise we
will use Corollary 2.12 from Section 2.3 in this paper.

1. Our first application (See Lemma 3.13) of Quantitative Sylvester Gallai will help us prove the exis-
tence of a Detector pair (S = {l1, . . . , lk}, D) in L(Ti) with k = cR(3) + 2 (See defn of cR(.) in
Theorem 1.6) and large size of D. For this we will only need dim(L(Ti)) ≥ C2k−1 for i = 0, 1(See
Section 2.3 for definition of C2k−1). So we can go back and fix our r to be ≥ C2k−1 + 1 where
k = cR(3) + 2.

2. The above point shows the existence of a detector pair (S,D) in L(Ti) with large |D|. So now we go
back to Subsection 3.5 and remove some factors of f to get f? = G?(α0T0 + α1T1) such that linear
factors of G? satisfy properties given in Lemma 3.10. We also compute the overestimate X of D
using Algorithm 3.5.2. Let the known and unknown parts of f? be K?

0 ,K
?
1 and U?0 , U

?
1 respectively.

If for some i ∈ {0, 1}, L(Ti) (sp(U?1−i) then we are in Easy Case 2 for f? and can recover the gates
for f?. Otherwise for both i = 0, 1; L(Ti) ⊆ sp(U?1−i) ⇒ dim(L(U?1−i)) ≥ r − 1 and we continue
with reconstruction below.

3. Next to actually reconstruct linear forms in U?1−i, we will use it’s high-dimensionality (≥ r − 1 ≥
C2k−1) discussed above. Corollary 2.12 from Section 2.3 will enable us to prove the existence of
a d1 ∈ D which together with the set S found above will give the existence of a ”Reconstructor”(
See Claim 2.18 and Algorithm 1) which recovers some linear factors of U?1−i with multiplicity (See
Theorem 3.16) .

3.6.1 Large Size of Detector Sets

w.l.o.g. we assume |L(T0)| ≤ |L(T1)|. First we point out a simple calculation that will be needed later. For
δ ∈ (0, 7−

√
37

6) and θ ∈ (3δ
1−δ , 1− 3δ), let v(δ, θ) be defined as follows:

v(δ, θ) =

{
1− δ − θ if |L(T0)| ≤ θ|L(T1)|

(1− δ)(1 + θ)− 1 if θ|L(T1)| < |L(T0)| ≤ |L(T1)|

Claim 3.12. The following is true

(2− v(δ, θ))

v(δ, θ)
≤ 1− δ

δ

Proof. See C.1 in Appendix.

Lemma 3.13. Let k = cR(3) + 2 (see defn of cR(m) in Theorem 1.6). Fix δ, θ in range given in Claim
3.12 above . Then for some i ∈ {0, 1} there exists a Detector (S = {l1, . . . , lk}, D) in L(Ti) with |D| ≥
v(δ, θ) max(|L(T0)|, |L(T1)|).

Proof. See C.2 in Appendix.

27

3.6.2 Assuming L(Ti) ⊆ sp(L(U?1−i)) and reconstructing factors of U?1−i

Consider the set of linear forms (points) X = L(G?) ∪ L(T0) ∪ L(T1). We know that sp(X) = V =
LinR[x̄] ' Rr (By abuse of notation we will use linear forms as points in Rr wherever required). Let
(S0 = {l1, . . . , lk}, D) be a detector in L(Ti) with |D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|) and W0 = sp(S0).
Extend S0 to a basis {l1, . . . , lk, l′k+1, . . . , l

′
r}. Now it’s time to use the other random matrix Λ. Since we had

applied Ω in the beginning, {Ω−1(l1), . . . ,Ω−1(lk)} are linear forms in our input polynomial for this section.
By Assumption 3 we know that the set {Ω(Ω−1l1), . . . ,Ω(Ω−1lk),ΛΩ(Ω−1l′k+1), . . . ,ΛΩ(Ω−1l′r)} is LI.
Let lj = Λl′j , j ∈ {k + 1, . . . , r}. So B = {l1, . . . , lr} is a basis. and define W̃0 = sp({lk+1, . . . , lr}).
Clearly V = W0 ⊕ W̃0. Also by Assumption 4 for any l ∈ X \W0, [l]k+1

B 6= 0. We define a normalization
for linear forms l ∈ X :

l̂ =

{
1

[l]k+1
B

l : l ∈W c
0 ∩ X

0 : l ∈W0 ∩ X

i.e. normalize the (k + 1)th co-ordinate w.r.t. the basis B. For any subset T ⊂ X , we define :

T̂ = {l̂ : l ∈ T } \ {0}

With this notation we proceed towards detecting linear factors of the unknown parts. But first let’s show that
even after projecting onto W̃0, the detector is larger in size (upto a function of δ) compared to one of the
unknown parts.

Lemma 3.14. The following are true:

1. dim(πW̃0
(L̂(U?1−i))) > C4

2. πW̃0
(L̂(U?1−i)) ∩ πW̃0

(D̂) = φ

3. |πW̃0
(L̂(U?1−i))| ≤

1−δ
δ |πW̃0

(D̂)|

Proof. See C.3 Appendix.

This Lemma enables us to apply Lemma 2.12 from Section 2.3. Consider the sets πW̃0
(L̂(U?1−i)) and

πW̃0
(D̂). We’ve shown above that they are disjoint, span high enough dimension and

|πW̃0
(L̂(U?1−i))| ≤

1− δ
δ
|πW̃0

(D̂)|

Lemma 2.12 shows the existence of a line ~L1 (called a ”semiordinary bichromatic” line) in W̃0 such that
|~L1 ∩ πW̃0

(L̂(U?1−i))| = 1 and |~L1 ∩ πW̃0
(D̂)| ≥ 1.

28

For technical reasons we need a different ”semiordinary bichromatic” line. We construct it here:

1. Pick a d1 ∈ D such that e = πW̃0
(d̂1) ∈ ~L1. Clearly e ∈ sp({l1, . . . , lk, d1}). Observe

[d1]k+1
B 6= 0 ⇒ [e]k+1

B 6= 0, further implying that B1 = {l1, . . . , lk, e, lk+2, . . . , lr} and B2 =
{l1, . . . , lk, d1, lk+2, . . . , lr} are bases.

2. For v ∈ V , denote by [v]d1B2 the coefficient of d1 when v is written in basis B2. We know that for
v ∈ X , [v]k+1

B 6= 0, this clearly implies that [v]d1B2 6= 0. We define another normalization for linear
forms l ∈ X :

l̃ =

{
1

[l]
d1
B2

l : l /∈W0 ∩ X

0 : l ∈W0 ∩ X

i.e. normalize the coefficient of d1 when l is written in basis B2. For any subset T ⊂ X , we define :

T̃ = {l̃ : l ∈ T } \ {0}

This leads us to the following lemma :

Lemma 3.15. Let S1 = {d1} and S2 = {lk+2, . . . , lr}, W1 = sp(S1) and W2 = sp(S2). So V =

W0 ⊕ W1 ⊕ W2 and let W ′0 = W1 ⊕ W2. For u ∈ L(U?1−i) such that πW̃0
(û) ∈ ~L1 ∩ πW̃0

(L̂(U?1−i))
consider the following line inside W ′0

~L2 = fl({d1, πW ′0(ũ)})

then |~L2 ∩ πW ′0(D̃)| ≥ 1 and |~L2 ∩ πW ′0(L̃(U?1−i))| = 1, i.e. ~L2 is also a ”semiordinary bichromatic” like
~L1.

Proof. See C.4 in Appendix.

Finally it’s time to give the main theorem for this subsection which helps us design an algorithm for the
Hard Case.

Theorem 3.16. There exist pairwise disjoint LI sets S0, S1, S2 with S0 ∪ S1 ∪ S2 being a basis, and non
constant polynomials P,Q dividing U?1−i such that P | Q and (Q,P, S0, S1, S2) is a Reconstructor.

Proof. We do this in steps:

• Let S0, S1, S2 be as defined in the discussion above.

• Let Q be the largest factor of U?1−i such that for all linear forms q | Q, πW2(q) 6= 0. So πW2(Q) 6= 0

and if u? | U
?
1−i

Q is a linear form then πW2(u?) = 0. Let P be the ΠΣ polynomial with the largest
possible degree such that for all linear factors p of P , πW ′0(p̃) = πW ′0(ũ) (which was a non zero vector

on ~L2). Since πW ′0(ũ) and πW ′0(d̃1) were LI this also means that πW2(u) 6= 0 ⇒ πW2(p) 6= 0 for all
p | P . Clearly P is non constant since u | P , also by definition P | Q. Then (Q,P, S0, S1, S2) is a
Reconstructor (See Subsection 2.5 for definition) for P . Let’s check this is true:

– πW2(Q) 6= 0 - By definition of Q we know this for all it’s factors and therefore for Q itself.

