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Abstract

Reconstruction of arithmertic circuits has been heavily studied in the past few years and has
connections to proving lower bounds and deterministic identity testing. In this paper we present a
polynomial time randomized algorithm for reconstructing ΣΠΣ(2) circuits over R, i.e. depth−3 circuits
with fan-in 2 at the top addition gate and having real coefficients.

The algorithm needs only a blackbox query access to the polynomial f ∈ R[x1, . . . , xn] of degree d,
computable by a ΣΠΣ(2) circuit C. In addition, we assume that the ”simple rank” of this polynomial
(essential number of variables after removing the gcd of the two multiplication gates) is bigger than a
fixed constant. Our algorithm runs in time poly(n, d) and returns an equivalent ΣΠΣ(2) circuit(with
high probability).

The problem of reconstructing ΣΠΣ(2) circuits over finite fields was first proposed by Shpilka [24].
The generalization to ΣΠΣ(k) circuits, k = O(1) (over finite fields) was addressed by Karnin and
Shpilka in [15]. The techniques in these previous involve iterating over all objects of certain kinds over
the ambient field and thus the running time depends on the size of the field F. Their reconstruction
algorithm uses lower bounds on the lengths of Linear Locally Decodable Codes with 2 queries. In our
settings, such ideas immediately pose a problem and we need new ideas to handle the case of the field
R.

Our main techniques are based on the use of Quantitative Syslvester Gallai Theorems from the work
of Barak et.al. [3] to find a small collection of ”nice” subspaces to project onto. The heart of our paper
lies in subtle applications of the Quantitative Sylvester Gallai theorems to prove why projections w.r.t.
the ”nice” subspaces can be ”glued”. We also use Brill’s Equations from [8] to construct a small set of
candidate linear forms (containing linear forms from both gates). Another important technique which
comes very handy is the polynomial time randomized algorithm for factoring multivariate polynomials
given by Kaltofen [14].
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1 Introduction

The last few years have seen significant progress towards interesting problems dealing with arithmetic
circuits. Some of these problems include Deterministic Polynomial Identity Testing, Reconstruction of
Circuits and recently Lower Bounds for Arithmetic Circuits. There has also been work connecting these
three different aspects. In this paper we will primarily be concerned with the reconstruction problem.
Even though it’s connections to Identity Testing and Lower Bounds are very exciting, the problem in itself
has drawn a lot of attention because of elegant techniques and connections to learning. The strongest
version of the problem requires that for any f ∈ F[x1, . . . , xn] with blackbox access given one wants to
construct (roughly) most succint representation i.e. the smallest possible arithmetic circuit computing the
polynomial. This general problem appears to be very hard. Most of the work done has dealt with some
special type of polynomials i.e. the ones which exhibit constant depth circuits with alternating addition
and multiplication gates. Our result adds to this by looking at polynomials computed by circuits of this
type (alternating addition/multiplication gates but of depth 3). Our circuits will have variables at the
leaves, operations (+,×) at the gates and scalars at the edges. We also assume that the top gate has
only two children and the ”simple rank” of this polynomial (essential number of variables after removing
the gcd of the two multiplication gates) is bigger than a constant. The bottom most layer has addition
gates and so computes linear forms, the middle layer then multiplies these linear forms together and the
top layer adds two such products. Later in Remark 1.2 we discuss that we may assume the linear forms
computed at bottom level to be homogeneous and the in-degree of all gates at middle level to be the
same (= degree of f). Therefore these circuits compute polynomials with the following form :

f(x1, . . . , xn) = G(x1, . . . , xn)(T0(x1, . . . , xn) + T1(x1, . . . , xn))

where Ti(x1, . . . , xn) =
M∏
j=1

lij and G(x1, . . . , xn) =
d−M∏
j=1

Gj with the lij ’s and Gj ’s being linear forms for

i ∈ {0, 1}. Also assume gcd(T0, T1) = 1. Our condition about the essential number of variables (after
removing gcd from the multiplication gates) is called ”simple rank” of the polynomial and is defined as
dimension of the space

sp{lij : i ∈ {0, 1}, j ∈ {1, . . . ,M}}

When the underlying field is R (i.e. the field of real numbers) we give an efficient randomized algorithm
for reconstructing the circuit representation of such polynomials. Formally our main theorem reads :

Theorem 1.1 [ΣΠΣR(2) Reconstruction Theorem] Let f = G(T0 + T1) ∈ R[x1, . . . , xn] be any degree d,
n− variate polynomial (to which we have blackbox access) which can be computed by a depth 3 circuit with
top fan-in 2 (i.e. a ΣΠΣ(2) circuit) i.e. G,Ti being products of affine forms. Assume gcd(T0, T1) = 1 and
span{l : l | T0T1} is bigger than s + 1 (a fixed constant defined below). We give a randomized algorithm
which runs in time poly(n, d) and computes the cicuit for f with high probability.
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Definition 1.2 We fix s to be any constant > max(C2k−1 + k, cR(4)) where :

1. Ck = Ck

δ the constant that appears in Theorem C.4.

2. δ is some fixed number in (0, 7−
√

37
6 ).

3. cR(4) = 3(4)2 = 48, is the rankbound needed for uniqueness of ΣΠΣ(2) circuits as shown in
Theorem 1.8.

From our discussion before the theorem about Remark 1.2, we can assume in the above theorem that the
polynomial and all linear forms involved are homogeneous.
As per our knowledge this is the first algorithm that efficiently reconstructs such circuits (over the reals).
Over finite fields, the same problem has been considered by [24] and our method takes inspiration from
their work. They also generalized this finite field version to circuits with arbitrary (but constant) top
fan-in in [15]. However we need many new tools and techniques as their methods don’t generalize at a
lot of crucial steps. For eg:

• They iterate through linear forms in a finite field which we unfortunately cannot do.

• They use lower bounds for Locally Decodable Codes given in [7] which again does not work in our
setup.

We resolve these issues by

• Constructing candidate linear forms by solving simultaneous polynomial equations obtained from
Brill’s Equations (Chapter 4, [8]).

• Using quantitative versions of the Sylvester Gallai Theorems given in [3] and [6]. This new method
enables us to construct nice subspaces, take projections onto them and glue the projections back
to recover the cicuit representation.

1.1 Previous Work and Connections

Efficient Reconstruction algorithms are known for some concrete class of circuits. We list some here:

• Depth-2 ΣΠ circuits (sparse polynomials) in [20]

• Read-once arithmetic formulas in [25]

• Non-commutative ABP’s [2]

• ΣΠΣ(2) circuits over finite fields in [24], extended to ΣΠΣ(k) circuits (over finite fields) with
k = O(1) in [15].

• Random Multilinear Formular in [11]

• Depth 4 (ΣΠΣΠ) multilinear circuits with top fan-in 2 in [10]

• Random Arithmetic Formulas in [12]

All of the above work introduced new ideas and techniques and have been greatly appreciated.

It’s straightforward to observe that a polynomial time deterministic reconstruction algorithm for a circuit
class C also implies a polynomial time Deterministic Identity Testing algorithm for the same class. From
the works [1] and [13] it has been established that blackbox Identity Testing for certain circuit classes
imply superpolynomial circuit lower bounds for an explicit polynomial. Hence the general problem of
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deterministic reconstruction cannot be easier than proving superpolynomial lower bounds. So one might
first try and relax the requirements and demand a randomized algorithm. Another motivation to consider
the probabilistic version comes from Learning Theory. A fundamental question called the exact learning
problem using membership queries asks the following : Given oracle access to a Boolean function,
compute a small description for it. This problem has attracted a lot of attention in the last few
decades. For eg. in [18][9] and [17] a negative result stating that a class of boolean circuits containing
the trapdoor functions or pseudo-random functions has no efficient learning algorithms. Among positive
works [23], [4], [19] show that when f has a small circuit (inside some restricted class) exact learning
from membership queries is possible. Our problem is a close cousin as we are looking for exact learning
algorithms for algebraic functions. Because of this connection with learning theory it makes sense to also
allow randomized algorithms for reconstruction.

1.2 Depth 3 Arithmetic Circuits

We will use the definitions from [16]. Let C be an arithmetic circuit with coefficients in the field F. We
say C is a ΣΠΣ(k) circuit if it computes an expression of the form.

C(x̄) =
∑
i∈[k]

∏
j∈[d]

li,j(x̄)

li,j(x̄) are linear forms of the type li,j(x̄) =
∑
s∈[n]

asxs where (a1, . . . , an) ∈ Fn and (x1, . . . , xn) is an n−

tuple of indeterminates. For convenience we denote the multiplication gates in C as

Ti =
∏
j∈[d]

li,j(x̄)

k is the top fanin of our circuit C and d is the fanin of each multiplication gate Ti. With these definitions
we will say that our circuit is of type ΣΠΣF(k, d, n). When most parameters are understood we will just
call it a ΣΠΣ(k) circuit.

Remark Note that we are cosidering homogeneous circuits. There are two basic assumptions:

1. li,j ’s have no constant term i.e. they are linear forms.

2. Fanin of each Ti is equal to d.

If these are not satisfied we can homogenize our circuit by considering Zd(C(X1
Z , . . . ,

Xn
Z )). Now both

the conditions will be taken care of by reconstructing this new homogenized circuit. We need a rank
condition on our polynomial which remains essentially unchanged even after this substitution.

Definition 1.3 (Minimal Circuit) We say that the circuit C is minimal if no strict non empty subsets
of the ΠΣ polynomials {T1, . . . , Tk} sums to zero.

Definition 1.4 (Simple Circuit and Simplification) A circuit C is called Simple if the gcd of the
ΠΣ polynomials gcd(T1, . . . , Tk) is equal to 1 (i.e. is a unit). The simplification of a ΣΠΣ(k) circuit C
denoted as Sim(C) is the ΣΠΣ(k) circuit obtained by dividing each term by the gcd of all terms i.e.

Sim(C)
def
=
∑
i∈[k]

Ti
gcd(T1, . . . , Tk)
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Definition 1.5 (Rank of a Circuit) Identifying each linear form l(x̄) =
∑
s∈[n]

asxs with the vector

(a1, . . . , an) ∈ Fn, we define the rank of C to be the dimension of the vector space spanned by the set
{li,j |i ∈ [k], j ∈ [d]}.

Definition 1.6 (Simple Rank of a Circuit) For a ΣΠΣ(k) circuit C we define the Simple Rank of
C as the rank of the circuit Sim(C).

Before we go further into the paper and explain our algorithm we state some results about uniqueness
of these circuits. In a nutshell for a ΣΠΣR(2, d, n) circuit C, if one assumes that the Simple rank of C is
bigger than a constant (cR(4) : defined later) then the circuit is essentially unique.

1.3 Uniqueness of Representation

Shpilka et. al. showed the uniqueness of circuit representation in [24] using rank bounds for Polynomial
Identity Testing. The bound they used were from the work of Dvir et. al. in [7]. It essentialy states
that the rank of a simple, minimal ΣΠΣ(k) circuit (d ≥ 2, k ≥ 3) which computes the identically zero
polynomial is ≤ 2O(k2) logk−2 d. For circuits over reals improved rank bounds were given by Kayal et.al.
in [16].
In a series of following work the rank bounds for identically zero ΣΠΣ(k) circuits got further improved.
The best known bounds over real fields were given by Saxena et. al. in [22]. We rewrite Theorem 1.5 in
[22] here for completion.

Theorem 1.7 (Theorem 1.5 in [22]) Let C be a ΣΠΣ(k, d, n) circuit over field R that is simple, min-
imal and zero. Then, rk(C) < 3k2.

Let cR(k) = 3k2. This gives us the following version of Corollary 7, Section 2.1 in [24].

Theorem 1.8 ([24]) Let f(x̄) ∈ R[x] be a polynomial which exhibits a ΣΠΣ(2) circuit

C = G(A+B)

A =
∏

j∈[M ]

Aj , B =
∏

j∈[M ]

Bj , G =
∏

i∈[d−M ]

Gi, where Ai, Bj , Gk ∈ LinR[x̄]. gcd(A,B) = 1, and Sim(C) =

A+B has rank ≥ cR(4) + 1 then the representation is unique. That is if:

f = G(A+B) = G̃(Ã+ B̃)

where A,B, Ã, B̃ are ΠΣ polynomials over R and gcd(Ã, B̃) = 1 then we have G = G̃ and (A,B) = (Ã, B̃)
or (B̃, Ã) (upto scalar multiplication).

Proof. Let g = gcd(G, G̃) and let G = gG1, G̃ = gG̃1. Then gcd(G1, G̃1) = 1 and we get

G1A+G1B − G̃1Ã− G̃1B̃ = 0

This is a simple ΣΠΣ(4) circuit with rank bigger than cR(4) + 1 and is identically 0 so it must be not
minimal. Considering the various cases one can easily prove the required equality.
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2 Summary of Technical Ideas and Algorithms

2.1 A General Reconstruction Technique

In this section we will pictorially present the technique used to reconstruct a linear form (product of
linear forms) from it’s (their) projections onto certain spaces. For details, algorithms and proofs please
see Section D.

Consider the linear form l = a1x1 + a2x2 + a3x3 ∈ R[x1, x2, x3] (point P ) with the condition that a3 6= 0.
Suppose we know l (mod x1) (point Q), l (mod x2) (point R) upto scalar multiplication, can we recon-
struct a scalar multiple of l from this data. Let us view this pictorially:

x1

x3

x2L1

L2
L

P (a1, a2, a3)

R(a1, 0, a3)

Q(0, a2, a3)

Rewriting Problem : Given basis {x1, x2, x3} and lines L1, L2, can we find out the line L in the picture
above. This is easy, we just pick points on L1, L2 with the same x3 co-ordinate (i.e. same height).
Then we complete the cuboid and recover our line L. Next suppose we have a product of linear forms
P̃ = l1 . . . ld such that modulo x1, all li give the same line and modulo x2, distinct (upto scalar mul-
tiplication) forms give distinct lines. Also we know the projection of P̃ onto {x1 = 0} and {x2 = 0}.
The property mentioned implies that we know projections of all linear forms dividing P̃ . And so we can
still reconstruct a scalar multiple of P̃ by using the above strategy repeatedly. In our final application
x1 gets replaced by a subspace S and S, {x2, x3} are linearly independent. The above method helps us
reconstruct a scalar multiple of P̃ in this case as well.

So when subspace S and vectors x2, x3 exist with the projection property mentioned above ( i.e. on using
an extension of S ∪ {x2, x3} as a basis, all forms dividing P̃ give the same line modulo S and distinct
(upto scalar multiplication) forms give distinct lines modulo x2) then we can reconstruct a scalar multiple
of P̃ . Such (S, x2, x3) exist in certain scenarios that appear during our algorithm. This is discussed in
Subsection 4.5 using Quantitative Sylvester Gallai Theorems from [3]. In our application we use Corollary
C.5 (to the quantitative SG theorem in [3] ) given in Section C. Please see Section C for more details
about the theorem.

2.2 Algorithm Strategy

The broad structure of our algorithm is similar to that of Shpilka in [24] however our techniques are
different. We first restrict the blackbox inputs to a low (O(1)) dimensional random subspace of Rn and
interpolate this restricted polynomial. Next we try to recover the ΣΠΣ(2) structure of this restricted
polynomial and finally lift it back to Rn. The random subspace and unique ΣΠΣ(2) structure will ensure
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that the lifting is unique. Similar to [24] we try to answer the following questions. However our answers
(algorithms) are different from theirs

1. For a ΣΠΣ(2) polynomial f over r = O(1) variables, can one compute a small set of linear forms
which contains all factors from both gates?

2. Let V0 be a co-dimension k subspace(k = O(1)) and V1, . . . , Vt be co-dimension 1 subspaces of a
linear space V . Given circuits Ci (i ∈ {0, . . . , t}) computing f |Vi(restriction of f to Vi) can we
reconstruct from them a single circuit C for f |V ?

3. Given co-dimension 1 subspaces V ⊂ U and circuits f |V when is the ΣΠΣ(2) circuit representations
of lifts of f |V to f |U unique?

Our first question is easily solved using Brill’s equations (See Chapter 4 [8]). These provide a set of polyno-
mials whose simultaneous solutions completely characterize coefficients of complex ΠΣ polynomials. A lin-
ear form l = x1−a2x2−. . .−arxr divides one of the gates of f(x1, . . . , xr)⇒ f(a2x2+. . .+arxr, x2, . . . , xr)
is a ΠΣ polynomial modulo l. When this is applied into Brill’s equation (see Corollary B.2) we recover
possible l’s which obviously include linear factors of gates. We can show that (see Claim F.2) the extra
linear forms we get are not too many (poly(d)) and also have some special structure. We call this set C of
linear forms as Candidate linear forms and non-deterministically guess from this set. It should be noted
that we do all this when our polynomial is over O(1) variables.

We deal with the second question while trying to reconstruct the ΣΠΣ(2) representation of the interpo-
lated polynomial f |V , where V is the random low dimensional subspace. We divide the algorithm into
Easy Case, Medium Case and a Hard Case.

• For the Easy Case our algorithm tries to reconstruct one of the multiplication gates of f |V by first
looking at it’s restriction to a special co-dimension 1 subspace V1. If f = A + B with A,B being
ΠΣ polynomials, the projection of one of the gates (say A) with respect to V1 will be 0 and the
other (say B) will remain unchanged giving us B and therefore both gates by factoring f |V −B.

• In the Medium Case we have alteast two extra dimensions in one of the gates. This can be used
to show that the only linear factors of f|V are those coming from G. Now we can recover G by
factoring f and then use Easy Case for the remaining polynomial. An important consequence of
this case is that in the Hard Case we may now assume that both gates are high dimensional which
is very crucial.

• In the Hard Case we will first need V0, a co-dimension k (where k = O(1)) subspace and then
iteratively select co-dimension 1 subspaces V1, . . . , Vt. For some gate (say B), all pairs (V0, Vi)
(i ∈ [t]) will reconstruct some linear factors of B. This process will either completely reconstruct
B or we will fall into the Easy Case. Once B is known we can factor f |V −B to get A.

The restrictions that we compute always factor into product of linear forms and can be easily computed
since we know f |V explicitly. They can then be factorized into product of linear forms using the factor-
ization algorithms from [14]. It is the choice of the subspaces V0, V1, . . . , Vt where our algorithm differs
from that in [24] significantly. Our algorithm selects V0 and iteratively selects the Vi’s (i ∈ [t]) such that
(V0, Vi) have certain ”nice” properties which help us recover the gates in f |V . The existence of subspaces
with ”nice” properties is guaranteed by Quantitative Sylvester Gallai Theorems given in [3]. To use the
theorems we had to develop more machinery that has been explained later.

The third question comes up when we want to lift our solution from the random subspace V to the original
space. This is done in steps. We first consider random spaces U such that V has co-dimension 1 inside
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them. Now we reconstruct the circuits for f |V and f |U . The ΣΠΣ(2) circuits for f |V and f |U are unique
since the simple ranks are high enough (because U, V are random subspaces of high enough dimension)
implying that the circuit for f |V lifts to a unique circuit for f |U . When this is done for multiple U ’s we
can find the gates exactly.

2.3 Flowcharts for Key Algorithms

This section will sketch all the key algorithms we design in the reconstruction process. Detailed explana-
tions of algorithms, proofs and time complexity analysis can be found later in the paper in Sections 4 and 5.

Let’s define a structure called decomposition containing the information returned after a reconstruc-
tion algorithm. We assume having a data type polynomial for general polynomials and pi sigma for
polynomials which are product of linear forms. We use C++ syntax to define our structure.

struct decomposit ion {
bool i s c o r r e c t ; // i s c o r r e c t w i l l be t rue i f f = M 0 + M 1
polynomial f ;
p i s igma M 0 ;
p i s igma M 1 ;

// Constructor when a r e con s t r u c t i on i s found
decomposit ion ( polynomial g , p i s igma A, p i s igma B){

i s c o r r e c t =true ;
f=g ;
M 0=A;
M 1=B;

}

// Constructor when no r e con s t ru c t i on i s found
decomposit ion ( ){

i s c o r r e c t=fa l se ;
}

} ;

2.3.1 Overall Algorithm :

Here is a flowchart explaining the entire algorithm:
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Start
Input:f ∈

R[x1, . . . , xn]
as blackbox

Choose random basis
{y1, . . . , yn} of Rn, V =
sp({y1, . . . , ys}), Vi =
sp({v1, . . . , vs, vi}) for
i ∈ {s + 1, . . . , n}.

