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Abstract

We study how to extract randomness from a C-interleaved source, that is, a source comprised
of C independent sources whose bits or symbols are interleaved. We describe a simple approach
for constructing such extractors that yields:

• For some δ > 0, c > 0, explicit extractors for 2-interleaved sources on {0, 1}2n when one
source has min-entropy at least (1 − δ)n and the other has min-entropy at least c log n.
The best previous construction, by Raz and Yehudayoff [RY11], worked only when both
sources had entropy rate 1− δ.

• For some c > 0 and any large enough prime p, explicit extractors for 2-interleaved sources
on [p]2n when one source has min-entropy rate at least .51 and the other source has min-
entropy rate at least (c log n)/n.

We use these to obtain the following applications:

• We introduce the class of any-order-small-space sources, generalizing the class of small-
space sources studied by Kamp et al. [KRVZ11]. We construct extractors for such sources
with min-entropy rate close to 1/2. Using the Raz-Yehudayoff construction would require
entropy rate close to 1.

• For any large enough prime p, we exhibit an explicit function f : [p]2n → {0, 1} such that
the randomized best-partition communication complexity of f with error 1/2 − 2−Ω(n) is
at least .24n log p. Previously this was known only for a tiny constant instead of .24, for
p = 2 [RY11].

• We introduce non-malleable extractors in the interleaved model. For any large enough
prime p, we give an explicit construction of a weak-seeded non-malleable extractor for
sources over [p]n with min-entropy rate .51. Nothing was known previously, even for
almost full min-entropy.
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1 Introduction

Extracting truly random bits from various naturally-arising weak random sources is a major area
of study in computer science, and has applications in various areas such as cryptography, coding
theory, communication complexity, and distributed computing. An extractor is defined to be a
procedure that takes input from a weak random source and outputs a distribution that is close to
uniform.

The first model of a weak random source was considered by Von Neumann [vN51], where he
showed how to extract from a source with independent and biased bits. Various other models of
weak random sources were considered [Blu86, SV86, CGH+85], but it was realized that devising
such extractors was impossible for any general class of weak random sources lacking significant
independence between different parts.

To get around this difficulty, the notion of a seeded extractor was introduced by Nisan and
Zuckerman [NZ96], where the seeded extractor is given access to a small number of uniformly
random bits to extract randomness from a weak source X. The min-entropy of a weak source X
is a standard way of measuring of the amount of randomness in X, and is defined as H∞(X) =
mins∈support(X) {1/ log(Pr[X = s])}. The min-entropy rate of X is given by H∞(X)/n. By a long
line of work ending with [LRVW03,DKSS09,GUV09], we now have explicit seeded extractors with
almost optimal parameters.

In recent years, there has been renewed interest in the original problem of constructing seedless
extractors for weak random sources. In particular, a line of work has focused on devising seedless
extractors that takes as input C independent weak sources X1, . . . , XC , and outputs a distribution
close to uniform. This problem was originally considered by Chor and Goldreich [CG88], who
showed how to extract from two independent sources (on {0, 1}n) each with min-entropy at least
(1

2 + δ)n. Such extractors are called as two-source extractors. They also constructed a different
two-source extractor which works when one source has min-entropy (1

2 + δ)n, and the other source
has only polylogarithmic min-entropy.

However, there was no progress on this result for around 20 years until the work of Bourgain
[Bou05], who achieved a small improvement over [CG88], and showed how to extract from two
independent sources each with min-entropy 0.49n, based on techniques from the area of additive
combinatorics. Raz [Raz05] constructed a different two-source extractor when one source has min-
entropy at least (1

2 + δ)n and the other source has poly-logarithmic min-entropy at least O(log n),
with a more flexibility in parameters than the construction of [CG88]. Finally, the authors recently
constructed two-source extractors for polylogarithmic min-entropy with one bit output [CZ15].
Subsequently, Li [Li15] improved the output length to Ω(k) bits.

1.1 Interleaved Sources

Raz and Yehudayoff [RY11] introduced a natural generalization of the class of independent sources,
which we call interleaved sources. We formally define this class of sources.

Notation Let [n] denote the set {1, . . . , n}. For any string s ∈ [R]n and i ∈ [n], let si denote
the symbol in the ith coordinate of s. For any permutation t : [n] → [n], define the string
w = (s)t ∈ [R]n such that wi = st(i) for i = 1, . . . , n. For distributions D1 and D2, we use |D1−D2|
to denote the statistical distance. See Section 3 for more preliminaries.
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Definition 1.1 (Interleaved Sources). Let X1, . . . , XC be arbitrary independent sources on [R]n

and let t : [Cn]→ [Cn] be any permutation. Then Z = (X1 ◦ . . . ◦XC)t is a C-interleaved source.

One way that such sources can arise naturally is when the independent sources are commu-
nicated remotely to an extractor and packets of bits from different sources arrive in a fixed but
unknown order. We show that extractors for interleaved sources can be used to construct extractors
for certain samplable sources, thus extending the line of work initiated by Trevisan and Vadhan
[TV00]. We discuss this in Section 1.2. Further, Raz and Yehudayoff [RY11] showed that such ex-
tractors have applications in communication complexity (see Section 1.3) and proving lower bounds
for arithmetic circuits.

Previous Results

The only known construction of an extractor for the class of interleaved sources is due to Raz and
Yehudayoff [RY11]. They constructed extractors for 2-interleaved sources on {0, 1}2n when both
sources have min-entropy rate at least 1 − β, with output length Ω(βn) and exponentially small
error.

The constant β in the result of [RY11] is tiny and arises from a multilinear exponential sum
estimate from [BGK06] (which is based on sum-product estimates on finite fields [BKT04,Kon03]).
Thus, the only known construction required both the sources to have almost full min-entropy.

The analysis of the extractor in [RY11] requires estimating a non-trivial exponential sum, and
is quite involved.

Our Results

We develop a simple technique that yields explicit extractors that work for lower min-entropy rates.
In particular, our method yields explicit extractors for min-entropy rate 0.51 for two interleaved
sources, when the sources are over a field of large enough (constant) characteristic.

We show how to convert any two-source extractor that is a function of the sum of its inputs
into an extractor for a 2-interleaved source. Our method of converting a two-source extractor into
an extractor for interleaved sources is based on explicit constructions of certain combinatorial sets,
which we call (r, s)-spanning sets. These spanning sets are essentially subspace-evasive sets with
different parameters than studied earlier (see Section 2.1 for more details). It turns out that the
columns of parity check matrices of linear codes with good erasure list-decodability form spanning
sets with good parameters. We discuss this in detail later.

Next, we observe that an existing two-source extractor from [CG88] is a function of the sum of
the inputs. This leads to our construction of an extractor for 2-interleaved sources with one source
having min-entropy at least (1− α)n and the other source having min-entropy at least λ log n (for
some α, λ > 0). Next, we show that for any large enough constant prime p, if the 2-interleaved
source is on [p]2n, we can extract when one source has min-entropy rate at least 0.51 and the other
source has min-entropy rate at least c log n/n. We give various related constructions achieving
different tradeoffs between min-entropy, error, and output length. This is summarized in Table 1.

We show that random sets are (r, s)-spanners with high probability (see Lemma 5.10). By our
proof technique, any improved construction of an (r, s)-spanning set matching the probabilistic
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p k1 k2 Output
Length

Error Reference Remarks

2 ≥ (1− β)n ≥ (1− β)n γn,
γ < β

2−Ω(n) [RY11] Not strong

2 ≥ (1− α)n ≥ 10λ log n λ log n n−Ω(1) This work,
Theorem 6.4

Strong in X

2 ≥ (1− α)n ≥ 10λ log n Output
in ZM ,
M = nλ

2−Ω(k2) This work,
Theorem 6.2

Strong in X

any p > 2
c
δ ≥ (1

2 + δ)n log p ≥ c1(δ, λ, p) log n λ log n n−Ω(1) This work,
Theorem 6.5

Strong in X

any p > 2
c
δ ≥ (1

2 + δ)n log p ≥ (1
2 + δ)n log p Ω(n) n−Ω(1) This work,

Theorem 6.6
Not strong

any p > 2
c
δ ≥ (1

2 + δ)n log p ≥ c2(δ, λ, p) log n 1 bit 2−Ω(k2) This work,
Theorem 6.7

Strong in X

any p > 2
c
δ ≥ (1

2 + δ)n log p ≥ c1(δ, λ, p)λ log n Ω(k2) 2−Ω(k2) This work,
Theorem 6.9

Semi-explicit
construction

2 ≥ γn, any con-
stant γ

≥ γn λ log n n−Ω(1) This work,
Theorem 6.11

Assuming
Generalized
Paley Graph
Conjecture

Table 1: Results on Extractors for 2-Interleaved Sources. The setting is as follows: Z = (X ◦Y )t is
an arbitrary 2-interleaved source on [p]2n, where X and Y are independent sources on [p]n (for some
prime p) with min-entropy k1 and k2 respectively, and t : [2n]→ [2n] is an arbitrary permutation.
Let α be a small enough constant and c a large enough constant. Also let λ > 1 be any constant.
(We also list the result of [RY11] in Table 1.

method will yield extractors for 2-interleaved sources on {0, 1}2n that have essentially the same
min-entropy requirement as standard (non-interleaved) setting.