– πW ′0(P) = δ(πW ′0(ũ))t, for some δ ∈ R (by definition of P).

29

– Let q | QP such that gcd(πW2(P), πW2(q)) 6= 1⇒ there exists some linear factor p | P such that
πW2(p), πW2(q) are LD. {πW2(p), πW2(q)} are LD and non-zero implies q ∈ sp({l1, . . . , lk, d1, p}).

⇒ πW ′0(q) ∈ sp({πW ′0(d1), πW ′0(p)}) = sp({d1, πW ′0(ũ)})

So clearly :
πW ′0(q̃) ∈ sp({d1, πW ′0(ũ)})

Since coefficient of d1 in πW ′0(q̃), d1, and πW ′0(ũ) is 1, it’s easy to see that πW ′0(q̃) ∈ fl({d1, πW ′0(ũ)}) =

~L2. Since Q | U?1−i we have πW ′0(q̃) ∈ πW ′0(L̃(U?1−i)) ⇒ πW ′0(q̃) ∈ ~L2 ∩ πW ′0(L̃(U?1−i)) =
{πW ′0(ũ)}. So πW ′0(q̃) = πW ′0(ũ) which can’t be true since P is the largest polynomial dividing
Q where linear factors have this property and q - P . So such a q does not exist.

Corollary 3.17. Using f,K1−i, S0, S1, S2 from above we can compute πW ′0(Q), πW ′1(Q) for Q defined in
the proof above.

Proof. See the following algorithm. The r× r matrix Λ with enries picked independently (and independent
of entries of Ω) from the uniform distribution on [N] is also sent as an input. Fix k = cR(3) + 2.

30

Algorithm 7 Hard Case - L(Ti) ⊆ L(U1−i) for i = 0, 1

1: procedure bool recon even(f ∈ ΣΠΣR(2)[x̄], C ⊂ LinR[x̄],Λ ∈ Rr×r)

i) For each i ∈ {0, 1} (guessing the gate which contains detector pair with large |D|) do the following

a) Iterate over all choices of LI vectors B′ = {l1, . . . , lk, l′k+1, . . . , l
′
r} ⊂ C.

1) Let S0 = {l1, . . . , lk} (guess for the S in the good detector pair) and apply Λ to the last
r − k vectors to get lj = Λ(l′j) for j ∈ {k + 1, . . . , r}.

2) Check if B = {l1, . . . , lr} is a basis, if not reject this B′ and go to next (or next i if B′
is not available anymore)

3) Compute the ΠΣ polynomial I = IdentifyFactors(f, C, S0). If I | f let f? = f
I and

define known parts of gates K?
0 = 1,K?

1 = 1. Else reject this B′ and go to next (or
next i if B′ is not available anymore)

4) Compute an overestimate X of D in L(Ti) using X = overest detector(f?, C, S0).
5) while (deg(K?

1−i) < deg(f?)) do the following -
(i) Check whether we’ve landed in Easy Case 2. Invoke recon uneven(f?,K?

0 ,K
?
1 , C).

If this returns true with ΠΣ gates A,B, check if f = IA + IB and return true with
gates IA, IB. If it returned false or f 6= IA+ IB, continue reconstruction.

(ii) Iterate over all d1 ∈ X and do the following:
(a) If B2 = {l1, . . . , lk, d1, lk+2, . . . , lr} is not an LI set reject this d1 and go to next

d1 in loop.
(b) To take projections define the following spaces : Vj = Rlj , j ∈ [r]\{k+1}, Vk+1 =

Rd1 ⇒ V =
r⊕
j=1

Vj . Define V ′j =
⊕

t∈[r]\{j}
Vt. Also define S0 = {l1, . . . , lk}, S1 =

{uk+1}, S2 = {lk+2, . . . , lr}, Wj = sp(Sj),W
′
j =

⊕
j1 6=j

Wj1 for j ∈ {0, 1, 2}.

(c) Consider the largest Q | U?1−i such that for all q | Q, q /∈ W2(defined above). Next
we try to compute πW ′0(Q), πW ′1(Q).

(d) To compute πW ′0(Q) first compute Q0 =
πV ′1

(f?)

πV ′1
(K?

1−i)
. If Q0 is a non-zero ΠΣ poly-

nomial continue else reject d1 and go to next in loop. For each linear form q0 | Q0

if q0 ∈ W2 then Q0 = Q0

q0
. This removes some projections and gives πV ′1 (Q).

Compute Q0 = πW ′0(Q0). If Q0 is a non-zero ΠΣ polynomial continue else re-
ject this d1 and go to next d1 in the loop. Since V1 ⊂ W0 and W ′0 ⊂ V ′1 ,
πW ′0(Q) = πW ′0(πV ′1 (Q)) = Q0.

(e) Compute Q1 =
πW ′1

(f)

πW ′1
(K?

1−i)
. If Q1 is a non-zero ΠΣ polynomial continue else reject

this d1 and go to next d1 in the loop. Again remove projections of q | Q such that
q ∈W2. i.e. for each linear form q1 | Q1 if q1 ∈W2 then Q1 = Q1

q1
.

(f) If Reconstructor(Q0, Q1, S0, S1, S2) returns a non-trivial ΠΣ polynomial up-
date K?

1−i = K?
1−i × Reconstructor(Q0, Q1, S0, S1, S2). Also update count =

count + deg(Reconstructor(Q0, Q1, S0, S1, S2)). Else reject this d1 and go to
next d1 in the loop.

6) Define K1−i = IK?
1−i. Factor Ki = f −K1−i and if it is a ΠΣ polynomial return gates

as K0,K1 and return true.

ii) Outside all the loops return false.

31

Correctness

1. If we return true with gates A,B : then we ought to be right since we check if f = A + B. Since
the representation is unique this will be the correct answer.

2. If we return false: Let’s assume f actually has a ΣΠΣ(2) representation. If we were in Easy Case
1 or 2 we would have already found the circuit using their algorithms. So we are in the Hard Case.
So by Lemma 3.13 there exists i such that L(Ti) has a detector pair (S0, D) with |D| large. For this
i there exists such an S0, so sometime during the algorithm we would have guessed the correct i and
the correct S0. Now let’s analyze what happens inside the while and the third for loop when the
first two guesses are correct. Note that this also implies that the I we have identified is correct and
now we need to solve for

f? = G?(α0T0 + α1T1)

Let K?
0 ,K

?
1 (initialized to 1) be the known parts of the gates for this polynomial f? and U?0 , U

?
1 be

the unknown parts. Note that T0, T1 are same for both polynomials so rank(f?) = rank(f) and for
j = 0, 1; Kj | G?Tj .

Assume till the mth iteration of the while loop K?
t | G?Tt for t ∈ {0, 1}, we show that after the

(m+ 1)th iteration, this property continues to hold and deg(K?
1−i) increases.

• If after the mth iteration of the while loop for some j ∈ {0, 1}, L(Tj) (sp(L(U?1−j)) we are in
Easy Case 2 for f? . The first step in while loop is to call recon uneven(f?, C,K?

0 ,K
?
1). This

will clearly recover the circuit for f? and return true since K?
t | G?Tt for t ∈ {0, 1}. However

this does not happen so for both j = 0, 1, we have L(Ti) (L(U?1−i). This means that we can
use the ideas in Subsection 3.6.2, specifically Theorem 3.16.

• The first two guesses are correct imply that D ⊆ X ⊆ L(Ti).

• If d gets rejected then Kt, t ∈ {0, 1} remain unchanged. If some d1 does not get rejected then
since d1 ∈ L(Ti), Q0 = πV ′1 (U?1−i) is a non zero ΠΣ polynomial. Then some factors (the ones
∈ W2) are removed from Q0. Also on projecting to W ′0 this still remains non-zero (as d1 was
not rejected).

• We know that d1 ∈ L(Ti) and d1 not getting rejected implies that Q1 = πW ′1(U?1−i) is a non-
zero ΠΣ polynomial. We again remove some factors (i.e. the ones in W2) from Q1. The
non-zeroness of Q0, Q1 imply that Q0 = πW ′1(Q), Q1 = πW ′1(Q) i.e. they are projections of
the same polynomial Q which is the largest factor of U?1−i with the property that any linear form
q | Q is not in W2.

• d1 was not rejected implies thatReconstructor(Q0, Q1, S0, S1, S2) returned a non-trivial poly-
nomial P . This has to be a factor of Q by Claim 2.20 following Algorithm 1 and therefore a
factor of U?1−i.

• Proof of Theorem 3.16 implies that in every iteration atleast some d1 will not be rejected.

• So clearly the new K?
1−i = K?