Define f0(y1, . . . , ys) =
f|V , fi(y1, . . . , ys, yi) =

f|Vi

Consider sets
H ⊂ V,Hi ⊂ Vi

with |H| ≥
ds, |Hi| ≥ ds+1

and interpolate
to find f0, fi

Reconstruct to get
f0 = M0 + M1 and fi =
M i

0 +M i
1 with M0,M1 ∈

ΠΣ[y1, . . . , ys],M
i
0,M

i
1 ∈

ΠΣ[y1, . . . , ys, yi]

If all recon-
structions

were successful

Use
M0,M1,M

i
0,M

i
1

to compute gates
N0, N1 such that
f = N0 + N1

yes

If the recon-
struction was

successful

Return : a new object of
type decomposition using
decomposition(f,N0, N1)

yes

Return : a new
object of type

decomposition using
decomposition()

no

no

Stop

Most steps in the above flowchart are simple and work easily in polynomial time. However there are two
blocks which need explanation.

Reconstruct to get
f0 = M0 + M1 and

fi = M i
0 +M i

1 with M0,M1 ∈
ΠΣ[y1, . . . , ys],M

i
0,M

i
1 ∈

ΠΣ[y1, . . . , ys, yi]

Use
M0,M1,M

i
0,M

i
1

to compute gates
N0, N1 such that
f = N0 + N1

1. The first one corresponds to reconstructing the ΣΠΣ(2) representations of polynomials with simple
rank = s (resp. s + 1) over variables {y1, . . . , ys} (resp. {y1, . . . , ys, yi}). Note that our input
polynomial has simple rank ≥ s+ 1, therefore on projecting to a random subspace of dimension s
(resp. s + 1), it’s rank becomes s (resp. s + 1) with high probability. We briefly explain in 2.3.3
and give all details in Section 4.

2. The second one deals with gluing a polynomially number of such low dimensional reconstructions
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to get a reconstruction of the original polynomial. We discuss it in Subsubsection 2.3.2 and give all
details in Section 5.

2.3.2 Lifting from Low to High dimension

Let’s Explain the second block in Picture 2.3.1. So we have the reconstructions f0 = M0 + M1 and
fi = M i

0 +M i
1. If we set yi = 0 in fi we should get f0. So M i

0|V +M i
1|V = M0 +M1. Since the simple rank

of f0 is r this representation should be unique. The multiplication gates M i
0,M

i
1 should be lifts of M0,M1.

So we can just set yi to 0 and find the correspondence between these gates. Let’s say M i
0||V = M0, this

implies that the linear forms in M i
0 are lifts of linear forms in M0. Next notice that with high probability

LI linear forms from a gate in circuit of f remain LI on projecting to V . So LD linear forms in M0 cannot
have LI lifts in M i

0. Now to find this lift of linear form l dividing M0 with multiplicity k, find li in M i
0 (

with multiplicity k) such that on setting yi = 0, we get l i.e. li|{yi=0} = l. This gives the coefficient of yi
in the lift of l. If we do this for all i we get the lift of l to Rn. So we can compute lifts of all linear forms
in M0 and M1. By uniqueness this will give us the gates N0, N1 such that f = N0 +N1.

2.3.3 Reconstruction for constant rank

Let’s explain the first block now. Suppose f = G(T0 + T1) is a real ΣΠΣ(2) polynomial with simple
rank r over variables {y1, . . . , yr} (in our application r = s, s+ 1) with G,Ti being ΠΣ polynomials and
gcd(T0, T1) = 1. From now onwards, for a product of linear forms (called ΠΣ polynomial) P , L(P ) will
be the set of distict linear factors, sp(P ) will be the span of L(P ), dim(P ) will be the dim(sp(P )). For
a general polynomial g, Lin(g) = product of all linear factors of g.

Set of candidate linear forms For our algorithms in this section we need a small set of linear forms
which contains L(Ti) ( set of linear forms dividing Ti ) for i ∈ {0, 1}. In order to compute this set we use
a characterization of ΠΣ polynomials given by Brill’s equations (See Section B). Our algorithm is based
on Corollary B.2.

Start
Input :

f ∈ R[x1, . . . , xr]

Compute
h = f

Lin(f)

Let l = x1 −
a2x2 − . . .− arxr

and compute
coefficients

ca(a2, . . . , ar) of
h(a2x2 + . . . +
arxr, x2, . . . , xr)
corresponding

to monomial xa

Substitute
ca(a2, . . . , ar)

in polynomials
F1, . . . , Fm from
Brill’s equations

and solve for
(a2, . . . , ar).

Add tuples with
all real ai to C

Return : The set
C of linear forms

Stop

From now onwards assume we know parts of the two gates GT0, GT1 i.e. say we know polynomials
Ki | GTi, i ∈ {0, 1}. Also define Ui = GTi

Ki
. At the beginning of the algorithm K0 = K1 = 1. Now we will

break down this low rank algorithm into three cases :

Easy Case

L(T1−i) ( sp(Ui), for some i ∈ {0, 1}

11



In this case we assume that one of the Ti’s has a linear form outside the span of the unknown part U1−i (of
the other gate GT1−i). On going modulo this extra dimension in Ti, U1−i remains essentially unchanged
(upto a linear transformation) and we use this to recover it and complete the reconstruction.

Start

Input : f ∈
R[x1, . . . , xr],K0,K1 ∈
ΠΣ[x1, . . . , xr], Set C

for i ∈ {0, 1}

for each l ∈ C

Use f (mod l),Ki

(mod l) to find Ui and
check if for some i and l,
Ui ∈ ΠΣ[x1, . . . , xr] and
f −KiUi ∈ ΠΣ[x1, . . . , xr]

If such an i and
l exists then
compute cor-
responding Ui

Return : a new object of
type decomposition using

decomposition(f,KiUi, f−
KiUi)

If there is still
’l’ remaining

in loop

If there is still
’i’ remaining

in loop

yes

no

yes

yes

no

Stop

Return : a new
object of type

decomposition using
decomposition()

no

Medium Case

dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 for some i ∈ {0, 1}

We consider this case since it facilitates solving the complement (Hard Case) of the Easy Case. The
assumption here is that some Ti has two extra dimensions outside the span of T1−i. This property can
be used to show that the product of all linear factors of f is G. In other words T0 + T1 has no linear
factors. Now we could simply use the factorization algorithm from [14] and recover G. On removing G,
U1−i = T1−i and Ti has a linear form outside it’s span enabling us to use the Easy Case algorithm from
above. It’s easy to see that if we are not in this case then both dim(sp(T0)) and dim(sp(T1)) are ≥ r− 1
(assuming dim(sp(T0) + sp(T1)) = r). This will be very crucial in the Hard Case.

12



Start
Input : f ∈

R[x1, . . . , xr],Set C

Compute
L = Lin(f) := product
of all linear factors of f

Return :
EasyCase(f, L, L, C)Stop

Hard Case

L(T1−i) ⊆ sp(Ui), for i = 0 and 1

Fix k = cR(3) + 2 (See Theorem 1.7 for definition of cR(m) and point 2 in Lemma F.2 to see why we need
it). The algorithm for this case relies on the existence of something called a Detector Pair (S,D) (see
Definition 4.4). S,D are subsets of some L(Ti) with |S| = k. From the arguments given in Subsection
4.5, we know that inside some L(Ti), such a pair exists with large |D|. The algorithm crucially depends
on such a pair since projections of f onto them can be glued.

1. S is used to find a factor I | G such that factors of G
I are nice. (See Lemma 4.9) This factor I is

removed from f to obtain f?. It is added after reconstruction of f?.

2. Once such an S, is known we can compute a set X such that D ⊂ X ⊂ L(Ti) correctly using
Algorithm 7. This helps us in moving forward with the algorithm by making sure (while iterating
over X) that linear forms are chosen from L(Ti) and the good linear forms (certain elements of D)
will be chosen.

3. Finally f? is reconstructed from f? (mod S) and f? (mod d), for certain d ∈ D using the recon-
structor algorithm given in Algorithm 7.

13



Start
Input : f ∈

R[x1, . . . , xr], Set C for i ∈ {0, 1}

for each LI S ⊂ C
with |S| = k

Using S do the following :

• I =IdentifyFactors(f, S, C))

• f? = f
I ,K

?
0 = 1,K?

1 = 1

• X =
OverestDetector(f, S, C)),
Note D ⊆ X ⊆ L(Ti)

While
(deg(K?

1−i) <
deg(f?))

Obj=EasyCase(f?,K?
0 ,K

?
1 , C),

If (obj → iscorrect) is true

Iterate over
d ∈ X to find
d such that
projections

onto sp(S) and
sp({d}) can

reconstruct a
new linear factor
and update K?

1−i

no

If such a
d exists

If there is S0

remaining
in loop

no

yes

If there is i
remaining

in loop

no

yes

If deg(K?
1−i) <

deg(f)
yes

yes

Return : a new object of
type decomposition using
decomposition(f, I(obj→
M 0), I(obj→ M 1))

If f−IK?
1−i is a

ΠΣ polynomial
no

yes

no

Let M0 = IK?
1−i,M1 =

f − IK?
1−i. Return :

a new object of type
decomposition using

decomposition(f,M0,M1)
Return : a new object
of type decomposition
using decomposition()

no

yes

Stop
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3 Notation

[n] denotes the set {1, 2, . . . , n}. Throughout the paper we will work over the field R. Let V be a finite
dimensional real vector space and S ⊂ V , sp(S) will denote the linear span of elements of S. dim(S) is
the dimension of the subspace sp(S). If S = {s1, . . . , sk} ⊂ V is a set of linearly independent vectors
then fl(S) denotes the affine subspace generated by points in S (also called a (k − 1)− flat or just flat
when dimension is understood). In particular:

fl(S) = {
k∑
i=1

λisi : λi ∈ R,
k∑
i=1

λi = 1}

Let W ⊂ V be a subspace, then we can extend basis and get another subspace W ′ (called the complement
of W ) such that W ⊕W ′ = V . Note that the complement need not be unique. Corresponding to each
such decomposition of V we may define orthogonal projections πW , πW ′ onto W,W ′ respectively. Let
v = w + w′ ∈ V,w ∈W,w′ ∈W ′:

πW (v) = w, πW ′(v) = w′

(x̄) will be used for the tuple (x1, . . . , xn).

LinR[x̄] = {a1x1 + . . .+ anxn : ai ∈ R} ⊂ R[x̄]

is the vector space of all linear forms over the variables (x1, . . . , xn). For a linear form l ∈ LinR[x̄] and
a polynomial f ∈ R[x] we write l | f if l divides f and l - f if it does not. We say ld || f if ld | f but
ld+1 - f .

ΠΣd
R[x̄] = {l1(x̄) . . . ld(x̄) : li ∈ LinR[x̄]} ⊂ R[x̄]

is the set of degree d homogeneous polynomials which can be written as product of linear forms. This
collection for all possible d is called the set

ΠΣR[x̄] =
⋃
d∈N

ΠΣd
R[x̄]

also called ΠΣ polynomials for convenience. Let f(x̄) ∈ R[x] then Lin(f) ∈ ΠΣR[x̄] denotes the product
of all linear factors of f(x̄). Let L(f) denote the set of all linear factors of f . For any set of polynomials
S ⊂ C[x̄], we denote by V(S), the set of all complex simultaneous solutions of polynomials in S (this set
is called the variety of S), i.e.

V(S) = {a ∈ C : for all f ∈ S, f(a) = 0}

Let B = {b1, . . . , bn} be an ordered basis for V = LinR[x̄]. We define maps φB : V \ {0} → V as

φB(a1b1 + . . .+ anbn) =
1

ak
(a1b1 + . . .+ anbn)

where k is such that ai = 0 for all i < k and ak 6= 0.

A non-zero linear form l is called normal with respect to B if l ∈ ΦB(V ) i.e. the first non-zero coefficient
is 1. A polynomial P ∈ ΠΣR[x̄] is normal w.r.t. B if it is a product of normal linear forms. For two
polynomials P1, P2 ∈ ΠΣR[x̄] we define :

gcdB(P1, P2) = P ∈ ΠΣR[x̄], P normal w.r.t. B such that P | P1, P | P2

When a basis is not mentioned we assume that the above definitions are with respect to the standard
basis.
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We can represent any linear form in LinR[x̄] as a point in the vector space Rn and vice versa. To be
precise we define the cannonical map Γ : LinR[x̄]→ Rn as

Γ(a1x1 + . . .+ anxn) = (a1, . . . , an)

Γ is a linear isomorphism of vector spaces LinR[x̄] and Rn. Because of this isomorphism we will in-
terchange between points and linear forms whenever we can. We choose to represent the linear form
a(x̄) = a1x1 + . . .+ anxn as the point a = (a1, . . . , an).

LI will be the abbreviation for Linearly Independent and LD will be the abbreviation for Linearly De-
pendent.

Definition 3.1 (Standard Linear Form) A non zero vector v is called standard with respect to basis
B = {b1, . . . , bn} if the coefficient of b1 in v is 1. When a basis is not mentioned we assume we’re talking
about the standard basis. (Equivalently for linear forms the coefficient of x1 is 1). A ΠΣ polynomial will
be called standard if it is a product of standard linear forms.

We close this section with a lemma telling us when can we replace the span of some vectors with the
affine span or flat. We’ve used this several times in the paper.

Lemma 3.2 Let l, l1, . . . , lt ∈ LinR[x̄] be standard linear forms w.r.t. some basis B = {b1, . . . , bn} such
that l ∈ sp({l1, . . . , lt}) then

l ∈ fl({l1, . . . , lt})

Proof. Since l ∈ sp({l1, . . . , lt}), we know that l =
∑
i∈[t]

αili for some scalars αi ∈ R. All linear forms

are standard w.r.t. B ⇒ comparing the coefficients of b1 we get that
∑
i∈[t]

αi = 1 and therefore l ∈

fl({l1, . . . , lt}).
Let T ⊂ Rn, By a scaling of T we mean a set where all vectors get scaled (possibly by different scalars).
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4 Reconstruction for low rank

Let’s recall Definition 1.2 following Theorem 1.1 in Section 1.

Definition 4.1 We fix s to be any constant > max(C2k−1 + k, cR(4)) where :

1. Ck = Ck

δ the constant that appears in Theorem C.4.

2. δ is some fixed number in (0, 7−
√

37
6 ).

3. cR(4) = 3(4)2 = 48, is the rankbound needed for uniqueness of ΣΠΣ(2) circuits as shown in
Theorem 1.8.

Let r be any constant ≥ s (In our application we need s and s + 1). Our main theorem for this section
therefore is:

Theorem 4.2 Let r be as defined above. Consider f(x̄) ∈ R[x̄], a multivariate homogeneous polynomial
of degree d over the variables x̄ = (x1, . . . , xr) which can be computed by a ΣΠΣR(2)[x̄] circuit C. Assume
that rank of the simplification of C i.e. Sim(C) = r. We give a poly(d) time randomized algorithm which
computes C given blackbox access to f(x̄).

We assume f has the following ΣΠΣR(2)[x̄] representation:

f = G̃(α̃0T̃0 + α̃1T̃1)

where G̃, T̃i ∈ ΠΣR[x̄] are normal (i.e. leading non-zero coefficient is 1 in every linear factor) and
α̃0, α̃1 ∈ R with gcd(T̃0, T̃1) = 1. The rank(Sim(C)) = r condition then becomes

sp(L(T̃0) ∪ L(T̃1)) = LinR[x̄]

Consider the set T = L(G̃) ∪ L(T̃0) ∪ L(T̃1). By abuse of notation we will treat these linear forms also
as points in Rr. Since linear factors of G̃, T̃i are normal, two linear factors of G̃, T̃i are LD iff they are same.

Random Transformation and Assumptions Let Ω,Λ be two r× r matrices such that their entries
Ωi,j and Λi,j are picked independently from the uniform distribution on [N ]. Here N = 2d. We begin our
algorithm by making a few assumptions. All of these assumptions are true with very high probability
and we assume them in our algorithm. Consider the standard basis of Rr given as S = {e1, . . . , er}. Let
Ej = sp({e1, . . . , ej}) and E′j = sp({ej+1, . . . , er}), clearly Rr = Ej ⊕ E′j . Let πWEj

be the orthogonal

projection onto Ej w.r.t. this decomposition.

• Assumption 0 : Ω is invertible. This is just the complement of event E0 in Section E and so
occurs with high probability.

• Assumption 1 : For all t ∈ T , πWE1
(Ω(t)) 6= 0 i.e. [Ω(t)]1S 6= 0 (coefficient of e1 is non-zero) .

This is the complement of event E1 in Section E and so occurs with high probability.

• Assumption 2 : For all LI sets {t1, . . . , tr} ⊂ T , {Ω(t1), . . . ,Ω(tr)} is LI. This essentially means
that Ω is invertible. This is the complement of E2 in Section E and so occurs with high probability.

• Assumption 3 : Fix a k < r. For all LI sets {t1, . . . , tr} ⊂ T, {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(td)}
is LI i.e. is a basis. This is the complement of event E3 in Section E and so occurs with high prob-
ability. It’ll be used later in this chapter.
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• Assumption 4 : Fix a k < r. For all LI sets T̃ = {t1, . . . , tr} ⊂ T and define the set B =
{Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)}. By Assumption 3 this is a basis. Consider any t ∈ T such
that Ω(t) /∈ sp({Ω(t1), . . . ,Ω(tk)}). Then [Ω(t)]k+1

B 6= 0. This event is the complement of E5 and so
it occurs with high probability.

From now onwards we will assume that all the above assumptions are true. Since all of them occur with
very high probability, their complements occur with very low probability and by union bound the union
of their complements is a low probability event. So intersection of the above assumptions occurs with
high probability and we assume all of them are true. Note that the assumptions will continue
to be true if we scale all linear forms ( possibly different scaling for different vectors, but
non-zero scalars) in T i.e. if the assumptions were true for T then they would have been
true had we started with a scaling of T .

The first step of our algorithm is to apply Ω to f . We have a natural identification between linear forms
and points in Rr. This identification converts Ω into a linear map on LinR[x̄] which can be further
converted to a ring homomorphism on polynomials by assuming that it preserves the products and sums
of polynomials. So Ω gets applied to all linear forms in the ΣΠΣ(2) representation of f . Since f is a
degree d polynomial in r variables it has atmost poly(dr) coefficients. Applying Ω to each monomial and
expanding it takes poly(dr) time and gives poly(dr) terms. So computing Ω(f) takes poly(dr) time and
has poly(dr) monomials.

Now we try and reconstruct the circuit for Ω(f). If this reconstruction can be done correctly, we can
apply Ω−1 and get back f . Note that Assumption 1 tells us that the coefficient of x1 in Ω(l) is non-zero
for all l in T . Let X = {x1, . . . , xr} and x̄ is used for the tuple (x1, . . . , xr). From this discussion we
know that:

Ω(f) = Ω(G̃)(α̃0Ω(T̃0) + α̃1Ω(T̃1)) = G(α0T0 + α1T1)

where αi are chosen such that linear factors of G,Ti have their first coefficient( that of x1) equal to 1. So
they are standard ΠΣ polynomials. Note that we’ve used Assumption 1 here. Since we’ve moved con-
stants to make linear forms standard we can assume G = λΩ(G̃), Ti = λiΩ(T̃i) with λ, λi ∈ R. Consider
some scaling Tsc of T such that X = L(G) ∪ L(T0) ∪ L(T1) is = Ω(Tsc). All above assumptions are true
for Tsc and so we may use the conclusions about Ω(Tsc) i.e. X . Also since Ω is invertible gcd(T0, T1) = 1.