1.2 Any-Order-Small-Space-Sources

Trevisan and Vadhan [TV00] introduced the problem of constructing seedless extractors for the
class of samplable sources (the weak random source is generated by an efficient algorithm) and
constructed explicit extractors based on some complexity-theoretic assumptions. Subsequently,
Kamp et al. [KRVZ11] introduced a class of samplable sources called small-space sources, where
the algorithm generating the source has bounded space. They constructed seedless extractors for
such sources with linear min-entropy. Most sources considered previously (for seedless extraction)
can be computed in small-space (see [KRVZ11] for more details). In particular, extractors for
small-space sources also extract from bit-fixing sources and symbol-fixing sources, and thus have
applications in cryptography [KZ07].

We introduce a natural generalization of small-space sources. For this, we recall the definition
of small-space sources from [KRVZ11].
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Definition 1.2 (Small-Space Sources [KRVZ11]). A space s source X on [r]n is generated by a r-
way branching program of length n and width 2s in the following way: The r-way branching program
is a layered graph with n + 1 layers and a single start vertex. Each edge is labeled with a variable
Xj, a probability value and a symbol in [r]. Further all edges between the ith and (i + 1)th layer
are labelled with same variable Xi. The output of the source is a random walk starting from the
start vertex, assigning the symbol on the edge to the corresponding variable and finally outputting
the generated string.

Note that in the above definition, the variable assigned to an edge is known (for example, all
edges between the ith and (i + 1)th layers have the variable Xi assigned to it). We introduce the
natural generalization where the branching program is oblivious but the variable assigned to an
edge is unknown. In particular, for an unknown permutation t : [n] → [n], all edges between the
ith and (i+ 1)th layers have the variable Xt(i) assigned to it.

We formally define this class of sources.

Definition 1.3 (Any-Order-Small-Space-Sources). An any-order-space s source X on [r]n is gen-
erated by an r-way branching program of length n and width 2s and a permutation t : [n]→ [n] in
the following way: The r-way branching program is a layered graph with n+ 1 layers and a single
start vertex. Each edge is labeled with a variable Xj, a probability value and a symbol in [r]. Further
all edges between the ith and (i + 1)th layer are labelled with same variable Xt(i). The output of
the source is a random walk starting from the start vertex, assigning the symbol on the edge to the
corresponding variable and finally outputting the generated string.

Our Results

To construct extractors for the class of any-order-oblivious-small-space sources, we reduce it to
the task of extracting from 2-interleaved sources by adapting the technique of [KRVZ11] to our
situation.

Consider an arbitrary any-order-space s = δn/2 source X on [p]n (for some constant p) with
min-entropy k = (1

2 + δ)n log p. By conditioning on the state of the p-way branching program at

the n
2 th layer, it follows by Lemma 4.7 that X is 2−Ω(n)-close to a source Z = (Y1 ◦ Y2)t, where Y1

and Y2 are independent sources on [p]
n
2 with min{H∞(Y1), H∞(Y2)} ≥ δn log p

8 and max{H∞(Y1),

H∞(Y2)} ≥ (1
2 + δ

8)n log p
2 , and t : [n]→ [n] is a permutation.

It thus follows that all our extractor constructions for 2-interleaved sources also extract from
any-order-small-space sources (by splitting the input string into two equal parts and applying the
extractor).

Using this reduction, we obtain the first explicit construction of an extractor for any-order-
oblivious-small-space sources with min-entropy rate close to 1

2 (by using the extractor from Theo-
rem 6.5).

Theorem 1.4. There exists c > 0 such that for any δ ≥ 2δ1 > 0 and any prime p > 2
c
δ , there exists

an explicit function ext : [p]n → {0, 1}m, m = O(log n), such that if X is an any-order-oblivious
space s = δ1n source on [p]n with min-entropy (1

2 + δ) log p, then

|ext(X)− Um| = n−Ω(1).
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We note that using our reduction, the extractor from [RY11] can be used to extract from
any-order-small-space sources with min-entropy rate very close to 1.

1.3 Applications to Communication Complexity

Communication complexity was introduced by Yao [Yao79]. There has been an extensive amount of
research done in this area and various models of communication have been considered (see [KN97]
for formal definitions and background). We recall the definition of the randomized best-partition
communication complexity of an arbitrary function f : [R]2n → {0, 1}, which generalizes the usual
setting where the partition of inputs is known.

Let Alice and Bob be two players who want to collectively compute f following a protocol Π
and having access to a common random string r. Fix an arbitrary partition of the set [2n] into 2
subsets of equal size, say S and T . For arbitrary x, y ∈ [R]n, Alice is given x and Bob receives y
and the goal is to compute f(z) with probability at least 1− ε, where z ∈ [R]2n such that zS = x
and zT = y.

For any protocol Π, the randomized communication cost of f with respect to an equi-partition
S, T ⊂ [2n] denoted by RεΠ,S,T (f), is defined to be the maximum communication between Alice
and Bob over all inputs x, y in the scenario described above. The best-partition communication
complexity of f , denoted by Rbest,ε(f) is defined as:

Rbest,ε(f) = min
Π
{ min
S,T :|S|=|T |=n,
S∪T=[2n]

RεΠ,S,T (f)}.

Lower bounds on the best-partition communication complexity of f implies lower bounds on
branching programs computing f ([AM86]) and also has implications in time/space tradeoffs for
VLSI circuits.

Raz and Yehudayoff [RY11] proved the following lower bound.

Theorem 1.5 ([RY11]). For some β > 0, there exists an explicit function f : {0, 1}2n → {0, 1}
such that the randomized best-partition communication complexity of f with error ε = 1

2 − 2−βn is
at least βn.

The constant β in the above theorem is, however, extremely small and arises from arguments
in additive combinatorics. A similar bound also follows from their work for inputs on [R]2n (for
any constant R) and it appears nontrivial to use their techniques to obtain better bounds for β.

Our Results

We obtain the following result.

Theorem 1.6. There exists c > 0 such that for any δ, γ > 0 and any prime p > 2
c
δ , there

exists an explicit function f : [p]2n → {0, 1} such that the randomized best-partition communication
complexity of f with error ε = 1

2 − p
−γn is at least (1

4 − δ − γ)n log p.

We prove this using a well known technique of lower bounding randomized communication
complexity by discrepancy. Our explicit function is the 1-bit extractor constructed in Theorem 6.7.
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However, we need to analyze the error of the extractor more carefully to obtain the above bound.
We prove Theorem 1.6 in Section 8.

1.4 Interleaved-Non-Malleable Extractors

Non-malleable extractors were introduced by Dodis and Wichs [DW09], where it was shown that
explicit constructions of non-malleable extractor with good parameters can be used to design almost
optimal protocols for privacy amplification, which is a very well studied problem in cryptography.
Recently, non-malleable extractors were also used in constructing explicit two-source extractors
[CZ15]. We introduce the natural generalization of non-malleable extractors in the interleaved
model.

We first recall the definition of a non-malleable extractor.

Definition 1.7 (Non-Malleable Extractor). A function nmExt : [R]2n → {0, 1}m is a non-malleable
extractor for min-entropy k and error ε if the following holds: If X is a source (on [R]n) with min-
entropy k, f : [R]n → [R]n is any function with no fixed points, then

|nmExt(X ◦ U[R]n) ◦ nmExt(X ◦ f(U[R]n)) ◦ U[R]n − Um ◦ nmExt(X ◦ f(U[R]n) ◦ U[R]n | < ε.

The first explicit construction of a non-malleable extractors was given in [DLWZ14], with sub-
sequent improvements of parameters achieved in [CRS12, Li12]. However these constructions re-
quire min-entropy > 0.49n. In a recent work [CGL15], the min-entropy required was improved to
O(log2 n).

We initiate the study of non-malleable extractors in the interleaved model, where the extractor
is guaranteed to work even when symbols from the source X and tampered seed U[R]n arrive to the
non-malleable extractor in a fixed but unknown interleaved order.

We formally define interleaved-non-malleable extractors.

Definition 1.8 (Interleaved-Non-Malleable Extractor). A function nmExt : [R]2n → {0, 1}m is a
non-malleable extractor in the any-order model for min-entropy k and error ε if the following holds:
If X is a source (on [R]n) with min-entropy k, f : [R]n → [R]n is any function with no fixed points
and t : [2n]→ [2n] is any permutation, then

|nmExt((X ◦ U[R]n)t) ◦ nmExt((X ◦ f(U[R]n))t) ◦ U[R]n − Um ◦ nmExt((X ◦ f(U[R]n))t) ◦ U[R]n | < ε.