1−i × P divides G?T1−i. Ki remains unchanged. Therefore even
after the (m+ 1)th iteration Kt | G?Tt for both j = 0, 1 but degree of K?

1−i increases.

So the while loop cannot run more than deg(f?) times and in the end G?T1−i will be reconstructed
completely and correctly and we should have returned true. Therefore we have a contradiction and so
f did not have a ΣΠΣ(2) circuit and we correctly returned false.

32

Running Time

• First for loop runs twice.

• Inside it chossing r linear forms from C (|C| = poly(d)) takes poly(d) time.

• Applying Λ to r − k vectors takes poly(r) = O(1) time.

• Checking if a set of size r inside Rr is LI takes poly(r) = O(1) time since it is equivalent to computing
determinant.

• IdentifyFactors() takes poly(d) time and computing f? also takes poly(d) time.

• overest detector() runs in poly(d) time.

• while loop runs atmost d times

• recon uneven() runs in poly(d) time and so does polynomial multiplication.

• X ⊆ L(Ti) and |L(Ti)| ≤ deg(f?) and so for loop runs d times.

• Change of bases in Rr and application to a polynomial of degree d takes poly(d) time.

• Therefore projecting to subspaces also takes poly(d) time.

• Reconstructor() runs in poly(d) time (since r is a constant) and so does polynomial multiplication
and factoring by [KT90].

Since all of the above steps run in poly(d) time, nesting them a constant number of times also takes poly(d)
time. Therefore the running time of our algorithm is poly(d).

3.7 Algorithm including all cases :

The algorithm we give here will be the final algorithm for rank r ΣΠΣ polynomials. It will use the previous
three cases. Our input will be a ΣΠΣ(2) polynomial f(x1, . . . , xr) and output will be a circuit computing
the same.

Algorithm 8 Reconstruction of rank r polynomials
1: procedure void lowdim reconstruct(f ∈ ΣΠΣR(2)[x̄])
2: Pick (Ωi,j), (Λi,j), r × r matrices with entries chosen uniformly randomly from [N]. Make them

visible to all functions.
3: Consider the linear forms Li(x̄) =

r∑
k=1

Ωi,kxk and redefine f(x1, . . . , xr) = f(L1(x̄), . . . , Lr(x̄)).

4: C = Candidates(f(x1, . . . , xr)); //Compute the set of candidate linear forms C.
5: if (gatespan uneven(f, C)) then //Assuming Easy Case 1 where L(g) = φ
6: else if (recon uneven(f,K0,K1, C)) then //Assuming Easy Case 2 where some gate has

extra dimensions
7: else (recon even(f, C,Λ))

33

Explanation : Here we explain every step of the given algorithm:

• The function reconstruct(f) takes as input a polynomial f ∈ ΣΠΣR(2)[x̄] of rank = r and outputs
two polynomials K0,K1 ∈ ΠΣR[x̄] which are the two gates in it’s circuit representation.

• Steps 2, 3 picks a random matrix M and transforms each variable using the linear transformation this
matrix defines. With high probability this will be an invertible transformation. We do the recon-
struction for this new polynomial since the linear factors of it’s gates satisfy some non-degenerate
conditions(because they have been randomly transformed) our algorithm needs. We apply M−1 after
the reconstruction and get back our original f .

• The next step constructs the set of candidate linear forms C. We’ve talked about the size, construction
and structure of this set in Section 3.2.

• We first assume Easy Case 1. It that was not the case we check for Easy Case 2. If both did not occur
we can be sure we are in the Hard case.

• If none of the called functions gave true we can be sure that f did not have a ΣΠΣR(2)[x̄] represen-
tation.

4 Reconstruction for arbitrary rank

This section reduces the problem from ΣΠΣ(2) Circuits with arbitrary rank n (> r) to one with constant
rank (= r). Also once the problem has been solved efficiently in the low rank case we use multiple instances
of such solutions to lift to the general ΣΠΣ(2) circuit. The idea is to project the polynomial to a small
(polynomial) number of random subspaces of dimension r, reconstruct these low rank polynomials and then
lift back to the original polynomial. The uniqueness of our circuit’s representation plays a major role in both
the projection and lifting steps. Let

f = G(α0T0 + α1T1)

G,Ti are normal ΠΣ polynomials. All notations are borrowed from the previous section. It is almost
identical to the restriction done in [Shp07] except that the dimension of random subspaces is different. For
more details see Section 4.2.1 and 4.2.3. in [Shp07]. Since all proofs have been done in detail in [Shp07]
we do not spend much time here. A clear sketch with some proofs is however given.

4.1 Projection to a Random Low Dimensional Subspace

We explain the procedure of projecting to the random subspace below. In this low dimensional setup we
can get white-box access to πV (f), also some important properties of f are retained by πV (f). Proofs are
simple and standard so we discuss them in the appendix at end.

Pick n vectors vi, i ∈ [n] with each co-ordinate chosen independently from the uniform distribution on [N].
Let V = sp({vi : i ∈ [r]}) and V ′ = sp{vi : i ∈ {r + 1, . . . , n}}. Then V ⊕ V ′ = Rn Let πV denote the
orthogonal projection onto V . With high probability the following hold :

1. This set {vi : i ∈ [n]} is linearly independent (See Appendix D.1 for proof).

2. Let {l1, . . . , lr} be a set of r linearly independent linear forms inL(T0)∪L(T1). Then πV ({l1, . . . , lr})
is linearly independent with high probability. So rank(πV (f)) = r (See Appendix D.2 for Proof).

34

3. Let l01 ∈ L(T0), l11 ∈ L(T1), then πV (l01), πV (l11) are linearly independent with high probability
and so gcd(πV (T0), πV (T1)) = 1.

Pick large number of (≥ dr) random points pi, i = 1, . . . , dr in the space V . Use the values {f(pi)} and get
a white-box representation for πV (f). With high probability over the choice of points lagrange interpolation
will work (See Appendix D.3 for Proof). Now this white box representation of πV (f) is reconstructed using
the algorithm in Chapter 3. A number of such reconstructions are then glued to reconstruct the original
polynomial.

4.2 Lifting from the Random Low Dimensional Subspace

1. Consider spaces Vi = V ⊕ Rvi for i = r + 1, . . . , n.

2. Reconstruct πVi(f) and πV (f) for each i ∈ {r + 1, . . . , n}.

3. Let l =
n∑
i=1

aivi be a linear form dividing one of the gates of f say T0. πV (l) =
r∑
i=1

aivi and

πVi(l) =
r∑
j=1

ajvj + aivi. Using our algorithm discussed in Chapter 3 we would have reconstructed

πV (f) and πVi(f). So we know the triples (πV (G), πV (T0), πV (T1)) and (πVi(G), πVi(T0), πVi(T1))

On restricting Vi to V :

a) Only Factors become factors with high probability so we can easily find the correspondence
between πV (G) and πVi(G).

b) πV (πVi(T0)) = πV (T0) and 6= πV (T1) because of uniqueness of representation and therefore we
get the correspondence between gates.

c) Now to get correspondence between linear forms. Let πV (l) have multiplicity k in πV (T0). Then
with high probability l has multiplicity k in T0 Since two LI vectors remain LI on projecting to
a random subspace of dimension ≥ 2 (again See Appendix D.2 for proof). Therefore πVi(l) has
multiplicity k and is the unique lift of πV (l) for all i. Let πVi(l) = πV (l) + aivi. Then l = πV (l) +∑n

i=r+1 aivj . This finds G,T0, T1 for us

4.3 Time Complexity

• Interpolation to find whitebox representation πV (f) which is a degree d polynomial over r
variables clearly takes poly(dr) time (accounts to solving a linear system of size poly(dr)).

• Solving n − r instances of the low rank problem (simple ranks r and r + 1) takes npoly(dr)
time.

• The above mentioned approach to glue the linear forms in the gates clearly takes poly(n, d)
time.

• Overall the algorithm takes poly(n, d) time since r is a constant.

5 Conclusion and Future Work

We described an efficient randomized algorithm to reconstruct circuit representation of multivariate polyno-
mials which exhibit a ΣΠΣ(2) representation. Our algorithm works for all polynomials with rank(number
of independent variables greater than a constant r). In future we would like to address the following:

35

• Reconstruction for Lower Ranks - As can be seen in the paper, rank of the polynomial for unique-
ness (i.e. cR(4)) and the rank we’ve assumed in the low rank reconstruction (i.e. r) are both O(1) but
cR(4) is smaller than r. Since one would expect a reconstruction algorithm whenever the circuit is
unique we would like to close this gap.

• ΣΠΣ(k) circuits - It would be interesting to consider more general top fan-in. In particular we could
consider ΣΠΣ(k) circuits with k = O(1).