Let Ti =
∏

j∈[M ]

lij , i = 0, 1 and G =
∏

k∈[d−M ]

Gk, with lij , Gk ∈ LinR[x̄] (so d = deg(f) ).

For simplicity from now onwards we call Ω(f) by f and try to reconstruct it’s circuit. Once this is done
we may apply Ω−1 to all the linear forms in the gates and get the circuit for f . This step clearly takes
poly(dr) time in the same way as applying Ω took.

Since r is a constant, the steps described above take poly(d) time overall.

Known and Unknown Parts We also define some other ΠΣR[x̄] polynomials Ki, Ui, i = 0, 1 which
satisfy

Ki | αiGTi, Ui =
αiGTi
Ki

.

with the extra condition
gcd(Ki, Ui) = 1.

Ki are the known factors of αiGTi and Ui the unknown factors. The gcd condition just means that that
known and unknown parts of αiGTi don’t have common factors. In other words linear forms in αiGTi are
known with full multiplicity. We initialize Ki = 1 and during the course of the algorithm update them
as and when we recover more linear forms. At the end Ki = αiGTi and so we know both gates.
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4.1 Outline of the algorithm

1. Set C of Candidate Linear Forms :

We compute a poly(d) size set C of linear forms which contains L(Ti), i = 0, 1. We will non-
deterministically guess from this set C making only a constant number of guesses everytime(thus
polynomial work overall). It is important to note that the uniqueness of our circuit guarantees
that our answer if computed can always be tested to be right. For more details on this please see
Appendix F. We also give an algorithm to construct this set. See ??.

2. Easy Case : L(T1−i) ( sp(Ui), for some i ∈ {0, 1} :

So T1−i has a linear factor l(1−i)1 such that

sp({l(1−i)1}) ∩ sp(Ui) = {0} (1)

Let W = sp({l(1−i)1}) and extend to a basis of V and in the process obtain another subspace
W ′ ⊂ V such that W ⊕W ′ = V . We can see from Equation 1 that LI linear forms in Ui remain LI
when we project to W ′. We use this to compute Ui and then since KiUi = αiGTi we know one of
the gates. To find the other gate simply factorize f − αiGTi. If it factors into a product of linear
forms we have the reconstruction.

3. Medium Case : - dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 for some i ∈ {0, 1} :

This case is just to facilitate the Hard Case. We know that T1−i has two linear factors l(1−i)1, l(1−i)2
such that sp({l(1−i)1, l(1−i)2}) ∩ sp(Ti) = {0}. We show that the only linear factors of f are those
which appear in G. So we can first factorize f using Kaltofen’s factoring ([14]) and obtain G. Update
Kj = G, j = 0, 1. So Uj = αjTj for j = 0, 1. Clearly we also have L(T1−i) ( sp(Ti) = sp(Ui) and
we can go to Easy Case above with Ki = G.

4. Hard Case : L(T1−i) ⊆ sp(Ui), for i = 0 and 1 :

We know that we are not in Medium Case and so dim(sp(T0) + sp(T1))− sp(Ti) ≤ 1 for i = 0, 1.
Also dim(sp(T0) + sp(T1)) = r by assumption on the simple rank of our polynomial. So this
guarantees that dim(sp(T1−i)) ≥ r − 1⇒ (by the condition of this hard case) dim(sp(Ui)) ≥ r − 1
for i = 0, 1. This enables us to use the Quantitative Sylvester Gallai theorems on both sets
L(Ti),L(Ui).

• Our first step is to identify a certain ”bad” factor I of G and get rid of it to get G? = G
I and

thus f? = f
I . The factors of I don’t satisfy certain properties we need later and so we remove

them. Thankfully we have an efficient algorithm to recover I. Our algorithm uses something
we call a Detector Pair (See 4.4) whose existence is shown using the Quantitative Sylvester
Galai Theorems mentioned above.

• So now our job is to reconstruct f? with known (and unknown resp.) parts as K?
0 ,K

?
1 (U?0 , U

?
1

resp.).

• If sp(U?1−i) becomes low dimensional we may fall in Easy Case and recover the circuit for f?

directly. Otherwise the same detector pairs then provide certain ”nice” subspaces correspond-
ing to linear forms in Ti. Projection of U?1−i onto these subspaces can be easily glued together
to recover some linear factors(with multiplicities) of U?1−i, which will then be multiplied to
K?

1−i.

• The process continues as long as sp(U?1−i) remains high dimensional. As soon as this condition
fails we end up in Easy Case and the gates are recovered.

We give algorithms for Easy and Medium cases. Hard Case will require more prepration and will be
done after these subsections.
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4.2 Easy Case

L(T1−i) ( sp(Ui), for some i ∈ {0, 1}

Claim 4.3 Suppose for some i ∈ {0, 1}, L(T1−i) ( sp(Ui) then we can reconstruct f .

FunctionName: EasyCase
input : f ∈ ΣΠΣR(2)[x̄],K0 ∈ ΠΣR[x̄],K1 ∈ ΠΣR[x̄], C ⊂ LinR[x̄])
output : An object of type decomposition

1 for i← 0 to 1 do
2 for each LI set {l1, l2, . . . , lr} ⊂ C do
3 Define K ′i ← Ki;
4 Find t such that lt1 || f ;

5 // i.e. lt1 | f && lt+1
1 - f

6 W ← sp({l1}),W ′ ← sp({l2, . . . , lr});
7 if lt1 || K ′i then

8 f̃ = f
lt1

; K̃i =
K′i
lt1

;

9 if Ui =
πW ′ (f̃)

πW ′ (K̃i)
∈ ΠΣR[x̄] && f −KiUi ∈ ΠΣR[x̄] then Ki = KiUi,

K1−i = f −KiUi;
10 return decomposition(f,K0,K1);

11 end

12 end

13 end
14 return decomposition();

Algorithm 1: Easy Case Reconstruction

Explanation and Correctness Analysis

• The first for loop just guesses the gate with extra dimensions i.e. it’s not contained in span of the
unknown part of the other gate.

• If for some basis {l1, . . . , lr} ⊂ C the algorithm actually computes a ΣΠΣ(2) representation in the
end then it ought to be correct since the last ’if’ also checks if it is correct.

• If our guess for i is correct, we show that there exists a basis {l1, . . . , lr} ⊂ C for which all conditions
will be satisfied and we actually arrive at a ΣΠΣ(2) representation in the end. Since L(T1−i) (
sp(Ui) and L(T1−i),L(Ui) ⊂ C there exists l1 ∈ L(T1−i) \ sp(Ui) ⊂ C. Choose a basis {l2, . . . , ls} of
sp(Ui), then {l1, . . . , ls} is an LI set. Now extend this to a basis {l1, . . . , ls, ls+1, . . . , lr} ⊂ C of V .
We go over all choices of basis in C and will arrive at the right one.

• We initialize a dummy polynomial K ′i to represent Ki since we do not want to update Ki till we
actually have a solution. Let’s assume lt1 || f i.e. lt1 | f and lt+1

1 - f . We know l1 | T1−i ⇒ l1 -
Ti ⇒ l1 - αiTi + α1−iT1−i. Therefore lt1 || G ⇒ lt1 || αiGTi = KiUi. Also l1 /∈ sp(Ui) ⇒ l1 - Ui
thus lt1 || Ki ⇒ lt1 || K ′i. We remove lt1 from both f,K ′i to get f̃ , K̃i. Let W = sp({l1}) and
W ′ = sp({l2, . . . , lr}), therefore V = W ⊕W ′. Note that since l1 ∈ L(T1−i)

πW ′(f̃) = πW ′(Ui)πW ′(K̃i)

Since πW ′(K̃i) 6= 0, we get πW ′(Ui) =
πW ′ (f̃)

πW ′ (K̃i)
. If Ui = u1 . . . us with uj ∈ W ′, we see that

πW ′(Ui) = πW ′(u1) . . . πW ′(us) = u1 . . . us = Ui. So we get Ui and hence αiGTi = KiUi . Once
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αiGTi is known we factorize f − αiGTi to get α1−iGT1−i. For the correct choice of our basis this
will factorize completely into a ΠΣ polynomial. Now we update Ki = KiUi and K1−i = f −KiUi
and an object decomposition(f,K0,K1). Throughout the algorithm we use Kaltofen’s factoring
[14] wherever necessary.

• If we were not able to find the ΣΠΣ(2) representation then we return an object decomposition().

Time Complexity - We can see above all loops run only poly(d) many times. The most expensive
step is choosing r vectors from C. But recall that r is a constant and so this also takes only polynomial
time in d. Other steps like factoring polynomials (using Kaltofen’s factoring algorithm from [14]), taking
projection onto known subspaces, divding by polynomials require poly(d) time (r is a constant) as has
been explained multiple times before.

4.3 Medium Case

dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 for some i ∈ {0, 1}

Claim 4.4 If dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 then L(αiTi + α1−iT1−i) = φ.

Proof. dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2 ⇒, there exists l′1, l
′
2 ∈ L(T1−i) \ sp(Ti) be such that dim({l′1, l′2} ∪

L(Ti)) = dim(L(Ti)) + 2. Assume there exist l ∈ L(αiTi + α1−iT1−i).

l | αiTi + α1−iT1−i ⇒ l - Ti and l - T1−i (since they are coprime)

0 6= αi
∏
j∈[M ]

lij = −α1−i
∏
j∈[M ]

l(1−i)j (mod {l}).

Thus there exist l1, l2 ∈ L(Ti) and scalars γj , δj , j ∈ [2] such that l = γjlj + δjl
′
j . Since l - T0, l - T1 we get

γj , δj are non zero.
δ1, δ2 6= 0⇒,

l′1, l
′
2 ∈ sp({l} ∪ L(Ti))⇒ dim({l′1, l′2} ∪ L(Ti)) ≤ dim(L(Ti)) + 1

which is a contradiction. So L(αiTi + α1−iT1−i) = φ.
Therefore the only linear factors of f are present in G, which can now be correctly found by using
Kaltofen’s algorithm [14] and identifying the linear factors. Update Kj = G for j = 0, 1, therefore
Uj = Tj . Also this case implies that L(T1−i) ( sp(Ti) = sp(Ui). and so we can use Easy Case.
So we have the following claim:

Claim 4.5 If the condition in Medium Case is true, the following algorithm reconstructs f , if there is a
reconstruction.

FunctionName: MediumCase
input : f ∈ ΣΠΣR(2)[x̄], C ⊂ LinR[x̄])
output : An object of type decomposition

1 L← Lin(f);

2 // Use Kaltofen’s factoring from [14] to compute Lin(f)
def
= product of all

linear factors of f
3 if EasyCase(f, L, L, C)→ iscorrect then
4 return EasyCase (f, L, L, C);
5 end
6 return decomposition();

Algorithm 2: Medium Case Reconstruction
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The above algorithm does exactly what has been explained in the preceeding paragraph. It works in
poly(d) time if EasyCase(f,K0,K1, C) works in poly(d) time. Kaltofen’s factoring and all other steps are
poly(d) time.

Now we need to handle the Hard Case. This is quite technical and so we do some more preparation.
We devise a technique to get rid of some factors of f to get a new polynomial f? without destroying the
ΣΠΣ(2) structure. If Easy Case holds for f? we stop there itself. Otherwise we will use combination of
different subspaces of V , project f? onto them and glue projections to get gates for f?.

4.4 Detector Pair, Reducing Factors, Hard Case Preparation

Let’s recall:

g =
f

G
= α0T0 + α1T1

We outline an approach to identify some factors of f . These factors will divide G but won’t divide g.
This is going to be useful in the Hard Case. The linear factors left after removing these identified factors
will have very strong structural properties and so will be instrumental in reconstruction. The main tool
in this identification is a pair (S,D) (defined below) inside one of the L(Ti)’s. This pair will be called a
“Detector Pair”. It will also decide the subspaces on which we take projections of f and glue back to get
the gates.

Detector Pairs (S,D) Fix k = cR(3) + 2 (See Theorem 1.7 for definition of cR(m)). Let S =
{l1, . . . , lk} ⊂ L(Ti) be an LI set of linear forms. Let D(6= φ) ⊆ L(Ti) .We say that (S,D) is a ”Detector
Pair” in L(Ti) if the following are satisfied for all lk+1 ∈ D:

• {l1, . . . , lk, lk+1} is an LI set. Let F = fl({l1, . . . , lk, lk+1}). F is elementary in L(Ti) i.e. F∩L(Ti) =
{l1, . . . , lk, lk+1}. See Definition C.1.

• F ∩ L(T1−i) ⊆ fl({l1, . . . , lk}) i.e. F contains only those points from L(T1−i) which lie inside
fl({l1, . . . , lk}).

4.4.1 Identifying Some Factors Which Don’t Divide g

The two claims below give results about structure of linear forms which divide g. The proofs are easy
but technical and so we move them to the appendix.

Claim 4.6 Let (S = {l1 . . . , lk}, D) be a Detector set in L(Ti). Let lk+1 ∈ D. For a standard linear
form l ∈ V , if l | g then l /∈ sp({l1, . . . , lk}) .

Proof. See G.1 in Appendix

Claim 4.7 Let l ∈ LinR[x̄] be standard such that l | g and C be the candidate set. Assume (S =
{l1, . . . , lk}, D(6= φ)) is a Detector pair in L(Ti). Then |L(T1−i) ∩ (fl(S ∪ {l}) \ fl(S))| ≥ 2. That is the
flat fl({l1, . . . , lk, l}) contains atleast two distinct points from L(T1−i)(⊆ C) outside fl({l1, . . . , lk}).

Proof. See G.2 in Appendix

Claim 4.8 Suppose (S = {l1, . . . , lk}, D( 6= φ)) is a Detector Pair in L(Ti). The following algorithm
identifies some factors in L(G) \ L(g). It returns the product of all linear forms identified.
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FunctionName: IdentifyFactors
input : f ∈ ΣΠΣR(2)[x̄], C ⊂ LinR[x̄], S = {l1, . . . , lk} ⊂ LinR[x̄])
output : a ΠΣR[x̄] polynomial

1 I = 1, bool flag;
2 for each factor l of f do
3 flag = false;
4 if l, l1, . . . , lk are LI then
5 for l′1 6= l′2 ∈ C \ fl({l1, . . . , lk}) do
6 if l′1, l

′
2 ∈ sp({l, l1, . . . , lk}) then flag = true;

7 break;

8 end

9 end
10 if !flag then
11 I = I×l;
12 end

13 end
14 return I;

Algorithm 3: Identify Factors

Proof. The proof of the claim is a part of Lemma 4.9 below.

Time Complexity - Since C has size poly(d) and deg(f) = d, the nested loops run poly(d) times. k, r
are constants so checking linear independence of k + 1 linear forms in r variables takes constant time.
Checking if some vectors belong to a k+1 dimensional space also takes constant time. Multiplying linear
forms to I takes poly(d) time. So overall the algorithm runs in poly(d) time.

So the above algorithm identified a factor I of G for us. Let us define new polynomials

G? =
G

I
=
∏
t∈[N1]

Gt

and

f? =
f

I
= G?(α0T0 + α1T1)

Lemma 4.9 The following are true:

1. If l | I (i.e. l was identified) then l ∈ L(G) \ L(g).

2. If l | G? (i.e. l was retained) then (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk}))∩ (L(T1−i)∪ (L(Ti) \D)) 6= φ
that is:

(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) contains a point from L(Ti) \D or L(T1−i).

3. If l | G? and lk+1 ∈ D then l /∈ sp({l1, . . . , lk, lk+1}).

Proof. See G.3 in Appendix.

4.4.2 Overestimating the set D of the detector pair (S,D)

Lemma 4.9 is going to help us actually find an overestimate of D corresponding to S = {l1, . . . , lk} in the
detector pair (S,D) as described in the lemma below. This will be important since we need D during
our algorithm for the Hard Case.
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Lemma 4.10 Let (S = {l1, . . . , lk}, D) be a detector in L(Ti). For each (l, lj) ∈ C × S define the space
U{l,lj} = sp({l, lj}). Extend {l, lj} to a basis and in the process obtain U ′{l,lj} such that V = U{l,lj}⊕U ′{l,lj}.
Define the set:

X = {l ∈ C : πU ′{l,lj}
(f?) 6= 0, for all lj ∈ S}

Then D ⊂ X ⊂ L(Ti).

Proof. See G.4 in Appendix.
This set X is an overestimate of D inside L(Ti) and also easy to compute. Given S we may easily
construct X in time poly(d) because of it’s simple description. Let’s give an algorithm to compute X
given f?, S, C.

Claim 4.11 The following algorithm computes the overestimate X of D as discussed above

FunctionName: OverestimateDetector
input : f? ∈ ΣΠΣR(2)[x̄], S = {l1, . . . , lk} ⊂ LinR[x̄], C ⊂ LinR[x̄])
output : Set of linear forms

1 bool flag;
2 Define X ← φ;
3 for each l ∈ C do
4 flag = true;
5 for each lj ∈ S with {l, lj} LI do
6 Find {l′1, . . . , l′r−2} ⊂ C such that {l, lj , l′1, . . . , l′r−2} is LI;
7 U ← Rl ⊕ Rlj ;U ′ ← Rl′1 ⊕ . . .⊕ Rl′r−2;
8 if πU ′(f

?) == 0 then
9 flag = false;

10 break;

11 end

12 end
13 if flag then
14 X ← X ∪ {l};
15 end

16 end
17 return X;

Algorithm 4: Overestimate Detector

Time Complexity - Inside the inner for loop we look for (r−2) linear forms from C. |C| = poly(d) and
r is a constant and so this step only needs poly(d) time. The nested loops run polynomially many times.
Checking linear independece of r linear forms and projecting to known constant dimensional subspaces
also take poly(d) time as has been discussed before. So the algorithm runs in poly(d) time.

4.5 Hard Case

L(T1−i) ⊆ sp(Ui), for i = 0 and 1

This Subsection will involve the most non trivial ideas. We handled dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≥ 2
in the Medium Case (see Subsection 4.3) completely, so let’s assume dim(sp(T1−i) + sp(Ti)/sp(Ti)) ≤ 1 ⇒
dim(L(T1−i) ∪ L(Ti)) ≤ dim(L(Ti)) + 1 for both i = 0, 1. We already know that rank(f) = r, implying
dim(L(Ti) ∪ L(T1−i)) = r. Thus for i = 0, 1; dim(L(Ti)) ≥ r − 1. This works in our favour for applying
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the quantitative version of the Sylvester Gallai theorems given in [3]. To be precise we will use Corollary
C.6 from Appendix C in this paper.

1. Our first application (See Lemma 4.13) of Quantitative Sylvester Gallai will help us prove the
existence of a Detector pair (S = {l1, . . . , lk}, D) in L(Ti) with k = cR(3) + 2 (See defn of cR(.) in
Theorem 1.7) and large size of D. For this we will only need dim(L(Ti)) ≥ C2k−1 for i = 0, 1(See
Appendix C for definition of C2k−1). From Definition 1.2 we know that this is true with k = cR(3)+2.

2. The above point shows the existence of a detector pair (S,D) in L(Ti) with large |D|. So now we
go back to Subsection 4.4 and remove some factors of f to get f? = G?(α0T0 + α1T1) such that
linear factors of G? satisfy properties given in Lemma 4.9. We also compute the overestimate X of
D using Algorithm 7. Let the known and unknown parts of f? be K?

0 ,K
?
1 and U?0 , U

?
1 respectively.

If for some i ∈ {0, 1}, L(Ti) ( sp(U?1−i) then we are in Easy Case for f? and can recover the gates
for f?. Otherwise for both i = 0, 1; L(Ti) ⊆ sp(U?1−i) ⇒ dim(L(U?1−i)) ≥ r − 1 and we continue
with reconstruction below.