In the above definition, when the seed has some min-entropy instead of being uniform, we say
that the interleaved-non-malleable extractor is weak-seeded.

Our Results

We give the first explicit construction of an interleaved-non-malleable extractor. Further our non-
malleable extractor is weak-seeded.

Theorem 1.9. There exists λ > 0 such that for any δ > 0, c > c(δ) and any prime p > 2
λ
δ ,

there exists an explicit function nmExt : F2n
p → {0, 1}m, m = O(log n), such that if X, Y are

independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p and

6



k2 > cmax{m, log n}, t : [2n]→ [2n] is any injective map and f : Fnp → Fnp is any function with no
fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = n−Ω(1).

As before, if we are allowed to run the non-malleable extractor in sub-exponential time, we can
extract Ω(n) bits at error 2−Ω(n). See Theorem 7.4 for more details.

Organization

We outline our constructions in Section 2. We introduce preliminaries in Section 3 and recall some
known explicit constructions and other tools in Section 4. In Section 6, we present our extractor
constructions for 2-interleaved sources. In Section 7, we present our constructions of interleaved-
non-malleable extractors. We present the proof of Theorem 1.6 in Section 8.

2 Outline of Constructions

2.1 Extractors for 2-Interleaved Sources

Our extractor for interleaved sources exploits the existence of good 2-source extractors which are
functions of X + Y . To do this, we encode our source in a new way. Our encoding is based on
explicit constructions of certain combinatorial sets, which we call spanning vectors.

Definition 2.1. A set of vectors S ⊆ F¯̀
p is (r, s)-spanning if the span of any r vectors of S has

dimension at least s.

Note that this is the same as a subspace-evasive set: Any (s−1)-dimensional subspace contains
at most (r−1) vectors in the set. However our parameters are quite different than studied previously
[Gur11,DL12].

Our explicit constructions of spanning vectors are based on using the columns of a parity
check matrix of a linear codes with good erasure list-decodability. Informally, a (e, L)-erasure list-
decodable code C satisfies the property that at most L codewords agree on any particular subset of
co-ordinates of size n − e. This property can then be used to lower bound the rank of any subset
of e columns of the parity check matrix of C. We refer the reader to Section 5 for more details.

We define the following encoding based on spanning vectors.

Definition 2.2. For any (r, s)-spanning set S = {v1, . . . , v`} ⊆ F¯̀
p of size `, the function enc :

F`p → F¯̀
p defined as

enc(z) =
∑̀
i=1

zivi

is called an (r, s)-encoding from F`p to F¯̀
p.

Consider the following setting: Let Z = (X ◦Y )t be any 2-interleaved source on {0, 1}2n, where
X and Y are arbitrary independent sources on {0, 1}n with min-entropy k1 and k2 respectively,
and t : [2n]→ [2n] is any permutation.
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Our first step is to use an (n, s)-encoding enc from F2n
2 to Fn̄2 to encode Z. Thus,

enc(Z) = X ′ + Y ′,

where

X ′ =

n∑
i=1

Xivt(i), Y ′ =

n∑
i=j

Yjvt(n+j).

where S = {v1, . . . , v2n} is a (n, s)-spanning set of vectors.

The idea is to argue that the independent sources X ′ and Y ′ (on {0, 1}n̄) have enough min-
entropy. Since (by construction) the span of the set of vectors {vt(1), . . . , vt(n)} has dimension at
least s, Lemma 4.9 implies that H∞(X ′) = k′1 ≥ k1−(n−s). Similarly H∞(Y ′) = k′2 ≥ k2−(n−s).

We now associate Fn̄2 with F2n̄ . A character sum estimate of Karatsuba1 [Kar71, Kar91] (we
use a slightly more precise bound from [Shp13], see Theorem 4.1) implies that for any nonprincipal
multiplicative character χ of F∗2n̄ ,

EX′ |EY ′ [χ(X ′ + Y ′)]| ≤ 2−δk
′
2

whenever: k1 ≥ (1
2 + 3δ)n̄+ (n− s) and k2 ≥ 4 log n̄ log p+ (n− s).

Suppose k1 and k2 satisfy these conditions.

We then follow a standard approach and define the function:

ext(Z) = logg(X
′ + Y ′) (mod M),

where M = 2δk
′
2/2 and g is a primitive element of F2n̄ . Using a version of the Abelian XOR lemma

(see Lemma 4.5), it follows that ext is an extractor with output length δk′2/2 and error 2−Ω(k′2).
Further the extractor is strong in the source X. However, the running time of this extractor is
subexponential since it involves computing discrete logs over finite fields. This gives us a semi-
explicit extractor construction.

To get a polynomial time extractor, we compute discrete log over a smaller multiplicative
subgroup of F∗2n̄ . Let M |2n̄ − 1 and M = nλ for any constant λ (we show in Theorem 6.2 that we
can ensure that there is always such an M). Define the function:

ext1(Z) = enc(Z)
2n̄−1
M .

Thus ext1(Z) is a distribution on the multiplicative subgroup G = {x
2n̄−1
M : x ∈ F∗2n̄} (of F∗2n̄) of

size M (in fact ext1(Z) is a distribution on G ∪ {0}, but Pr[ext1(Z) = 0] = 2−Ω(n) and hence we
ignore this and add this to the error). Let g be a generator of G. It now follows by using the
character sum estimate of Karatsuba [Kar71] that the function:

ext(Z) = logg(ext1(Z))

is an extractor.

We need to find a generator g of G efficiently. For this, we use an efficient algorithm of Shoup
[Sho90] for finding a small set of elements such that one of them is a primitive element of F2n̄ . We

1this character sum was also used in [CG88] for constructing explicit two-source extractors.
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use a straightforward method to find g from this set in polynomial time. We achieve output length
of λ log n and error n−Ω(1). The extractor is strong in the source X.

Reducing the Min-Entropy Rate For some c and any δ > 0, let p > 2
c
δ be any prime. When

the source Z = (X ◦ Y )t is on [p]2n, we can reduce the min-entropy rate requirement of the source
X to (1

2 + δ). The construction follows the same outline as above (using (n, s)-encodings from F2n
p

to Fn̄p ), and the improvement is achieved by using the fact that over alphabet [p], we can construct

(n, n)-spanning sets in Fn̄p with n̄ = n(1 + δ
5) (using explicit codes from [GI02]). The output length

of the extractor obtained is λ log n (for any constant λ) and achieves error n−Ω(1). Further the
extractor is strong in the source X.

Improving the Output Length We improve the output length of the above extractor to Ω(n)
when both sources X and Y (on [p]n) have min-entropy at least (1

2 + δ)n log p. Our construction is
as follows. Let SExt be an explicit strong seeded extractor for linear min-entropy with linear output
length and polynomially small error with seed seed length O(log n), for example from the work of
[GUV09]. Let Z[n] denote the projection of Z to the first n co-ordinates and let extp denote the
extractor constructed in the previous paragraph (for 2-interleaved sources on [p]2n). Our extractor
is the following function:

extp,long(Z) = SExt(Z[n], extp(Z)).

We sketch the proof of correctness. Without loss of generality, suppose that X has more symbols
in Z[n] than the source Y . Let S ⊆ [n] be the co-ordinates of X which are in Z[n] and let XS denote
the projection of X to the co-ordinates indexed by S. Let T ⊂ [n] be the co-ordinates of Y which
are in Z[n] and let YT denote the projection of Y to the co-ordinates indexed by T . Further, we use
XS ◦ YT to denote Z[n]. Note that, by assumption |S| ≥ n

2 and |T | ≤ n
2 . It follows by Lemma 4.7

that Y |YT is close to a source with min-entropy > δn log p
2 with probability 1 − 2−Ω(n). Also note

that XS a source with min-entropy ≥ δn log p.

Consider such a good fixing YT = yT . Since X and Y |YT = yT have enough min-entropy, it
follows that even under this fixing, W = extp(Z) is close to uniform. We now use the property
that extp is strong with respect to the source XS , i.e., |(XS ,W ) − (XS , Ud)| ≤ n−Ω(1). Using a
probability lemma from [Sha06], it follows that for any W = w, |XS − (XS |(W = w))| ≤ n−Ω(1)

(using that w is of length O(log n)).

Hence, SExt(XS ◦ YT ,W )|YT = yT is n−Ω(1)-close to the convex combination:
∑

w Pr[(W |YT =
yT ) = w]SExt(XS ◦ YT , w)|YT = yT . Since as observed above, W |YT = yT is n−Ω(1)-close to Ud, it
follows that SExt(XS ◦ YT ,W )|YT = yT is n−Ω(1)-close to SExt(XS ◦ yT , Ud). The correctness now
follows using the fact that SExt is a seeded extractor for linear min-entropy.