• Derandomization - We would like to derandomize the algorithm as it was done in the finite field
case in [KS09a].

6 Acknowledgements

I am extremely thankful to Neeraj Kayal for introducing me to this problem. Sukhada Fadnavis, Neeraj
Kayal and myself started working on the problem together during my summer internship at Microsoft Re-
search India Labs in 2011. We solved the first few important case together. I’m grateful to them for all
helpful discussions, constant guidance and encouragement. I would also like to thank Vinamra Agrawal,
Pravesh Kothari and Piyush Srivastava for helpful discussions. Lastly I would like to thank Microsoft Re-
search for giving me the opportunity to intern at their Bangalore Labs with the Applied Mathematics Group.

36

A Proofs from Subsection 3.2

Claim A.1. The following are true about our candidate set C.

1. L(Ti) ⊆ C, i = 0, 1.

2. Let k = cR(3) + 2 and suppose {lj ; j ∈ [k]} ⊂ L(Ti) are LI . Then for any l ∈ C \ (L(T0) ∪ L(T1)),
there exists j ∈ [k] such that fl({l, lj})∩L(T1−i) 6= φ i.e. the line joining l and lj does not intersect
the set L(T1−i).

3. |C| ≤M4 + 2M ≤ d4 + 2d.

Proof. Let’s first recall the definition of our candidate set

C def= {l = x1 − a2x2 − . . .− arxr ∈ LinR[x̄] : h(a2x2 + . . .+ arxr, x2, . . . , xr) ∈ ΠΣdh
R [x2, . . . , xr]}

Also recall that
h =

g

Lin(g)
=

f

Lin(f)

1. Let l = x1−a2x2−. . .−arxr ∈ L(T1−i). Let’s denote the tuple v ≡ (a2x2+. . .+arxr, x2, . . . , xr).
Since gcd(T0, T1) = 1 and l | T1−i we know that l - Ti and therefore Lin(g)(v) 6= 0. We can then
compute

h(v) =
αiTi(v)

Lin(g)(v)
= αiH1(v) . . . Hdh(v) ∈ ΠΣdh

R [x2, . . . , xr]

where Hj ∈ LinR[x2, . . . , xr]. So L(Ti) ⊆ C for i = 0, 1.

2. Consider l = x1−a2x2−. . .−arxr ∈ C\(L(T0)∪L(T1)) and assume that sp({l, lj})∩L(T1−i) = φ
for all j ∈ [k]. We know that

g(v) = Lin(g)(v)H1(v) . . . Hdh(v) = α0T0(v) + α1T1(v)

Let g′ be the following identically zero ΣΠΣ(3)[x2, . . . , xr] polynomial (with circuit C′)

g′ = Lin(g)(v)H1(v) . . . Hdh(v)− α0T0(v)− α1T1(v)

We know
C′ = gcd(C′)Sim(C′)⇒ Sim(C′) ≡ 0

Recall that lj(v) | Ti(v), therefore the lj(v) cannot be factors of gcd(C′) because if they did then there
exist pair lj , l(1−i)t such that {lj(v), l(1−i)t(v)} is LD or in other words sp({l, lj})∩L(T1−i) 6= φ and
we have a contradiction. Also the set {lj(v) : j ∈ [k]} has dimension ≥ k − 1 since the dimension
could fall only by 1 when we go modulo a linear form (project to hyperplane). This means that
rank(Sim(C′)) ≥ k − 1 ≥ cR(3) + 1.

If Sim(C′) were not minimal ⇒ C′ is not minimal ⇒ one of it’s gates would be 0. Since l /∈
L(T0) ∪ L(T1) ⇒ α0T0(v) + α1T1(v) ≡ 0 ⇒ for every j ∈ [k] there exist l(1−i)j | T1−i such that
l(1−i)j(v), lj(v) are LD.⇒ sp({l, lj}) ∩ L(T1−i) 6= φ for j ∈ [k], a contradiction to our assumption.

If Sim(C′) were minimal, we have an identically zero simple minimal circuit Sim(C′) with rank(Sim(C′)) ≥
cR(3) + 1 contradicting Theorem 1.6.

So our assumption is wrong and sp({l, lj}) ∩ L(T1−i) 6= φ for some j ∈ [k].

37

3. Let l ∈ C \ (L(T0) ∪ L(T1)). Consider a set {l1, . . . , lk+2} ⊂ L(Ti) of k + 2 LI linear forms. By
the above argument there exist three distinct elements in this set say l1, l2, l3 such that sp({lj , l}) ∩
L(T1−i) 6= φ for j ∈ [3]. Let {l′1, l′2, l′3} ⊂ L(T1−i) such that l′j ∈ sp({lj , l}) for j ∈ [3]. Then
gcd(lj , l

′
j) = 1 implies that l ∈ sp({lj , l′j}) for j ∈ [3]. Since l, lj , l′j are all standard (coefficient of

x1 is 1), Lemma 2.2 tells us
l ∈ fl({lj , l′j})

for j ∈ [3]. So l lies on the lines ~Lj = fl({lj , l′j}) for j ∈ [3]. Atleast two of these lines should be
distinct otherwise dim({l1, l2, l3}) ≤ 2 which is a contradiction. So l is the intersection of these two
lines. There are M2 such lines and so M4 such intersections. If l ∈ L(T0) ∪ L(T1) we have ≤ 2M
other possibilities. So |C| ≤M4 + 2M = O(d4).

B Proofs from Subsection 3.5

Claim B.1. Let (S = {l1 . . . , lk}, D) be a Detector pair in L(Ti). Let lk+1 ∈ D. For a standard linear
form l ∈ V , if l | g then l /∈ sp({l1, . . . , lk}) .

Proof. Assume l | g and l ∈ sp({l1, . . . , lk}). Let W = sp({l}), extend it to a basis and in the process
obtain W ′ such that W ⊕W ′ = V . We get

πW ′(α0T0 + α1T1) = 0

πW ′(αiTi) 6= 0 (i.e. l - T0T1), otherwise l divides both T0, T1 and gcd(T0, T1) won’t be 1. So we have an
equality of non zero ΠΣ polynomials

α0

M∏
j=1

πW ′(l0j) = −α1

M∏
j=1

πW ′(l1j)

Therefore there exists a permutation θ : [M] → [M] such that {πW ′(l(1−i)j), πW ′(liθ(j))} are LD ⇒ l ∈
sp({l(1−i)j , liθ(j)}). Since l - T0T1 this also means that l(1−i)j ∈ sp({l, liθ(j)}) and liθ(j) ∈ sp({l, l(1−i)j}).

In particular there is an l′k+1 ∈ L(T1−i) such that l′k+1 ∈ sp({l, lk+1}) and lk+1 ∈ sp({l, l′k+1}).

Since l ∈ sp({l1, . . . , lk}) ⇒ l′k+1 ∈ sp({l1, . . . , lk, lk+1}). All linear forms here are standard(i.e. co-
efficient of x1 is 1) and so by Lemma 2.2, l′k+1 ∈ fl({l1, . . . , lk, lk+1}). Below we use the definition of
detector pair and get

l′k+1 ∈ fl({l1, . . . , lk, lk+1}) ∩ L(T1−i) ⊆ fl({l1, . . . , lk})

And lk+1 ∈ sp({l, l′k+1}) ⇒ lk+1 ∈ sp({l1, . . . , lk}) which is a contradiction to (S,D) being a detector
pair..

Claim B.2. Let l ∈ LinR[x̄] be standard such that l | g and C be the candidate set. Assume (S =
{l1, . . . , lk}, D(6= φ)) is a Detector pair in L(Ti). Then |L(T1−i)∩ (fl(S ∪ {l}) \ fl(S))| ≥ 2. That is the
flat fl({l1, . . . , lk, l}) contains atleast two distinct points from L(T1−i)(⊆ C) outside fl({l1, . . . , lk}).

38

Proof. From the previous claim we know that {l1, . . . , lk, l} is an LI set. Also like above we know there
exists l′j ∈ L(T1−i), j ∈ [3] such that lj ∈ sp({l, l′j}), l′j ∈ sp({l, lj}). Since {l1, l2, l3} are LI, atleast
two of the l′j’s, j ∈ [3] must be distinct, otherwise sp({l1, l2, l3}) ⊂ sp({l, l′1}) which is not possible as
LHS has dimension 3 and RHS has dimension 2. Thus there exist two distinct l′1, l

′
2 ∈ sp({l1, l2, l3, l}) ⊂

sp({l1, . . . , lk, l}). Note that l1, . . . , lk, l, l′1, l
′
2 are all standard (i.e. coefficient of x1 is 1) and so by Lemma

2.2
l′j ∈ fl({l1, . . . , lk, l})

for j ∈ [2].