3. Next to actually reconstruct linear forms in U?1−i, we will use it’s high-dimensionality (≥ r − 1 ≥
C2k−1) discussed above. Corollary C.6 from Section C will enable us to prove the existence of a
d1 ∈ D which together with the set S found above will give the existence of a ”Reconstructor”(
See Claim D.4 and Algorithm 7) which recovers some linear factors of U?1−i with multiplicity (See
Theorem 4.14) .

4.5.1 Large Size of Detector Sets

w.l.o.g. we assume |L(T0)| ≤ |L(T1)|. First we point out a simple calculation that will be needed later.

For δ ∈ (0, 7−
√

37
6 ) and θ ∈ ( 3δ

1−δ , 1− 3δ), let v(δ, θ) be defined as follows:

v(δ, θ) =

{
1− δ − θ if |L(T0)| ≤ θ|L(T1)|

(1− δ)(1 + θ)− 1 if θ|L(T1)| < |L(T0)| ≤ |L(T1)|

Claim 4.12 The following is true

(2− v(δ, θ))

v(δ, θ)
≤ 1− δ

δ

Proof. See H.1 in Appendix.

Lemma 4.13 Let k = cR(3) + 2 (see defn of cR(m) in Theorem 1.7). Fix δ, θ in range given in Claim
4.12 above . Then for some i ∈ {0, 1} there exists a Detector (S = {l1, . . . , lk}, D) in L(Ti) with |D| ≥
v(δ, θ) max(|L(T0)|, |L(T1)|).

Proof. See H.2 in Appendix.

4.5.2 Assuming L(Ti) ⊆ sp(L(U?1−i)) and reconstructing factors of U?1−i

Let’s begin by stating our main reconstruction theorem for this Subsubsection. We will go through several
steps to prove it:

Theorem 4.14 There exist pairwise disjoint LI sets S0, S1, S2 with S0 ∪ S1 ∪ S2 being a basis of V =
LinR[x1, . . . , xr] ' Rr, and non constant polynomials P,Q dividing U?1−i such that P | Q and (Q,P, S0, S1, S2)
is a Reconstructor.
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Once we know this result we actually recover P by computing πW ′0(Q) and πW ′1(Q) and then using
Algorithm 7. We state this in the following corollary. Proof is given as Algorithm 5

Corollary 4.15 Using f,K1−i, S0, S1, S2 from above we can compute πW ′0(Q), πW ′1(Q) for Q defined in
the proof above.

Before going to the proof let’s do some more more preparation.

Consider the set of linear forms (points) X = L(G?) ∪ L(T0) ∪ L(T1). We know that sp(X ) = V =
LinR[x̄] ' Rr (By abuse of notation we will use linear forms as points in Rr wherever required). Let
(S0 = {l1, . . . , lk}, D) be a detector in L(Ti) with |D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|) andW0 = sp(S0). Ex-
tend S0 to a basis {l1, . . . , lk, l′k+1, . . . , l

′
r}. Now it’s time to use the other random matrix Λ. Since we had

applied Ω in the beginning, {Ω−1(l1), . . . ,Ω−1(lk)} are linear forms in our input polynomial for this sec-
tion. By Assumption 3 we know that the set {Ω(Ω−1l1), . . . ,Ω(Ω−1lk),ΛΩ(Ω−1l′k+1), . . . ,ΛΩ(Ω−1l′r)}
is LI. Let lj = Λl′j , j ∈ {k + 1, . . . , r}. So B = {l1, . . . , lr} is a basis. and define W̃0 = sp({lk+1, . . . , lr}).
Clearly V = W0⊕W̃0. Also by Assumption 4 for any l ∈ X \W0, [l]k+1

B 6= 0. We define a normalization
for linear forms l ∈ X :

l̂ =

{
1

[l]k+1
B

l : l ∈W c
0 ∩ X

0 : l ∈W0 ∩ X

i.e. normalize the (k + 1)th co-ordinate w.r.t. the basis B. For any subset T ⊂ X , we define :

T̂ = {l̂ : l ∈ T } \ {0}

With this notation we proceed towards detecting linear factors of the unknown parts. But first let’s show
that even after projecting onto W̃0, the detector is larger in size (upto a function of δ) compared to one
of the unknown parts.

Lemma 4.16 The following are true:

1. dim(πW̃0
(L̂(U?1−i))) > C4

2. πW̃0
(L̂(U?1−i)) ∩ πW̃0

(D̂) = φ

3. |πW̃0
(L̂(U?1−i))| ≤

1−δ
δ |πW̃0

(D̂)|

Proof. See H.3 Appendix.

This Lemma enables us to apply Lemma C.6 from Section C. Consider the sets πW̃0
(L̂(U?1−i)) and πW̃0

(D̂).
We’ve shown above that they are disjoint, span high enough dimension and

|πW̃0
(L̂(U?1−i))| ≤

1− δ
δ
|πW̃0

(D̂)|

Lemma C.6 shows the existence of a line ~L1 (called a ”semiordinary bichromatic” line) in W̃0 such that

|~L1 ∩ πW̃0
(L̂(U?1−i))| = 1 and |~L1 ∩ πW̃0

(D̂)| ≥ 1.
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For technical reasons we need a different ”semiordinary bichromatic” line. We construct it here:

1. Pick a d1 ∈ D such that e = πW̃0
(d̂1) ∈ ~L1. Clearly e ∈ sp({l1, . . . , lk, d1}). Observe

[d1]k+1
B 6= 0 ⇒ [e]k+1

B 6= 0, further implying that B1 = {l1, . . . , lk, e, lk+2, . . . , lr} and B2 =
{l1, . . . , lk, d1, lk+2, . . . , lr} are bases.

2. For v ∈ V , denote by [v]d1B2 the coefficient of d1 when v is written in basis B2. We know that for

v ∈ X , [v]k+1
B 6= 0, this clearly implies that [v]d1B2 6= 0. We define another normalization for linear

forms l ∈ X :

l̃ =

{
1

[l]
d1
B2

l : l /∈W0 ∩ X

0 : l ∈W0 ∩ X

i.e. normalize the coefficient of d1 when l is written in basis B2. For any subset T ⊂ X , we define :

T̃ = {l̃ : l ∈ T } \ {0}

This leads us to the following lemma :

Lemma 4.17 Let S1 = {d1} and S2 = {lk+2, . . . , lr}, W1 = sp(S1) and W2 = sp(S2). So V = W0 ⊕
W1 ⊕W2 and let W ′0 = W1 ⊕W2. For u ∈ L(U?1−i) such that πW̃0

(û) ∈ ~L1 ∩ πW̃0
(L̂(U?1−i)) consider the

following line inside W ′0
~L2 = fl({d1, πW ′0(ũ)})

then |~L2 ∩ πW ′0(D̃)| ≥ 1 and |~L2 ∩ πW ′0(L̃(U?1−i))| = 1, i.e. ~L2 is also a ”semiordinary bichromatic” like

~L1.

Proof. See H.4 in Appendix.

Finally it’s time to give the proof of Theorem 4.14.

Proof of Theorem 4.14. We do this in steps:

• Let S0, S1, S2 be as defined in the discussion above.

• Let Q be the largest factor of U?1−i such that for all linear forms q | Q, πW2(q) 6= 0. So πW2(Q) 6= 0

and if u? | U
?
1−i

Q is a linear form then πW2(u?) = 0. Let P be the ΠΣ polynomial with the largest
possible degree such that for all linear factors p of P , πW ′0(p̃) = πW ′0(ũ) (which was a non zero vector

on ~L2). Since πW ′0(ũ) and πW ′0(d̃1) were LI this also means that πW2(u) 6= 0 ⇒ πW2(p) 6= 0 for all
p | P . Clearly P is non constant since u | P , also by definition P | Q. Then (Q,P, S0, S1, S2) is a
Reconstructor (See Subsection D for definition) for P . Let’s check this is true:

– πW2(Q) 6= 0 - By definition of Q we know this for all it’s factors and therefore for Q itself.

– πW ′0(P ) = δ(πW ′0(ũ))t, for some δ ∈ R (by definition of P ).

– Let q | QP such that gcd(πW2(P ), πW2(q)) 6= 1⇒ there exists some linear factor p | P such that
πW2(p), πW2(q) are LD. {πW2(p), πW2(q)} are LD and non-zero implies q ∈ sp({l1, . . . , lk, d1, p}).

⇒ πW ′0(q) ∈ sp({πW ′0(d1), πW ′0(p)}) = sp({d1, πW ′0(ũ)})

So clearly :
πW ′0(q̃) ∈ sp({d1, πW ′0(ũ)})
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Since coefficient of d1 in πW ′0(q̃), d1, and πW ′0(ũ) is 1, it’s easy to see that πW ′0(q̃) ∈ fl({d1, πW ′0(ũ)}) =

~L2. Since Q | U?1−i we have πW ′0(q̃) ∈ πW ′0(L̃(U?1−i)) ⇒ πW ′0(q̃) ∈ ~L2 ∩ πW ′0(L̃(U?1−i)) =
{πW ′0(ũ)}. So πW ′0(q̃) = πW ′0(ũ) which can’t be true since P is the largest polynomial dividing
Q where linear factors have this property and q - P . So such a q does not exist.

The r× r matrix Λ with enries picked independently (and independent of entries of Ω) from the uniform
distribution on [N ] is also sent as an input. Fix k = cR(3) + 2.
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FunctionName: HardCase
input : f ∈ ΣΠΣR(2)[x̄], C ⊂ LinR[x̄],Λ ∈ Rr×r
output : An object of type decomposition

1 for i← 0 to 1 do
2 for each LI B′ = {l1, . . . , lk, l′k+1, . . . , l

′
r} ⊂ C do

3 S0 = {l1, . . . , lk};
4 for j ← k + 1 to r do
5 lj ← Λ(l′j);

6 end
7 if B = {l1, . . . , lr} is LI then
8 I ← IdentifyFactors(f, C, S0);
9 if I | f then

10 f? ← f
I , K?

0 = 1,K?
1 = 1, X ← OverestDetector(f?, C, S0);

11 while deg(K?
1−i) < deg(f?) do

12 if EasyCase(f?,K?
0 ,K

?
1 , C)→ iscorrect then

13 return object decomposition(f, IK?
0 , IK

?
1 );

14 end
15 else
16 for each d1 ∈ X do
17 if B2 = {l1, . . . , lk, d1, lk+2, . . . , lr} is LI then
18 Vj = Rlj , j ∈ [r] \ {k + 1}, Vk+1 = Rd1, V ′j =

⊕
t∈[r]\{j}

Vt;

19 S0 = {l1, . . . , lk}, S1 = {uk+1}, S2 = {lk+2, . . . , lr};
20 Wj = sp(Sj),W

′
j =

⊕
j1 6=j

Wj1 for j ∈ {0, 1, 2};

21 Q0 =
πV ′1

(f?)

πV ′1
(K?

1−i)
, Q1 =

πW ′1
(f)

πW ′1
(K?

1−i)
;

22 if Q0, Q1 ∈ ΠΣ[x̄] and non-zero then
23 for q0 | Q0 && q0 ∈W ′2, q1 | Q1 && q1 ∈W ′2 do

24 Q0 = Q0

q0
, Q1 = Q1

q1
;

25 end
26 Q0 = πW ′0(Q0);

27 if deg(Reconstructor(Q0, Q1, S0, S1, S2)) ≥ 1 then
28 K?

1−i ← K?
1−i ×Reconstructor(Q0, Q1, S0, S1, S2);

29 end

30 end

31 end

32 end

33 end

34 end
35 if f − IK?

1−i ∈ ΠΣ[x̄] then
36 M0 = IK?

1−i, M1 = f −M0, return new object decomposition(f,M0,M1);
37 end

38 end

39 end

40 end

41 end
42 return decomposition();

Algorithm 5: Hard Case Reconstruction
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Correctness Let’s assume we returned an object obj of type decomposition.

1. If obj → iscorrect == true : then we ought to be right since we check if obj → f = obj →
M0 + obj →M1. Since the representation is unique this will be the correct answer.

2. If obj → iscorrect == false: Let’s assume f actually has a ΣΠΣ(2) representation. If we were in
Easy Case or Medium Case we would have already found the circuit using their algorithms. So we
are in the Hard Case. So by Lemma 4.13 there exists i such that L(Ti) has a detector pair (S0, D)
with |D| large. For this i there exists such an S0, so sometime during the algorithm we would have
guessed the correct i and the correct S0. Now let’s analyze what happens inside the while
and the third for loop when the first two guesses are correct. Note that this also implies
that the I we have identified is correct and now we need to solve for

f? = G?(α0T0 + α1T1)

Let K?
0 ,K

?
1 (initialized to 1) be the known parts of the gates for this polynomial f? and U?0 , U

?
1 be

the unknown parts. Note that T0, T1 are same for both polynomials so rank(f?) = rank(f) and for
j = 0, 1; Kj | G?Tj .

Assume till the mth iteration of the while loop K?
t | G?Tt for t ∈ {0, 1}, we show that

after the (m+ 1)th iteration, this property continues to hold and deg(K?
1−i) increases.

• If after the mth iteration of the while loop for some j ∈ {0, 1}, L(Tj) ( sp(L(U?1−j)) we are in
Easy Case for f? . The first step in while loop is to call EasyCase(f?, C,K?

0 ,K
?
1 ). This will

clearly recover the circuit for f? and return true since K?
t | G?Tt for t ∈ {0, 1}. However this

does not happen so for both j = 0, 1, we have L(Ti) ( L(U?1−i). This means that we can use
the ideas in Subsection 4.5.2, specifically Theorem 4.14.

• The first two guesses are correct imply that D ⊆ X ⊆ L(Ti).

• If d gets rejected then Kt, t ∈ {0, 1} remain unchanged. If some d1 does not get rejected then
since d1 ∈ L(Ti), Q0 = πV ′1 (U?1−i) is a non zero ΠΣ polynomial. Then some factors (the ones
∈ W ′2) are removed from Q0. Also on projecting to W ′0 this still remains non-zero (as d1 was
not rejected).

• We know that d1 ∈ L(Ti) and d1 not getting rejected implies that Q1 = πW ′1(U?1−i) is a non-
zero ΠΣ polynomial. We again remove some factors (i.e. the ones in W ′2) from Q1. The
non-zeroness of Q0, Q1 imply that Q0 = πW ′1(Q), Q1 = πW ′1(Q) i.e. they are projections of the
same polynomial Q which is the largest factor of U?1−i with the property that any linear form
q | Q is not in W ′2 = W0 ⊕W1.

• d1 was not rejected implies that Reconstructor(Q0, Q1, S0, S1, S2) returned a non-trivial poly-
nomial P . This has to be a factor of Q by Claim D.6 following Algorithm 7 and therefore a
factor of U?1−i.

• Proof of Theorem 4.14 implies that in every iteration atleast some d1 will not be rejected.

• So clearly the new K?
1−i = K?

1−i × P divides G?T1−i. Ki remains unchanged. Therefore even
after the (m+ 1)th iteration Kt | G?Tt for both j = 0, 1 but degree of K?

1−i increases.

So the while loop cannot run more than deg(f?) times and in the end G?T1−i will be reconstructed
completely and correctly and we should have returned obj with obj → iscorrect = true. Therefore
we have a contradiction and so f did not have a ΣΠΣ(2) circuit and we correctly returned false.
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Running Time

• First for loop runs twice.

• Inside it chossing r linear forms from C (|C| = poly(d)) takes poly(d) time.

• Applying Λ to r − k vectors takes poly(r) = O(1) time.

• Checking if a set of size r inside Rr is LI takes poly(r) = O(1) time since it is equivalent to computing
determinant.

• IdentifyFactors() takes poly(d) time and computing f? also takes poly(d) time.

• OverestDetector() runs in poly(d) time.

• while loop runs atmost d times

• EasyCase runs in poly(d) time and so does polynomial multiplication.

• X ⊆ L(Ti) and |L(Ti)| ≤ deg(f?) and so for loop runs d times.

• Change of bases in Rr and application to a polynomial of degree d takes poly(d) time.

• Therefore projecting to subspaces also takes poly(d) time.

• Reconstructor() runs in poly(d) time (since r is a constant) and so does polynomial multiplication
and factoring by [14].

Since all of the above steps run in poly(d) time, nesting them a constant number of times also takes
poly(d) time. Therefore the running time of our algorithm is poly(d).

4.6 Algorithm including all cases :

The algorithm we give here will be the final algorithm for rank r ΣΠΣ polynomials. It will use the
previous three cases. Our input will be a ΣΠΣ(2) polynomial f(x1, . . . , xr) and output will be a circuit
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computing the same.

FunctionName: RECONSTRUCT
input : f ∈ ΣΠΣR(2)[x̄]
output : An object of type decomposition

1 decomposition obj;
2 (Ωi,j), (Λi,j), r × r matrices with entries chosen uniformly randomly from [N ];

3 Li(x̄)←
r∑

k=1

Ωi,kxk;

4 f(x1, . . . , xr)← f(L1(x̄), . . . , Lr(x̄));
5 C ← Candidates(f(x1, . . . , xr));
6 if MediumCase(f, C))→ iscorrect then
7 obj ← MediumCase(f, C);
8 end
9 else if EasyCase(f,K0,K1, C)→ iscorrect then

10 obj ← EasyCase(f,K0,K1, C);
11 end
12 else
13 obj ← HardCase(f, C,Λ);
14 end
15 Apply Ω−1 to obj→ f, obj→M0, obj→M1;
16 return obj;

Algorithm 6: Reconstruction in low rank

Explanation : Here we explain every step of the given algorithm:

• The function RECONSTRUCT(f) takes as input a polynomial f ∈ ΣΠΣR(2)[x̄] of rank = r and
outputs two polynomials K0,K1 ∈ ΠΣR[x̄] which are the two gates in it’s circuit representation.

• Steps 2, 3 picks a random matrix Ω and transforms each variable using the linear transformation this
matrix defines. With high probability this will be an invertible transformation. We do the recon-
struction for this new polynomial since the linear factors of it’s gates satisfy some non-degenerate
conditions(because they have been randomly transformed) our algorithm needs. We apply Ω−1

after the reconstruction and get back our original f .

• The next step constructs the set of candidate linear forms C. We’ve talked about the size, construc-
tion and structure of this set in Section F.

• We first assume Medium Case. It that was not the case we check for Easy Case . If both did not
occur we can be sure we are in the Hard case.

• We apply Ω−1 to polynomials in obj and return it.

5 Reconstruction for arbitrary rank

This section reduces the problem from ΣΠΣ(2) Circuits with arbitrary rank n (> r) to one with constant
rank (= r). Also once the problem has been solved efficiently in the low rank case we use multiple
instances of such solutions to lift to the general ΣΠΣ(2) circuit. The idea is to project the polynomial to
a small (polynomial) number of random subspaces of dimension r, reconstruct these low rank polynomials
and then lift back to the original polynomial. The uniqueness of our circuit’s representation plays a major
role in both the projection and lifting steps. Let

f = G(α0T0 + α1T1)
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G,Ti are normal ΠΣ polynomials. All notations are borrowed from the previous section. It is almost
identical to the restriction done in [24] except that the dimension of random subspaces is different. For
more details see Section 4.2.1 and 4.2.3. in [24]. Since all proofs have been done in detail in [24] we do
not spend much time here. A clear sketch with some proofs is however given.

5.1 Projection to a Random Low Dimensional Subspace

We explain the procedure of projecting to the random subspace below. In this low dimensional setup we
can get white-box access to πV (f), also some important properties of f are retained by πV (f). Proofs
are simple and standard so we discuss them in the appendix at end.

Pick n vectors vi, i ∈ [n] with each co-ordinate chosen independently from the uniform distribution on
[N ]. Let V = sp({vi : i ∈ [r]}) and V ′ = sp{vi : i ∈ {r + 1, . . . , n}}. Then V ⊕ V ′ = Rn Let πV denote
the orthogonal projection onto V . With high probability the following hold :

1. This set {vi : i ∈ [n]} is linearly independent (See Appendix I.1 for proof).

2. Let {l1, . . . , lr} be a set of r linearly independent linear forms in L(T0)∪L(T1). Then πV ({l1, . . . , lr})
is linearly independent with high probability. So rank(πV (f)) = r (See Appendix I.2 for Proof).