Probabilistic Method We show in Lemma 5.10, that a random set S ⊂ Fn2 of size 2n is an
(n, n− 2

√
n)-spanning set with high probability. Thus, using the proof technique described above,

any explicit construction of such a set will yield explicit extractors for 2-interleaved sources on
{01}2n when one source has min-entropy at least 0.51n and the other source has min-entropy at

least cn
1
2 . We leave it as an interesting open problem to explicitly construct such a set S.2

We give formal proofs of the above extractor constructions and other related constructions in
Section 6.

2This is related to finding explicit constructions of binary erasure list-decodable codes with almost optimal pa-
rameters. See Section 5 for more details.
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2.2 Interleaved-Non-Malleable Extractors

For some c > 0 and any δ > 0, let p > 2
c
δ be any prime. Let X be a source on [p]n with min-entropy

k1 and Y be a weak-seed on [p]n with min-entropy k2. Let f : [p]n → [p]n be any function with
no fixed points. Thus the non-malleable extractor has access to Z = (X ◦ Y )t for an artitrary
permutation t : [2n]→ [2n]. Let Zf denote the tampered source (X ◦ f(Y ))t.

We show that the extractor extp constructed for 2-interleaved sources (described in the previous
section) is also non-malleable. We prove it in the following way. Recall the construction of extp:

enc(Z) =

2n∑
i=1

Zivi, ext1(Z) = enc(Z)
pn̄−1
M , extp(Z) = logg(ext1(Z)),

where S = {v1, . . . , v2n} is an (n, n)-spanning set in Fn̄p , M = poly(n), n̄ = n(1 + δ
5) and g is a

generator of the multiplicative subgroup G = {x
2n̄−1
M : x ∈ F∗2n̄}.

Since extp is a distribution on ZM , it follows by a version of the Abelian XOR lemma proved
in [DLWZ14] that to prove non-malleability, it is enough to prove the bound:

|E[ψa(extp(Z))ψb(extp(Zf ))]| ≤ n−Ω(1),

for all additive characters ψa and ψb (of ZM ) such that ψa is nontrivial. When ψb is the trivial
character, the above quantity can be bounded by the fact that extp is an extractor for 2-interleaved
sources. Thus, suppose both ψa and ψb are nontrivial.

It follows that

|E[ψa(extp(Z))ψb(extp(Zf ))]| = |E[χa(enc(Z))χb(enc(Zf ))]|

where χa and χb are nonprincipal multiplicative characters of F∗2n̄ .

Further, Z =
∑n

i=1Xivt(i) +
∑n

j=1 Yjvt(j) and Zf =
∑n

i=1Xivt(i) +
∑n

j=1 f(Y )jvt(j). Thus,

Z = X ′ + Y ′, Zf = X ′ + f ′(Y ′),

where X ′ =
∑n

i=1Xivt(i), Y
′ =

∑n
i=j Yjvt(n+j) and f ′ = L ◦ f ◦ L−1, L being the one-one linear

map L(z) =
∑n

i=1 zivt(n+i). Thus,

|E[ψa(extp(Z))ψb(extp(Zf ))]| = |E[χa(X
′ + Y ′)χb(X

′ + f ′(Y ′))]|.

Using the work of Dodis et al. [DLWZ14], we can prove the required upper bound on the quantity
on the right hand side if f ′ does not have any fixed points. We indeed show that f ′ has no fixed
points (by using the fact that L is one-one and f has no fixed points). This completes the proof
sketch. The non-malleable extractor outputs λ log n bits (for any constant λ) and achieves error
n−Ω(1).

See Section 7 for more details.
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3 Preliminaries

3.1 Notation

We use capital letters to denote distributions and their support. We use corresponding small letters
to denote a sample from the source.
We use [l] to denote the set {1, 2, . . . , l} and [a, b] to denote the set {a, a+ 1 . . . , b}.
We use Um to denote the uniform distribution over {0, 1}m.
For any set S, let US denote the uniform distribution on S. Also let s ∼ S denote a uniform draw
from S.
For any string s ∈ [R]n and i ∈ [n], let si denote the symbol at the ith coordinate of s. For any
one-one map t : [n] → [n], define the string w = (s)t ∈ [R]n such that wi = st(i) for i = 1, . . . , n.
Further for any t ⊂ [n], let sT denote the |T | length string that is the projection of s onto the
co-ordinates indexed by T .
For any x ∈ [p]n1 , y ∈ [p]n2 and disjoint subsets S, T ⊂ [n1 + n2] with |S| = n1, |T | = n2, we define
z = xS ◦ yT such that zS = x and zT = y.

For any integer M > 0, let eM (x) = e
2πix
M .

3.2 Min-Entropy and Flat Distributions

Definition 3.1. The min-entropy of a source X is defined as: H∞(X) = mins∈support(X)

{
1

log(Pr[X=s])

}
.

Definition 3.2. A distribution (source) D is flat if it is uniform over a set S.

Definition 3.3. A (n, k)-source is a distribution on {0, 1}n with min-entropy k.

Any (n, k)-source is a convex combination of flat sources supported on sets of size 2k [Zuc97].

3.3 Statistical distance and Convex Combination of Distributions

Definition 3.4. Let D1 and D2 be two distributions on a set S. The statistical distance between
D1 and D2 is defined to be: |D1 −D2| = 1

2

∑
s∈S |Pr[D1 = s]− Pr[D2 = s]|.

A distribution D1 is ε-close to another distribution D2 if |D1 −D2| ≤ ε.

Definition 3.5. For random variables X and Y , we use X|Y to denote a random variable with
distribution: Pr[(X|Y ) = x] =

∑
y∈support(Y ) Pr[Y = y] · Pr[X = x|Y = y].

4 Some Known Explicit Constructions and Other Tools

To construct our extractors, we use a variety of tools. We first set up these tools in this section
and present our extractor constructions in the next section.
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4.1 A 2-Source Extractor

The following double character sum estimate was obtained by Karatsuba [Kar71,Kar91]. We state
a slightly more precise bound from [Shp13].

Theorem 4.1 ([Kar71,Kar91,Shp13]). Let p be any prime. Let χ be a nonprincipal multiplicative
character of F∗pn. For any subsets A,B ⊆ Fpn, the following holds: For any integer λ > 0,

∑
a∈A

∣∣∣∣∣∑
b∈B

χ(a+ b)

∣∣∣∣∣ ≤ |A| 2λ−1
2λ (|B|p

n
4λ + |B|

1
2 p

n
2λ ).

The above theorem can be equivalently restated as a result on 2-source extractors.

Theorem 4.2. Let p be any prime. Let χ be a nonprincipal multiplicative character of F∗pn. For
any δ > 0 and independent sources X,Y on Fpn with min-entropy k1, k2 respectively, satisfying
k1 ≥

(
1
2 + 3δ

)
n log p and k2 ≥ 4 log n log p, we have

Ex∼X |Ey∼Y [χ(x+ y)]| ≤ 2−δk2 .

Proof. Let X,Y be flat sources on sets A and B respectively. Thus |A| = 2k1 and |B| = 2k2 . Setting
λ = n log p

k2
in Theorem 4.1 (so that |B| = 2k2 = p

n
λ ), we have

Ex∼X |Ey∼Y [χ(x+ y)]| ≤ |A|−
1

2λ (p
n
4λ + |B|−

1
2 p

n
2λ )

≤ |A|−
1

2λ (p
n
2λ + 1)

≤ p−
3δn
2λ + |A|−

1
2λ

≤ 2p−
3δn
2λ

= 2
1− 3k2δn log p

2n log p ≤ 2−δk2 .

4.2 A Seeded Extractor

We recall an explicit construction of a strong seeded extractor with optimal parameters.

Theorem 4.3 ([GUV09]). There exists a constant α > 0 such that for all n, k ∈ N, there exists an
explicit strong seeded extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m, where d = O

(
n
ε

)
and m = (1−α)k.

4.3 Abelian XOR Lemmas

The following lemma is known as Vazirani’s XOR Lemma.

Lemma 4.4. Let D be a distribution over ZM such that for every nontrivial additive character ψ
of ZM , we have |E[ψ(D)]| ≤ ε. Then, we have

|D − UM | ≤ ε
√
M.
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Let σM : ZN → ZM be defined as σM (x) = x (mod M). The following general version of the
above XOR lemma was proved in [Rao07].

Lemma 4.5 ([Rao07]). Let D be a distribution over ZN such that for every non-trivial additive
character ψ of ZN , we have |E[ψ(D)]| ≤ ε. Then, for any M < N , we have

|σM (D)− UM | ≤ O(ε logN
√
M) +O(M/N).