If for any j ∈ [2], l′j ∈ sp({l1, . . . , lk}) then l ∈ sp({lj , l′j}) ⇒ l ∈ sp({l1, . . . , lk}) which is a contradic-
tion. This also shows that l′j /∈ fl({l1, . . . , lk}) for j ∈ [2].

From what we showed above we may conclude:

l′j ∈ fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})

for j ∈ [2]. Hence Proved.

Lemma B.3. The following are true:

1. If l | I (i.e. l was identified) then l ∈ L(G) \ L(g).

2. If l | G? (i.e. l was retained) then (fl({l1, . . . , lk, l})\fl({l1, . . . , lk}))∩(L(T1−i)∪(L(Ti)\D)) 6= φ
that is

(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) contains a point from L(Ti) \D or L(T1−i).

3. If l | G? and lk+1 ∈ D then l /∈ sp({l1, . . . , lk, lk+1}).

Proof. 1. Assume l | I (i.e. l was identified) and l | g. Then by Claim 3.7 we know that {l1, . . . , lk, l}
are LI and so the first ”if” condition is true. By Claim 3.8 we know that there are two other points
{l′1, l′2} ⊂ C ∩ (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})), so the second ”if” condition will also be true
and thus l will not be identified which is a contradiction. Therefore l ∈ L(G) \ L(g).

2. Assume l | G? (i.e. l was not identified). This means both ”if” statements were true for l. Thus
{l1, . . . , lk, l} is LI. Also there exist distinct {l′1, l′2} ∈ C ∩ (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})). If

l′1 ∈ (L(T1−i) ∪ (L(Ti) \D)) or l′2 ∈ (L(T1−i) ∪ (L(Ti) \D))

we are done so assume both are in

C \ ((L(T1−i) ∪ (L(Ti) \D)))) = (C \ (L(Ti) ∪ L(T1−i))) ∪D

If one of them say l′1 ∈ C \ (L(Ti) ∪ L(T1−i)), then by Part 2 of Claim 3.3, for some j ∈ [k],
sp({l′1, lj}) ∩ L(T1−i) 6= φ. Let l̃j ∈ sp(l′1, lj) ∩ L(T1−i)⇒

l̃j ∈ sp({l′1, lj}) ⊆ sp({l1, . . . , lk, l})

Since all linear forms l̃j , l1, . . . , lk, l are standard (coefficient of x1 is 1) by Lemma 2.2

l̃j ∈ fl({l1, . . . , lk, l})

39

Also l̃j , lj are LI and l̃j ∈ sp({l′1, lj}) together imply l′1 ∈ sp({lj , l̃j}). Note that l′1 /∈ fl({l1, . . . , lk})⇒
l′1 /∈ sp({l1, . . . , lk}) which along with l′1 ∈ sp({lj , l̃j}) will then give

l̃j /∈ sp({l1, . . . , lk})

So we found l̃j ∈ L(T1−i) ∩ (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) and we are done.

So the only case that remains now is that l′1, l
′
2 ∈ D. Let’s complete the proof in the following steps

• l′1 ∈ fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})⇒ l ∈ sp({l1, . . . , lk, l′1})
• Using the above bullet, l′2 ∈ fl({l1, . . . , lk, l}) ⇒ l′2 ∈ sp({l1, . . . , lk, l′1}). Linear forms
l′2, l1, . . . , lk, l are standard (coefficient of x1 is 1) so using Lemma 2.2, l′2 ∈ fl({l1, . . . , lk, l′1})

• l′2 ∈ D ⇒ l′2 /∈ fl({l1, . . . , lk})
• The above two bullets and {l′1, l′2} ⊂ L(Ti) tell us that fl({l1, . . . , lk, l′1}) is not elementary

which is a contradiction.

So atleast one of l′1, l
′
2 is inside L(T1−i) ∪ (L(Ti) \D)

3. Let lk+1 ∈ D and l ∈ sp({l1, . . . , lk, lk+1}). Since l, l1, . . . , lk, lk+1 are standard, by Lemma
2.2, l ∈ fl({l1, . . . , lk, lk+1}). Clearly l /∈ fl({l1, . . . , lk}) otherwise it would get identified at
the first ”if”. Therefore l ∈ fl({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk}) By Part 2 above let l′1 ∈
(fl({l1, . . . , lk, l})\ fl({l1 . . . , lk}))∩ (L(T1−i)∪ (L(Ti)\D)). So l′1 ∈ L(T1−i) or l′1 ∈ L(Ti)\D.

This tells us that l′1 ∈ sp({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk}). All linear forms l′1, l1, . . . , lk, lk+1

are standard (i.e. coefficients of x1 is 1) so by Lemma 2.2 we get that l′1 ∈ fl({l1, . . . , lk, lk+1}) \
fl({l1, . . . , lk}). Now using the definition of detector pair l′1 /∈ L(T1−i) since fl({l1, . . . , lk, lk+1})∩
L(T1−i) ⊆ fl({l1, . . . , lk}) . The flat fl({l1, . . . , lk, lk+1}) is elementary in L(Ti), so l′1 can belong
here only if l′1 = lk+1 which is not possible since l′1 /∈ D. So we have a contradiction. Hence Proved.

Lemma B.4. Let (S = {l1, . . . , lk}, D) be a detector in L(Ti). For each (l, lj) ∈ C × S define the
space U{l,lj} = sp({l, lj}). Extend {l, lj} to a basis and in the process obtain U ′{l,lj} such that V =

U{l,lj} ⊕ U ′{l,lj}. Define the set:

X = {l ∈ C : πU ′{l,lj}
(f?) 6= 0, for all lj ∈ S}

Then D ⊂ X ⊂ L(Ti).

Proof. (D ⊂ X) : Consider lk+1 ∈ D. Since D ⊂ L(Ti) ⇒ lk+1 ∈ C. Assume lk+1 /∈ X , so there exists
a j ∈ [k] such that πU ′{lk+1,lj}

(f?) = 0. That is:

πU ′{lk+1,lj}
(G?(α0T0 + α1T1)) = 0.

So ∏
t∈[N1]

πU ′{lk+1,lj}
(Gt)(α0

∏
s∈[M]

πU ′{lk+1,lj}
(l0s) + α1

∏
s∈[M]

πU ′{lk+1,lj}
(l1s)) = 0

40

Now

lj ∈ L(Ti)⇒ πU ′{lk+1,lj}
(Ti) = 0⇒

∏
t∈[N1]

πU ′{lk+1,lj}
(Gt)

∏
s∈[M]

πU ′{lk+1,lj}
(l(1−i)s) = 0.

Since Gt | G?, by Part 3 of Lemma 3.10 πU ′{lk+1,lj}
(Gt) 6= 0 for all t ∈ [N1]. If for some s ∈ [M],

πU ′{lk+1,lj}
(l(1−i)s) = 0 then l(1−i)s ∈ sp({lj , lk+1}) ⇒ l(1−i)s ∈ sp({l1, . . . , lk, lk+1}) ⇒ l(1−i)s ∈

sp({l1, . . . , lk}) (by definition of Detector Pair in 3.5).

l(1−i)s ∈ sp({lj , lk+1}) and {l(1−i)s, lj} LI ⇒ lk+1 ∈ sp({l(1−i)s, lj})
This means lk+1 ∈ sp({l1, . . . , lk, l(1−i)s}) ⊂ sp({l1, . . . , lk}) which is a contradiction to lk+1 ∈ D. So
πU ′{lk+1,lj}

(f?) 6= 0 for all j ∈ [k]⇒ lk+1 ∈ X . Therefore D ⊂ X .

(X ⊂ L(Ti)) : Consider l ∈ X . We need to show l ∈ L(Ti). We already know l ∈ C.

• If l ∈ L(T1−i), then πU ′{l,lj}
(f?) = 0 for all j ∈ [k] since l | T1−i and lj | Ti. Contradiction to l ∈ X .

• If l ∈ C \ (L(Ti) ∪ L(T1−i)) by Part 2 of Claim 3.3 we know that there exists j ∈ [k] such that
sp({lj , l})∩L(T1−i) 6= φ. Let l′j ∈ sp({lj , l})∩L(T1−i). We show that sp({l′j , lj}) = sp({lj , l}) =
U{lj ,l}.

– l′j ∈ sp({lj , l})⇒ sp({l′j , lj}) ⊂ sp({lj , l}).
– Let l′j = αlj + βl. We know that {lj , l′j} are LI since lj ∈ L(Ti) and l′j ∈ L(T1−i). So
β 6= 0⇒ l ∈ sp({l′j , lj})⇒ sp({l, lj}) ⊂ sp({l′j , lj})⇒ sp({l, lj}) = sp({l′j , lj}).