3. Let l01 ∈ L(T0), l11 ∈ L(T1), then πV (l01), πV (l11) are linearly independent with high probability
and so gcd(πV (T0), πV (T1)) = 1.

Pick large number of (≥ dr) random points pi, i = 1, . . . , dr in the space V . Use the values {f(pi)} and
get a white-box (coefficient) representation for πV (f). With high probability over the choice of points
lagrange interpolation will work (See Appendix I.3 for Proof). Note that the number of coefficients in
f |V = O(dr). Now this white box representation of πV (f) is reconstructed using the algorithm in Chapter
4. A number of such reconstructions are then glued to reconstruct the original polynomial.

5.2 Lifting from the Random Low Dimensional Subspace

1. Consider spaces Vi = V ⊕ Rvi for i = r + 1, . . . , n.

2. Reconstruct πVi(f) and πV (f) for each i ∈ {r + 1, . . . , n}.

3. Let l =
n∑
i=1

aivi be a linear form dividing one of the gates of f say T0. πV (l) =
r∑
i=1

aivi and

πVi(l) =
r∑
j=1

ajvj + aivi. Using our algorithm discussed in Chapter 4 we would have reconstructed

πV (f) and πVi(f). So we know the triples (πV (G), πV (T0), πV (T1)) and (πVi(G), πVi(T0), πVi(T1))

On restricting Vi to V :

a) Only Factors become factors with high probability so we can easily find the correspondence
between πV (G) and πVi(G).

b) πV (πVi(T0)) = πV (T0) and 6= πV (T1) because of uniqueness of representation and therefore we
get the correspondence between gates.

c) Now to get correspondence between linear forms. Let πV (l) have multiplicity k in πV (T0).
Then with high probability l has multiplicity k in T0 Since two LI vectors remain LI on projecting
to a random subspace of dimension ≥ 2 (again See Appendix I.2 for proof). Therefore πVi(l)
has multiplicity k and is the unique lift of πV (l) for all i. Let πVi(l) = πV (l) + aivi. Then
l = πV (l) +

∑n
i=r+1 aivj . This finds G,T0, T1 for us
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5.3 Time Complexity

• Interpolation to find whitebox representation πV (f) which is a degree d polynomial over r
variables clearly takes poly(dr) time (accounts to solving a linear system of size poly(dr)).

• Solving n − r instances of the low rank problem (simple ranks r and r + 1) takes npoly(dr)
time.

• The above mentioned approach to glue the linear forms in the gates clearly takes poly(n, d)
time.

• Overall the algorithm takes poly(n, d) time since r is a constant.

6 Conclusion and Future Work

We described an efficient randomized algorithm to reconstruct circuit representation of multivariate
polynomials which exhibit a ΣΠΣ(2) representation. Our algorithm works for all polynomials with
rank(number of independent variables greater than a constant r). In future we would like to address the
following:

• Reconstruction for Lower Ranks - As can be seen in the paper, rank of the polynomial for
uniqueness (i.e. cR(4)) and the rank we’ve assumed in the low rank reconstruction (i.e. r) are both
O(1) but cR(4) is smaller than r. Since one would expect a reconstruction algorithm whenever the
circuit is unique we would like to close this gap.

• ΣΠΣ(k) circuits - It would be interesting to consider more general top fan-in. In particular we
could consider ΣΠΣ(k) circuits with k = O(1).

• Derandomization - We would like to derandomize the algorithm as it was done in the finite field
case in [15].
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A Easy Problem : Reconstruction of a product of linear forms

Before we begin the whole discussion about our algorithm let’s try to design an efficient algorithm for a
much simpler problem. Consider the variables x̄ = (x1, . . . , xn) and a polynomial f(x̄) ∈ R[x̄] with the
following form :

f(x̄) = l1(x̄)l2(x̄) . . . ld(x̄)

where each li(x̄) is an affine form in the n variables x1, . . . , xn. Next asssume that we are given blackbox
access to f(x̄). Can one recover the li(x̄) with high probability? Thankfully there is an efficient and
simple algorithm (in [14]) which solves this problem as a special case. They give an efficient randomized
algorithm to compute irreducible factors of a polynomial (over characteristic zero fields) given as a black-
box. The factors are also computed as black-boxes. Note that an affine form can be easily reconstructed
from it’s black-box representation by simply querying at appropriate points. To be precise we can
reconstruct the affine form a1x1 + . . . anxn + an+1 from a black-box by simply querying at the points
{(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} ⊂ Rn+1.
Unfortunately it does not solve our problem i.e. when the polynomial is a sum of two such products. But
their approach does provide us with some ideas to tackle this difficult version. At a number of places in
our algorithm we will need to solve this simpler problem.

Lemma A.1 (Consequence of Theorem 1 in [14]) Let f(x̄) = l1(x̄)l2(x̄) . . . ld(x̄) ∈ R[x̄] be a poly-
nomial in variables x1, . . . , xn, such that li(x̄) is an affine form for each i. Then there exists an algorithm
Factorpoly(f) which computes the li(x̄)’s with probability ≥ 1− 1

2poly(n,d) in time poly(n, d).

Factorpoly(f) will be used polynomially many times during the course of our algorithm.

B Characterizing ΠΣ polynomials (Brill’s Equations)

In this section we will explicitly compute a set of polynomials whose common solutions characterize the
coefficients of all homogeneous ΠΣC[x1, . . . , xr] polynomials of degree d. A clean mathematical construc-
tion is given by Brill’s Equations given in Chapter 4, [8]. However we still need to calculate the time
complexity. But before that we define some operations on polynomials and calculate the time taken by
the operation along with the size of the output. Note that all polynomials are over the field of complex
numbers C and all computations are also done for the complex polynomial rings.

Let x̄ = (x1, . . . , xr) and ȳ = (y1, . . . , yr) be variables. For any homogeneous polynomial f(x̄) of degree
d, define

fx̄k(x̄, ȳ) =
(d− k)!

d!
(
∑
i

xi
∂

∂yi
)kf(ȳ)

Expanding (
∑
i
xi

∂
∂yi

)k as a polynomial of differentials takes O((r + k)r) time and has the same order of

terms in it. f(ȳ) has O((r + k)r) terms. Taking partial derivatives of each term takes constant time and
therefore overall computing (

∑
i
xi

∂
∂yi

)kf(ȳ) takes O((r + k)2r) time. Also the expression obtained will

have atmost O((r+k)2r) terms. Computing the external factor takes poly(d) time and so for an arbitrary
f(x̄) computing all fx̄k(x̄, ȳ) for 0 ≤ k ≤ d takes poly((r + d)r) time and has poly((r + d)r) terms in it.
From Section E., Chapter 4 in [8] we also know that fx̄k(x̄, ȳ) is a bihomogeneous form of degree k in x̄
and degree d− k in ȳ. It is called the kth polar of f .
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Next we define an � opeartion between homogeneous forms. Let f(x̄) and g(x̄) be homogeneous polyno-
mials of degrees d, define

(f � g)(x̄, ȳ) =
1

d+ 1

d∑
k=0

(−1)k
(
d

k

)
fȳk(ȳ, x̄)gx̄k(x̄, ȳ)

From the discussion above we know that computing fȳk(ȳ, x̄)gx̄k(x̄, ȳ) takes poly((r + d)r) time and it is
obvious that this product has poly((r+d)r) terms. Rest of the operations take poly(d) time and therefore
computing (f�g)(x̄, ȳ) takes poly((r+d)r) time and has poly((r+d)r) terms. From the discussion before
we may also easily conclude that the degrees of x̄, ȳ in (f �g)(x̄, ȳ) are poly(d). The form (f �g) is called
the vertical(Young) product of f and g. See Section G., Chapter 4 in [8].

Next for k ∈ {0, . . . , d} and z̄ = (z1, . . . , zr) consider homogeneous forms:

ek =

(
d

k

)
fx̄k(x̄, z̄)f(z̄)k−1

Following arguments from above, it’s straightforward to see that computing ek takes poly((r + d)r) time
and has poly((r + d)r) terms. Each ek is a homogeneous form in x̄, z̄ and f . It has degree k in x̄, degree
k(d − 1) in z, and k in coefficients of f . See Section H. of Chapter 4 in [8]. Let’s define the following
function of x̄ with parameters f, z

Pf,z(x̄) = (−1)dd
∑

i1+2i2+...+rir=d

(−1)(i1+...+ir) (i1 + . . .+ ir − 1)!

i1! . . . ir!
ei11 . . . e

ir
r

Note that {(i1, . . . , ir) : i1 + 2i2 + . . . + rir = d} ⊆ {(i1, . . . , ir) : i1 + i2 + . . . + ir ≤ d} and therefore
the number of additions in the above summand is O(poly(r+ d)r). For every fixed (i1, . . . , ir) computing

the coefficient (i1+...+ir−1)!
i1!...ir! takes O(poly((r + d)r)) time using multinomial coefficients. Each ek takes

poly((r+d)r) time to compute. There are r of them in each summand and so overall we take O(poly((r+
d)r)) time. A similar argument shows that number of terms in this polynomial is O(poly((r + d)r)).
Some more analysis shows that Pf,z(x̄) is a form of degree d in x̄ whose coefficients are homogeneous
polynomials of dedgree d in f and degree d(d− 1) in z̄. Let

Bf (x̄, ȳ, z̄) = (f � Pf,z)(x̄, ȳ)

By the arguments given above calculating this form also takes time poly((r+d)r) and it has poly((r+d)r)
terms. This is a homogeneous form in (x̄, ȳ, z̄) of multidegree (d, d, d(d−1)) and it’s coefficients are forms
of degree (d + 1) in the coefficients of f . See Section H., Chapter 4 in [8]. So in time poly((r + d)r) we
can compute Bf (x̄, ȳ, z̄) explicitly.

Now we arrive at the main theorem

Theorem B.1 (Brill’s Equation, See 4.H, [8]) A form f(x̄) is a product of linear forms if and only
if the polynomial Bf (x̄, ȳ, z̄) is identically 0.

We argued above that computing Bf (x̄, ȳ, z̄) takes O(poly((r + d)r)) time. It’s degrees in x̄, ȳ, z̄ are all
poly(d) and so the number of coefficients when written as a polynomial over the 3r variables
(x1, . . . , xr, y1, . . . , yr, z, . . . , zr) is poly((r + d)r). We mentioned that each coefficient is a polynomial of
degree (d+ 1) in the coefficients of f . Therefore we have the following corollary.

Corollary B.2 Let

I
def
= {(α1, . . . , αn) : ∀i : αi ≥ 0,

∑
i∈[r]

αi = d}

36



be the set capturing the indices of all possible monomials of degree exactly d in r variables (x1, . . . , xr).
Let fa(y1, . . . , yr) =

∑
α∈I aαyα denote an arbitrary homogeneous polynomial. The coefficient vector then

becomes a = (aα)α∈I . Then there exists an explicit set of polynomials F1(a), . . . , Fm(a) on poly((r+ d)r)
variables (a = (aα)α∈I), with m = poly((r+ d)r), deg(Fi) ≤ poly(d) such that for any particular value of
a, the corresponding polynomial fa(y) ∈ ΠΣd

R[ȳ] if and only if F1(a) = . . . = Fm(a) = 0. Also this set
{Fi, i ∈ [m]} can be computed in time poly((r + d)r) time.

Proof. Clear from the theorem and discussion above.
Note that in our application r = O(1) and so poly((d+ r)r) = poly(d).

C Tools from Incidence Geometry

Later in the paper we will use the quantitative version of Sylvester-Gallai Theorem from [3]. In this
subsection we do preparation for the same. Our main application will also involve a corollary we prove
towards the end of this subsection.

Definition C.1 ([3]) Let S be a set of n distinct points in complex space Cr. A k − flat is elementary
if its intersection with S has exactly k + 1 points.

Definition C.2 ([3]) Let S be a set of n distinct points in Cr. S is called a δ−SGk configuration if for
every independent s1, . . . , sk ∈ S there are atleast δn points t ∈ S such that either t ∈ fl({s1, . . . , sk}) or
the k−flat fl({s1, . . . , sk, t}) contains a point in S \ {s1, . . . , sk, t}.

Theorem C.3 ([3]) Let S be a δ − SGk configuration then dim(S) ≤ 2C
k

δ2
. Where C > 1 is a universal

constant.

This bound on the dimension of S was further improved by Dvir et. al. in [6]. The latest version now
states

Theorem C.4 ([6]) Let S be a δ − SGk configuration then dim(S) ≤ Ck = Ck

δ . Where C > 1 is a
universal constant.

Corollary C.5 Let dim(S) > Ck then S is not a δ − SGk configuration i.e. there exists a set of
independent points {s1, . . . , sk} and ≥ (1 − δ)n points t such that fl({s1, . . . , sk, t}) is an elementary
k − flat. That is:

• t /∈ fl({s1, . . . , sk})

• fl({s1, . . . , sk, t}) ∩ S = {s1, . . . , sk, t}.

Right now we set δ to be a constant < 0.5, Ck = Ck

δ . Note that Ci < Ci+1. Using the above theorem we
prove the following lemma which will be useful to us later

Lemma C.6 (Bichromatic semi-ordinary line) Let X and Y be disjoint finite sets in Cr satisfying
the following conditions.

1. dim(Y ) > C4.

2. |Y | ≤ c|X| with c < 1−δ
δ .

Then there exists a line l such that |l ∩ Y | = 1 and |l ∩X| ≥ 1
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Proof. We consider two cases:
Case 1 : c|X| ≥ |Y | ≥ |X|
Since dim(Y ) > C1, using the corollary above for S = X ∪ Y, k = 1 we can get a point s1 ∈ X ∪ Y for
which there exist (1 − δ)(|X| + |Y |) points t in X ∪ Y such that t /∈ fl{s1} and fl{s1, t} is elementary.
If s1 ∈ X then (1− δ)(|X|+ |Y |)− |X| ≥ (1− 2δ)|X| > 0 of these flats intersect Y and thus we get such
a line l. If s1 ∈ Y then (1 − δ)(|X| + |Y |) − |Y | ≥ ((1 − δ)(1

c + 1) − 1)|Y | > 0 of these flats intersect X
giving us the required line l with |l ∩X| = 1 and |l ∩ Y | = 1.

Case 2: |Y | ≤ |X|
Now choose a subset X1 ⊆ X such that |X1| = |Y |. Now using the same argument as above for S = X1∪Y
there is a point s1 ∈ X1∪Y such that (1− δ)(|X1|+ |Y |) = 2(1− δ)|Y | = 2(1− δ)|X1| flats through it are
elementary in X1 ∪ Y . If s1 ∈ Y (1− 2δ)|Y | > 0 of these flats intersect X1. If s1 ∈ X1, (1− 2δ)|X1| > 0
of these flats intersect Y . In both these above possibilities the flat intersects Y and X1 in exactly one
point each. But it may contain more points from X \X1 so we can find a line l such that |l∩ Y | = 1 and
|l ∩X| ≥ 1.

D A Method of Reconstructing Linear Forms

In a lot of circumstances one might reconstruct a linear form (upto scalar multiplication) inside V =
LinR[x̄] from it’s projections (upto scalar multiplication) onto some subspaces of V . For example con-
sider a linear form L = a1x1 + a2x2 + a3x3(∈ LinR[x1, x2, x3]) with a3 6= 0, and assume we know scalar
multiples of projections of L onto the spaces Rx1 and Rx2 i.e. we know L1 = α(a2x2 + a3x3) and
L2 = β(a1x1 + a3x3) for some α, β ∈ R. Scale these projections to L̃1 = x3 + a2

a3
x3 and L̃2 = x3 + a1

a3
x3.

Using these two define a linear form x3 + a1
a3
x1 + a2

a3
x2. This is a scalar multiple of our original linear form

L. We generalize this a little more below.

Let x̄ ≡ (x1, . . . , xr), B = {l1, . . . , lr} be a basis for V = LinR[x1, . . . , xr]. For i ∈ {0, 1, 2}, let Si be
pairwise disjoint non empty subsets of B such that S0 ∪ S1 ∪ S2 = B. Let Wi = sp(Si) and W ′i =

⊕
j 6=i

Wj .

Clearly V = W0 ⊕W1 ⊕W2 = Wi ⊕W ′i , i ∈ {0, 1, 2}.

Lemma D.1 Assume L ∈ V is a linear form such that

• πW2(L) 6= 0

• For i ∈ {0, 1}, Li = βiπW ′i (L) are known for some non-zero scalars βi.

Then L is unique upto scalar multiplication and we can construct a scalar multiple L̃ of L.

Proof. Let L = a1l1 + . . . + arlr, ai ∈ R. Since πW2(L) 6= 0, there exists lj ∈ S2 such that aj 6= 0. Let
L̃ = 1

aj
L. For i ∈ {0, 1}, re-scale Li to get L̃i making sure that coefficient of lj is 1 in them. Thus for

i = 0, 1
πW ′i (L̃) = L̃i

Since W ′0 = W1 ⊕W2 and W ′1 = W0 ⊕W2 by comparing coefficients we can get L̃.
(Algorithm) Assume we know S0, S1, S2 and therefore the basis change matrix to convert vector rep-
resentations from S to B. It takes poly(r) time to convert [v]S to [v]B. Given Li in the basis B it takes
poly(r) time(by a linear scan) to find lj ∈ S2 with aj 6= 0. This lj has a non zero coefficient in both
L0, L1. After this we just rescale Li to get L̃i such that coefficient of lj is 1. Then since L̃i = πW ′i (L̃) the

coefficient of lt in L̃ is as follows :
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=


coefficient of lt in L̃1 : lt ∈ S0

coefficient of lt in L̃0 : lt ∈ S1

coefficient of lt in L̃0 = coefficient of lt in L̃1 : lt ∈ S2

Finding the right coefficients using this also takes poly(r) time.

Next we try and use this to reconstruct ΠΣ polynomials. This case is slightly more complicated and so
we demand that the projections have some special form. In particular the projections onto one subspace
preserves pairwise linear independence of linear factors and onto the other makes all linear factors scalar
multiples of each other.

Corollary D.2 Let Si,Wi, i ∈ {0, 1, 2} be as above and P ∈ ΠΣR[x1, . . . , xr] such that

1. πW2(P ) 6= 0

2. For i ∈ {0, 1} there exists βi(6= 0) ∈ R such that P0 = β0πW ′0(P ) = pt and P1 = β1πW ′1(P ) =
d1 . . . dt. are known i.e. p, dj (j ∈ [t]) and t are known.

Then P is unique upto scalar multiplication and we can construct a scalar multiple P̃ of P .

Proof. Let P = L1 . . . Lt with Li ∈ LinR[x̄]. There exists βji , i ∈ {0, 1}, j ∈ [t], such that βj0πW ′0(Lj) = p

and βj1πW ′1(Lj) = dj . Since p, dj are known by above Lemma D.1 we find a scalar multiple L̃j = βjLj of

Lj and therefore find a scalar multiple P̃ = L̃1 . . . L̃t of P . Note that this method also tells us that such
a P is unique upto scalar multiplication. Since we’ve used the above Algorithm D at most t times with
t ≤ deg(P ), it takes poly(deg(P ), r) time to find P̃ .
This corollary is the backbone for reconstructing ΠΣ polynomials from their projections. But first we
formally define a ”Reconstructor”

Definition D.3 (Reconstructor) Let Si,Wi, i ∈ {0, 1, 2} be as above. Let Q be a standard ΠΣ poly-
nomial and P be a standard ΠΣ polynomial dividing Q with Q = PR. Then (Q,P, S0, S1, S2) is called a
Reconstructor if:

• πW2(P ) 6= 0.

• πW ′0(P ) = αpt, for some linear form p.

• Let l | R be a linear form and πW2(l) 6= 0 then gcd(πW2(P ), πW2(l)) = 1.