We also record a more generalized form of the XOR Lemma [DLWZ14].

Lemma 4.6 ([DLWZ14]). Let D1, D2 be distributions over ZN such that for arbitrary characters
ψ, φ of ZN , we have |E[ψ(D1)φ(D2)]| ≤ ε, whenever ψ is nontrivial. Then, for any M < N , we
have

|(σM (D1), σM (D2))− (UM , σM (D2))| = O(ε(logN)2M) +O(M/N).

4.4 Probability Lemmas

The following result follows from a lemma proved in [MW97].

Lemma 4.7 ([MW97]). Let X,Y be random variables with supports S, T ⊆ V such that (X,Y ) is
ε-close to a distribution with min-entropy k. Further suppose that the random variable Y can take
at most l values. Then

Pr
y∼Y

[
(X|Y = y) is 2ε1/2-close to a source with min-entropy k − log l − log

(
1

ε

)]
≥ 1− 2ε1/2.

We also need the following lemma.

Lemma 4.8 ([Sha06]). Let Y be a random variable taking values in {0, 1}d. Suppose |(X,Y )− (X,
Ud)| ≤ ε. Then for any y ∈ support(Y ), |X − (X|Y = y)| ≤ 2d+1ε.

Lemma 4.9. Let X be a source on Fnp with min-entropy k. Let V = {v1, . . . , vn} be a collection of
vectors such that dim(span{V }) ≥ n−A. Then XV =

∑
i xivi : x ∼ X is a source with min-entropy

≥ k −A log p.

4.5 Finding Primitive Elements in Finite fields

There is no known deterministic polynomial time algorithm to find any primitive element of a finite
field Fpn . However, there are efficient algorithms known for a weaker task, where the algorithm
is only required to output a small set of elements with the guarantee that one of the elements is
primitive. The following result is due to Shoup [Sho90].

Theorem 4.10 ([Sho90]). Let p > 0 be any prime. For all n > 0, there exists a deterministic
procedure which takes as input n, runs in time poly(n), and outputs a set S = {a1, . . . , al}, l =
poly(n), such that S contains a primitive element of Fpn.
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5 Constructing Spanning Vectors

A key ingredient in our extractor construction are explicit constructions of spanning vectors. Recall
that a set of vectors S ⊆ F¯̀

p is (r, s)-spanning if the span of any r vectors of S has dimension at
least s (see Definition 2.1). Our constructions of spanning vectors are simple and are based on
explicit linear codes. Recall that a linear code of block length n, dimension k and distance d over
any field F is a k dimensional subspace over F with the number of zero co-ordinates of any vector
in this subspace being at most n− d. The relative rate of the code is k/n and the relative distance
is d/n.

We show that the columns of the parity check matrix of any linear code with good erasure
list-decoding radius (defined below) can be used as a spanning set.

Definition 5.1 (Erasure List-Decoding Radius [Gur03]). We say that a linear code [n, k, d] code
C over a finite field F is (e, L)-erasure list-decodable if for every for every r ∈ Fn−e and T ⊆ [n] of
size n− e, |{c ∈ C : cT = r}| ≤ L.

We now establish a simple connection between erasure list-decodable codes and spanning sets.

Lemma 5.2. Let C be a linear [n, k, d] code over a finite field F, which is (e, L)-earasure list-
decodable. Let H be parity check matrix of C, and let S be the set of columns of H. Then S ⊂ Fn−k
is a (r, s)-spanning set of size n, with r = e and s = e− log|F|(L).

Proof. Since C is (e, L)-erasure list-decodable, it follows that the size of the null space of any e
columns of the parity check matrix H is at most L. By the rank-nullity theorem, it follows that
the rank of the sub-matrix of H restricted to these e columns is at least e − log|F|(L). Thus by
definition, the set of columns of H form a (e, e− log|F|(L))-spanning set.

The following lemma relates the minimum distance of a code to its erasure list-decoding radius,
and can be seen as an analogue of the Johnson bound for erasure list-decoding.

Lemma 5.3 ([Gur04]). Let C be a code with block length n and relative distance δ over an alphabet

of size q. Then for any ε > 0, C is a (e, L)-erasure list-decodable code, where e =
(

q
q−1 − ε

)
δn and

L = q
(q−1)ε .

Combining the above results, the following lemma is immediate.

Lemma 5.4. For any δ > 0, let C be a binary linear code with relative distance 1
4 + δ, and block

length 2n. Then the columns of the parity check matrix of H form a (r, s)-spanning set, with r = n
and s = n− log

(
1
δ

)
.

Proof. Using Lemma 5.3, it follows that C is (n, 1
δ )-erasure list-decodable. Now applying Lemma

5.2, the lemma follows directly.

A similar result follows for the case of q-ary linear codes.

Lemma 5.5. For any δ > 0, let C be a linear code with relative distance q−1
2q +δ and block length 2n

over a finite field of size q. Then the columns of the parity check matrix of H form a (r, s)-spanning

set, with r = n and s = n− log
(

q
(q−1)δ

)
.
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To instantiate the above results, we recall some explicit code constructions. Using standard
code concatenation, there are known constructions of binary linear codes achieving the Zyablov
bound.

Theorem 5.6. For any ε, γ > 0, there exists an explicit construction of a binary linear code with

relative distance δ = 1
4 + ε and relative rate R ≥ max0<r<1−H(δ+ε) r

(
1− δ

H−1(1−r)−ε

)
.

Over larger alphabets, the following explicit codes were constructed in the work of Guruswami
and Indyk [GI02].

Theorem 5.7 ([GI02]). There exists c > 0 such that for every γ > 0 and any prime p > 2
c
γ there

is an efficient construction of a linear code C ⊂ Fnp with relative distance δ = 1
2 −

1
4p and rate

R = 1
2 − γ.

Using the above codes, we now have explicit constructions of spanning sets.

Lemma 5.8. There exist constants γ > 0 and c such that for any n, there exists an explicit
(n, n− c)-spanning set S ⊂ F2n̄ of size 2n, where n̄ = 2n(1− γ).

Proof. Let H be the parity check matrix of the explicit linear code C ⊂ F2n
2 from Theorem 5.6 for

relative distance 1
4 + δ, for some small constant δ. Let S = {v1, . . . , v2n} be the set of columns of

H. Thus S ⊂ Fn̄2 , n̄ = 2n(1 − γ), γ being the relative rate of the code. Applying Lemma 5.4, the
result is now immediate.

Lemma 5.9. There exists c > 0 such that for any γ > 0 and any prime p > 2
c
γ , there is an efficient

construction of an explicit set (n, n−C)-spanning set S ⊂ F2n̄ of size 2n, where n̄ = n(1 + 2γ) and
C = 2c

γ .

Proof. Let H be the parity check matrix of the explicit linear code C ⊂ F2n
p from Theorem 5.7 with

relative distance 1
2 −

1
4p and rate 1

2 − γ . Let S = {v1, . . . , v2n} be the set of columns of H. The
result now follows by Lemma 5.5.

We show that random sets are (r, s)-spanning sets with overwhelmingly high probability. Gu-
ruswami’s existence proof of subspace evasive [Gur11] targets different parameters and does not
apply here. This lemma is more related to the existence of good erasure list-decodable codes.

Lemma 5.10. Let S be a random subset of Fn2 of size 2n. Then,

Pr[S is not a (n, n− 2
√
n)-spanning set ] ≤ 2−n.

Proof. Let t > 0. Consider any subset R ⊂ S, |R| = n. By standard arguments, it follows that

Pr[dim(span(R)) ≤ n− t] ≤
(
n

t

)
(2−t)t ≤

( n
2t

)t
.

Thus,

Pr[∃ R ⊂ S, |R| = n with dim(span(R)) ≤ n− t] ≤
(

2n

n

)( n
2t

)t
≤ 22n−t2+t logn

The lemma follows by setting t = 2
√
n+ 1.
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6 Extractors for 2-Interleaved Sources

6.1 Extractors for 2-Interleaved Sources on {0, 1}2n

Our extractor constructions are based on encoding the interleaved-sources using spanning vectors.
Recall that any (r, s)-encoding from F`p → F¯̀

p is defined in the following way: For any (r, s)-spanning

set S = {v1, . . . , v`} ⊆ Fn̄p , the function enc : F`p → F¯̀
p defined as

enc(z) =
n∑
i=1

zivi

is an (r, s)-encoding from F`p → F¯̀
p.

The following is a key lemma in our extractor constructions.

Lemma 6.1 (Main Lemma). Fix any δ > 0. Let p be any prime and let Z = (X ◦ Y )t be any
2-interleaved source on F2n

p , where X and Y are independent sources on Fnp with min-entropy k1

and k2 respectively, and t : [2n] → [2n] is any permutation. Also suppose χ is any nonprincipal
multiplicative character of F∗pn̄ and enc is an arbitrary (n, s)-encoding from F2n

p to Fn̄p . Then,

EX |EY [χ(enc(Z))]| ≤ 2−δ(k2−(n−s) log p),

whenever

• k1 ≥ (1
2 + 3δ)n̄ log p+ (n− s) log p, and

• k2 ≥ 4 log n̄ log p+ (n− s) log p.