Use the same extension for sp({l, lj}) = sp({l′j , lj}) = U{lj ,l} to get πU ′{l,lj}
(f?) = πU ′{l′

j
,lj}

(f?) = 0

(since l′j | T1−i and lj | Ti). Contradiction to l ∈ X .

Therefore l ∈ L(Ti)⇒ X ⊂ L(Ti).

C Proofs from Subsection 3.6

Claim C.1. The following is true

(2− v(δ, θ))

v(δ, θ)
≤ 1− δ

δ

Proof. Note that

(2− v(δ, θ))

v(δ, θ)
=

{
1+δ+θ
1−δ−θ if |L(T0)| ≤ θ|L(T1)|

3−(1−δ)(1+θ)
(1−δ)(1+θ)−1 if θ|L(T1)| < |L(T0)| ≤ |L(T1)|

By simple computation δ ∈ (0, 7−
√

37
6) gives

3δ2 − 7δ + 1 > 0⇒ 0 <
3δ

1− δ
< 1− 3δ < 1⇒ 1 + δ + θ

1− δ − θ
<

1− δ
δ

Also

θ >
3δ

1− δ
⇒ 3− (1− δ)(1 + θ)

(1− δ)(1 + θ)− 1
<

1− δ
δ

41

Lemma C.2. Let k = cR(3) + 2 (see defn of cR(k) in Theorem 1.6). Fix δ, θ in range given in Claim
3.12 above . Then for some i ∈ {0, 1} there exists a Detector Pair (S = {l1, . . . , lk}, D) in L(Ti) with
|D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|).

Proof. We assume |L(T0)| ≤ L(T1). The other case gives the same result for(maybe) a different value of i
. We will consider linear forms as points in the space Rr. Let’s consider the two cases used in the definition
of v(δ, θ).

• Case 1 : |L(T0)| ≤ θ|L(T1)| (i.e. L(T0) is much smaller)⇒ v(δ, θ) = 1− δ − θ :
Since dim(L(T1)) ≥ r − 1 ≥ C2k−1 > Ck (See Section 2.3 for definition of Ck) by Corollary
2.11 there exists a set S of k LI points say S = {l1, . . . , lk} ⊆ L(T1) and a set Z ⊆ L(T1) of size
≥ (1− δ)|L(T1)| such that for any lk+1 ∈ Z

– lk+1 /∈ fl({l1, . . . , lk}).

– fl({l1, . . . , lk, lk+1}) is elementary in L(T1).

Next we define our set D according to the condition we needed in the definition of detector (See
Subsection 3.5).

D
def
= {lk+1 ∈ Z : fl({l1, . . . , lk, lk+1}) ∩ L(T0) ⊂ fl({l1, . . . , lk})}

In the following lines we will show that this set D has large size, to be precise:

|D| ≥ (1− δ − θ)|L(T1)|

We do this in steps:

1. First we define a special subset of Z

Z̃ = {lk+1 ∈ Z : (fl({l1, . . . , lk+1}) \ fl({l1, . . . , lk})) ∩ L(T0) 6= φ}

We claim thatZ\Z̃ ⊂ D. Let lk+1 ∈ Z\Z̃ ⇒ (fl({l1, . . . , lk+1})\fl({l1, . . . , lk}))∩L(T0) =
φ⇒ fl({l1, . . . , lk+1}) ∩ L(T0) ⊂ fl({l1, . . . , lk}) and so lk+1 ∈ D.

2. Next we show that for distinct lk+1, l̃k+1 ∈ Z(⊆ L(T1))

(fl({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk})) ∩ (fl({l1, . . . , lk, l̃k+1}) \ fl({l1, . . . , lk})) = φ

If not then there exist scalars µj , νj , j ∈ [k + 1] such that

ν1l1 + . . . νklk + νk+1lk+1 = µ1l1 + . . . µklk + µk+1 l̃k+1

with νk+1 6= 0 implying that lk+1 ∈ sp({l1, . . . , lk, l̃k+1}). Since all linear forms are standard
this implies lk+1 ∈ fl({l1,lk, l̃k+1}) (See Lemma 2.2). Also lk+1 ∈ Z ⇒ lk+1 /∈
fl({l1, . . . , lk}). Together this means that lk+1 ∈ fl({l1, . . . , lk, l̃k+1}) \ fl(l1, . . . , lk) and
we arrive at a contradiction to fl({l1, . . . , lk, l̃k+1}) being elementary.

3. From what we showed above every l ∈ L(T0) can belong to atmost one of the sets fl({l1, . . . , lk+1})\
fl({l1, . . . , lk}) with lk+1 ∈ Z (since intersection between two such sets is φ) and therefore
there can be atmost |L(T0)| such lk+1’s in Z̃ ⇒ |Z̃| ≤ |L(T0)|.

So we get :
|D| ≥ |Z| − |L(T0)| ≥ (1− δ − θ)|L(T1)|

(S,D) is a detector pair in L(T1) by the choice of Z and D.

42

• Case 2 : θ|L(T1)| < |L(T0)| ≤ |L(T1)| (i.e. there sizes are comparable)⇒ v(δ, θ) = (1− δ)(1 + θ)− 1 :

Since dim(L(T0) ∪ L(T1)) = r > C2k−1, by Corollary 2.11 we know that there exist 2k − 1
independent points l1, . . . , l2k−1 ∈ L(T0) ∪ L(T1) and a set Z ⊆ L(T0) ∪ L(T1) of size ≥ (1 −
δ)(|L(T0)|+ |L(T1)|) such that for all l ∈ Z

– l /∈ fl({l1, . . . , l2k−1}).

– fl({l1, . . . , l2k−1, l}) is elementary in L(T0) ∪ L(T1).

By pigeonhole principle, k of the {lj}2k−1
j=1 points must belong to either L(T0) or L(T1). Let’s assume

they belong toL(Ti) (for some i ∈ {0, 1}) (say the points are l1, . . . , lk), then considerD = Z∩L(Ti).
Clearly for every l ∈ D, l /∈ fl({l1, . . . , lk}) and fl({l1, . . . , lk, l}) is elementary in L(T0) ∪ L(T1).
This immediately tells us that (S = {l1, . . . , lk}, D) satisfies all properties of being a detector pair in
L(Ti). We defined D = Z ∩ L(Ti). Since Z ⊆ L(Ti) ∪ L(T1−i) we have Z = (Z ∩ L(Ti)) ∪ (Z ∩
L(T1−i)) ⊂ D ∪ L(T1−i) giving

|D|+ |L(T1−i)| ≥ |Z| ⇒ |D| ≥ |Z| − |L(T1−i)| ≥ (1− δ)(|L(T0)|+ |L(T1)|)− |L(T1−i)|

≥ ((1− δ)(1 + θ)− 1) max(|L(T0)|, |L(T1)|)

Combining the two cases we see that for some i ∈ {0, 1} there exists a Detector set (S = {l1, . . . , lk}, D)
in L(Ti) with |D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|).

Lemma C.3. The following are true:

1. dim(πW̃0
(L̂(U?1−i))) > C4

2. πW̃0
(L̂(U?1−i)) ∩ πW̃0

(D̂) = φ

3. |πW̃0
(L̂(U?1−i))| ≤

1−δ
δ |πW̃0

(D̂)|

Proof. 1. Since dim(L̂(U?1−i)) ≥ r − 1 we get dim(πW̃0
(L̂(U?1−i))) ≥ r − 1− k > C4.

2. Assume ∃ d1 ∈ D,u ∈ L(U?1−i) such that πW̃0
(d̂) = πW̃0

(û)⇒ ∃λ, ν ∈ R such that νd1 +λu ∈ W̃0.
Since πW̃0

(d1) 6= 0 both ν, λ 6= 0. Thus u ∈ sp({l1, . . . , lk, d1}) ⇒ u ∈ fl({l1, . . . , lk, d1}) (using
Lemma 2.2 since all linear forms involved are standard i.e. have coefficient of x1 equal to 1). Also
u ∈ L(G?T1−i) ⇒ u ∈ fl({l1, . . . , lk, d1}) ∩ (L(G?) ∪ L(T1−i)). We know from Part 2 of Lemma
3.10 that fl({l1, . . . , lk, d1}) ∩ L(G?) = φ ⇒ u ∈ fl({l1, . . . , lk, d1}) ∩ L(T1−i) ⊆ fl{l1, . . . , lk}
because (S,D) was a detector pair. But u ∈ fl({l1, . . . , lk}) ⇒ d1 ∈ sp({l1, . . . , lk}) which is a
contradiction because d1 ∈ D and (S,D) is a detector pair.