Note :
Let L1, L2 be two LI linear forms dividing P , then one can show

L1, L2 are LI ⇔ πW ′1(L1), πW ′1(L2) are LI

To see this first observe that the second bullet implies for i ∈ [2], Li ∈W0 + p⇒ sp({L1, L2}) ⊆W0 + p.
If πW ′1(L1), πW ′1(L2) are LD then

sp({L1, L2}) ∩W1 6= {0}

⇒ (W0+p)∩W1 6= {0}. Since W0∩W1 = {0} we get that p ∈W0⊕W1 = W ′2 ⇒ πW2(p) = 0⇒ πW2(P ) = 0
contradicting the first bullet.

Geometrically the conditions just mean that all linear forms dividing P have LD projection (= γp for
some non zero γ ∈ R) w.r.t. the subspace W ′0 and LI linear forms p1, p2 dividing P have LI projections
(w.r.t. subspace W ′1). Also no linear form l dividing R belongs to fl(S0 ∪ S1 ∪ {p}).
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We are now ready to give an algorithm to reconstruct P using πW ′0(Q) and πW ′1(Q) by gluing appropriate
projections corresponding to P . To be precise:

Claim D.4 Let Q,P be standard ΠΣ polynomials and P | Q. Assume (Q,P, S0, S1, S2) is a Reconstruc-
tor. If we know both πW ′0(Q) and πW ′1(Q). Then we can reconstruct P .

Proof. Here is the algorithm:

input : πW ′0(Q) ∈ ΠΣ[x̄], πW ′1(Q) ∈ ΠΣ[x̄], S0, S1, S2

output: a ΠΣ polynomial P | Q
1 boolflag, ΠΣ polynomial P0, P1;;
2 Factor πW ′0(Q) = γ

∏
i∈[s]

cmi
i , ci’s pairwise LI and normal, γ ∈ R;

3 Factor πW ′1(Q) = δd1 . . . dm, δ ∈ R and dj normal;

4 for i ∈ [s] && πW ′1(ci) 6= 0 do

5 flag = true, P0 = cmi
i ;

6 // Assuming projection w.r.t. W ′0 to be cmi
i .

7 for j ∈ [s] && j 6= i && πW ′1(cj) 6= 0 do

8 if gcd(πW ′1(ci), πW ′1(cj)) 6= 1 then

9 flag = false;
10 end

11 end
12 if flag == true then
13 P1 = 1;
14 end
15 for j ∈ [m] do
16 if πW ′0(dj) 6= 0 & & {πW ′0(dj), πW ′1(ci)} are LD then

17 P1 = P1dj ;
18 // This steps collects projection w.r.t. W ′1 in P1.

19 end

20 end

21 if (deg(P1) = mi) && (P0, P1) give P̃ = βP using Corollary D.2 then

22 Make P̃ standard w.r.t. the standard basis S to get P ;
23 Return P ;

24 end

25 end
26 Return 1;

Algorithm 7: Reconstructing Linear Factors

D.1 Explanation

• The algorithm takes as input projections πW ′0(Q) and πW ′1(Q) along with the sets Si, i = 0, 1, 2
which form a partition of a basis B. We know that there exists a polynomial P | Q such that
(Q,P, S0, S1, S2) is a reconstructor and so we try to compute the projections πW ′0(P ), πW ′1(P ).

• If one assumes that πW ′0(Q) = γ
∏
i∈[s]

cmi
i with the ci’s co-prime, then by the properties of a recon-

structor the projection (of a scalar multiple of P ) onto W ′0 say P0 = β0πW ′0(P ) (for some β0) has
to be equal to cmi

i for some i. We do this assignment inside the first for loop.
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• The third property of a reconstructor implies that when we project further to W2, it should not get
any more factors and so we check this inside the second for loop by going over all other factors cj
of πW ′0(Q) and checking if ci, cj become LD on projecting to W2 (i.e. by further projecting to W ′1).

• Now to find (scalar multiple of) the other projections i.e. P1 = β1πW ′1(P ) (for some β1), we go
through πW ′1(Q) and find dk such that {πW ′1(ci), πW ′0(dk)} are LD (i.e. they are projections of the
same linear form). We collect the product of all such dk’s. If the choice of ci were correct then all
dk’s would be obtained correctly.

• The last ”if” statement just checks that the number of dk’s found above is the same as mi since
P0 = cmi

i tells us that the degree of P was mi. We recover a scalar multiple of P using the algorithm
explained in Corollary D.2 and then make it standard to get P .

D.2 Correctness

The corectness of our algorithm is shown by the lemma below.

Claim D.5 If (Q,P, S0, S1, S2) is a reconstructor for non-constant P , then Algorithm 7 returns P .

Proof. (Q,P, S0, S1, S2) is a reconstructor therefore

• πW2(P ) 6= 0

• πW ′0(P ) = δpt

• q | QP ⇒ gcd(πW2(q), πW2(P )) = 1

1. It is clear that for one and only one value of i, ci divides p. Fix this i. Let Q = PR, if cmi
i - πW ′0(P )

then ci | l for some linear form l | πW ′0(R). Condition 3 in definition of Reconstructor implies that
gcd(πW2(P ), πW2(l)) = 1 but πW2(ci) divides both of them giving us a contradiction. Since πW ′0(P )
has just one linear factor ⇒ πW ′0(P ) is a scalar multiple of cmi

i for some i.

2. Assume the correct cmi
i has been found. Now let dj | πW ′1(Q) such that {πW2(ci), πW2(dj)} are

LD. then we can show that dj | πW ′1(P ). Assume not, then for some linear form l | R = Q
P ,

dj | πW ′1(l). πW ′0(dj) 6= 0 (which we checked) ⇒ πW2(l) 6= 0. So we get πW2(ci) | πW2(l)(6= 0) and so
πW2(ci) | gcd(πW2(P ), πW2(l)) which is therefore 6= 1 and condition 3 of Definiton D.3 is violated.
So whatever dj we collect will be a factor of πW ′1(P ) and we will collect all of them since they are
all present in πW ′1(Q).

3. We know from proof of Corollary D.2 that if we know ci,mi and dj ’s correctly then we can recover
a scalar multiple of P correctly. But Q,P are standard so we return P correctly.

In fact we can show that if we return something it has to be a factor of Q.

Claim D.6 If Algorithm 7 returns a ΠΣ polynomial P , then P | Q

• If the algorithm returns 1 from the last return statement, we are done. So let’s assume it returns
something from the previous return statement.

• So flag has to be true at end ⇒ there is an i ∈ [s] such that P0 = cmi
i with the conditions that

πW ′1(ci) 6= 0 and gcd(ci, cj) = 1 for j 6= i. It also means that for exactly mi of the dj ’s (say
d1, . . . , dmi) {πW ′1(ci), πW ′0(dj)} are LD and P1 = d1 . . . dmi .
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• Since cmi
i | πW ′0(Q), there exists a factor P̃ | Q of degreemi such that πW ′0(P̃ ) = cmi

i and πW ′1(ci) 6= 0.

This⇒ πW2(P̃ ) 6= 0. Clearly πW ′1(P̃ ) | πW ′1(Q) = d1 . . . dm, hence for all linear factors p̃ of P̃ , πW ′1(p̃)
should be some dj with the condition that {πW ′0((π′W1

)(p̃)), πW ′1(ci)} should be LD. The only choice

we have are d1, . . . , dmi . So πW ′0(P̃ ) = d1 . . . dmi . All conditions of Corollary D.2 are true and so

P̃ is uniquely defined (upto scalar multiplication) by the reconstruction method given in Corollary
D.2. So what we returned was actually a factor of Q.

D.3 Time Complexity

Factoring πW ′0(Q), πW ′1(Q) takes poly(d) time (using Kaltofen’s Factoring from [14]). The nested for loops

run ≤ d3 times. Computing projections with respect to the known decomposition W0 ⊕W1 ⊕W2 = Rr
of linear forms over r variables takes poly(r) time. Computing gcd and linear independence of linear
forms takes poly(r) time. The final reconstruction of P using (P0, P1) takes poly(d, r) time as has been
explained in Corollary D.2. Multiplying linear forms to ΠΣ polynomial takes poly(dr) time. Therefore
overall the algorithm takes poly(dr) time. In our application r = O(1) and therefore the algorithm takes
poly(d) time.

E Random Linear Transformations

This section will prove some results about linear independence and non-degeneracy under random trans-
formations on Rr. This will be required to make our input non-degenerate. From here onwards we fix a
natural number N ∈ N and assume 0 < k < r. Let T ⊂ Rr be a finite set with dim(T ) = r. Next we
consider two r×r matrices Ω,Λ. Entries Ωi,j ,Λi,j are picked independently from the uniform distribution
on [N ]. For any basis B of Rr and vector v ∈ Rr, let [v]B denote the co-ordinate vector of v in the basis
B. If B = {b1, . . . , br} then [v]iB denotes the i-th co-ordinate in [v]B. Let S = {e1, . . . , er} be the standard
basis of Rr. Let Ej = sp({e1, . . . , ej}) and E′j = sp({ej+1, . . . , er}), then Rr = Ej ⊕E′j . Let πWEj

be the

orthogonal projection onto Ej . For any matrix M , we denote the matrix of it’s co-factors by co(M). We
consider the following events :

• E0 = {Ω is not invertible }

• E1 = {∃t(6= 0) ∈ T : πWE1
(Ω(t)) = 0}

• E2 = {∃{t1, . . . , tr} LI vectors in T : {Ω(t1), . . . ,Ω(tr)} is LD }

• E3 = {∃{t1, . . . , tr} LI vectors in T : {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)} is LD }

• When ti,Λ,Ω are clear we define the matrix M = [M1 . . .Mr] with columns Mi given as :

Mi =

{
[Ω(ti)]S : i ≤ k
[ΛΩ(ti)]S : i > k

M corresponds to the linear map

ei 7→ Ω(ti) for i ≤ k and ei 7→ ΛΩ(ti) for i > k

E4 = {{∃{t1, . . . , tr} LI vectors in T and t ∈ T \ sp({t1, . . . , tk}) : [co(M)[Ω(t)]S ]k+1
S = 0}

• E5 = E4 | Ec3

Next we show that the probability of all of the above events is small. Before doing that let’s explain the
events. This will give an intuition to why the events have low probabilities.
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• E0 is the event where Ω is not-invertible. Random Transformations should be invertible.

• E1 is the event where there is a non-zero t ∈ T such that the projection to the first co-ordinate
(w.r.t. S) of Ω applied on t is 0. We don’t expect this for a random linear transformation. Random
Transformation on a non-zero vector should give a non-zero coefficient of e1.

• E2 is the event such that Ω takes a basis to a LD set i.e. Ω is not invertible (random linear operators
are invertible).

• E3 is the event such that for some basis applying Ω to the first k vectors and ΛΩ to the last n− k
vectors gives a LD set. So this operation is not-invertible. For ranrom maps this should not be the
case.

• E4 is the event that there is some basis {t1, . . . , tr} and t outside sp(t1, . . . , tk) such that the (k+1)th

co-ordinate of co(M)[Ω(t)]S w.r.t the standard basis is 0. If M were invertible, clearly the set
B = {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . . ,ΛΩ(tr)} would be a basis and co(M) will be a scalar multiple
of M−1. So we are asking if the (k + 1)th co-ordinate of Ω(t) in the basis B is 0. For random Ω,Λ
we would expect M to be invertible and this co-ordinate to be non-zero.

Now let’s formally prove everything. We will repeatedly use the popular Schawrtz-Zippel Lemma which
the reader can find in [21].

Claim E.1 Pr[E1] ≤ |T |Nr

Proof. Fix a non-zero t =


a1

.

.
ar

 with ai ∈ R and let Ω = (Ωi,j), 1 ≤ i, j ≤ r. Then the first co-ordinate

of Ω(t) is Ω1,1a1 +Ω1,2a2 + . . .+Ω1,rar. Since t 6= 0, not all ai are 0 and this is therefore not an identically
zero polynomial in (Ω1,1, . . . ,Ω1,r). Therefore by Schwartz-Zippel lemma Pr[[Ω(t)]1S = 0] ≤ 1

Nr . Using a

union bound inside T we get Pr[∃t( 6= 0) ∈ T : [Ω(t)]1S = 0] ≤ |T |Nr .

Claim E.2 Pr[E2] ≤ r

Nr2

Proof. Clearly E2 ⊆ E0 and so Pr[E2] ≤ Pr[E0]. E0 corresponds to the polynomial equation det(Ω) = 0.
det(Ω) is a degree r polynomial in r2 variables and is also not identically zero, so using Schwartz-Zippel
lemma we get Pr[E2] ≤ Pr[E0] ≤ r

Nr2
.

Claim E.3 Pr[E3] ≤
(|T |
r

)
2r

N2r2

Proof. Fix an LI set t1, . . . , tr. The set {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . .ΛΩ(tr)} is LD iff the r× r matrix
M formed by writing these vectors (in basis S) as columns (described in part E above) has determinant
0. M has entries polynomial (of degree ≤ 2) in Ωi,j and Λi,j and so det(M) is a polynomial in Ωi,j ,Λi,j
of degree ≤ 2r. For Ω = Λ = I (identity matrix) this matrix just becomes the matrix formed by the
basis {t1, . . . , tr} which has non-zero determinant and so det(M) is not the identically zero polynomial.
By Schwartz-Zippel lemma Pr[det(M) = 0] ≤ 2r

Nr2Nr2
= 2r

N2r2
. Now we vary the LI set {t1, . . . , tr}, there

are ≤
(|T |
r

)
such sets and so by a union bound Pr[E3] ≤

(|T |
r

)
2r

N2r2
.

Claim E.4 Pr[E4] ≤
( |T |
r+1

)
2r−1

N2r2
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Proof. Fix an LI set t1, . . . , tr and a vector t /∈ sp({t1, . . . , tk}). Let t =
r∑
i=1

aiti. Since t /∈ sp({t1 . . . , tk}),

as 6= 0 for some s ∈ {k + 1, . . . , r}. Let B = {Ω(t1), . . . ,Ω(tk),ΛΩ(tk+1), . . .ΛΩ(tr)}. Let M be the
matrix whose columns are from B (Construction has been explained in part E above). We know that
the co-factors of a matrix are polynomials of degree ≤ r − 1 in the matrix elements. In our matrix M
all entries are polynomials of degree ≤ 2 in Ωi,j ,Λi,j , so all entries of co(M) are polynomials of degree

≤ 2r− 2 in Ωi,j ,Λi,j . Thus [co(M)[Ω(t)]S ]k+1
S =

r∑
i=1

co(M)k+1,i[Ω(t)]iS is a polynomial of degree ≤ 2r− 1.

This polynomial is not identically zero. Define Ω to be the matrix (w.r.t. basis S) of the linear map
Ω(ti) = ei and Λ to be the matrix (w.r.t. basis S) of the map

Λ =


Λ(ei) = ei : i /∈ {s, k + 1}
Λ(es) = ek+1

Λ(ek+1) = es

With these values the set B becomes {e1, . . . , ek, es, ek+2, . . . , es−1, ek+1, es+1, . . . , er}. If one now looks
at M i.e. the matrix formed using entries of B as columns it’s just the permutation matrix that flips es
and ek+1. This matrix is the inverse of itself and so has determinant = ±1, thus co(M) = ±M−1 = ±M .

Therefore co(M)[Ω(t)]S = ±M


a1

.

.
ar

 = ±



a1

.
ak
as
ak+2

.
as−1

ak+1

.as+1

.
ar



. Since as 6= 0, we get [co(M)[Ω(t)]S ]k+1
S 6=

0. So the polynomial is not identically zero and we can use Schwartz-Zippel Lemma to say that
Pr[[co(M)[Ω(t)]S ]k+1

S = 0] ≤ 2r−1

Nr2Nr2
= 2r−1

N2r2
. Now we vary {t1, . . . , tr, t} inside T and use union bound

to show Pr[E4] ≤
( |T |
r+1

)
2r−1

N2r2
.

Even though this is just basic probability we include the following:

Claim E.5 Pr[E5] ≤
(|T |
r

)
2r−1

N2r2−(|T |r )2r

Proof. Pr[E5] = Pr[E4 | Ec3] =
Pr[E4∩Ec3 ]
Pr[Ec3 ] ≤

Pr[E4]
Pr[Ec3 ] ≤

( |T |
r+1

) 2r−1

N2r2

1−(|T |r ) 2r

N2r2

=
( |T |
r+1

)
2r−1

N2r2−(|T |r )2r

In our application of the above r = O(1), |T | = poly(d), N = 2d and so all probabilities are very small
as d grows. So we will assume that none of the above events occur. By union bound that too will have
small probability and so with very high probability E0, E1, E2, E3, E4, E5 do not occur.

F Set C of Candidate Linear Forms

This section deals with constructing a poly(d) size set C which contains each lij , (i, j) ∈ {0, 1} × [M ].
First we define the set and prove a bound on it’s size.

F.1 Structure and Size of C

Let’s recall f = G(α0T0 + α1T1) and define two other polynomials:
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g =
f

G
= α0T0 + α1T1

h =
f

Lin(f)
=

g

Lin(g)

Assume deg(h) = dh

Definition F.1 Our candidate set is defined as:

C def= {l = x1 − a2x2 − . . .− arxr ∈ LinR[x̄] : h(a2x2 + . . .+ arxr, x2, . . . , xr) ∈ ΠΣdh
R [x2, . . . , xr]}

(for definition of ΠΣdh
R [x2, . . . , xr] See Section 3 )

In the claim below we show that linear forms dividing polynomials Ti, i = 0, 1 are actually inside C (first
part of claim). The remaining linear forms in C (which we call “spurious”) have a nice structure (second
part of claim). In the third part of our claim we arrive at a bound on the size of C. Recall the definition
of cR(k) from Theorem 1.7.

Claim F.2 The following are true about our candidate set C.

1. L(Ti) ⊆ C, i = 0, 1.

2. Let k = cR(3) + 2 and suppose {lj ; j ∈ [k]} ⊂ L(Ti) are LI . Then for any l ∈ C \ (L(T0) ∪ L(T1)),
there exists j ∈ [k] such that fl({l, lj})∩L(T1−i) 6= φ i.e. the line joining l and lj does not intersect
the set L(T1−i).

3. |C| ≤M4 + 2M ≤ d4 + 2d.

Proof. Let’s first recall the definition of our candidate set

C def= {l = x1 − a2x2 − . . .− arxr ∈ LinR[x̄] : h(a2x2 + . . .+ arxr, x2, . . . , xr) ∈ ΠΣdh
R [x2, . . . , xr]}

Also recall that

h =
g

Lin(g)
=

f

Lin(f)

1. Let l = x1− a2x2− . . .− arxr ∈ L(T1−i). Let’s denote the tuple v ≡ (a2x2 + . . .+ arxr, x2, . . . , xr).
Since gcd(T0, T1) = 1 and l | T1−i we know that l - Ti and therefore Lin(g)(v) 6= 0. We can then
compute

h(v) =
αiTi(v)

Lin(g)(v)
= αiH1(v) . . . Hdh(v) ∈ ΠΣdh

R [x2, . . . , xr]

where Hj ∈ LinR[x2, . . . , xr]. So L(Ti) ⊆ C for i = 0, 1.

2. Consider l = x1− a2x2− . . .− arxr ∈ C \ (L(T0)∪L(T1)) and assume that sp({l, lj})∩L(T1−i) = φ
for all j ∈ [k]. We know that

g(v) = Lin(g)(v)H1(v) . . . Hdh(v) = α0T0(v) + α1T1(v)

Let g′ be the following identically zero ΣΠΣ(3)[x2, . . . , xr] polynomial (with circuit C′)

g′ = Lin(g)(v)H1(v) . . . Hdh(v)− α0T0(v)− α1T1(v)

We know
C′ = gcd(C′)Sim(C′)⇒ Sim(C′) ≡ 0
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Recall that lj(v) | Ti(v), therefore the lj(v) cannot be factors of gcd(C′) because if they did then
there exist pair lj , l(1−i)t such that {lj(v), l(1−i)t(v)} is LD or in other words sp({l, lj})∩L(T1−i) 6= φ
and we have a contradiction. Also the set {lj(v) : j ∈ [k]} has dimension ≥ k−1 since the dimension
could fall only by 1 when we go modulo a linear form (project to hyperplane). This means that
rank(Sim(C′)) ≥ k − 1 ≥ cR(3) + 1.