Proof. For any z ∈ F2n
p , let

enc(z) =
2n∑
i=1

zivi

where S = {v1, . . . , v2n} ⊂ Fn̄p is (n, s)-spanning.

We have,

χ(enc(Z)) = χ

(
2n∑
i=1

Zivi

)
= χ

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)


Define the following independent sources:

X ′ =

n∑
i=1

xivt(i) : x ∼ X, Y ′ =

n∑
j=1

yjvt(n+j) : y ∼ Y.

Using Lemma 4.9, it follows that: k′1 = H∞(X ′) ≥ k1 − (n − s) log p and k′2 = H∞(Y ′) ≥
k2 − (n− s) log p.
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Thus, we have

EX |EY [χ(enc(Z))]| = Ex∼X

∣∣∣∣∣∣Ey∼Y
χ
 n∑
i=1

xivt(i) +

n∑
j=1

yjvt(n+j)

∣∣∣∣∣∣
= EX′

∣∣EY ′ [χ (X ′ + Y ′
)]∣∣

= 2−δk
′
2

where the last inequality follows using Theorem 4.2.

Using the above main lemma, we construct extractors for 2-interleaved sources on F2n
2 .

Theorem 6.2. For some δ > 0 and any λ > 0, there exists an explicit function ext : {0,
1}2n → [M ], M = nλ, such that if X and Y are independent sources on Fn2 with min-entropy
k1, k2 respectively satisfying k1 > (1 − δ)n and k2 > 10 max{log n, logM}, t : [2n] → [2n] is any
permutation, then

|ext((X ◦ Y )t) ◦X − UM ◦X| = 2−Ω(k2).

Proof. Let H be the parity check matrix of a code C ⊂ F2n
2 with relative distance = 1

4 +δ1 (for some
small constant δ1) and constant rate R, where we fix R as follows. Let RZ be the rate of the code
from Theorem 5.6. Let ε1 << RZ be a small constant. We choose R in the interval [RZ − ε1, RZ ]
such that n̄ = 2n(1−R) is divisible by integer m, m = λ log n. Since 2RZε1n >> m, we can indeed
find such an R. Fix M = 2m − 1. We note that M |2n̄ − 1. Set δ = R

6 .

Let S = {v1, . . . , v2n} be the set columns of H. By Lemma 5.8, S is (n, n − C)-spanning,
for some constant C. We interpret each vi as being an element in the field F2n̄ . Consider the
multiplicative subgroup:

G = {x
2n̄−1
M : x ∈ F∗2n̄}.

A generator g of G can be found efficiently in the following way: Using Theorem 4.10, we can
efficiently construct a set S = {a1, . . . , al}, l = poly(n), such that one of the ai’s, say aj , is a

primitive element of F2n̄ . Let S′ = {a
2n̄−1
M

1 , . . . , a
2n̄−1
M

l }. We note that a
2n̄−1
M

j ∈ S′ is an element of
order M . Thus, it is enough to enumerate over the elements in S′ and compute the order of each
element. Since the order of any element in S′ is bounded by M = poly(n), the search procedure
can be implemented efficiently.

Let Z = (X ◦ Y )t. For any z ∈ F2n
2 , define the functions:

enc(z) =
2n∑
i=1

zivi, ext1(z) = (enc(z))
2n̄−1
M , ext(z) = logg(ext1(z)).

We note that ext1 and ext are efficiently computable functions. Further note that enc is an
(n, n− C)-encoding from F2n

2 to Fn̄2 .

Using the above lemma, we prove the following claim.
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Claim 6.3. Let ψ(x) = eM (βx), β 6= 0 (mod M), be any nontrivial character of the additive group
ZM .

Then,
EX |EY [ψ(ext2((X ◦ Y )t))]| ≤ 2−δk2 .

We note that Theorem 6.2 follows directly from Claim 6.3 by using Lemma 4.4. Thus it is
enough to prove Claim 6.3.

Proof of Claim 6.3. We have,

ψ(ext(z)) = eM (β logg(ext1(z)))

= χ (enc(z)) ,

where χ(x) = eM (β logg(x)) is a nonprincipal multiplicative character of F∗2n̄ of order M
gcd(M,β) .

Thus, we have

EX |EY [ψ(ext2((X ◦ Y )t))]| = Ex∼X |Ey∼Y [χ (enc(Z))]|
≤ 2−δk2 ,

where the inequality follows from Lemma 6.1.

It is direct from the above theorem, that if we insist that the output of the above extractor is
a bit string, we have the following result.

Theorem 6.4. For some δ > 0 and any λ > 0, there exists an explicit function ext : {0, 1}2n →
{0, 1}m, m = λ log n, such that if X, Y are independent sources on Fn2 with min-entropy k1, k2

respectively satisfying k1 > (1− δ)n and k2 > 10 max{log n,m}, t : [2n]→ [2n] is any permutation,
then

|ext((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).

6.2 Extracting from 2-Interleaved Sources on F2n
p

If the sources X and Y are on Fnp (for some large enough prime p), we can reduce the min-entropy

rate requirement of the source X to about 1
2 .

Theorem 6.5. There exists c > 0 such that for any δ, λ > 0 and any prime p > 2
c
δ , there exists an

explicit function extp : F2n
p → {0, 1}m, m = λ log n, such that if X and Y are independent sources

on Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 +δ)n log p and k2 > max{5 log n log p,

3m
δ }, t : [2n]→ [2n] is any injective map, then

|extp((X ◦ Y )t) ◦X − Um ◦X| = n−Ω(1).
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Proof. Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p from Lemma 5.9. Further,
as in the proof of Theorem 6.2, we choose the rate of the code in Lemma 5.9 such that m|n̄ and
m = λ logp n. Thus we can ensure that n̄ ≤ n(1 + δ

5).

Let M = nλ. For any z ∈ F2n
p , define the functions:

enc(z) =

2n∑
i=1

zivi, ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
pn̄−1
M : x ∈ F∗pn̄}. The proof now follows using Lemma 6.1 and

Lemma 4.4.

6.3 Improving the Output Length

The output length of the extractor in Theorem 6.5 is Ω(log n). We improve the output length to
Ω(n) bits when the min-entropy rate of both the sources (on Fnp ) are slightly more than 1

2 .

A general technique to improve the output length extractors was introduced by Shaltiel [Sha06].
In particular, Shaltiel showed that the function:

SExt(X, 2ext(X,Y )) ◦ SExt(Y, 2ext(X,Y ))

is 2-source extractor with longer output length, where 2ext is a 2-source extractor with short output
length and SExt is a seeded extractor set to appropriate parameters.

However this does not work in our case since it requires access to the individual sources X and
Y . Surprisingly, we show that the construction: SExt(((X ◦Y )t)[n], 2extp((X ◦Y )t)) can be proved
to be an extractor.

Theorem 6.6. There exists c > 0 such that for any δ > 0 and any prime p > 2
c
δ , there exists an

explicit function extp,long : F2n
p → {0, 1}m, m = Ω(n), such that if X and Y are independent sources

on Fnp with min-entropy k1, k2 respectively satisfying k1 > (1
2 + δ)n log p and k2 > (1

2 + δ)n log p,
t : [2n]→ [2n] is any injective map, then

|extp,long((X ◦ Y )t)− Um| = n−Ω(1).

Proof. Let SExt be the seeded-extractor from Theorem 4.3 with parameters β = δ, α = δ/2 and
ε = n−Ω(1). Let the seed length of SExt with this setting of the parameters be d = λ log n. Let
Z = (X ◦ Y )t. Define

extp,long(Z) = SExt(Z[n], extp(Z)),

where extp is the extractor from Theorem 6.5 designed to extract from 2-interleaved sources with

one source at min-entropy k1 ≥ (1
2 + δ)n log p and the other source with min-entropy k2 ≥ δn log p

2
with error εp = n−2λ and output length mp = λ log n.

Let S = {i ∈ [n] : Zi = Xi} and T = {j ∈ [n] : Zj = Yj}. Also let S̄ = [n] \ S and T̄ = [n] \ T .
Without loss of generality, we can assume that |S| ≥ n

2 . It follows from Lemma 4.7 that there exists

a set Goody such that for any yT ∈ Goody, YT̄ |YT = yT is 2−Ω(n)-close to a source with entropy

more than δn log p
2 , and Pr[Yt ∈ Goody] > 1− 2−Ω(n).
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Let yT ∈ Goody. It follows by the setting of extp that

|(extp(Z|YT = yT ) ◦XS − Um ◦XS | ≤ n−2λ.