3. We first plan to show πW̃0
(L̂(U?1−i)) ⊂ πW̃0

(L̂(T1−i))∪ πW̃0
(̂L(Ti) \D). Clearly U?1−i | G?T1−i ⇒

L(U?1−i) ⊂ L(G?T1−i) ⇒ πW̃0
(L̂(U?1−i)) ⊂ πW̃0

(̂L(G?T1−i)) ⊂ πW̃0
(L̂(G?)) ∪ πW̃0

(L̂(T1−i)).
Now consider any l ∈ L(G?). We know that (S0 = {l1, . . . , lk}, D) is a detector pair, so by Part 2 of
Lemma 3.10 we get

(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) ∩ (L(T1−i) ∪ (L(Ti) \D)) 6= φ

43

So there exists l′ ∈ L(T1−i) ∪ (L(Ti) \ D) such that πW̃0
(l), πW̃0

(l′) are both non-zero and are

LD ⇒ πW̃0
(l̂) = πW̃0

(l̂′) implying that πW̃0
(L̂(G?)) ⊂ πW̃0

(

∧

L(T1−i) ∪ (L(Ti) \D)) giving us

πW̃0
(L̂(U?1−i)) ⊂ πW̃0

(L̂(T1−i)) ∪ πW̃0
(̂L(Ti) \D) and therefore

|πW̃0
(L̂(U?1−i))| ≤ |πW̃0

(L̂(T1−i))|+ |πW̃0
(̂L(Ti) \D)|

Now we try to show |πW̃0
(̂L(Ti) \D)| = |πW̃0

(L̂(Ti))| − |D|

(a) It’s straightforward to see πW̃0
(L̂(Ti)) = πW̃0

(D̂) ∪ πW̃0
(̂L(Ti) \D). Also πW̃0

(̂L(Ti) \D) ∩
πW̃0

(D̂) = φ. If not then there exists l′ ∈ L(Ti) \ D, l′′ ∈ D such that 0 6= πW̃0
(l̂′′) =

πW̃0
(l̂′) ⇒ πW̃0

(l′′), πW̃0
(l′) are LD⇒ l′ ∈ sp{l1, . . . , lk, l′′} \ sp{l1, . . . , lk} ⇒ (by Lemma

2.2), l′ ∈ fl{l1, . . . , lk, l′′} \ fl{l1, . . . , lk} which is a contradiction to the flat being elementary
inside L(Ti). So |πW̃0

(L̂(Ti))| = |πW̃0
(D̂)|+ |πW̃0

(̂L(Ti) \D)|.

(b) πW̃0
is injective on D̂. Let πW̃0

(l̂′) = πW̃0
(l̂′′) for LI forms {l′, l′′} ⊂ D, then l′ ∈ sp({l1, . . . , lk, l′′})⇒

(by Lemma 2.2), l′ ∈ fl({l1, . . . , lk, l′′}) and clearly l′ /∈ fl{l1, . . . , lk} (since it’s in D), which
is again a contradiction to the flat being elementary , thus |πW̃0

(D̂)| = |D̂| = |D| (since D is a
set of normal linear forms).

Combining these with Claim 3.12 and Lemma 3.13 we get

|πW̃0
(L̂(U?1−i))| ≤ 2 max(|L(T0)|, |L(T1)|)− |D| ≤ (2− v(δ, θ)) max(|L(T0)|, |L(T1)|)

⇒
|πW̃0

(L̂(U?1−i))|
|πW̃0

(D̂)|
≤ (2− v(δ, θ))

v(δ, θ)
≤ 1− δ

δ

Lemma C.4. Let S1 = {d1} and S2 = {lk+2, . . . , lr}, W1 = sp(S1) and W2 = sp(S2). So V =

W0 ⊕ W1 ⊕ W2 and let W ′0 = W1 ⊕ W2. For u ∈ L(U?1−i) such that πW̃0
(û) ∈ ~L1 ∩ πW̃0

(L̂(U?1−i))
consider the line

~L2 = fl({d1, πW ′0(ũ)})

then |~L2 ∩ πW ′0(D̃)| ≥ 1 and |~L2 ∩ πW ′0(L̃(U?1−i))| = 1, i.e. ~L2 is also a ”semiordinary bichromatic” like
~L1.

Proof. We first show the following : Let u2 ∈ U?1−i, d2 ∈ D then

πW ′0(ũ2) 6= πW ′0(d̃2)

• Assume not, then ∃ ν, λ ∈ R such that νd2 + λu2 ∈ W0. ν, λ cannot be 0 since this would mean
πW ′0(d̃2) = 0. Thus u2 ∈ sp({l1, . . . , lk, d2}) ⇒ u2 ∈ fl({l1, . . . , lk, d2}) (using Lemma 2.2
since all linear forms involved are standard i.e. have coefficient of x1 equal to 1). Also u2 ∈
L(G?T1−i) ⇒ u2 ∈ fl({l1, . . . , lk, d2}) ∩ (L(G?) ∪ L(T1−i)). We know from Part 2 of Lemma
3.10 that fl({l1, . . . , lk, d2}) ∩ L(G?) = φ⇒ u2 ∈ fl({l1, . . . , lk, d2}) ∩ L(T1−i) ⊆ fl{l1, . . . , lk}
because (S,D) was a detector pair. But u2 ∈ fl({l1, . . . , lk}) ⇒ d2 ∈ sp({l1, . . . , lk}) which is a
contradiction because d2 ∈ D and (S,D) is a detector pair.

44

Now let’s go back to proving this lemma.

|~L2 ∩ πW ′0(D̃)| ≥ 1 is clearly true since d1 ∈ ~L2 ∩ πW ′0(D̃). For the other part assume there exist u1 6= u

inside L(U?1−i) such that πW ′0(ũ), πW ′0(ũ1) are distinct points on ~L2 ∩ πW ′0(L(U?1−i)) implying that the set

{πW ′0(ũ), πW ′0(ũ1), πW ′0(d̃1) = d1} is an LD set and there exist κ, ν, θ with one of these non-zero such that

κπW ′0(ũ) + νπW ′0(ũ1) + θπW ′0(d̃1) = 0⇒ κu+ νu1 + θd1 ∈W0

From what we showed at the beginning of this proof, we can conclude that κ, ν are non-zero. θ 6= 0 since
πW ′0(ũ), πW ′0(ũ1) are distinct. Put d1 = δ1l1 + . . .+ δklk + δk+1e with δk+1 6= 0, then the above equation
becomes

κu+ νu1 + θδk+1e ∈W0

Taking projection onto W̃0 for the decomposition W0 ⊕ W̃0 = V and normalizing their coefficients of lk+1

when they are written in basis B

κπW̃0
(û) + νπW̃0

(û1) + θπW̃0
(d̂1) = 0

Since coefficient of lk+1 is 1 in all of them and ν 6= 0 we get that

πW̃0
(û1) ∈ fl({πW̃0

(û), πW̃0
(d̂1)}) = ~L1

Since |~L1 ∩ πW̃0
(L̂(U?1−i))| = 1 ⇒ πW̃0

(û) = πW̃0
(û1) 6= 0 ⇒ ∃δ, ψ both non-zero such that δu +

ψu1 ∈ W0. We could eliminate u1 to conclude that there exist constants α, β with β 6= 0 such that
αu + βd1 ∈ W0 ⇒ πW ′0(d̃1) = πW ′0(ũ) which cannot happen by what we showed in the beggining of the
proof or πW ′0(d1) = 0 ⇒ d1 ∈ sp({l1, . . . , lk}) which is a contradiction to (S,D) being a detector pair.

Therefore such a u1 does not exist and | ~L2 ∩ πW ′0(L̃(U?1−i))| = 1.

D Proofs from Section 4

All random selections are done from the set [N] = {1, . . . , N}.

Lemma D.1. Let Rn be the n dimensional vector space over R. Suppose vi : i = 1, . . . , n are n vectors in
Rn with each co-ordinate chosen independently from the uniform distribution on [N]. Consider the event

E = {{v1, . . . , vn} are LI }

Then Pr[E] ≥ 1− n

Nn2 .

Proof. Each vi ∈ Rn is chosen such that each co-ordinate is chosen uniformly randomly from the set [N].
Let vi be the vector (Vi,1, . . . , Vi,n). Consider the matrix Ṽ = (Vi,j). The vi’s will be linearly independent
if and only if Ṽ is invertible i.e. det(Vi,j) 6= 0. Note that det(Vi,j) is not the zero polynomial since the
monomial v1

1v
2
2..v

n
n has coefficient 1. Now we can use Schwartz-Zippel Lemma [Sax09] on this polynomial

to yield:
Pr[det(Ṽ) = 0] ≤ n

Nn2

Therefore Pr[vi, i = 1, . . . n are LI] = Pr[det(Ṽ) 6= 0] ≥ 1− n

Nn2 . Therefore Pr[E] ≥ 1− n

Nn2 .