If Sim(C′) were not minimal ⇒ C′ is not minimal ⇒ one of it’s gates would be 0. Since
l /∈ L(T0) ∪ L(T1) ⇒ α0T0(v) + α1T1(v) ≡ 0 ⇒ for every j ∈ [k] there exist l(1−i)j | T1−i such that
l(1−i)j(v), lj(v) are LD. ⇒ sp({l, lj}) ∩ L(T1−i) 6= φ for j ∈ [k], a contradiction to our assumption.

If Sim(C′) were minimal, we have an identically zero simple minimal circuit Sim(C′) with
rank(Sim(C′)) ≥ cR(3) + 1 contradicting Theorem 1.7.

So our assumption is wrong and sp({l, lj}) ∩ L(T1−i) 6= φ for some j ∈ [k].

3. Let l ∈ C\(L(T0)∪L(T1)). Consider a set {l1, . . . , lk+2} ⊂ L(Ti) of k+2 LI linear forms. By the above
argument there exist three distinct elements in this set say l1, l2, l3 such that sp({lj , l})∩L(T1−i) 6= φ
for j ∈ [3]. Let {l′1, l′2, l′3} ⊂ L(T1−i) such that l′j ∈ sp({lj , l}) for j ∈ [3]. Then gcd(lj , l

′
j) = 1 implies

that l ∈ sp({lj , l′j}) for j ∈ [3]. Since l, lj , l
′
j are all standard (coefficient of x1 is 1), Lemma 3.2 tells

us
l ∈ fl({lj , l′j})

for j ∈ [3]. So l lies on the lines ~Lj = fl({lj , l′j}) for j ∈ [3]. Atleast two of these lines should be
distinct otherwise dim({l1, l2, l3}) ≤ 2 which is a contradiction. So l is the intersection of these two
lines. There are M2 such lines and so M4 such intersections. If l ∈ L(T0) ∪ L(T1) we have ≤ 2M
other possibilities. So |C| ≤M4 + 2M = O(d4).

Let’s now give an algorithm to construct this set.

F.2 Constructing the set C

Here is an algorithm to construct the set C. An explanation is given in the lemma below.

FunctionName: Candidates
input : f ∈ ΣΠΣR(2)[x̄]
output : Set C of Linear Forms

1 Define C = φ;;
2 Use polynomial factorization from [14] to find Lin(f);

3 Consider polynomial h = f
Lin(f) ;

4 Let a2, . . . , ar be variables.;
5 Compute coefficient vector b of h(a2x2 + . . .+ arxr, x2, . . . , xr).;
6 Consider the polynomials {Fi, i ∈ [m]} constructed in Corollary B.2.;
7 Using your favorite algorithm (eg. Buchberger’s [5]) to solve polynomial equations, find all

complex solutions to the system {Fi(b) = 0, i ∈ [m]}.;
8 For each solution (a2, . . . , ar) ∈ Rr do : C = C ∪ {(1, a2, . . . , ar)};
9 return C;

Algorithm 8: Set C of candidate linear forms

Lemma F.3 Given a polynomial f ∈ R[x1, . . . , xr] of degree d in r independent variables which admits
a ΣΠΣR(2)[x1, . . . , xr]-representation : f =

∏
i∈[d−M ]

Gi(α0
∏

j∈[M ]

l0j + α1
∏

k∈[M ]

l1k) such that Gt, lij(t ∈

[d − M ], i ∈ {0, 1}, j ∈ [M ]) are standard w.r.t. the standard basis {x1, . . . , xn} then we can find in
deterministic time poly(d), the corresponding candidate set C (see Definition F.1) described above.
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Proof. The proof also contains an explanation of the algorithm above

• Let l = x1 − a2x2 − . . . − arxr ∈ C be a candidate linear form. We know that h(a2x2 + . . . +
arxr, x2, . . . , xr) ∈ ΠΣdh

R [x2, . . . , xr] ⊂ ΠΣdh
C [x1, . . . , xr].

• Using Theorem B.2 we know that h(a2x2 + . . . + arxr, x2, . . . , xr) ∈ ΠΣdh
C [x2, . . . , xr] ⇔ for the

coefficient vector b of h(a2x2 + . . . + arxr, x2, . . . , xr) inside C[x2, . . . , xr] satisifes F1(b) = . . . =
Fm(b) = 0 for the polynomials {Fi : i ∈ [m]} obtained in Corollary B.2. .

• For any t ≤ dh, computing (a2x2 + . . .+ arxr)
t requires poly(tr) time and it also has poly(tr) terms

and degree t. Multiplying such powers to other variables and adding poly(drh) many such expressions
also requires poly(drh) time. Hence computing the coefficient vector b takes polynomial time since r
is a constant. Each co-ordinate of this coefficient vector is a polynomial in r−1 variables (a2, . . . , ar)
of degree poly(drh).

• Now we think of the ai’s as our unknowns and obtain them by solving the polynomial system
{Fi(b) = 0, i ∈ [m]}. The number of polynomials is m = poly(dr) and degrees are poly(d). Fi’s are
polynomials in poly(dr) variables. Expanding Fi(b) will clearly take poly(dr) time and now we will
have poly(dr) polynomials in r variables of degrees poly(dr). Note that r = O(1) and so we need
to solve poly(d) polynomials of degree poly(d) in constant many variables. Also Claim F.2 implies
that the number of solutions ≤ M4 + 2M = O(poly(d)). So using Buchberger’s algorithm [5] we
can solve the system for (a2, . . . , ar) in poly(d) time. Once we have the solutions we consider only
those linear forms which are in R[x1, . . . , xr] and add them to C.

G Proofs from Subsection 4.4

Claim G.1 Let (S = {l1 . . . , lk}, D) be a Detector pair in L(Ti). Let lk+1 ∈ D. For a standard linear
form l ∈ V , if l | g then l /∈ sp({l1, . . . , lk}) .

Proof. Assume l | g and l ∈ sp({l1, . . . , lk}). Let W = sp({l}), extend it to a basis and in the process
obtain W ′ such that W ⊕W ′ = V . We get

πW ′(α0T0 + α1T1) = 0

πW ′(αiTi) 6= 0 (i.e. l - T0T1), otherwise l divides both T0, T1 and gcd(T0, T1) won’t be 1. So we have an
equality of non zero ΠΣ polynomials

α0

M∏
j=1

πW ′(l0j) = −α1

M∏
j=1

πW ′(l1j)

Therefore there exists a permutation θ : [M ] → [M ] such that {πW ′(l(1−i)j), πW ′(liθ(j))} are LD ⇒ l ∈
sp({l(1−i)j , liθ(j)}). Since l - T0T1 this also means that l(1−i)j ∈ sp({l, liθ(j)}) and liθ(j) ∈ sp({l, l(1−i)j}).

In particular there is an l′k+1 ∈ L(T1−i) such that l′k+1 ∈ sp({l, lk+1}) and lk+1 ∈ sp({l, l′k+1}).

Since l ∈ sp({l1, . . . , lk})⇒ l′k+1 ∈ sp({l1, . . . , lk, lk+1}). All linear forms here are standard(i.e. coefficient
of x1 is 1) and so by Lemma 3.2, l′k+1 ∈ fl({l1, . . . , lk, lk+1}). Below we use the definition of detector pair
and get

l′k+1 ∈ fl({l1, . . . , lk, lk+1}) ∩ L(T1−i) ⊆ fl({l1, . . . , lk})

And lk+1 ∈ sp({l, l′k+1}) ⇒ lk+1 ∈ sp({l1, . . . , lk}) which is a contradiction to (S,D) being a detector
pair..
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Claim G.2 Let l ∈ LinR[x̄] be standard such that l | g and C be the candidate set. Assume (S =
{l1, . . . , lk}, D( 6= φ)) is a Detector pair in L(Ti). Then |L(T1−i) ∩ (fl(S ∪ {l}) \ fl(S))| ≥ 2. That is the
flat fl({l1, . . . , lk, l}) contains atleast two distinct points from L(T1−i)(⊆ C) outside fl({l1, . . . , lk}).

Proof. From the previous claim we know that {l1, . . . , lk, l} is an LI set. Also like above we know there
exists l′j ∈ L(T1−i), j ∈ [3] such that lj ∈ sp({l, l′j}), l′j ∈ sp({l, lj}). Since {l1, l2, l3} are LI, atleast two
of the l′j ’s, j ∈ [3] must be distinct, otherwise sp({l1, l2, l3}) ⊂ sp({l, l′1}) which is not possible as LHS
has dimension 3 and RHS has dimension 2. Thus there exist two distinct l′1, l

′
2 ∈ sp({l1, l2, l3, l}) ⊂

sp({l1, . . . , lk, l}). Note that l1, . . . , lk, l, l
′
1, l
′
2 are all standard (i.e. coefficient of x1 is 1) and so by Lemma

3.2
l′j ∈ fl({l1, . . . , lk, l})

for j ∈ [2].

If for any j ∈ [2], l′j ∈ sp({l1, . . . , lk}) then l ∈ sp({lj , l′j})⇒ l ∈ sp({l1, . . . , lk}) which is a contradiction.
This also shows that l′j /∈ fl({l1, . . . , lk}) for j ∈ [2].

From what we showed above we may conclude:

l′j ∈ fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})

for j ∈ [2]. Hence Proved.

Lemma G.3 The following are true:

1. If l | I (i.e. l was identified) then l ∈ L(G) \ L(g).

2. If l | G? (i.e. l was retained) then (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk}))∩ (L(T1−i)∪ (L(Ti) \D)) 6= φ
that is

(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) contains a point from L(Ti) \D or L(T1−i).

3. If l | G? and lk+1 ∈ D then l /∈ sp({l1, . . . , lk, lk+1}).

Proof.

1. Assume l | I (i.e. l was identified) and l | g. Then by Claim 4.6 we know that {l1, . . . , lk, l} are
LI and so the first ”if” condition is true. By Claim 4.7 we know that there are two other points
{l′1, l′2} ⊂ C ∩ (fl({l1, . . . , lk, l})\ fl({l1, . . . , lk})), so the second ”if” condition will also be true and
thus l will not be identified which is a contradiction. Therefore l ∈ L(G) \ L(g).

2. Assume l | G? (i.e. l was not identified). This means both ”if” statements were true for l. Thus
{l1, . . . , lk, l} is LI. Also there exist distinct {l′1, l′2} ∈ C ∩ (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})). If

l′1 ∈ (L(T1−i) ∪ (L(Ti) \D)) or l′2 ∈ (L(T1−i) ∪ (L(Ti) \D))

we are done so assume both are in

C \ ((L(T1−i) ∪ (L(Ti) \D)))) = (C \ (L(Ti) ∪ L(T1−i))) ∪D

If one of them say l′1 ∈ C \ (L(Ti) ∪ L(T1−i)), then by Part 2 of Claim F.2, for some j ∈ [k],
sp({l′1, lj}) ∩ L(T1−i) 6= φ. Let l̃j ∈ sp(l′1, lj) ∩ L(T1−i)⇒

l̃j ∈ sp({l′1, lj}) ⊆ sp({l1, . . . , lk, l})
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Since all linear forms l̃j , l1, . . . , lk, l are standard (coefficient of x1 is 1) by Lemma 3.2

l̃j ∈ fl({l1, . . . , lk, l})

Also l̃j , lj are LI and l̃j ∈ sp({l′1, lj}) together imply l′1 ∈ sp({lj , l̃j}). Note that l′1 /∈ fl({l1, . . . , lk})⇒
l′1 /∈ sp({l1, . . . , lk}) which along with l′1 ∈ sp({lj , l̃j}) will then give

l̃j /∈ sp({l1, . . . , lk})

So we found l̃j ∈ L(T1−i) ∩ (fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) and we are done.

So the only case that remains now is that l′1, l
′
2 ∈ D. Let’s complete the proof in the following steps

• l′1 ∈ fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})⇒ l ∈ sp({l1, . . . , lk, l′1})
• Using the above bullet, l′2 ∈ fl({l1, . . . , lk, l}) ⇒ l′2 ∈ sp({l1, . . . , lk, l′1}). Linear forms
l′2, l1, . . . , lk, l are standard (coefficient of x1 is 1) so using Lemma 3.2, l′2 ∈ fl({l1, . . . , lk, l′1})

• l′2 ∈ D ⇒ l′2 /∈ fl({l1, . . . , lk})
• The above two bullets and {l′1, l′2} ⊂ L(Ti) tell us that fl({l1, . . . , lk, l′1}) is not elementary

which is a contradiction.

So atleast one of l′1, l
′
2 is inside L(T1−i) ∪ (L(Ti) \D)

3. Let lk+1 ∈ D and l ∈ sp({l1, . . . , lk, lk+1}). Since l, l1, . . . , lk, lk+1 are standard, by Lemma 3.2,
l ∈ fl({l1, . . . , lk, lk+1}). Clearly l /∈ fl({l1, . . . , lk}) otherwise it would get identified at the first
”if”. Therefore l ∈ fl({l1, . . . , lk, lk+1})\fl({l1, . . . , lk}) By Part 2 above let l′1 ∈ (fl({l1, . . . , lk, l})\
fl({l1 . . . , lk})) ∩ (L(T1−i) ∪ (L(Ti) \D)). So l′1 ∈ L(T1−i) or l′1 ∈ L(Ti) \D.

This tells us that l′1 ∈ sp({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk}). All linear forms l′1, l1, . . . , lk, lk+1 are
standard (i.e. coefficients of x1 is 1) so by Lemma 3.2 we get that l′1 ∈ fl({l1, . . . , lk, lk+1}) \
fl({l1, . . . , lk}). Now using the definition of detector pair l′1 /∈ L(T1−i) since fl({l1, . . . , lk, lk+1}) ∩
L(T1−i) ⊆ fl({l1, . . . , lk}) . The flat fl({l1, . . . , lk, lk+1}) is elementary in L(Ti), so l′1 can belong
here only if l′1 = lk+1 which is not possible since l′1 /∈ D. So we have a contradiction. Hence Proved.

Lemma G.4 Let (S = {l1, . . . , lk}, D) be a detector in L(Ti). For each (l, lj) ∈ C × S define the space
U{l,lj} = sp({l, lj}). Extend {l, lj} to a basis and in the process obtain U ′{l,lj} such that V = U{l,lj}⊕U ′{l,lj}.
Define the set:

X = {l ∈ C : πU ′{l,lj}
(f?) 6= 0, for all lj ∈ S}

Then D ⊂ X ⊂ L(Ti).

Proof. (D ⊂ X) : Consider lk+1 ∈ D. Since D ⊂ L(Ti)⇒ lk+1 ∈ C. Assume lk+1 /∈ X, so there exists a
j ∈ [k] such that πU ′{lk+1,lj}

(f?) = 0. That is:

πU ′{lk+1,lj}
(G?(α0T0 + α1T1)) = 0.

So ∏
t∈[N1]

πU ′{lk+1,lj}
(Gt)(α0

∏
s∈[M ]

πU ′{lk+1,lj}
(l0s) + α1

∏
s∈[M ]

πU ′{lk+1,lj}
(l1s)) = 0

Now
lj ∈ L(Ti)⇒ πU ′{lk+1,lj}

(Ti) = 0⇒
∏
t∈[N1]

πU ′{lk+1,lj}
(Gt)

∏
s∈[M ]

πU ′{lk+1,lj}
(l(1−i)s) = 0.
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Since Gt | G?, by Part 3 of Lemma 4.9 πU ′{lk+1,lj}
(Gt) 6= 0 for all t ∈ [N1]. If for some s ∈ [M ],

πU ′{lk+1,lj}
(l(1−i)s) = 0 then l(1−i)s ∈ sp({lj , lk+1})⇒ l(1−i)s ∈ sp({l1, . . . , lk, lk+1})⇒ l(1−i)s ∈ sp({l1, . . . , lk})

(by definition of Detector Pair in 4.4).

l(1−i)s ∈ sp({lj , lk+1}) and {l(1−i)s, lj} LI ⇒ lk+1 ∈ sp({l(1−i)s, lj})

This means lk+1 ∈ sp({l1, . . . , lk, l(1−i)s}) ⊂ sp({l1, . . . , lk}) which is a contradiction to lk+1 ∈ D. So
πU ′{lk+1,lj}

(f?) 6= 0 for all j ∈ [k]⇒ lk+1 ∈ X. Therefore D ⊂ X.

(X ⊂ L(Ti)) : Consider l ∈ X. We need to show l ∈ L(Ti). We already know l ∈ C.

• If l ∈ L(T1−i), then πU ′{l,lj}
(f?) = 0 for all j ∈ [k] since l | T1−i and lj | Ti. Contradiction to l ∈ X.

• If l ∈ C \ (L(Ti) ∪ L(T1−i)) by Part 2 of Claim F.2 we know that there exists j ∈ [k] such that
sp({lj , l}) ∩ L(T1−i) 6= φ. Let l′j ∈ sp({lj , l}) ∩ L(T1−i). We show that sp({l′j , lj}) = sp({lj , l}) =
U{lj ,l}.

– l′j ∈ sp({lj , l})⇒ sp({l′j , lj}) ⊂ sp({lj , l}).
– Let l′j = αlj + βl. We know that {lj , l′j} are LI since lj ∈ L(Ti) and l′j ∈ L(T1−i). So
β 6= 0⇒ l ∈ sp({l′j , lj})⇒ sp({l, lj}) ⊂ sp({l′j , lj})⇒ sp({l, lj}) = sp({l′j , lj}).

Use the same extension for sp({l, lj}) = sp({l′j , lj}) = U{lj ,l} to get πU ′{l,lj}
(f?) = πU ′{l′

j
,lj}

(f?) = 0

(since l′j | T1−i and lj | Ti). Contradiction to l ∈ X.

Therefore l ∈ L(Ti)⇒ X ⊂ L(Ti).

H Proofs from Subsection 4.5

Claim H.1 The following is true

(2− v(δ, θ))

v(δ, θ)
≤ 1− δ

δ

Proof. Note that

(2− v(δ, θ))

v(δ, θ)
=

{
1+δ+θ
1−δ−θ if |L(T0)| ≤ θ|L(T1)|

3−(1−δ)(1+θ)
(1−δ)(1+θ)−1 if θ|L(T1)| < |L(T0)| ≤ |L(T1)|

By simple computation δ ∈ (0, 7−
√

37
6 ) gives

3δ2 − 7δ + 1 > 0⇒ 0 <
3δ

1− δ
< 1− 3δ < 1⇒ 1 + δ + θ

1− δ − θ
<

1− δ
δ

Also

θ >
3δ

1− δ
⇒ 3− (1− δ)(1 + θ)

(1− δ)(1 + θ)− 1
<

1− δ
δ

Lemma H.2 Let k = cR(3) + 2 (see defn of cR(k) in Theorem 1.7). Fix δ, θ in range given in Claim
4.12 above . Then for some i ∈ {0, 1} there exists a Detector Pair (S = {l1, . . . , lk}, D) in L(Ti) with
|D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|).

50



Proof. We assume |L(T0)| ≤ L(T1). The other case gives the same result for(maybe) a different value
of i . We will consider linear forms as points in the space Rr. Let’s consider the two cases used in the
definition of v(δ, θ).

• Case 1 : |L(T0)| ≤ θ|L(T1)| ( i.e. L(T0) is much smaller ) ⇒ v(δ, θ) = 1− δ − θ :

Since dim(L(T1)) ≥ r− 1 ≥ C2k−1 > Ck (See Section C for definition of Ck) by Corollary C.5 there
exists a set S of k LI points say S = {l1, . . . , lk} ⊆ L(T1) and a set Z ⊆ L(T1) of size ≥ (1−δ)|L(T1)|
such that for any lk+1 ∈ Z

– lk+1 /∈ fl({l1, . . . , lk}).
– fl({l1, . . . , lk, lk+1}) is elementary in L(T1).