Using Lemma 4.8, it follows that

|XS − (XS |(extp(Z|YT = yT ) = e))| ≤ n−λ+1. (1)

Let pyT = Pr[YT = yT ] and let pe|yT = Pr[extp(Z|YT = yT ) = e].

Using the above estimates, we have

|extp,long(Z)− Um| ≤
∑
yT

pyT |SExt(XS ◦ yT , extp(Z|YT = yT ))− Um|

≤

 ∑
yT∈Goody

pyT |SExt(XS ◦ yT , extp(Z|YT = yT ))− Um|

+ 2−Ω(n)

≤
∑

yT∈Goody

pyT

(∑
e

pe|yT |SExt(XS ◦ yT , e)− Um|+ n−λ+1

)
+ 2−Ω(n)

≤

 ∑
yT∈Goody

pyT |SExt(XS ◦ yT , Ud)− Um|

+ n−Ω(1)

= n−Ω(1).

where the last line follows from the fact that XS has min-entropy at least δn log p.

6.4 One Bit Extractors for 2-Interleaved Sources on F2n
p with Exponentially

Small Error

Note that all our extractor constructions so far have polynomially small error if we insist that the
output of the extractor is a bit string. Here we show how to achieve exponentially small error for
2-interleaved sources on Fp, for any large enough prime. However we can output only 1 bit.

Theorem 6.7. There exists c > 0 such that for any δ > 0 and any prime p > 2
c
δ , there exists an

explicit function ext1bit : F2n
p → {0, 1}, such that if X and Y are independent sources on Fnp with

min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p and k2 > 5 log n log p, t : [2n] → [2n]

is any injective map, then

|ext1bit((X ◦ Y )t) ◦X − U1 ◦X| = 2−Ω(k2).

Proof. Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p from Lemma 5.9. Define
the functions:

enc(z) =

2n∑
i=1

zivi, ext(z) = QR (enc(z)) ,

where QR is the quadratic character of F∗pn̄ . The proof now follows using Lemma 6.1.
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6.5 Semi-Explicit Extractors for 2-Interleaved Sources with Linear Output Length
and Exponentially Small Error

We note that the extractors constructed so far have either achieved linear output length or ex-
ponentially small error, but not both simultaneously. We show that if we allow the extractors to
run in sub-exponential time, then we can indeed construct such extractors. (Note that the trivial
algorithm to find such an extractor runs in doubly exponential time.)

Theorem 6.8. For some δ > 0, there exists a semi-explicit function ext : {0, 1}2n → {0, 1}m,
such that if X and Y are independent sources on Fn2 with min-entropy k1, k2 respectively satisfying
k1 > (1− δ)n and k2 > 10 max{log n,m}, t : [2n]→ [2n] is any permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = 2−Ω(k2).

Proof. Let S = {v1, . . . , v2n} be an explicit (n, n−C)-spanning set in Fn̄2 constructed using Lemma
5.8. Let m = δk2

2 . For any z ∈ F2n
p , define the functions:

enc(z) =

2n∑
i=1

zivi, ext1(z) = logg(enc(z)), ext(z) = ext1(z) (mod 2m)

where g is a generator of F∗2n̄ . The proof now follows using Lemma 6.1 and Lemma 4.5.

Using the (n, n−C)-spanning sets from Lemma 5.9 to encode the sources, we obtain the following
theorem using Lemma 6.1.

Theorem 6.9. There exists c > 0 such that for any δ > 0 and any prime p > 2
c
δ , there exists

a semi-explicit function ext : F2n
p → {0, 1}m, such that if X, Y are independent sources on Fnp

with min-entropy k1, k2 respectively satisfying k1 > (1
2 + δ)n log p and k2 > max{5 log n log p, 3m

δ },
t : [2n]→ [2n] is any permutation, then

|ext((X ◦ Y )t) ◦X − Um ◦X| = 2−Ω(k2).

6.6 Extractors for 2-Interleaved Sources with Linear Min-Entropy Under the
Generalized Paley Graph Conjecture

In this section, we show how to construct extractors for sources with linear min-entropy under the
widely believed Generalized Paley Graph Conjecture.

Generalized Paley Graph Conjecture. Let χ be any non-principal multiplicative character of
F∗pn. For any constant δ > 0, and arbitrary subsets A,B ⊆ Fpn satisfying |A|, |B| > pδn, we have∣∣∣∣∣∣

∑
a∈A,b∈B

χ(a+ b)

∣∣∣∣∣∣ ≤ p−γ(δ)n|A||B|.

Assuming the above conjecture, we obtain the following improved version of Lemma 6.1.
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Lemma 6.10. Assume the Generalized Paley graph Conjecture. Fix any δ > 0 and any prime p.
Let Z = (X ◦ Y )t be any 2-interleaved source on F2n

p , where X and Y are independent sources on
Fnp with min-entropy k1 and k2 respectively, and t : [2n] → [2n] is any permutation. Also suppose
χ is any nonprincipal multiplicative character of F∗pn̄ and enc is an arbitrary (n, s)-encoding from

F2n
p to Fn̄p . Then, there exists γ = γ(δ) such that

EX |EY [χ(enc(Z))]| ≤ p−γn,

whenever

• k1 ≥ δn̄ log p+ (n− s) log p, and

• k2 ≥ δn̄ log p+ (n− s) log p.

Proof. For any z ∈ F2n
p , let

enc(z) =

2n∑
i=1

zivi

where S = {v1, . . . , v2n} ⊂ Fn̄p is (n, s)-spanning.

We have,

χ(enc(Z)) = χ

(
2n∑
i=1

Zivi

)
= χ

 n∑
i=1

Xivt(i) +

n∑
j=1

Yjvt(n+j)


Define the following independent sources:

X ′ =

n∑
i=1

xivt(i) : x ∼ X, Y ′ =

n∑
j=1

yjvt(n+j) : y ∼ Y.

Using Lemma 4.9, it follows that: H∞(X ′) ≥ k1− (n− s) log p and H∞(Y ′) ≥ k2− (n− s) log p.

Thus, we have

EX |EY [χ(enc(Z))]| = Ex∼X

∣∣∣∣∣∣Ey∼Y
χ
 n∑
i=1

xivt(i) +

n∑
j=1

yjvt(n+j)

∣∣∣∣∣∣
= EX′

∣∣EY ′ [χ (X ′ + Y ′
)]∣∣

≤ p−γn

where the last inequality follows using the Generalized Paley Graph Conjecture.

Using the above lemma, we have the following theorem.

Theorem 6.11. Assume the Generalized Paley Graph Conjecture. For any δ, λ > 0, there exists
an explicit function extconjecture : {0, 1}2n → {0, 1}m, m = λ log n, such that if X and Y are
independent sources with min-entropy δn each, and t : [2n]→ [2n] is any permutation, then

|extconjecture((X ◦ Y )t)− Um| = n−Ω(1).
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Proof. Let S = {v1, . . . , v2n} be an explicit (n, n−C)-spanning set in Fn̄p constructed using Lemma
5.8. Further, as in the proof of Theorem 6.2, we choose the rate of the code in Lemma 5.9 such
that m|n̄ and m = λ log n. Let M = nλ. For any z ∈ F2n

2 , define the functions:

enc(z) =
2n∑
i=1

zivi, ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
2n̄−1
M : x ∈ F∗2n̄}. The proof now follows using Lemma 6.10 and

Lemma 4.4.

We note that assuming the above conjecture, the output length of the above extractor can be
improved to Ω(n) if both X and Y have min-entropy rate more than 1

4 by using the proof method
of Theorem 6.6.

7 Interleaved-Non-Malleable Extractors

In this section, we show that the proof technique developed in constructing extractors for 2-
interleaved sources can be used to construct non-malleable extractors in the interleaved model.

Theorem 7.1. There exists λ1 > 0 such that for any δ, λ2 > 0, c > c(δ) and any prime p > 2
λ1
δ ,

there exists an explicit function nmExt : F2n
p → {0, 1}m, m = λ2 log n, such that if X, Y are

independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p and

k2 > cmax{m, log n}, t : [2n]→ [2n] is any injective map and f : Fnp → Fnp is any function with no
fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = n−Ω(1).

To prove the above theorem, we recall a character sum estimate of Dodis et al. [DLWZ14].

Theorem 7.2. For any δ > 0 and η < 1
2 , suppose S and T are non-empty subsets of Fq satisfying

|S| > q
1
2

+δ and |T | > max{( 1
η )

7
δ , (log q)8}. Let f : Fq → Fq be any arbitrary function with no fixed

points. For arbitrary multiplicative characters χa and χb, such that χa is nonprincipal, we have

∑
y∈T

∣∣∣∣∣∑
x∈S

χa(x+ y)χb(x+ f(y))

∣∣∣∣∣ < η|S||T |.