45

Lemma D.2. Assume conditions in the previous lemma. Consider the subspaces V = sp{v1, . . . , vr} and
V ′ = sp{vr+1, . . . , vn}. Let’s assume that that E occurs. So dim(V) = r. We know Then Rn = V ⊕ V ′.
Let πV : Rn → V be the orthogonal projection onto V under this decomposition . Let T ⊂ Rn be a finite
set from which linear forms are chosen. Consider the event

F = {∃ an LI set {l1, . . . , lr} ⊂ T such that {πV (l1), . . . , πV (lr)} is LD }

Then Pr[F] ≤
(|T |
r

)
{ n

Nn2 + r(n−1)

Nn2 }

Proof. Fix {l1, . . . , lr} ⊂ T an LI set. Extend it to get a basis {l1, . . . , ln} of Rn. Let li =
∑
j∈[n]

Li,jej . Let

L be the matrix (Li,j)(i,j)∈[n]×[n]. From the discussion above we have Ṽ = (Vi,j). Now let Pr be the n× n
matrix

Pr =

[
Ir 0r,n−r

0n−r,r 0n−r,n−r

]
where Ir is the r× r identity matrix and 0p,q is the p× q matrix with all 0 entries. Also for any n×n matrix
A, define Mr(A) to be the principal r × r minor of A. Consider the equation given by

det(Mr(PrLco(Ṽ))) = 0

where co(Ṽ) is the co-factor matrix of Ṽ . Since entries of co(Ṽ) are polynomials in the Vi,j’s and L is a
fixed matrix, the entries of PrLco(Ṽ) are polynomials in Vi,j’s. So det(Mr(PrLco(Ṽ))) is a polynomial
in Vi,j’s. This polynomial can’t be identically 0. Choose Vi,j = Li,j , then Ṽ is invertible and Lco(Ṽ) =
det(L)I and so PrLco(Ṽ) = det(L)Pr ⇒ det(Mr(PrLco(Ṽ))) = det(L) 6= 0. Degree of the polynomial
det(Mr(PrLco(Ṽ))) is clearly ≤ r(n− 1). Therefore by Schwartz Zippel Lemma

Pr[det(Mr(PrLco(Ṽ))) = 0] ≤ r(n− 1)

Nn2

Consider the set

S({l1, . . . , lr}) = {(Vi,j) : det(Ṽ) 6= 0, det(Mr(PrLco(Ṽ)) 6= 0}

On this set S({l1, . . . , lr}), {v1, . . . , vn} is a basis and we have the following matrix equations :
v1

.

.
vn

 = Ṽ


e1

.

.
en

 and


l1
.
.
ln

 = L


e1

.

.
en

⇒

l1
.
.
ln

 = LṼ −1


v1

.

.
vn


and so πV (l1)

.
πV (lr)

 =
1

det(Ṽ)
Mr(PrLco(Ṽ))

v1

.
vr


Therefore {πV (l1), . . . , πV (lr)} is an LI set. Now S({l1, . . . , lr})c = {(Vi,j) : det(Ṽ) = 0 or det(MrLco(M)) =

0} ⇒ Pr[S({l1, . . . , lr})c] ≤ n

Nn2 + r(n−1)

Nn2 . Next we vary {l1, . . . , lr} and apply union bound to get

Pr[F] ≤
∑

{l1,...,lr}⊂T

S({l1, . . . , lr})c ≤
(
|T |
r

)
{ n

Nn2 +
r(n− 1)

Nn2 }

In our application |T | = poly(d) and r is a constant, so we choose N = 2d+n and make this probability
very small.

46

Lemma D.3. Let f |V (X̄) =
∑

{ᾱ:|ᾱ|=d}
aᾱX̄

ᾱ be a homogeneous multivariate polynomial of degree d in r

variables X1, . . . , Xr. Let pi : 1 ≤ i ≤
(
d+r−1
r−1

)
be randomly chosen points in V (dimension r random

subspace of Rn chosen in the above lemmas). Then with high probability one can find all the aᾱ.

Proof. We evaluate the polynomial at each of the pi’s. So we have
(
d+r−1
r−1

)
evaluations. The number of

coefficients is also
(
d+r−1
r−1

)
so we get a linear system in the coefficients where the matrix (X) entries are

just monomials evaluated at the pi’s. Since f is not identically zero clearly there exist values for the points
pi’s such that the determinant of this matrix is non zero polynomial so it cannot be identically zero. Now
the degree of the determinant polynomial is bounded by d

(
d+r−1
r−1

)
≤ poly((d+ r)r). So by Schwarz Zippel

lemma

Pr[aᾱ is recovered correctly] = Pr[det(X) 6= 0] ≥ 1− poly(dr)

Nn2

47

References

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In FSTTCS 2005:
Foundations of Software Technology and Theoretical Computer Science, 25th International
Conference, Hyderabad, India, December 15-18, 2005, Proceedings, volume 3821 of Lecture,
pages 92–105. Springer, 2005.

[AMS08] V. Arvind, Partha Mukhopadhyay, and Srikanth Srinivasan. New results on noncommutative
and commutative polynomial identity testing. 2012 IEEE 27th Conference on Computational
Complexity, 0:268–279, 2008.

[BDYW11] B. Barak, Z. Dvir, A. Yehudayoff, and A. Wigderson. Rank bounds for design matrices with
applications to combinatorial geometry and locally correctable codes. In Proceedings of the
43rd annual ACM symposium on Theory of computing, STOC ’11, pages 519–528, New York,
NY, USA, 2011. ACM.

[BBB+00] Amos Beimel, Francesco Bergadano, Nader H. Bshouty, Eyal Kushilevitz, and Stefano Varric-
chio. Learning functions represented as multiplicity automata. J. ACM, 47(3):506–530, May
2000.

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to canonical forms.
SIGSAM Bull., 10(3):19–29, August 1976.

[DS07] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. SIAM J. COMPUT, 36(5):1404–1434, 2007.

[GKZ94] Izrail Moiseevitch Gelfand, Mikhail M. Kapranov, and Andrei V. Zelevinsky. Discrimi-
nants, resultants, and multidimensional determinants. Mathematics : theory & applications.
Birkhäuser, Boston, Basel, Berlin, 1994. Autre tirage de l’édition Birkhäuser chez Springer
Science+ Business Media.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.
ACM, 33(4):792–807, August 1986.

[GKL12] Ankit Gupta, Neeraj Kayal, and Satya Lokam. Reconstruction of depth-4 multilinear circuits
with top fan-in 2. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of
Computing, STOC ’12, pages 625–642, New York, NY, USA, 2012. ACM.

[GKL11] Ankit Gupta, Neeraj Kayal, and Satyanarayana V. Lokam. Efficient reconstruction of random
multilinear formulas. In IEEE 52nd Annual Symposium on Foundations of Computer Science,
FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 778–787, 2011.

[GKQ14] Ankit Gupta, Neeraj Kayal, and Youming Qiao. Random arithmetic formulas can be recon-
structed efficiently. computational complexity, 23(2):207–303, 2014.

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (extended abstract).
In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80,
pages 262–272, New York, NY, USA, 1980. ACM.

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given byblack boxes for
their evaluations: Greatest common divisors, factorization, separation of numerators and de-
nominators. J. Symb. Comput., 9(3):301–320, March 1990.

48

[KS09a] Zohar S. Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic circuits
with bounded top fan-in. In Proceedings of the 24rd Annual CCC, pages 274–285, 2009.

[KS09b] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.
In Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’09, pages 198–207, Washington, DC, USA, 2009. IEEE Computer Society.

[KV94] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning boolean formulae
and finite automata. J. ACM, 41(1):67–95, January 1994.

[Kha92] Michael Kharitonov. Cryptographic lower bounds for learnability of boolean functions on the
uniform distribution. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, pages 29–36, New York, NY, USA, 1992. ACM.

[KS06] Adam Klivans and Amir Shpilka. Learning restricted models of arithmetic circuits. Theory of
computing, 2(10):185–206, 2006.

[KS01] Adam R. Klivans and Daniel Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the Thirty-third Annual ACM Symposium on Theory of Com-
puting, STOC ’01, pages 216–223, New York, NY, USA, 2001. ACM.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. 2009.

[SS96] Robert E. Schapire and Linda M. Sellie. Learning sparse multivariate polynomials over a field
with queries and counterexamples. In In Proceedings of the Sixth Annual ACM Workshop on
Computational Learning Theory, pages 17–26, 1996.

[Shp07] Amir Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates. In In
STOC ’07: Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 284–293. ACM Press, 2007.

[SV09] Amir Shpilka and Ilya Volkovich. Improved polynomial identity testing for read-once formulas.
pages 700–713, 2009.

49

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