Next we define our set D according to the condition we needed in the definition of detector (See
Subsection 4.4).

D
def
= {lk+1 ∈ Z : fl({l1, . . . , lk, lk+1}) ∩ L(T0) ⊂ fl({l1, . . . , lk})}

In the following lines we will show that this set D has large size, to be precise:

|D| ≥ (1− δ − θ)|L(T1)|

We do this in steps:

1. First we define a special subset of Z

Z̃ = {lk+1 ∈ Z : (fl({l1, . . . , lk+1}) \ fl({l1, . . . , lk})) ∩ L(T0) 6= φ}

We claim that Z \ Z̃ ⊂ D. Let lk+1 ∈ Z \ Z̃ ⇒ (fl({l1, . . . , lk+1}) \ fl({l1, . . . , lk})) ∩ L(T0) =
φ⇒ fl({l1, . . . , lk+1}) ∩ L(T0) ⊂ fl({l1, . . . , lk}) and so lk+1 ∈ D.

2. Next we show that for distinct lk+1, l̃k+1 ∈ Z(⊆ L(T1))

(fl({l1, . . . , lk, lk+1}) \ fl({l1, . . . , lk})) ∩ (fl({l1, . . . , lk, l̃k+1}) \ fl({l1, . . . , lk})) = φ

If not then there exist scalars µj , νj , j ∈ [k + 1] such that

ν1l1 + . . . νklk + νk+1lk+1 = µ1l1 + . . . µklk + µk+1 l̃k+1

with νk+1 6= 0 implying that lk+1 ∈ sp({l1, . . . , lk, l̃k+1}). Since all linear forms are standard
this implies lk+1 ∈ fl({l1, . . . .lk, l̃k+1}) (See Lemma 3.2). Also lk+1 ∈ Z ⇒ lk+1 /∈ fl({l1, . . . , lk}).
Together this means that lk+1 ∈ fl({l1, . . . , lk, l̃k+1}) \ fl(l1, . . . , lk) and we arrive at a contra-
diction to fl({l1, . . . , lk, l̃k+1}) being elementary.

3. From what we showed above every l ∈ L(T0) can belong to atmost one of the sets fl({l1, . . . , lk+1})\
fl({l1, . . . , lk}) with lk+1 ∈ Z (since intersection between two such sets is φ) and therefore there
can be atmost |L(T0)| such lk+1’s in Z̃ ⇒ |Z̃| ≤ |L(T0)|.

So we get :
|D| ≥ |Z| − |L(T0)| ≥ (1− δ − θ)|L(T1)|

(S,D) is a detector pair in L(T1) by the choice of Z and D.

• Case 2 : θ|L(T1)| < |L(T0)| ≤ |L(T1)| ( i.e. there sizes are comparable ) ⇒ v(δ, θ) = (1− δ)(1 + θ)− 1 :

Since dim(L(T0)∪L(T1)) = r > C2k−1, by Corollary C.5 we know that there exist 2k−1 independent
points l1, . . . , l2k−1 ∈ L(T0)∪L(T1) and a set Z ⊆ L(T0)∪L(T1) of size ≥ (1− δ)(|L(T0)|+ |L(T1)|)
such that for all l ∈ Z
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– l /∈ fl({l1, . . . , l2k−1}).
– fl({l1, . . . , l2k−1, l}) is elementary in L(T0) ∪ L(T1).

By pigeonhole principle, k of the {lj}2k−1
j=1 points must belong to either L(T0) or L(T1). Let’s

assume they belong to L(Ti) (for some i ∈ {0, 1}) (say the points are l1, . . . , lk), then consider
D = Z ∩ L(Ti). Clearly for every l ∈ D, l /∈ fl({l1, . . . , lk}) and fl({l1, . . . , lk, l}) is elementary
in L(T0) ∪ L(T1). This immediately tells us that (S = {l1, . . . , lk}, D) satisfies all properties of
being a detector pair in L(Ti). We defined D = Z ∩ L(Ti). Since Z ⊆ L(Ti) ∪ L(T1−i) we have
Z = (Z ∩ L(Ti)) ∪ (Z ∩ L(T1−i)) ⊂ D ∪ L(T1−i) giving

|D|+ |L(T1−i)| ≥ |Z| ⇒ |D| ≥ |Z| − |L(T1−i)| ≥ (1− δ)(|L(T0)|+ |L(T1)|)− |L(T1−i)|

≥ ((1− δ)(1 + θ)− 1) max(|L(T0)|, |L(T1)|)

Combining the two cases we see that for some i ∈ {0, 1} there exists a Detector set (S = {l1, . . . , lk}, D)
in L(Ti) with |D| ≥ v(δ, θ) max(|L(T0)|, |L(T1)|).

Lemma H.3 The following are true:

1. dim(πW̃0
(L̂(U?1−i))) > C4

2. πW̃0
(L̂(U?1−i)) ∩ πW̃0

(D̂) = φ

3. |πW̃0
(L̂(U?1−i))| ≤

1−δ
δ |πW̃0

(D̂)|

Proof.

1. Since dim(L̂(U?1−i)) ≥ r − 1 we get dim(πW̃0
(L̂(U?1−i))) ≥ r − 1− k > C4.

2. Assume ∃ d1 ∈ D,u ∈ L(U?1−i) such that πW̃0
(d̂) = πW̃0

(û)⇒ ∃λ, ν ∈ R such that νd1 + λu ∈ W̃0.
Since πW̃0

(d1) 6= 0 both ν, λ 6= 0. Thus u ∈ sp({l1, . . . , lk, d1}) ⇒ u ∈ fl({l1, . . . , lk, d1}) (using
Lemma 3.2 since all linear forms involved are standard i.e. have coefficient of x1 equal to 1). Also
u ∈ L(G?T1−i)⇒ u ∈ fl({l1, . . . , lk, d1}) ∩ (L(G?) ∪ L(T1−i)). We know from Part 2 of Lemma 4.9
that fl({l1, . . . , lk, d1}) ∩ L(G?) = φ ⇒ u ∈ fl({l1, . . . , lk, d1}) ∩ L(T1−i) ⊆ fl{l1, . . . , lk} because
(S,D) was a detector pair. But u ∈ fl({l1, . . . , lk})⇒ d1 ∈ sp({l1, . . . , lk}) which is a contradiction
because d1 ∈ D and (S,D) is a detector pair.

3. We first plan to show πW̃0
(L̂(U?1−i)) ⊂ πW̃0

(L̂(T1−i)) ∪ πW̃0
( ̂L(Ti) \D). Clearly U?1−i | G?T1−i ⇒

L(U?1−i) ⊂ L(G?T1−i) ⇒ πW̃0
(L̂(U?1−i)) ⊂ πW̃0

( ̂L(G?T1−i)) ⊂ πW̃0
(L̂(G?)) ∪ πW̃0

(L̂(T1−i)). Now
consider any l ∈ L(G?). We know that (S0 = {l1, . . . , lk}, D) is a detector pair, so by Part 2 of
Lemma 4.9 we get

(fl({l1, . . . , lk, l}) \ fl({l1, . . . , lk})) ∩ (L(T1−i) ∪ (L(Ti) \D)) 6= φ

So there exists l′ ∈ L(T1−i)∪ (L(Ti) \D) such that πW̃0
(l), πW̃0

(l′) are both non-zero and are LD⇒

πW̃0
(l̂) = πW̃0

(l̂′) implying that πW̃0
(L̂(G?)) ⊂ πW̃0

(

∧

L(T1−i) ∪ (L(Ti) \D)) giving us πW̃0
(L̂(U?1−i)) ⊂

πW̃0
(L̂(T1−i)) ∪ πW̃0

( ̂L(Ti) \D) and therefore

|πW̃0
(L̂(U?1−i))| ≤ |πW̃0

(L̂(T1−i))|+ |πW̃0
( ̂L(Ti) \D)|

Now we try to show |πW̃0
( ̂L(Ti) \D)| = |πW̃0

(L̂(Ti))| − |D|
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(a) It’s straightforward to see πW̃0
(L̂(Ti)) = πW̃0

(D̂) ∪ πW̃0
( ̂L(Ti) \D). Also πW̃0

( ̂L(Ti) \D) ∩
πW̃0

(D̂) = φ. If not then there exists l′ ∈ L(Ti) \ D, l′′ ∈ D such that 0 6= πW̃0
(l̂′′) =

πW̃0
(l̂′)⇒ πW̃0

(l′′), πW̃0
(l′) are LD ⇒ l′ ∈ sp{l1, . . . , lk, l′′} \ sp{l1, . . . , lk} ⇒ (by Lemma 3.2),

l′ ∈ fl{l1, . . . , lk, l′′}\fl{l1, . . . , lk} which is a contradiction to the flat being elementary inside

L(Ti). So |πW̃0
(L̂(Ti))| = |πW̃0

(D̂)|+ |πW̃0
( ̂L(Ti) \D)|.

(b) πW̃0
is injective on D̂. Let πW̃0

(l̂′) = πW̃0
(l̂′′) for LI forms {l′, l′′} ⊂ D, then l′ ∈ sp({l1, . . . , lk, l′′})⇒

(by Lemma 3.2), l′ ∈ fl({l1, . . . , lk, l′′}) and clearly l′ /∈ fl{l1, . . . , lk} (since it’s in D), which
is again a contradiction to the flat being elementary , thus |πW̃0

(D̂)| = |D̂| = |D| (since D is
a set of normal linear forms ).

Combining these with Claim 4.12 and Lemma 4.13 we get

|πW̃0
(L̂(U?1−i))| ≤ 2 max(|L(T0)|, |L(T1)|)− |D| ≤ (2− v(δ, θ)) max(|L(T0)|, |L(T1)|)

⇒
|πW̃0

(L̂(U?1−i))|
|πW̃0

(D̂)|
≤ (2− v(δ, θ))

v(δ, θ)
≤ 1− δ

δ

Lemma H.4 Let S1 = {d1} and S2 = {lk+2, . . . , lr}, W1 = sp(S1) and W2 = sp(S2). So V = W0⊕W1⊕
W2 and let W ′0 = W1 ⊕W2. For u ∈ L(U?1−i) such that πW̃0

(û) ∈ ~L1 ∩ πW̃0
(L̂(U?1−i)) consider the line

~L2 = fl({d1, πW ′0(ũ)})

then |~L2 ∩ πW ′0(D̃)| ≥ 1 and |~L2 ∩ πW ′0(L̃(U?1−i))| = 1, i.e. ~L2 is also a ”semiordinary bichromatic” like

~L1.

Proof.
We first show the following : Let u2 ∈ U?1−i, d2 ∈ D then

πW ′0(ũ2) 6= πW ′0(d̃2)

• Assume not, then ∃ ν, λ ∈ R such that νd2 + λu2 ∈ W0. ν, λ cannot be 0 since this would
mean πW ′0(d̃2) = 0. Thus u2 ∈ sp({l1, . . . , lk, d2}) ⇒ u2 ∈ fl({l1, . . . , lk, d2}) ( using Lemma 3.2
since all linear forms involved are standard i.e. have coefficient of x1 equal to 1). Also u2 ∈
L(G?T1−i)⇒ u2 ∈ fl({l1, . . . , lk, d2})∩ (L(G?)∪L(T1−i)). We know from Part 2 of Lemma 4.9 that
fl({l1, . . . , lk, d2})∩L(G?) = φ⇒ u2 ∈ fl({l1, . . . , lk, d2})∩L(T1−i) ⊆ fl{l1, . . . , lk} because (S,D)
was a detector pair. But u2 ∈ fl({l1, . . . , lk}) ⇒ d2 ∈ sp({l1, . . . , lk}) which is a contradiction
because d2 ∈ D and (S,D) is a detector pair.

Now let’s go back to proving this lemma.

|~L2 ∩ πW ′0(D̃)| ≥ 1 is clearly true since d1 ∈ ~L2 ∩ πW ′0(D̃). For the other part assume there exist u1 6= u

inside L(U?1−i) such that πW ′0(ũ), πW ′0(ũ1) are distinct points on ~L2 ∩ πW ′0(L(U?1−i)) implying that the set

{πW ′0(ũ), πW ′0(ũ1), πW ′0(d̃1) = d1} is an LD set and there exist κ, ν, θ with one of these non-zero such that

κπW ′0(ũ) + νπW ′0(ũ1) + θπW ′0(d̃1) = 0⇒ κu+ νu1 + θd1 ∈W0

From what we showed at the beginning of this proof, we can conclude that κ, ν are non-zero. θ 6= 0 since
πW ′0(ũ), πW ′0(ũ1) are distinct. Put d1 = δ1l1 + . . .+ δklk + δk+1e with δk+1 6= 0, then the above equation
becomes

κu+ νu1 + θδk+1e ∈W0
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Taking projection onto W̃0 for the decomposition W0⊕ W̃0 = V and normalizing their coefficients of lk+1

when they are written in basis B

κπW̃0
(û) + νπW̃0

(û1) + θπW̃0
(d̂1) = 0

Since coefficient of lk+1 is 1 in all of them and ν 6= 0 we get that

πW̃0
(û1) ∈ fl({πW̃0

(û), πW̃0
(d̂1)}) = ~L1

Since |~L1∩πW̃0
(L̂(U?1−i))| = 1⇒ πW̃0

(û) = πW̃0
(û1) 6= 0⇒ ∃δ, ψ both non-zero such that δu+ψu1 ∈W0.

We could eliminate u1 to conclude that there exist constants α, β with β 6= 0 such that αu + βd1 ∈
W0 ⇒ πW ′0(d̃1) = πW ′0(ũ) which cannot happen by what we showed in the beggining of the proof or
πW ′0(d1) = 0 ⇒ d1 ∈ sp({l1, . . . , lk}) which is a contradiction to (S,D) being a detector pair. Therefore

such a u1 does not exist and | ~L2 ∩ πW ′0(L̃(U?1−i))| = 1.

I Proofs from Section 5

All random selections are done from the set [N ] = {1, . . . , N}.

Lemma I.1 Let Rn be the n dimensional vector space over R. Suppose vi : i = 1, . . . , n are n vectors in
Rn with each co-ordinate chosen independently from the uniform distribution on [N ]. Consider the event

E = {{v1, . . . , vn} are LI }

Then Pr[E ] ≥ 1− n

Nn2 .

Proof. Each vi ∈ Rn is chosen such that each co-ordinate is chosen uniformly randomly from the set [N ].
Let vi be the vector (Vi,1, . . . , Vi,n). Consider the matrix Ṽ = (Vi,j). The vi’s will be linearly independent
if and only if Ṽ is invertible i.e. det(Vi,j) 6= 0. Note that det(Vi,j) is not the zero polynomial since the
monomial v1

1v
2
2..v

n
n has coefficient 1. Now we can use Schwartz-Zippel Lemma [21] on this polynomial to

yield:

Pr[det(Ṽ ) = 0] ≤ n

Nn2

Therefore Pr[vi, i = 1, . . . n are LI ] = Pr[det(Ṽ ) 6= 0] ≥ 1− n

Nn2 . Therefore Pr[E ] ≥ 1− n

Nn2 .

Lemma I.2 Assume conditions in the previous lemma. Consider the subspaces V = sp{v1, . . . , vr} and
V ′ = sp{vr+1, . . . , vn}. Let’s assume that that E occurs. So dim(V ) = r. We know Then Rn = V ⊕ V ′.
Let πV : Rn → V be the orthogonal projection onto V under this decomposition . Let T ⊂ Rn be a finite
set from which linear forms are chosen. Consider the event

F = {∃ an LI set {l1, . . . , lr} ⊂ T such that {πV (l1), . . . , πV (lr)} is LD }

Then Pr[F ] ≤
(|T |
r

)
{ n

Nn2 + r(n−1)

Nn2 }

Proof. Fix {l1, . . . , lr} ⊂ T an LI set. Extend it to get a basis {l1, . . . , ln} of Rn. Let li =
∑
j∈[n]

Li,jej . Let

L be the matrix (Li,j)(i,j)∈[n]×[n]. From the discussion above we have Ṽ = (Vi,j). Now let Pr be the n×n
matrix

Pr =

[
Ir 0r,n−r

0n−r,r 0n−r,n−r

]
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where Ir is the r × r identity matrix and 0p,q is the p × q matrix with all 0 entries. Also for any n × n
matrix A, define Mr(A) to be the principal r × r minor of A. Consider the equation given by

det(Mr(PrLco(Ṽ ))) = 0

where co(Ṽ ) is the co-factor matrix of Ṽ . Since entries of co(Ṽ ) are polynomials in the Vi,j ’s and L is a
fixed matrix, the entries of PrLco(Ṽ ) are polynomials in Vi,j ’s. So det(Mr(PrLco(Ṽ ))) is a polynomial
in Vi,j ’s. This polynomial can’t be identically 0. Choose Vi,j = Li,j , then Ṽ is invertible and Lco(Ṽ ) =
det(L)I and so PrLco(Ṽ ) = det(L)Pr ⇒ det(Mr(PrLco(Ṽ ))) = det(L) 6= 0. Degree of the polynomial
det(Mr(PrLco(Ṽ ))) is clearly ≤ r(n− 1). Therefore by Schwartz Zippel Lemma

Pr[det(Mr(PrLco(Ṽ ))) = 0] ≤ r(n− 1)

Nn2

Consider the set
S({l1, . . . , lr}) = {(Vi,j) : det(Ṽ ) 6= 0, det(Mr(PrLco(Ṽ )) 6= 0}

On this set S({l1, . . . , lr}), {v1, . . . , vn} is a basis and we have the following matrix equations :
v1

.

.
vn

 = Ṽ


e1

.

.
en

 and


l1
.
.
ln

 = L


e1

.

.
en

⇒

l1
.
.
ln

 = LṼ −1


v1

.

.
vn


and so πV (l1)

.
πV (lr)

 =
1

det(Ṽ )
Mr(PrLco(Ṽ ))

v1

.
vr


Therefore {πV (l1), . . . , πV (lr)} is an LI set. Now S({l1, . . . , lr})c = {(Vi,j) : det(Ṽ ) = 0 or det(MrLco(M)) =

0} ⇒ Pr[S({l1, . . . , lr})c] ≤ n

Nn2 + r(n−1)

Nn2 . Next we vary {l1, . . . , lr} and apply union bound to get

Pr[F ] ≤
∑

{l1,...,lr}⊂T

S({l1, . . . , lr})c ≤
(
|T |
r

)
{ n

Nn2 +
r(n− 1)

Nn2 }

In our application |T | = poly(d) and r is a constant, so we choose N = 2d+n and make this probability
very small.

Lemma I.3 Let f |V (X̄) =
∑

{ᾱ:|ᾱ|=d}
aᾱX̄

ᾱ be a homogeneous multivariate polynomial of degree d in r

variables X1, . . . , Xr. Let pi : 1 ≤ i ≤
(
d+r−1
r−1

)
be randomly chosen points in V ( dimension r random

subspace of Rn chosen in the above lemmas). Then with high probability one can find all the aᾱ.

Proof. We evaluate the polynomial at each of the pi’s. So we have
(
d+r−1
r−1

)
evaluations. The number

of coefficients is also
(
d+r−1
r−1

)
so we get a linear system in the coefficients where the matrix (X) entries

are just monomials evaluated at the pi’s. Since f is not identically zero clearly there exist values for the
points pi’s such that the determinant of this matrix is non zero polynomial so it cannot be identically
zero. Now the degree of the determinant polynomial is bounded by d

(
d+r−1
r−1

)
≤ poly((d + r)r). So by

Schwarz Zippel lemma

Pr[aᾱ is recovered correctly ] = Pr[det(X) 6= 0] ≥ 1− poly(dr)

Nn2
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