Proof of Theorem 7.1. We use encoding based on spanning vectors. In particular, let S = {v1,
. . . , v2n} be an explicit (n, n − C)-spanning set in Fn̄p constructed using Lemma 5.9. Further, as
in the proof of Theorem 6.2, we choose the rate of the code in Lemma 5.9 such that m|n̄ and
m = λ2 logp n. Let M = nλ2 . For any z ∈ F2n

p , define the functions:

enc(z) =
2n∑
i=1

zivi, ext1(z) = (enc(z))
pn̄−1
M , ext(z) = logg(ext1(z))

where g is a generator of G = {x
pn̄−1
M : x ∈ F∗pn̄}. We prove the following claim.
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Claim 7.3. Let ψa and ψb be arbitrary characters of the additive group ZM such that ψa is non-
trivial. Then,

Ey∼Y |Ex∼X [ψa(nmExt((X ◦ Y )t))ψb(nmExt((X ◦ f(Y ))t))]| = n−Ω(1).

Before proving this claim, we note that Theorem 7.1 follows directly from Claim 7.3 by using
Lemma 4.6.

Proof of Claim 7.3. Let t([n]) = T1 and t([n + 1, 2n]) = T2. Since S is (n, n)-spanning, it follows
that the set {vi : i ∈ T1} consists of linearly independent vectors. Similarly {vj : j ∈ T2} is a set of
linearly independent vectors.

Let ψa(x) = eM (ax), where a 6= 0 (mod M). Also let ψb(x) = eM (bx). If b = 0 (mod M), the
claim follows from Lemma 6.1. Thus suppose b 6= 0 (mod M).

We have,

ψa(nmExt((X ◦ Y )t) = eM (a logg(ext1((X ◦ Y )t)))

= χa

 n∑
i=1

Xivt(i) +
n∑
j=1

Yjvt(n+j)


= χa

(
X ′ + Y ′

)
where χa(x) = eM (a logg(x)) is a nonprincipal multiplicative character of F∗pn̄ of order M

gcd(M,a) ,

X ′ =
∑n

i=1 xivt(i) : x ∼ X and Y ′ = L(Y ), L : Fnp → Fn̄p being the injective linear map:

L(y) =

n∑
j=1

yjvt(n+j).

Further,

ψb(nmExt((X ◦ f(Y ))t) = eM (b logg(ext1((X ◦ Y )t)))

= χb

 n∑
i=1

Xivt(i) +

n∑
j=1

f(Y )jYt(n+j)


= χb

(
X ′ + f ′(Y ′)

)
where f ′ = L ◦ f ◦ L−1 and χb(x) = eM (b logg(x)) is a nonprincipal multiplicative character of F∗pn̄
of order M

gcd(M,b) .

We claim that f ′ has no fixed points. This can be proved in the following way. Suppose
f ′(x) = x for some x. This implies that f(L−1(x)) = L−1(x) and hence f(w) = w for w = L−1(x).
This contradicts our assumption on f . Thus f ′ has no fixed points.

It now follows from Theorem 7.2 that

Ex′∼X′ |Ey′∼Y ′ [χa(x′ + y′)χb(x
′ + f ′(y′))]| = n−Ω(1).
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If we allow the non-malleable extractor to run in sub-exponential time, then using the proof
method of the above theorem, it can be shown that the extractor from Theorem 6.9 is non-malleable.
Thus, we have the following result.

Theorem 7.4. There exists λ > 0 such that for any δ > 0, c > c(δ) and any prime p > 2
λ
δ ,

there exists a semi-explicit function nmExt : F2n
p → {0, 1}m, m = Ω(n), such that if X, Y are

independent sources on Fnp with min-entropy k1, k2 respectively, satisfying k1 > (1
2 + δ)n log p and

k2 > cmax{m, log n}, t : [2n] → [2n] is any permutation and f : Fnp → Fnp is any function with no
fixed points, then

|nmExt((X ◦ Y )t) ◦ nmExt((X ◦ f(Y ))t) ◦ Y − Um ◦ nmExt((X ◦ f(Y ))t) ◦ Y | = 2−Ω(k2).

We note that under the Generalized Paley Graph Conjecture, we can reduce the min-entropy
requirement of the source X in Theorem 7.1 to βn, for any constant β > 0.

8 Proof of Theorem 1.6

We briefly recall some definitions from communication complexity. We refer the reader to [KN97]
for more background. For convenience, we define boolean functions with range {−1, 1} (instead of
{0, 1}).

Definition 8.1. Let f : [p]2n → {−1, 1} be any function. Fix any equi-partition of [2n] into subsets
S, T . For any rectangle R and probability distribution µ on [p]2n, denote

Discµ,RS,T (f) = |Pr
µ

[f(xS , yT ) = 1 and (x, y) ∈ R]− Pr
µ

[f(xS , yT ) = −1 and (x, y) ∈ R]|.

Definition 8.2. The discrepancy of f : [p]2n → {−1, 1} with respect to an equi-partition of [2n]
into S, T and distribution µ on [p]2n is defined as:

DiscµS,T (f) =

{
max
R

(
Discµ,RS,T (f)

)}
.

Definition 8.3. The maximal-equipartition discrepancy of f : [p]2n → {0, 1} with respect to a
distribution µ on [p]2n is defined as:

Discµbest(f) = max
S,T :|S|=|T |=n,
S∪T=[2n]

{
DiscµS,T (f)

}
.

The following theorem provides a method to lower bound randomized best-paritition commu-
nication complexity of f using its maximal-equi-partition discrepancy. A proof can be found in
[KN97].

Theorem 8.4. For every function f : [p]2n → {−1, 1}, every probability distribution µ on [p]2n

and every ε ≥ 0,

Rbest,
1
2
−ε(f) ≥ log

(
2ε

Discµbest(f)

)
.
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We now prove Theorem 1.6.

Proof of Theorem 1.6. We show that the explicit extractor from Theorem 6.7 is the required func-
tion. Recall the construction of the extractor.

Let S = {v1, . . . , v2n} be an explicit (n,n-C)-spanning set in Fn̄p constructed using Lemma 5.9,
n̄ = n(1 + 4δ).

Define the functions:

enc(z) =
2n∑
i=1

zivi, ext(z) = QR (enc(z)) ,

where QR is the quadratic character of F∗pn̄ .

We claim that the randomized best partition discrepancy of ext with error 1
2 − p

−γn is at least
(1

4 − δ − γ)n log p.

Let µ be the uniform distribution on [p]2n.

Claim 8.5. For any equi-partition of [2n] into disjoint subsets S and T ,

log

(
1

DiscµS,T (ext)

)
≥
(

1

4
− δ
)
n log p.

We note that the proof of Theorem 1.6 is direct from Claim 8.5 by using Theorem 8.4.

Proof of Claim 8.5. Fix any rectangle R = X × Y , for arbitrary subsets X,Y ⊆ [p]n. We have,

Discµ,RS,T (ext) =
|X||Y |
p2n

|Ex∈X,y∈Y [QR (enc(xS ◦ yT ))]|

We note that if |X| ≤ p
3n
4 or |Y | ≤ p

3n
4 , the claim follows easily.

Thus suppose |X|, |Y | > p
3n
4 . We abuse notation and also use X,Y to denote the flat dis-

tributions supported on the sets X and Y respectively. Define the distribution Z = (X ◦ Y )π,
where π : [2n] → [2n] is a permutation defined in the following way: Let S = {s1, . . . , sn} and
T = {t1, . . . , tn} such that s1 ≤ . . . ≤ sn and t1 ≤ . . . ≤ tn. For any i ∈ [n], define π(i) = si and for
any j ∈ [n+ 1, 2n], define π(j) = tj (thus, π([n]) = S and π([n+ 1, 2n]) = T ).

We note that enc is an (n, n)-encoding from F2n
p → Fn̄p . Thus,

enc(Z) = X ′ + Y ′,

where X ′ and Y ′ are independent sources on Fn̄p with H∞(X ′) = log(|X|) and H∞(Y ′) = log(|Y |).
Using Theorem 4.1, with λ = 1, we have

∣∣E[QR
(
X ′ + Y ′)

)
]
∣∣ ≤ ( pn̄

|X||Y |

) 1
2

+

(
p
n̄
2

|X|

) 1
2
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Thus,

Discµ,RS,T (ext) ≤
(
|X||Y |
p2n

)( pn̄

|X||Y |

) 1
2

+

(
p
n̄
2

|X|

) 1
2


≤ |X|

1
2 |Y |

1
2

p2n− n̄
2

+
|X|

1
2

pn−
n̄
4

≤ p−(n− n̄
2

) + p−
n
2

+ n̄
4

Since the above estimate holds for any arbitrary rectangle R, we have

log

(
1

DiscµS,T (ext)

)
≥
(

1

4
− δ
)
n log p.
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